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ABSTRACT 
 
 

Silver (Hypopthalmichthys molitrix) and bighead (H. nobilis) carp, are invasive 

species that have negative impacts upon ecosystems. H. molitrix is known to jump 

completely out of the water in response to broadband sounds, however, this is not 

observed in H. nobilis. Preliminary experiments reveal that sounds can be used to modify 

the behavior of carps. Thus, understanding the hearing abilities of these species is 

important in order to design appropriate acoustical deterrents. Fish heads were preserved 

in 4% paraformaldehyde and the inner ears dissected and photographed under a light 

microscope in order to describe the general structure of the ear, which have never been 

previously described. In addition, some of the ears were processed further, with the 

sensory epithelia trimmed, and then stained with phalloidin and DAPI, and examined 

under an epiflourescence microscope. For saccules, hair cell counts were performed in 

nine 2500 µm2 locations across the epithelia from rostral to caudal ends. Both species had 

similar patterns of hair cell densities, with the mean (±SE) number of hair cells found 

centrally being the least (33.7±3.9 for H. molitrix, 32.1±1.4 for H. nobilis), and greatest 

densities found caudally (71.3±7.7 for H. molitrix, 75.6±4.8 for H. nobilis). At the 55% 

and 65% locations along the rostral-caudal axis of the saccule, H. molitrix had 

significantly more hair cells than H. nobilis. The increased hair cell density in the central 

saccule of H. molitrix may explain why this species is more behaviorally responsive to 

broadband sounds.
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INTRODUCTION 

 
 

As their names imply, Asian carp are not a native species of the United States. 

They are introduced species, which were brought here in the 1970s to control algal 

blooms and aquatic vegetation (Nissen et al., 2019). What was as an attempt to aid the 

water quality in aquaculture facilities and farm ponds, turned into a detriment to the 

natural environment in the United States, as these fishes escaped and began, and still are, 

outcompeting local species such as the paddlefish (Polyodon spathula), gizzard shad 

(Dorosoma cepedianum), and bigmouth buffalo (Ictiobus cyprinellus) (Schrank et al., 

2003; Irons et al., 2007; Sampson et al., 2009; Solomon et al., 2016). 

The two main species of concern are the silver (Hypophthalmichthys molitrix) and 

the bighead carp (Hypophthalmichthys nobilis), both of which are grouped together and 

called bigheaded carps (Nissen et al., 2019). Due to these fishes being a threat to native 

ecosystems, removing them from the Mississippi River Drainage Basin, and the 

numerous other locations they have encroached upon, is a main goal of federal and state 

fisheries managers. Carps belong to the series Otophysi. Otophysan fishes are known to 

be particularly sensitive to sound. They have structures called Weberian ossicles, bony 

structures that mechanically link the swimbladder to the ear. This structure carries the 

motion of the swimbladder to the ear without attenuation of the signal as a result of 

distance of travel (Popper et al., 2003; Popper & Fay, 2011; Popper & Hawkins, 2019). It 

has been hypothesized that this specialization for hearing provided an evolutionary 

advantage in the shallow freshwaters where otophysan fishes evolved (Ladich & Schulz-

Mirbach, 2016). 
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Acoustical deterrence using intense broadband sounds has shown promise for 

deterring at least one of the bigheaded carps, H. nobilis (Taylor et al., 2005). A unique 

behavior is observed in H. molitrix when exposing them to low-frequency broadband 

sounds. This behavior is a sporadic jumping with no directionality or trajectory (Vetter & 

Mensinger, 2016). The discovery of this behavior has led to the development of 

technology that promotes fish avoidance, like the Bio-acoustic Fish Fence (BAFF) 

(Lovell et al., 2006). Other methods, as simple as driving a boat with a motor which 

produces broadband sounds, has also been shown as a way of deterring these fishes. 

Because of the bigheaded carps’ hearing abilities, these low-frequency, broadband sounds 

appear to disturb the carp, but have minimal effects on most native species (Lovell et al., 

2006). In order to better understand how acoustical deterrents may prove useful in 

removing these species, an in-depth understanding of their hearing and inner ear is 

needed. 

The inner ear is specialized for sound detection and spatial orientation. All 

gnathostomatans possess an ear with three patches of sensory hair cells: the saccular, 

utricular, and lagenar maculae which are contained in the saccule, utricle, and lagena 

endorgans, respectively. In otophysan fishes, structures known as the Weberian ossicles 

function as an accessory organ for hearing to transmit sound vibrations from the swim 

bladder to the endorgans of the inner ear (Popper & Fay, 1980). Fish do not possess 

designated auditory organs like their mammalian counterparts, but rather it has been 

thought that the utricle plays a primarily vestibular function, the saccule plays a primarily 

auditory one, and the lagena supports the saccule with roles in both vestibular and 
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auditory functions, all of which are interconnected by three semicircular canals (Popper 

& Fay, 1993; Popper et al., 2003; Kwak et al., 2006; Khorevin, 2008).  

Within the ear lies three calcareous (i.e., composed mostly of calcium carbonate) 

structures, called otoliths. Otoliths allow the fish to detect its own movement and signals 

from its environment when they move relative to how the rest of the body moves. This 

difference in movement is a consequence of the difference in densities. Otoliths are 

approximately three times denser than the body of the fish, and thus allows an inertial 

gradient to be formed to allow the fish to detect motion of the body relative to the head 

(Popper et al., 2005). The otoliths have their own designations for each endorgan: the 

utricular otolith is called lapillus(i), the saccular otolith is called sagitta(e), and the lagena 

otolith is called asteriscus(i). 

 Each endorgan has an area of sensory epithelia that is referred to as a macula. On 

this macula is a basal lamina that underlies a layer of non-sensory supporting cells with 

sensory hair cells interspersed throughout (Oesterle & Stone, 2008; Inoue et al., 2013). In 

between the supporting cells, there are neurons that extend to make synaptic connections 

with the hair cells (Szabo et al., 2007; Tanimoto et al., 2009). These hair cells have apical 

ciliary bundles that consist of one kinocilium and multiple stereocilia that project from 

the hair cell body into the lumen where they contact the otolith found within each 

endorgan (Bever & Fekete, 2002; Nicolson, 2005; Cruz et al., 2009; Inoue et al., 2013). 

Hair cells are either compressed or stretched due to sound waves, and this induces an 

excitatory or inhibitory stimulus to the auditory nerve, delivering information from the 

exterior environment to the brain (Nicolson, 2005).  
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The most diverse inner ear endorgan among fish species is the saccule, in size, 

shape, and hair cell density. The saccule has been the most fully chacterized as a sound 

detector in fish species (Popper & Fay, 1999). In addition to this, the saccule is 

tonotopically organized, meaning that certain areas of the saccule are sensitive to specific 

frequencies of sound (Smith et al., 2011). 

As previously mentioned, there are behavioral differences between both species 

of carp. Silver carp exhibit a frenzied jumping behavior when exposed to lower 

frequencies of sound (Vetter et al., 2015; Vetter & Mensinger, 2016), whereas bighead 

carp do not jump when exposed to these sounds (Vetter et al., 2017). One potential 

explanation for these behavioral differences is that H. molitrix is physiologically more 

sensitive to sound than H. nobilis. In a recent experiment using auditory evoked 

potentials to measure hearing sensitivity, Nissen et al., (2019) found that H. molitrix 

exhibited greater hearing loss than H. nobilis following noise exposure even though their 

control audiograms are similar. It is unknown if the difference in these species’ 

sensitivity to sound exposure is due to differences in features of the inner ear, such as 

sensory hair cell morphology or density. 

Previous studies show that the density of saccular hair cells in fishes is correlated 

with hearing sensitivity. For example, female plainfin midshipman, Porichthys notatus, 

increase saccular hair cell numbers during the breeding season when they become more 

sensitive to the male’s advertisement call (Coffin et al., 2012). In addition, noise-induced 

hair cell loss leads to hearing loss in fishes and post-trauma regeneration of hair cells is 

correlated with recovery of hearing, as non-mammalian vertebrates have the capability of 

regenerating lost auditory hair cells (Smith et al., 2011; Smith et al., 2015; Monroe et al., 
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2015). The first goal of this study was to describe the general anatomy of the inner ear of 

bighead carp (H. nobilis), as the inner ear of Asian carp species have never been 

described. The second goal was to determine if the differences in saccular hair cell 

density between H. molitrix and H. nobilis may explain differences in behavioral 

responses (e.g., jumping) to broadband sound.   
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METHODS 
 
Fish Dissection 

 Juvenile fish from both species, silver (N=7) and bighead (N=12), were 

euthanized by an overdose of 0.5% tricaine methanesulfonate (MS-222) via AVMA 

protocol (2020). Fish heads were removed just behind the operculae and placed in 4% 

paraformaldehyde for at least a week before being shipped to our lab at Western 

Kentucky University (WKU), from the USGS Upper Midwest Environmental Sciences 

Center in La Crosse, WI. H. molitrix ranged in mass and standard length from 8.9 to 42.3 

g and 10.3-16.7 cm, respectively, while H. nobilis ranged in mass and standard length 

from 4.5-50.0 g and 7.7-17.7 cm, respectively. 

Once the fish arrived at WKU, the heads were placed in a phosphate buffered 

saline (PBS) wash for at least 15 minutes before dissections began. For the examination 

of general inner ear morphology of H. molitrix, the ears were dissected carefully so as to 

keep the semicircular canals and all the inner ear endorgans intact.   

To image the entire ear, a Leica MZ16 stereomicroscope fitted with a Nikon DS-

5M camera housed in WKU’s Electron Microscopy Facility, was used to take Z-stack 

images that were then merged for clear images at all focal planes. The ear was placed in a 

small dish of water in an upright orientation. Approximately 10-20 Z-stack images were 

recorded for each final “stacked” image. The background of these stacked images were 

then modified in Adobe Photoshop to make a consistent dark background.     

For closer examination of the sensory hair cells of the inner ear epithelia, both 

right and left saccules, lagenae, and utricles, were all removed from the head and placed 
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in a microwell with 300 µL of phosphate buffer, being careful to note from which side of 

the head, left or right, the ear came. Once all the endorgans had been dissected out and 

trimmed, 3 µL of Alexa Fluor 488-conjugated phalloidin was added to each well and then 

placed on a shaker to adequately mix the solution with the epithelia. After 15-20 minutes 

of mixing, the epithelia were mounted on a microscope slide with Prolong Gold antifade 

reagent with DAPI (4’,6-diamidino-2-phenylindole) and a cover slip was placed over the 

tissue. Fingernail polish was used to seal the cover slip to ensure the reagents and the 

tissue did not dry out. The tissues were imaged with an epifluorescence Zeiss Axioplan2 

microscope (Carl Zeiss, Jena, Germany). Phalloidin labels F-actin, which allowed for the 

visualization of hair cell bundles.   

Epithelia Imaging 

Starting at one of the furthest ends—rostral or caudal—the saccule was imaged 

within the frame of the objective. Multiple images of the entire saccule were recorded 

using the 20x objective (approximately 50-70 images per epithelium) and AxioVision 

software (version 2.0) with the Zeiss Axioplan microscope. Once the entire saccule had 

been imaged, Adobe Photoshop was used to merge the images into the whole saccule, 

piece by piece. Then nine 2500 µm2 boxes were overlayed throughout the saccule image 

from rostral to caudal ends in pre-determined locations (Fig. 5 and 15A). Using the Axio 

Vision and ImageJ software, individual hair cells were counted within each of those 

boxes. Hair cells were counted if more than 50% of the hair cell bundle fell within the 

box. If a hair cell bundle could not be distinguished as multiple cells, it was only counted 

as one bundle. This process was also repeated for some lagenae and utricles, although the 

focus of this research was the saccule. 
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Statistical Analysis 

 Differences in hair cell bundle density between species were tested using a two-

way analysis of variance, with rostral-caudal location and species as dependent variables. 

Tukey post-hoc tests were used to test for species-specific differences in hair cell 

numbers at each location on the saccule. SYSTAT version 13 (San Jose, CA, USA) was 

used for all statistical analysis (α level 0.05)
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RESULTS 

Inner Ear Morphology 

This study was the first to examine the inner ear of bigheaded carps. The ear is 

located caudally in the skull cavity, just underneath the brain on the lateral, posterior 

edges. The inner ear endorgans are all attached to one another via the semicircular canals 

(Fig. 2, 3, and 4). More tightly associated with one another are the lagenar and saccular 

tissues which share contact with one another through a membranous structure called the 

sacculolagenar foramen (Bever & Fekete, 2002). When dissecting out the ears and 

mounting the tissue, because of the close association of these ears, one had to be 

sacrificed in order to extract the other.  

This shape of saccular maculae is common among cyprinids as depicted by the 

maculae of C. aurautus and D. rerio, both of which belong to the cyprind family (Fig. 7). 

This common maculae is also observed for the two cyprinids of this study as well. The 

saccules for both of these species resembled a propeller shape (Fig. 5 and 6). Beginning 

at the rostal end, the saccule was very slender and narrow. The first four to five counting 

boxes (Fig. 5 and 15A, 5-45%) were in this region. At the end of the slender portion, is 

the centrally located portion, which was very narrow and also demonstrated the least hair 

cell density for both species (Fig. 14D, 55% location). Immediately following this region, 

was the other periphery end, the caudal end (65-85% locations), which was shorter in 

length than the rostral end. In addition to this, the rostral end of the organ possessed a 

distinctive curve near the end (Fig. 14C). The rostral ends of the saccule were more 

pointed, whereas the caudal ends were more rounded in shape.  
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The otoliths of these fish greatly mirrored the shape of their epitheilial tissues. 

The saccule otoliths were by far the hardest to extract, due to their slender build and 

fragile nature (Fig. 9A). Very rarely was I able to succefully extract one without breaking 

it, however, I was able to do this a few times. Otoliths from H. molitirx, unfortunately 

were not saved when examining hair cell densities, and therefore were not able to be 

examined. However, the otoliths of H. nobilis were saved, and therefore can be described 

(Fig. 9). The saccular otolith is long and narrow, with a sharp, curved hook descending 

centrally in the otolith. The utricular and lagenar otoliths were easier to extract due to 

them having a more robust composition. The utricular otolith resembled a bean with a 

rounded outer edge, with the central part of it exhibiting a concave curvature. The lagenar 

otolith resembled an upside-down disc. 

Sensory Hair Cell Quantification 

I examined the differences in the saccule hair cell densities of these two species of 

Asian carp, to determine if these differences might explain the characteristic jumping 

behavior observed in the silver carp species. Due to time and resources, only saccule hair 

cell counts were performed. Hair cell counts were conducted for each box along the 

rostro-caudal axis of every saccule (Fig. 15A). Hair cell density was highly concentrated 

in the peripheral regions, with most at the caudal end (71.3±7.7 for H. molitrix, 75.6±4.8 

for H. nobilis), and the least concentrated in the central region (33.7±3.9 for H. molitrix, 

32.1±1.4 for H. nobilis) (Fig.10).  

I found that, at the 55% and 65% locations, there was a significant difference in 

the number of hair cells (Fig. 10). Mean (±S.E.) hair cell bundle densities were 41.9 ± 3.9 

and 53.6 ± 3.3 for the 55% and 65% boxes, respectively, for H. molitrix (N=7). Mean 
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(±S.E.) hair cell bundle densities for H. nobilis were 32.7 ± 1.7 and 40.0 ± 2.7 for the 

55% and 65% boxes, respectively (N=12). H. molitrix exhibited significantly greater hair 

cell densities at the 55% (p < 0.05) and 65% (p < 0.001) rostro-caudal saccular locations 

(Fig. 8 and 10). All other locations showed no significance between the two species in 

terms of saccular hair cell densities (p > 0.05).  
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Figure 1: A) H. molitrix, the silver carp, B) H. nobilis, the bighead carp (artwork by 

Joseph R. Tomelleri), C) General diagram of a cyprinid inner ear and semicircular canals 

(modified from Monroe et al., 2015). 
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Figure 2: Lateral view of a left H. nobilis ear: SMC=semicircular canals, U=utricle, 

S=saccule, L=lagena. 
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Figure 3:  Dorsal view of a left H. nobilis ear: SMC=semicircular canals, U=utricle, 

S=saccule, L=lagena. 
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Figure 4: Ventral view of a H. nobilis whole brain with both ears. SMC=semicircular 

canals, U=utricle, S=saccule, L=lagena, TEC=telencephalon, CC=cerebellar cortex, 

SC=spinal cord, OT=optic tectum, OFT=olfactory tract. 
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Figure 5: Left saccule from a H. nobilis (with nine 2500 µm2 boxes placed from rostral 

(top) to caudal (bottom) ends where sensory hair cells were quantified for this study. 
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Figure 6: Right H. molitrix saccule. 
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Figure 7: A) H. nobilis saccular maculae, B) D. rerio saccular maculae, C) C. auruatus 

saccular maculae modified from Platt & Popper, 1984. 
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Figure 8: A) H. molitrix saccule and B) H. nobilis saccule, both at the 65% rostral-caudal 

location. C) Enlarged image of H. molitrix saccular hair cells.  
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Figure 9: H. nobilis otoliths. A) sagitta (saccular), B) asteriscus (utricular), C) lapillus 

(lagenar). 
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Figure 10: Mean (± S.E.) hair cell bundles/2,500 µm2 in the saccules of bighead carp, 

Hypothalmichthys nobilis (BHC; N=12), and silver carp, Hypothalmichthys molitrix 

(SVC; N=6-7). Measurements were made at specific rostro-caudal locations along the 

saccule, with 5% being most rostral and 85% most caudal. “*” p < 0.05; “**” p < 0.001. 
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DISCUSSION 

Overall Ear Anatomy 

Otophysan species show a characteristic similarity in their inner ear morphology 

which is the interconnection between the saccule and lagena. This interconnection is an 

opening in the medial wall of the saccular chamber that leads directly into the lagena 

(Fay & Popper, 1980). I found this characteristic to be consistent with H. nobilis and H. 

molitrix, because upon dissection, it was difficult to separate the saccule without 

damaging the lagena and vice versa. This interconnectedness can be seen in Figures 2, 3, 

and 4 of the H. nobilis ear. For comparison, this similarity can also be seen in goldfish 

(Carassius auratus) which is also a member of the cyprinid family (Fig 11). 

The cyprinid family of fishes is a group that includes carps, minnows, and other 

relatives including the Asian carps, H. nobilis and H. molitirx, as well as the goldfish, C. 

auratus. The inner ear endorgans are located ventral and lateral to the brain, projecting 

outward and down in the skull cavity, with an invagination in the skull that surrounds the 

saccule and lagena (Fig. 4). These fish have several characteristics in common with one 

another including the orientation and placement of their three endorgans. The saccule and 

lagena of the carps are attached to one another in a pouch-like structure and only 

separated by a thin membranous structure, similar to how the goldfish ear is structured 

(Lanford et al., 2000) (Fig. 11A and 11B, respectively). All three of these fishes have 

enlarged utricles compared to the saccules. This is a characteristic of otophysan fishes, 

whereas an enlarged saccule is common amongst non-otophysans (Fig. 11).  
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An example of a non-otophysan fish is the distantly-related Atlantic molly, 

Poecilia mexicana. This species belongs to the order Cyprinodontiformes. P. mexicana 

possesses a characteristic non-otophysan ear (Fig. 11D), by the enlargement of the 

saccule. Another distinguishing characteristic among fishes is how the ears are 

connected. The ears of all fishes are connected by a system of semicircular canals which 

extend dorsally from the ear endorgans, whether the fish is otophysan or non-otophysan. 

In the otophysans, like H. nobilis and H. molitrix, as well as C. auratus, this connection 

spans outward from the utricle. However, in non-otophysans, like P. mexicana, the 

outward extension of the semicircular canals occurs at the saccule (Schulz-Mirbach et al., 

2011) (Fig. 11). In addition to this, the ears of H. nobilis are positioned so that the utricle 

is positioned distal and dorsal to the saccule and lagena, whereas in P. mexicana the 

saccule is positioned centrally and the lagena and utricle are positioned proximally and 

distally, respectively (Fig. 11). The utricle and lagena in non-otophysans are much 

smaller than the saccules, and in otophysans the saccule is much smaller than the utricle 

and lagena. 

Otolith Morphology 

Zebrafish are a close relative to the carps since they too belong to the family 

Cyprinidae, and therefore were used as one of the comparative species in this study. 

Compared to zebrafish, the otoliths of the Asian carp were much larger since the carp, 

even though only juveniles, were considerably larger in body size (Asian carp in the wild 

can reach weights of approximately 9 kg for silver carp, and 18 kg for bighead carp; U.S. 

Geological Survey, 2010). Although the otoliths were never weighed or measured, 

visually there was a distinctive difference (Fig. 9). Having dissected both, the Asian carp 
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sagitta (Fig. 9A) were more brittle than that of the lapillus or asteriscus, however, the 

zebrafish sagitta (Fig. 12E) are also extremely fragile and broke almost every time when 

extracting, due to how small they were. Having worked with both species of Asian carps 

and zebrafish, as well as observing the common carp saggita (Fig. 12B), it would be 

logical to predict that all cyprinids possess this very delicate sagitta. 

 The sagitta of H. nobilis has a long, narrow, propeller-like shape. What was 

interesting about this otolith was the distinctive hook that protruded out of the otolith 

approximately halfway between the rostral and caudal ends (Fig. 9A). The shape of the 

sagitta of zebrafish and bighead carp have similarities and differences. Both possess the 

long, propeller-like shape as well as the distinctive curvature in the middle of the otolith 

(Fig. 12A and 12E). The zebrafish otolith does not, however, have the distinctive hook 

that the bighead carp has. Zebrafish saccular otoliths are also much wider at the rostral 

end compared to the rostral end of the carp (Baxendale & Whitfield, 2016) (Fig. 12E). 

The carp had more of a pointed tip on both rostral and caudal ends of the otolith, whereas 

the zebrafish is more blunted on both ends.  

It would be advantageous to compare the bigheaded carps sagitta to that of 

another carp species. One such species is the European carp, Cyprinus carpio. The 

saccular otolith of C. carpio has the distinctive curvature in the otolith around the central 

region (Fig. 12B). However, the hook is much more pronounced and larger compared to 

that of H. nobilis. The common carp also shows a bend dorsally in the otolith going from 

rostral to caudal ends. The H. nobilis shows more of a flattened shape throughout (Fig. 

12A). The sagitta from H. nobilis and C. carpio, do, however, have similar caudal ends. 

As depicted in Figure 12, the rostral ends for both species are very narrow and smaller in 
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diameter compared to the caudal and central regions. The caudal end resembles a long, 

narrow rod. The rostral ends show similarities as well in that they both have a 

pronounced head-region. This head-region resembles a golf club, and has a slight 

curvature to it, whereas the caudal ends are straighter throughout.   

It has been hypothesized that otolithic size can correlate directly to frequency of 

sound detected. A theoretical analysis of otoliths in several teleost species suggested that 

otolith size and the upper limit of hearing capabilities could correlate, with larger otoliths 

being associated with a narrower range of hearing than a small one might have 

(Lychakov & Rebane, 1993, 2000; Finneran & Hastings, 2000). Further evidence for this 

hypothesis was a study done by Popper & Tavolga, (1981) that saw that a marine catfish, 

Arius felis, had very good low-frequency hearing (50-1000 Hz). In contrast to this, 

Carassius auratus and Ictalurus nebulosus, had poorer low-frequecy hearing than A. felis, 

but could detect sounds over 3 kHz (Popper & Tavolga, 1981). The difference being that 

A. felis has an exceptionally large utricular otolith compared with other catfish species, 

leading to the conclusion that larger otoliths function as accelerometers for low-

frequency signals (Popper & Tavolga, 1981). This is a very interesting finding, because if 

density of otolith is a correlation to frequency of sound detected, then perhaps the reason 

for the thinner sagittae in cypriniforms is for frequency detection of higher frequency 

sounds.  

The otoliths of H. nobilis are very different from those of other taxonomic groups 

of fishes. For example, one study used tomography to examine the saccular otoliths of six 

species of marine fishes, not closely related to carps. Those species included the Atlantic 

blue tang (Acanthurus coeruleus), white grunt (Haemulon plumierii), Atlantic thread 
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herring (Opisthonema oglinum), wahoo (Acanthocybium solandri), yellowfin tuna 

(Thunnus albacares), and bigeye tuna (T. obesus) (Vasconcelos-Filho et al., 2019). The 

saggitae of the Atlantic blue tang and white grunt have very similarly shaped otoliths 

when compared to one another, but very different from those of carps (Fig.12). The 

marine fishes’ saccular otoliths more closely resemble the utricular otoliths of the carp. 

They are more rounded and bean-shaped. The saggitae of the Atlantic thread herring, 

wahoo, yellowfin tuna, and bigeye tuna have less of a rounded shape and more so 

resemble the saccular otolith of the bighead carp than the blue tang and white grunt (Fig. 

12). These four species have more of a hook-like structure on them, but they are not as 

pronounced as that of the carps. One commonality that does exist between all six of these 

marine fishes is that none of them have a long narrow saggita as found in carps, but rather 

all of them are more robust and thicker. Perhaps this robustness of their otoliths correlates 

to the frequency of sound detected (Popper & Tavolga, 1981). Given that none of these 

fishes are otophysans, it is logical to assume that the range of sounds they can detect are 

different than that of the otophysans, more specifically the bigheaded carps. Given the 

thin build of the carp’s sagittae it would be logical to assume that they could detect higher 

frequencies of sound, whereas these six non-otophysan fishes could detect lower 

frequencies of sound due to their robust sagittae. Thus, there are phylogenetic patterns in 

otolith shape, with all six of these marine species having very different otolith structures 

compared to otophysans (especially cyprinid fishes) such as H. nobilis. 

Saccular Maculae Characteristics 

As previously mentioned, the saccule is by far the most diverse endorgan for 

detecting sound in teleost fishes (Popper & Fay, 1999). The sensory epithelia tissue of 
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saccules, just as the otoliths that are associated with them, can have drastic morphological 

differences and similarities, depending upon the phylogenetic relationship of different 

fish species. Zebrafish have a very similar saccule to that of the bigheaded carps (Fig. 7), 

but the overall shape and size of the saccule is more similar to that of the goldfish, to 

which H. nobilis and H. molitrix are more closely related, than to that of the zebrafish 

(Chen et al., 2019; Fig. 7). The saccule is very long and narrow in both carp species (Fig. 

5 and 6). Both have the characteristic propeller shape, and roughly half-way along the 

length, the epithelium is twisted. The epithelium is wider on both the rostral and caudal 

ends compared to the more central parts where it twists. 

However, there is a difference at the central region between H. nobilis and H. 

molitrix and the central region of C. auratus and D. rerio. The saccule maculae of H. 

nobilis and H. molitrix has reduced curvature in the central part of the maculae compared 

to the maculae of C. auratus and D. rerio (Fig. 13). All four species belong to the family 

Cyprinidae, so it is interesting that the maculae have more of a deeper invagination in C. 

auratus and D. rerio and less so in H. nobilis and H. molitrix. This morphological 

characteristic could have implications for how the fishes might hear. 

Smith et al., (2011) found that noise-exposed C. auratus exhibited saccular 

macula damage at various regions depending on the frequency of sound to which the fish 

were exposed. However, they did find that across the frequencies of sounds they tested, 

the central region of the macula always resulted in some damage. This is an interesting 

finding, because my data revealed that at the 55% and 65% saccule locations, the macula 

possessed a greater concentration of hair cells in H. molitrix than at the same locations in 

H. nobilis (Fig. 10). These differences show that the central region of the saccule might 
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lead to the reason why H. molitrix exhibits the frenzied jumping behavior when exposed 

to low-broadband sounds and H. nobilis does not.  

Pattern of Hair Cell Densities 

Hair cell densities, when plotted across the rostro-caudal axis along the saccule of 

both carp species, showed a “U” pattern, with hair cell densities being greatest at the far 

rostral and caudal ends of the saccule, and the least in the central regions (Fig. 10). Given 

the morphological similarities of bigheaded carps with goldfish, it would be logical to 

assume that this species would have a similar pattern of hair cell distribution. Smith et al., 

(2011) found the same characteristic pattern in goldfish saccules, with hair cell densities 

being lowest in the center and greatest at the rostral and caudal edges. Another similarity 

that the carps have with the goldfish is having more cells towards the caudal regions than 

the rostral. Goldfish have approximately 70 hair cells per 2500 µm2 at the rostral-most 

end with 85 hair cells per 2500 µm2 on the caudal-most end (Smith et al., 2011), and H. 

nobilis in this study had approximately 60 hair cells per 2500 µm2 at their rostral-most 

end and approximately 75 hair cells per 2500 µm2 at the caudal-most end.  

Hair Cell Density Variance among Bigheaded Carps 

 Hair cell densities were distributed throughout the saccule in relatively similar 

manners in both carp species, except at the 55% and 65% locations (Fig. 10). Here the 

silver carp possessed greater densities than that of the bighead carp. Mean (± S.E.) hair 

cell bundle densities for the 55% and 65% locations in H. molitrix were 41.9 ± 3.9 and 

53.6 ± 3.3, respectively (N=7), and in H. nobilis were 32.7 ± 1.7 and 40.0 ± 2.7, 

respectively (N=12). 
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 These hair cell density differences could have behavioral implications. Both 

species of bighead carp demonstrate a negative phonotaxis response from human-

designed acoustic barriers (Nissen et al., 2019). They also found that silver carp showed 

the greatest temporary threshold shifts (TTS) following a 24 hour exposure compared to 

the bighead carp (Nissen et al., 2019). Silver carps appear to be more sensitive to 

prolonged sound exposure, which might be because of the greater hair cell density in 

their central saccule. Further, silver carp exposed to 24 hours of sound, did not fully 

recover their pre-sound exposure hearing ability within 96 hours (Nissen et al., 2019). 

Another study showed that silver carp exhibited lower hearing thresholds to sounds 

between 500 and 3000 Hz compared to bighead and common carp (Vetter et al., 2018). 

These lower hearing thresholds (i.e., higher hearing sensitivity) at intermediate 

frequencies may have resulted from greater hair cell densities at 55 and 65% rostro-

caudal locations of the saccules of silver carp compared to bighead carp.  

 There is evidence that the saccule of teleost fishes exhibit tonotopic organization. 

That is, specific regions of the saccule are particularly sensitive to specific frequencies of 

sound. In an extensive study on goldfish, fish were exposed to specific frequencies of 

intense sound and then damage to saccular hair cells were assessed (Smith et al., 2011). 

The hair cell loss was not systemic on the whole saccule, but rather localized to certain 

areas depending on the frequency of the sound. Goldfish exhibited significant damage in 

the most caudal regions when exposed to 100 Hz sound, in the most rostral regions when 

exposed to 4000 Hz, and in the more central part of the ear when exposed to sounds that 

lie between the two most extreme values (800 and 2000 Hz, respectively; Smith et al., 

2011). This data offers evidence about the tonotopic organization of the goldfish saccule. 
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It is logical to assume that close relatives of goldfish, i.e. bigheaded carps, would exhibit 

similar saccular characteristics. The density differences between these two carp species 

exist at the 55% and 65% locations, both of which lie more centrally within the saccule. 

Using the tonotopic map of goldfish (Smith et al., 2011), it would be predicted that these 

saccular locations in carp would be sensitive to sounds ranging between 600 and 1000 

Hz. These frequencies are also where carps and other cyprinids, like goldfish and 

zebrafish, are most sensitive to sound pressure (Smith et al., 2011; Monroe et al., 2016; 

Vetter et al., 2018).  

 H. molitrix appear to be more behaviorally sensitive to complex tones, like that 

produced by an outboard motor, than they do to pure tones. H. molitrix showed slightly 

more deterrence responses (0.18 ± 0.06) when exposed to 2000 Hz than they did when 

exposed to 500 Hz (0.13 ± 0.06), both of which were pure tones (Vetter et al., 2015). On 

the contrary, when exposed to complex broadband tones, i.e. recordings of an outboard 

motor, the carps responded during 100% of the complex trials with an average of 11.8 ± 

1.3 (range 3-37) consecutive responses per trial. The behavioral difference between the 

two carps is seen in response to the sounds produced by an outboard motor. Although 

both demonstrate negative phonotaxis when exposed to pure tones, the sound of an 

outboard motor (0.6-10 kHz) causes H. molitrix to demonstrate the characteristic 

behavior of jumping as a response (Vetter et al., 2015; Vetter & Mensinger, 2016; Vetter 

et al., 2018). Most of the energy dissipated by an outboard motor is done so as 

intermediate frequencies (Vetter & Mensinger, 2016). This would stimulate the centrally 

located regions of the saccule. Since silver carp have a greater density of hair cells at the 
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central locations (55 and 65%) than bighead carps, this may be why they are more 

behaviorally responsive to these sounds. 

Implications for the Ongoing Asian Carp Invasion 

At the end of the day, our main priority has to be our local environment and 

ecosystems. These carps have caused quite a few problems already, and have the 

potential to do a lot more if we do not do something. Barriers such as the Bio-Acoustic 

Fish Fence (BAFF) (Lovell et al., 2006), have already been implemented as means to try 

and slow these species’ invasion, but more should be done. Something that could 

possibly help is to simply drive a boat across the lakes where they have invaded, with 

speakers attached to the front of them that are producing these low frequencies. Even if a 

speaker is not available, simply driving the boat is enough to cause negative phonotaxis 

behavior. These are just simple techniques that may work to deter these fishes from a 

specific area, but may not be effective at removing them from the body of water. This is 

why more research is needed on the bigheaded carps hearing abilities. In this study, the 

saccule was the only endorgan investigated due to time and resources, but in order to gain 

a more holistic understanding as to how they perceive the acoustical world around them, 

we must gain a more in-depth understanding of the maculae of the lagena and utricle. By 

doing so, we will gain more insight as to how they hear, and this might lead to the 

development of more effective acoustical deterrents. One thing that is for sure, is that 

something should be done to migitate the environmental damage caused by these fishes, 

as the responsibility to protect and improve our ecosystems is on us all. 
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Figure 11. A) H. nobilis inner ear lateral view, B) C. auratus inner ear lateral view 

modified from Lanford et al., 2000, C) Non-otophysan fish ear, genus Sarda, modified 

from Popper, 1978, D) P. mexicana inner ear lateral and medial views, modified from 

Tanja Schulz-Mirbach et al., 2011. 
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Figure 12. A) H. nobilis sagitta, B) C. carpio sagitta (modified from Schulz-Mirbach, 

& Reichenbacher, 2006), C) External (left) and inner (right) views of sagittae from A. 

solandri, T. albacares, and T. obesus (modified from Vasconcelos-Filho et al., 2019), 

D) External (left) and inner (right) views of sagittae from A. coeruleus, H. plumierii, 

and O. oglinum (modified from Vasconcelos-Filho et al., 2019), and E) D. rerio 

sagitta (modified from Baxendale & Whitfield, 2016). 



 

34 

 

Figure 13. A) Saccular maculae of H. nobilis, B) H. molitrix, C) D. rerio, and D) C. 

auratus (modified from Platt & Popper, 1984). Drawn black lines and arrows highlight 

the narrow neck separating rostral and caudal regions of the saccule. 
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Figure 14: Zebrafish central hair cell density A), zebrafish rostral hair cell density B), 

bighead carp central hair cell density C), and bighead carp rostral hair cell density D). 
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Figure 15. A) Saccule regions for hair cell counting for bigheaded carps in this study. B) 

Saccule regions used for quantifying hair cell density in C. auratus (modified from Smith 

et al., 2011). 
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