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ABSTRACT

There currently does not exist a way to easily view the relationships

between a collection of written items (e.g. sports articles, diary entries, re-

search papers). In recent years, novel machine learning methods have been

developed which are very good at extracting semantic relationships from

large numbers of documents. One of them is the (unsupervised) machine

learning model Doc2Vec which constructs vectors for documents. The re-

search project detailed in this paper uses this and other already existing

algorithms to analyze the relationship between pieces of text. We set forth

a broader ambition for this project before discussing the use and need of

Doc2Vec. We set and evaluate criteria in order to examine the feasibility of

Doc2Vec for accomplishing this broader ambition.
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1 Introduction

In recent years, machine learning has helped to create various new techniques

for interpreting data and has even helped to introduce brand new fields of research.

Through open source coding practices and the ease of access to increasingly large

amounts of data for little or no cost, machine learning is something that can be

studied and practice by a wide range of individuals regardless of their professional

level in the field. This leads to many exciting ideas becoming more and more

feasible to create and make into a reality. This paper addresses the core mecha-

nisms of one machine learning technique and the feasibility of that technique for

accomplishing a broader ambition of the author. We begin with an analogy to put

this broader ambition into the mind of the reader before discussing the machine

learning technique in question. We then begin discussing the relevant background

for this paper.

There is an analogy that the author became aware of before beginning this

project. It is an analogy to relate the concept of knowledge of a human to a ball

in 3 dimensions. Imagine a 3 dimensional ball that represents the knowledge of a

person. We say that the inside of the ball represents all of the things that person

knows, the outside of the ball represents all of the things that person does not

know, and the surface of the ball represents all of the questions that a person

may have. Thus, to learn more about anything translates to expanding this ball

outward into the region around it that represents the unknown. This is acheived

through asking questions and finding answers.
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This analogy isn’t perfect or rigorous by any means, but it is an interesting

concept. We may then copy this analogy to 2 dimensions, where now the sphere

is a circle. Everything inside the circle are things that are known by a person,

everything outside is unknown, and the border of the circle represents questions.

The author then formulated the question: “How might we represent these areas

corresponding to what a person knows and does not know?”. If asked about a

particular topic, a person will generally respond with words. That is, a person

may articulate a specific order of words to represent their knowledge of a certain

topic. It seems reasonable then that we may write these words down and label

them with a topic. Those words together with the topic identifier then represent

what a person knows about a particular topic. There could 10 words, 100 words,

or thousands. It all depends on the person.

It is interesting to consider how we might organize these groups of words

inside of the circle from the analogy. Suppose someone studies English Literature

for a living. The core of that persons knowledge would then presumably correlate

with large amounts of English Literature. That person would most likely have

a lot to say about Jane Austen, Charles Dickens, and Emily Brontë. However,

that person may not be as knowledgeable about other topics such as rocket sci-

ence, discrete calculus, or the reproduction patterns of rabbits. The core of their

“knowledge circle” would then be filled with strings of words discussing those au-

thors and the outer edges of the circle may correspond more closely to other, more

obscure topics to that person.

The question then is: “How do we take these strings of words and organize

them according to what they have to do with each other?”. With our example be-
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fore, it may be relatively easy for another human to analyze those strings of words

that represent a persons knowledge and then organize them according to topical

information. For example, it would be reasonable to organize groups of words

in the “knowledge circle” that describe books written by Jane Austen separately

from books written by Emily Brontë (even though there may be some similarities

between them). What that accomplishes is subtle. There would be documents of

text organized in such a way that documents sharing topical information would

be placed near each other and topically distinct documents would be far away

from each other. We could then use this organization of documents to see what

topics a person is very knowledgeable about what topics lie on the “edge” of their

knowledge. We may then be able to see what questions could be asked to expand

this core knowledge of a person and how a person might more easily learn about

the things that they do not know. That may be a useful idea to some, but it is

impractical for a human to do such a thing when the knowledge of another human

can exceed thousands and thousands of words or even documents representing

groups of those words.

The proposed solution to this problem could be machine learning. Why

read through thousands of lines of text to understand what the topics of some

documents are when a computer can do it faster and most likely more reliably?

This brings us to overarching ambition behind this project and paper. We want

to be able to take in a large set of documents that detail a persons knowledge on a

wide variety of topics. We want to have a computer organize these documents on

a 2D plane such that documents which are topically similar are near each other

and topics which have relatively little to do with one another are far apart. These
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documents may be represented as “tweet length” pieces of text that are meant to

describe a persons knowledge regarding a specific topic. As a person learns more

and more about something, they may add more documents and the computer

should be able to update its organizations of documents to reflect this newfound

information that a person put into the system.

Our proposed solution for this is a machine learning algorithm known as

Doc2Vec (or Paragraph Vector)[2]. Doc2Vec is a machine learning algorithm that

will take a set of documents and convert them into vectors. These vectors are used

as numerical representations of those documents. We may then use these vectors

to analyze different things about the documents to which they correspond. This

paper analyzes Doc2Vec in a setting relevant to the discussion of the overarching

ambition that has just been described. We set forth criteria to evaluate Doc2Vec

and use those evaluations to make conclusions about how feasible Doc2Vec is in

accomplishing the broader goal we have set.

2 Background

Before beginnig our conversation about background that is relevant for this

thesis, we define a few terms that are helpful for the discussion.

When we discuss textual data that a machine learning technique learns from,

we typically refer to the data as the corpus. This word encompasses all of the

words, sentences, or documents that are used for training a machine learning

algorithm. When we discuss words in a corpus, it is helpful to have a term referring

to only the set of words. The word we use is vocabulary. The vocabulary of a

corpus is all of the words in that corpus. They are ordered alphabetically so that
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there is a first word in the vocabulary. Also, speaking about the words in the

corpus is not the same as speaking about the words in the vocabulary. All of the

words in the corpus are in the vocabulary and vice versa. However, each word

in the vocabulary is unique. The corpus is the collection of all the data and the

vocabulary is simply all of the distinct words in the corpus in order.

There are also two general types of machine learning techniques: supervised

and unsupervised techniques. A supervised machine learning technique is a tech-

nique where the data that it is given to learn about is labelled in some way. The

data it is given has some or all parts of it described or labelled by humans before

the technique trains. A good example of this is the area of picture classification.

A machine learning technique must be given examples of what certain things look

like, such as dogs or cats, before it is able to classify new photos as being a dog or

a cat. A human must “supervise” the algorithm in the sense that a human tells it

what is a dog and what is a cat. An unsupervised machine learning technique is

one that does not have any sort of labelled data from a human. A good example of

this is finding clusters in two dimensional data. An unsupervised technique may

be given only the data and use an algorithm to determine how many clusters of

points there are or where clusters are if it is given a number of clusters to find.

These two types of machine learning techniques represent one of the main divisions

in machine learning techniques.

In the remainder of this section, we discuss neural networks and some dif-

ferent ways to represent words as vectors. We detail word representations before

document representations because word representations have been studied more

and many of the concepts carry over when looking at document representations.
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2.1 Overview

Word meanings are a fluid concept. Given a particular word, it can be diffi-

cult to tell what exactly that word means without having a context. That is, word

meanings and the semantics of surrounding words are often ambiguous. Therefore,

architectures and models have been designed and studied in the field of computer

science in order to provide rigorous approaches to determining the relationships

between words. We start by understanding neural networks as they are the under-

pinning of many machine learning algorithms and many of the concepts transfer

directly to Word2Vec and Doc2Vec. We then inspect very simple approaches to

building the relationships between words before introducing a more sophisticated

method.

2.2 Neural Networks

Neural networks (sometimes referred to as Neural Nets) have been essential

in the recent boom in machine learning. The approaches used by Word2Vec and

Doc2Vec to learn vector representations of words and documents are closely tied

to a neural net structure. This section gives a brief overview of neural nets and

some key ideas behind them.

Neural nets are designed to emulate the human brain to some degree, which

the naming suggests. The most basic neural net is a single neuron. Figure 1 shows

what this neuron would look like.

The arrow pointing into the neuron represents some value that the neuron

is going to take as an input. The arrow pointing out of the neuron represents

some value that the neuron is going to output. The input can be thought of as

6



Figure 1: A Single Neural Net Neuron with One Input

Figure 2: A Single Neural Net Neuron with Multiple Inputs

the electrical signal that a neuron in the brain receives. The output can then be

though of as a measure of how much this neuron fires. That is, suppose we say

that the output is exactly 1 when the neuron fires at full capacity (giving a strong

electrical signal) and the output is exactly 0 when the neuron is not firing at all

(giving no electrical signal). Often, this is precisely what is done in practice. Let

us consider now what the math behind this looks like.

An actual neuron in a neural net (much like neurons in human brains) will

generally have more than one input. See Figure 2.

Here, we consider the inputs of the neuron to be the numerical values x1,

x2, and x3. These values are usually outputs from other neurons which are then

7



weighted. Suppose we give the weights w1, w2, and w3 to x1, x2, and x3, respec-

tively. The weights can be thought of as the strength of the connection between

individual neurons. The input for this single neuron will then be calculated as

X = w1 ∗ x1 + w2 ∗ x2 + w3 ∗ x3. Note that we do not yet call this the output of

the neuron. We see later that the weights are what enables the network to learn

from the data it is given.

Depending on the values of the weights, X may or may not be a value

between 0 and 1. To handle this, X is passed through a function that “squishes”

it into the the interval [0, 1]; this function is referred to as the activation function

for a neuron. In practice, this function can vary from neural net to neural net, and

in some cases, may even vary from neuron to neuron. For explanation purposes,

we consider the sigmoid function, defined below, to be the activation function of

every neuron.

σ(X) =
1

1 + exp(−X)

where exp(X) is the common exponential function. See Figure 3.

Using the sigmoid function, a single neuron can take in multiple inputs and

return a value that is between 0 and 1 representing the firing, or lack thereof, of

a human neuron. Suppose we are given inputs to a neuron with the associated

weights. Let ~x be the vector containing all of the inputs and ~w be the vector

containing all of the weights associated with those inputs. Following our example

of a single neuron in Figure 2, the vectors would be ~x = [x1, x2, x3] and ~w =

[w1, w2, w3]. The output of this neuron is then σ(~x · ~w), where ~x · ~w is the dot

product of ~x and ~w.

8



Figure 3: The Sigmoid Function

We build more sophisticated networks by putting many of these neurons

together in sequence. For a very specific subset of neural nets, known as feed

forward networks, neurons are connected in layers where each layer has a fixed

number of neurons determined when the network is constructed. There are three

general names given to the layers based on their location: input layer, hidden

layer, and output layer. The input layer is the very first layer that accepts data as

input. The output layer is the final layer of the network that gives the output of

the network. A hidden layer is any layer of neurons between the input and output

layer. These types of networks are known as feed forward networks because they

feed data from the input layer to the output layer. There are other kinds of

networks that can have data flow in the opposite direction or even in a circular

fashion. However, we do not discuss those networks here. Figure 4 shows a simple

example of a feed forward neural network.

Generally, the inputs to a network will have no weights associated with them.

Every connection between neurons, however, will have a weight associated with

9



Figure 4: A Simple Neural Net

it. In practice, these neural networks can have thousands of neurons split between

the input layer, output layer, and multiple hidden layers. Different neural network

architectures perform better at different tasks. For this purpose, the weights in a

neural network are defined using a slightly different notation that utilizes matrices.

For the example in Figure 4, let x1 and x2 be the inputs to the first and

second neuron in the input layer, respectively. Let ~x = [x1, x2]. Let wn
i,j be the

weight associated with the connection between the ith node in the nth layer and

the jth node in the n + 1st layer where the top neuron in each layer is the first

neuron, the input layer is the first layer, and we start counting from 1 in both

cases. Then, we define the following two weight matrices:

W1 =

w1
1,1 w1

1,2 w1
1,3

w1
2,1 w2

2,2 w2
2,3


2×3
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W2 =


w2

1,1 w2
1,2

w2
2,1 w2

2,2

w2
3,1 w2

3,2


3×2

where the subscripts on the matrices denote the dimensions of the matrix, simply

for reference.

We may then write the output of the input layer as ~x×W1, which is a 1× 3

vector. Then, the values of the hidden layer neurons are equal to the outputs of

the input layer with the sigmoid function applied to them. We denote this layer

~h. To be precise, given an input vector ~x, ~h is calculated as follows:

~h = σ(~x×W1)

= [σ(w1
1,1 ∗ x1 + w1

2,1 ∗ x2), σ(w1
1,2 ∗ x1 + w1

2,2 ∗ x2), σ(w1
1,3 ∗ x1 + w1

2,3 ∗ x2)]

= [h1, h2, h3]

where inputting a vector to the sigmoid function just means to apply the sigmoid

function to each value in the vector.

We denote the values of the neurons in the output layer as ~o and it is cal-

culated similarly: ~o = σ(~h×W2). This results in a 1× 2 vector. Thus, the entire

calculation of the neural network can be written as ~o = σ(σ(~x×W1)×W2).

Now, for a neural network to “learn” something, it must generally have two

things: data to train on and a method by which to learn. Neural nets are trained

on any form of data ranging from images to population statistics. If the data can

be transformed into some sort of numerical representation, then a neural network

can most likely be used to interpret the data (with varying degrees of success
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depending on the specific nature of the data).

The methods that neural nets use to learn, however, are all somewhat similar.

To train a neural network to perform a certain task, an objective function is defined

(sometimes referred to as a loss function, or an error function, among many other

names). This objective function measures the output of the network against what

the expected output is. We generally want to minimize the value of this objective

function. For example, the input to the network may be an image of a handwritten

digit and the output is what the neural network believes the digit to be. That is,

there are 10 neurons in the output layer where a value of 1 in first neuron means

the network is very confident the image is a 0, a value of 1 in the second neuron

means the network is very confident the image is a 1, and so on. The objective

function would give a relatively high value if all of the output neurons gave a result

of 1 (assuming that the input image is, in fact, supposed to be exactly one digit)

and a relatively low value if the network correctly classified the input image. An

example of what this objective function may look is as follows:

J(θ) =
N∑
i=1

(oi − yi)2

where N is the number of output neurons, oi is the value of the ith output neuron

and yi is the expected output of the ith output neuron after the neural network

has been given an input and each neuron has calculated its output based on the

structure and formulas we have defined. θ is a placeholder for all of the parameters

of the model that we will adjust to get a better output based on the objective

function. For our purposes, the only parameters we consider adjusting for now

are the weights associated with the connections between neurons. Stated more

12



clearly, we have a function J that is dependent on multiple variables, and the task

of learning is represented as finding the minimum of J in terms of the parameters

being considered.

Given a set of inputs, we can minimize the value of the objective function by

using a method known as gradient descent. In calculus, the gradient of a multi-

variable function f : Rn → R represents the direction in which to take a step in

the input space to generate the largest possible increase to the output. That is, if

we take steps in the direction of the gradient of a function, we will be increasing

the output of the function. If instead we take steps in the opposite direction

of the gradient, then we will be decreasing the output of the function. This is

precisely how objective functions are minimized. The gradient of a function is

calculated using the partial derivatives of the function with respect to each input

parameter. Since each weight of the network is a parameter, we consider the

partial derivative of J with respect to each of those weights. Then, to update the

network i.e. to step in the right direction, each weight is updated proportionally to

the partial derivative of J with respect to it (where this proportion is usually small

and reverses the sign of the numerical value of the derivative). This proportion is

known as the learning rate and is a parameter that can be adjusted, but is generally

not a parameter updated when training the model. By calculating the gradient for

each training example, we update the network and thereby end up with a network

that is better at minimizing the objective function. With a sufficient number

of successive repetitions of this process, a network that minimizes the objective

function J is yielded. In practice, the actual value of “a sufficient number of

successive repetitions” is typically determined experimentally.
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There are many, many ways at improving upon the described method. There

are many problems that could arise: getting stuck in local minima of the objective

function when updating the network, the number of neurons in a network may

have to be adjusted, the computational complexity of large neural networks, etc.

A detailed discussion of these topics is not relevant for the context of this thesis.

2.3 Word Representations

We now discuss ways to represent words numerically in order to formalize

what words will look like when given to a neural net.

2.3.1 One Hot Vectors

In machine learning, a one-hot vector (sometimes called a one-hot encoding)

is a 1×N matrix, or vector, that is used to distinguish unique words in a vocabu-

lary. Consider the sentence “I like deep learning”. If this were our entire corpus,

we would have four words in our vocabulary: “I”, “like”, “deep”, and “learning”.

The corresponding one-hot vectors could be as follows:

I → [1, 0, 0, 0]

like → [0, 1, 0, 0]

deep → [0, 0, 1, 0]

learning → [0, 0, 0, 1]

Each word has a corresponding vector such that there is exactly one element

in the vector that has a value of 1 with the rest of the values being 0, hence the

naming one-hot. The dimension of the vector is equal to the number of words in

the vocabulary. Converting words in a corpus to one-hot vectors is a nice way of
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Figure 5: A co-occurrence matrix

organizing the vocabulary and assigning numerical representations to the words,

which is an integral part of learning word representations for computers. However,

there is virtually no semantic information about the words gained through this

approach.

2.3.2 Co-occurrence Matrices

Another rudimentary way of representing words is by using a co-occurrence

matrix. Consider the corpus consisting of three sentences: “I like deep learning. I

like NLP. I enjoy flying.” The objective is to take this information and determine

which words are most similar and which words are most dissimilar. Figure 5 shows

a co-occurrence matrix for the corpus we consider.

A co-occurrence matrix is constructed by determining the atomic units of

the corpus and counting how many times each unit appears next to another unit.

Specifically, in this corpus, the atomic units are the words ”I”, ”like”, ”enjoy”,

”deep”, ”learning”, ”NLP”, ”flying”, and the end of sentence marker ”.”. Then,

for example, ”I” appears next to ”like” twice, so the value at the first row and

second column in the matrix is set to 2. Likewise for the second row and first

column because the matrix is symmetric. Note that this is not the co-occurrence
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matrix for the corpus because we could reorder the rows and columns to get a

different layout of 0’s, 1’s, and 2’s in this case.

Using this representation of the corpus, it is possible to find relationships

and similarities between words. It would be reasonable to deduce from this matrix

that the words ”like” and ”enjoy” are similar because they both show up next to

the word ”I”. It would then also be reasonable to say that ”deep”, ”NLP”, and

”flying” are similar because they show up next to the words ”like” and ”enjoy”.

However, the number of relations that can be deduced from this representation

of the corpus is limited and the relations that can be deduced from the numbers

may or may not always make semantic sense. Suppose that the word “like” were

replaced with “hate” in every instance. Then, the words “hate” and “enjoy” could

be considered similar since they both would show up next to the word “I”. In a

sense, those words are similar because they make up a similar part of speech,

though their meaning is quite different. In any case, this model is limited in the

semantic information it can obtain. It is also very difficult for this sort of modeling

of a corpus to scale as the dimension of the matrix is equal to the number of words

and phrases we consider. For thousands of different words, this becomes difficult

to manage.

Note that one-hot vectors are useful in this context. If we store the vocabu-

lary as one-hot vectors, then we can simply perform a matrix multiplication with

the co-occurrence matrix to obtain a vector corresponding to the word. That is,

suppose we store the word “enjoy” as [0, 0, 1, 0, 0, 0, 0, 0]. Then, multiplying this

vector by the co-occurrence matrix would yield the vector [1, 0, 0, 0, 0, 0, 1, 0] which

is the row (or column) of the matrix that corresponds to “enjoy”.
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2.3.3 Dense Word Embeddings

So far we have discussed what would be considered sparse embeddings of

words. They are considered sparse specifically because of the abundance of 0’s that

show up in the representation of each word. In practice, sparse word embeddings

have proven to be weak in terms of generating meaningful relationships for words

from a corpus. In this section, we discuss what a dense word embedding is, what

exactly a meaningful relationship is, and one machine learning algorithm that can

be used for creating such dense embeddings.

Dense word embeddings have become very popular and useful for many rea-

sons. These reasons include performance boosts for computer models, the ability

to have a fixed vector size no matter the vocabulary size, etc. The most prevalent

reason is the ability of dense word embeddings to satisfy analogical comparisons.

That is, a machine learning model is considered good when it can generate embed-

dings for words that capture semantic and syntactic similarities between words.

It is worth noting before proceeding that capturing syntactic information is not

necessarily very hard. The co-occurrence matrix approach that was previously

discussed captures the syntactic relationship between “like” and “enjoy”; it would

also capture the syntactic relationship between “hate” and “enjoy” as laid out in

the example in that section. However, that specific model would fail at capturing

the semantic relationships between these words. Specifically, we want “like” and

“enjoy” to be more similar than “hate” and “enjoy” because the former typically

express the same sentiment.

A common way to test machine learning models that interpret text is to

perform analogical comparisons of words. A few analogies that could be used as
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a test are as follows:

China : Beijing :: Russia : Moscow

Japan : Tokyo :: Germany : Berlin

Spain : Madrid :: Portugal : Lisbon

These statements assert that, for example, the embedding for China minus

the embedding Beijing should be roughly equal to the embedding for Russia mi-

nus the embedding for Moscow. That is, the model would be considered good, in

this example, if it captured the semantic relationship between countries and their

capitals (assuming that the training data is sufficient to show these relationships).

One model that has been the standard for producing and understanding how to

produce these sorts of word embeddings is known as Word2Vec.

The Word2Vec model was originally proposed in [1]. Word2Vec is short for

“Word to Vector”. This is reminiscent of the fact that the model takes words in

a large corpus and converts them to vectors. These vectors (word embeddings)

capture the meaning of the corresponding word. Given two word vectors, we can

calculate similarity between them where our similarity function is bounded above

and below. That is, this similarity function takes two vectors as inputs and maps

them to some interval of finite length. One function used quite often in machine

learning for this task is the cosine similarity formula. It is known that, given two

vectors ~u and ~v, the following relation is true:

cos(θ) =
~u · ~v

||~u|| ∗ ||~v||

where θ is the angle between the vectors and || · || is the Euclidean Norm. For

this particular relation, the similarity measure is defined as cos(θ). That is, the
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similarity of two vectors is measured by the cosine of the angle between them.

cos(θ) is bounded above by 1 and below by -1 where the vectors coincide when the

value is 1, the vectors are exactly opposite when the value is -1, and the vectors

are orthogonal when the value is 0. The vectors are said to be more similar the

closer cos(θ) is to 1 and more dissimilar the closer cos(θ) is to -1. This function

is extremely easy to implement. Let ui and vi be the ith components of ~u and ~v,

respectively. Then cos(θ) can be written as:

cos(θ) =

∑N
i=1 ui ∗ vi√∑N

i=1 u
2
i

√∑N
i=1 v

2
i

where N is the dimension of both the vectors ~u and ~v. This is computationally

inexpensive and scales well as the dimension of the vectors increase. This method

of calculating similarity between vectors has also been proven experimentally to

work well and is thus a staple in machine learning papers and algorithms.

In the following section, we show some examples of the results of using

Word2Vec.

2.3.4 Word2Vec Examples

Note that in this section, the figures were generated using mocked word

vectors. The figures shown are consistent with results in Word2Vec models trained

on a large corpus of data.

One of the most famous examples of using Word2Vec is the so-called king−

queen example. Figure 6 illustrates that taking the word vector for king, sub-

tracting the vector for man, and adding the vector for woman results in a vector

being very close to the vector for queen (where a dark orange strip represents a
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Figure 6: The Famous King-Queen Word2Vec Example

value close to 1 and a dark blue represents a value close to -1). That is, the vec-

tors appear to have captured the semantic relationship and meaning between all

of those words. This makes Word2Vec very good at completing analogical state-

ments. In this example, king is to man as queen is to woman. Make one of those

words an unknown that we want to predict (i.e. queen) and we can use Word2Vec

to predict that unknown. It is important to note that the actual numbers in these

vectors are not what is necessarily important; the initial values of the vectors be-

fore training is random. Rather the relationships the word vectors capture are

what is important and consistent in this model.

Figure 7 shows a projection of high dimensional word embeddings into 2D.

We see that the vectors between each country and its corresponding capital are

very similar. That is, they are almost parallel. We can make a similar sort

of statement as was described in Figure 6. Here, we could take the vector for

Germany, subtract the vector for France, add the vector for Paris, and get a
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Figure 7: Relations Between Countries and Capitals (adapted from Figure 2 in

[1])

vector that is very close to the vector for Berlin.

It is worth noting that, as with any other machine learning model, Word2Vec

is entirely susceptible to bias in the training data. Figure 8 shows these biases.

The vertical axis is only present in order to give more room to place words in the

picture. The horizontal axis indicates semantic similarity for the words shown in

relation to the words he and she. Words further to the left are more similar to

”she” and words further to the right are more similar to ”he”. Many of these

examples make sense. “Beard” is more closely associated with being masculine

whereas “sisters” is more closely associated with being feminine. In contrast,

“friend” is located directly in the middle. These results could be flawed due to

poor training data, or they could indicate relations between words that are true

but are not entirely apparent at first glance. In any case, the takeaway from this

example is that quality of training data is integral to be able to get a model that
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Figure 8: Masculine vs Feminine Traits (adapted from Figure 3 in [3])

represents language well.

3 Approach

The idea of this project was partially based on some general exposure of the

author to machine learning ideas and particularly the basic ideas of Word2Vec

and Doc2Vec. The goal of this project was and is to assess the feasibility of

the Doc2Vec machine learning algorithm to accomplish the broader goal set forth

in the introduction of this paper. Upon initial studies, Doc2Vec seemed to be

very promising for this project. The paper in which it is presented details a

few experiments where it excelled at the classification tasks it was given. These

experiments include sentiment analysis (determining whether a piece of text means

something “good” or “bad”) and infomration retrieval (determining which two

documents out of three belong together). More details of these experiments and

their results can be found in [2]. For the broader goal that has been discussed

in this paper, we have established three important criteria that describe how well

Doc2Vec might work for our project.
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First, given a large enough set of documents that are classified by a human

into several distinct classes, to what extent does Doc2Vec learn document embed-

dings that mirror those (human) classification decisions? Doc2Vec is useful only

if its learning algorithm aligns with the intuitive decisions humans make about

which documents “belong together”.

Second, for a large enough set of documents that Doc2Vec separates well into

distinct classes, to what extent do the document embeddings learned by Doc2Vec

capture intra-cluster relationships? While each document might have a main topic

which is the basis for the classification, it also may touch on many other topics.

To capture the relationship between a collection of written items, it is important

for Doc2Vec to discover some relationships between documents based on these

subtopics.

Third, given a Doc2Vec model that has clustered documents according to

their topics determined by humans, is that model able to accept another brand

new document with a topic that has been given to the model and cluster that

document with the pre-existing documents of the same topic? Doc2Vec should

be able to accept new documents and classify them based on the documents it

has already seen. A new document with a similar topic as documents that have

already been clustered should be close to the topics in that cluster.

In the following sections, we describe the Skip-Gram Model Architecture for

the Word2Vec machine learning algorithm. One learning method for it, namely

the Softmax classifier, is described as well. Through the intuition gained in the

exposition of Word2Vec, we then discuss Doc2Vec. We then describe the dataset

used for this project and how we justify the use of that dataset. Finally, we more
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precisely layout how we assess the criteria with which we evaluate the Doc2Vec

algorithm. We do not yet evaluate the criteria in this section; we simply outline

more clearly what it means to do well or poorly for each criteria. Through this

order of explanation, we aim to give the reader an understanding of each major

piece of this project so that the results and conclusion for this paper can be more

naturally digested.

3.1 Skip-Gram Model

There are two distinct architectures used for training the Word2Vec model

that were proposed in [1]. Here, we only discuss one of them: the Skip-Gram (SG)

model. Although before discussing the architecture, we showcase the softmax

classifier.

3.1.1 Softmax Classifier

The softmax classifier is a common operation used in machine learning. It

takes a vector as an input and returns a vector as an output. The usefulness of

the softmax classifier is that it takes the input vector and converts it to a vector

of what can be thought of as a confidence rating. That is, it takes all of the

values to another value between 0 and 1. If each value represents the likelihood

of an outcome, a value closer to 1 can be interpreted as representing a much

higher confidence that the corresponding outcome will occur. The operation also

exaggerates the differences between the numbers in the vector and normalizes

them so that all the output values will add up to be 1. To define the operation,

let X be a vector with dimension N and let xi be the ith element of X. Then, the
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softmax classifier for xi is defined as follows:

softmax(xi) =
exp(xi)∑N
j=1 exp(xj)

and then the softmax classifier for X is defined as follows:

softmax(X) = [softmax(x1), softmax(x2), ..., softmax(xN)]

This operation is widely used because it is relatively inexpensive in terms of

computation time. The value of the denominator for each element of softmax(X)

needs to be computed only once and it can be stored and reused in order to

calculate the value of the rest of the output elements. Shown below are a few

examples of the softmax classifier being applied to low dimensional vectors where

the vector on the left is the input vector and the vector on the right is the output.

[1, 1, 1] → [0.333, 0.333, 0.333]

[−10, 20, 30] → [4.248 ∗ 10−18, 4.540 ∗ 10−5, 0.999]

[6, 7, 3141] → [3.068 ∗ 10−1362, 8.339 ∗ 10−1362, 1.000]

The reader can confirm the elements of the computed vectors on the right add

up to 1 (or close enough to 1 to be considered equal for computational purposes).

These examples also illustrate that the softmax classifier computes relative levels of

confidences of events happening. If the values in the input vectors were thought of

as weights for the likelihoods of some events occurring, the corresponding values

in the output vectors can be interpreted as the relative confidence that those

events happen. Additionally, the softmax operation does not weight values based

on position i.e. if all values in the output are the same, then all values in the

output will be as well. The operation also preserves the relative magnitude of
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the input vector so that the smallest element of the output corresponds to the

smallest element of the input and so on. Because of these properties of the softmax

classifier, it is widely used for determining what a machine learning model is

predicting based on the output it gives.

3.1.2 Skip-Gram Architecture Overview

In machine learning, it is common to make neural networks try to produce

an output that is not exactly relevant to what the given task is actually trying

accomplish. For example, consider the goal of dimensionality reduction. Many

approaches to this problem that use neural networks structure the network such

that there are the same number of input neurons as there are output neurons.

The task given to the network is to simply produce an output that is as similar as

possible to the input. To learn the dimensionality reduction, the network will have

a hidden layer at some point between the input and output that has a number of

neurons equal to the desired number of dimensions for the reduction. This means

that the data is being compressed to a number of dimensions desired when it

reaches this hidden layer of the network. The actual relevant information that the

network produces are the set of weights from the input layer to the hidden layer

containing the values after dimension reduction. This is a clever way of producing

a good dimension reduction without actually having to decide ahead of time what

a good reduction looks like. That is, it’s possible to then save these weights and the

activation functions of the neurons to easily repeat the dimensionality reduction

on data given later.

The Skip-Gram (SG) architecture for Word2Vec takes a similar approach in
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the way that it tries to predict words. The task it is given is to predict which

words will most likely be nearby a given input word. It will produce a relative

confidence for each word in the vocabulary corresponding to the likelihood that

that word is nearby the input word in the corpus. We will see that what is actually

retrieved from the network in the end are the weights between the input layer and

the hidden layer. The output is discarded once training has been completed.

In this architecture, the system is trained to predict nearby words given an

input word. To clarify this concept, let wc be an input word to the architecture

and let wo be a word that is close to wc. Note that, at this point, the exact

meaning of “close” has not yet been defined. Assume for simplicity (for now) that

wo is a word either directly to the left or right of wc in the corpus. These two

words are then used as a training example for the network. The input is wc and

the expected output is wo. Since the same input word wc is “close to” other words

as well, this translates to the network being tasked with predicting what words

will be near a given input word.

Words that are close to each other can change depending on the topical

information discussed in the corpus that is considered. For example, consider

the sentences “I love deep learning.” and “I love deep diving.” If both of these

sentences are present in the corpus, this will incentivice the neural network to as-

sociate the word “deep” with both words “learning” and “diving”. If only one of

these sentences were in the corpus, the representation of the word “deep” would

then change. What this means then is that the network with the SG architec-

ture is tasked with capturing semantic information about words; it is tasked with

understanding how words are related to one another based on their proximity to
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Figure 9: The SG Architecture Neural Network for Word2Vec

each other.

Given this task, a corresponding neural network structure needs to be de-

signed. The input to the network is a one-hot vector that corresponds to the input

word. There is one hidden layer consisting of a number of neurons equal to the

dimension of the word embeddings that will be the final result of training. Finally

there is the output layer which has a number of neurons equal to the number of

words in the vocabulary (which is, in fact, the same as the dimension of the input

vector). Figure 9 shows what this looks like as a neural network along with a

sample input.
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Once training has been completed, the weights going from the input layer to

the hidden layer are saved. For each word in the vocabulary, there are a number

of weights corresponding to that word where the number of weights is the size of

the hidden layer. The vector of these weights now represents the embedding of

the corresponding word. The vectors for each word are the relevant results of the

trained network and they are what is used to represent the words as a dense word

embedding.

3.1.3 Skip-Gram Architecture Network

We now introduce the neural network design for this architecture. The dis-

cussion in this section is designed to be much more technical than discussions

previously in this thesis.

For this particular architecture, the activation function for each neuron in the

hidden layer is the identity function. The activation function for the output layer

is the softmax classifier. The softmax classifier is applied to the output layer as

if it were a vector. Because the activation function for each neuron in the hidden

layer is the identity function, the value of the output neurons before applying

the softmax classifier is represented by a straightforward matrix multiplication.

Before continuing, we explicitly define some of the parameters and properties of

the architecture. Figure 9 can be used to visualize how each of these parameters

and properties relate to the neural network structure.

Let T be the size of the vocabulary and ~x be a one-hot vector input for this

network so that ~x is a 1×T dimensional vector. Let d be the desired dimension for

the final word embeddings that the architecture will produce. Consequently, this
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will be the size of the hidden layer in the architecture. Let V be the weight matrix

from the input layer of the network to the hidden layer. Let U be the weight

matrix from the hidden layer to the output layer. V and U will have dimension

T × d and d× T , respectively.

The values in V and U before training are determined randomly and uni-

formly. These matrices should be thought of as representing two different word

embeddings for each word in the vocabulary. V represents word embeddings for

input words and U represents word embeddings for output words. To be precise,

each row of the matrix V corresponds to a word embedding for a word in the

vocabulary where the ith row is the embedding for the ith word in the vocabulary.

The input one-hot vector ~x then acts as a “look-up” for this word embedding since,

through the matrix multiplication, it selects the row of the matrix corresponding

to the input word. The columns in the matrix U then correspond to separate

word embeddings for words in the vocabulary where, as before, the ith column

is the embedding for the ith word in the vocabulary. Thus, before the activation

function is applied, the values of the neurons at the output layer can be calculated

as ~x × U × V which is a vector with dimension 1 × T . Each value in this vector

then represents the dot product between the word embedding for the input word

in the matrix V and the other embedding of each word in the vocabulary which

are stored in U . The softmax classifier is then applied to this vector. Each output

neuron represents the confidence of the network that the corresponding word in

the vocabulary is a word that is close to the input word.

It is now necessary to define exactly what it means for a word to be “near”

another word. To do this, a window size is defined. Let m ∈ N be the window
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size for the architecture. Then, for a given word wt in the corpus, we consider the

word wt+j to be near wt where j ∈ {−m,−m + 1, ...,m − 1,m} \ {0}. All such

words wt+j are then said to be in the same window as wt. As an aside, note that

j 6= 0 means that wt is not considered to be near itself (although it is entirely

possible that a word shows up more than once in a window in which case the word

is considered to be near itself).

We now define the objective function J :

J(θ) =
1

W

W∑
t=1

∑
−m≤j≤m,j 6=0

−log(p(wt+j|wt))

where θ represents all of the parameters of the system, W is the size of the corpus,

and wi is the one-hot vector corresponding to the ith word in the corpus. The

inner summation symbol represents the process of looking at nearby words for a

given word, and the outside summation represents repeating the process for all

the words in the corpus. The value of p(wt+j|wt) is determined using the result of

the calculation described by Figure 9. That is, given an input word and a word

that is expected to be near it, the model should predict a value where the closer

to 1 the value is, the better the the model is judged to have performed. To be

precise, p(wt+j|wt) is defined as follows:

p(wt+j|wt) = p(o|c) =
exp(uo · vc)∑V

w=1 exp(uw · vc)

where o is the outside (or output) word index in the vocabulary of the j+ tth word

in the corpus and c is the center word index in the vocabulary of the tth word in

the corpus, and uo and vc are the outside and center vectors of indices o and c.

That is, uo is the oth column vector of the matrix U and vc is the cth row vector
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of the matrix V , both of which were defined earlier in this section.

The reader should be careful to notice that the subscripts of wt+j and wt in

the function J refer to a position of a word in the corpus, whereas the subscripts

of uo and vc refer to a position of a word embedding in the vocabulary. Because

each of uo and vc can be obtained by multiplying the corresponding one-hot vector

for a word in the corpus by the appropriate matrix, the implementation of this

algorithm requires a separate data structure that allows for retrieving the one-hot

vector needed given a word in the corpus. We do not discuss this separate data

structure here, but one should keep in mind that there must be a translation done

in order to calculate the value of the function p.

At this point, we may consider minimizing the objective function. Recall

from our earlier discussion of neural networks that objective functions are typically

minimized using gradient descent. For a number of reasons, though, gradient

descent is impractical in practice. The most prevalent reason is that gradient

descent requires the calculation of the gradient for every input and output pair

followed by an update to the entire network. This can get very slow and very

unwieldy quite quickly.

In practice, another method that is very similar to gradient descent is used

that is called stochastic gradient descent. In stochastic gradient descent, instead

of updating the network with respect to all of the training examples at once, the

network is updated with respect to only one training example. Because of this,

we may calculate the partial derivative with respect to each of the parameters

of the network but only update those parameters once. This eliminates the need

to consider summing in the objective function and we may focus directly on the
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summand, −log(p(wt+j|wt)). The partial derivative with respect to a center word

vector is shown here:

∂

∂vc
(−log(p(wt+j|wt))) = −uo +

T∑
x=1

p(x|c) ∗ ux

vc is then updated by a value directly proportional and opposite to this

partial derivative. The partial derivative with respect to uo, an outside word

vector, is similar. The update is made all at once for all uo and vc in the system.

Stochastic gradient descent is considered to be sufficient in many cases in-

volving neural networks because it tends to generate neural networks that perform

well even though not every parameter is being updated at each step of learning.

It should be noted that there are various ways to improve performance of

training these word vectors. The original paper introducing Word2Vec describes

methods to improve the learning efficiency [1]. These methods include a better

approach for calculating the softmax classifier called hierarchical softmax. It is

more computationally efficient than the standard softmax classifier and is typically

used in practice, however because of the overall complexity of the method, we

only explained the softmax classifier in this paper. Another learning method that

is discussed in [1] is referred to as negative sampling. Instead of learning word

representations by learning which words are “close”, negative sampling chooses

words that are far away in the corpus from the given input word. The model will

then be updated by pushing word embeddings further apart for words that are far

apart in the corpus.

After the discussion of the Word2Vec model and its particular architecture,

we now present and discuss Doc2Vec, which invokes a very similar method of
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learning.

3.2 Doc2Vec

The approach for learning embeddings that Doc2Vec employs is inspired by

the methods for learning word embeddings. In particular, the architectures that

Doc2Vec utilizes for learning are similar to the architectures that Word2Vec uses

for learning. As such, documents are also represented as embeddings. In this

section, we detail the Distributed Bag of Words architecture, which is abbreviated

as PV-DBOW (the “PV” comes from the fact that the original paper refers to

Doc2Vec as “Paragraph Vector” [2]). This architecture is very similar to the

SG architecture in that it is given a similar task in order to generate document

embeddings.

In the PV-DBOW architecture, a neural network similar to the one in the

SG architecture is formed. The task given to this network is to learn document

embeddings that predict which word embeddings best represent the document.

The word embeddings and the document embeddings are learned together. The

word embeddings are shared by all words in all documents. That is, the word

“deep” would have the same embedding regardless of which document it appears

in.

In Doc2Vec, documents are treated similarly as to how center words are

treated in Word2Vec. Each document is assigned a one-hot vector corresponding

to its position in the corpus. Note that the order of the documents is irrelevant.

They are only ordered so that they are easier to retrieve when training. One-hot

vectors for documents are then used as inputs to the neural network. A matrix
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D which is analogous to the matrix V from the Word2Vec discussion is used to

retrieve a vector corresponding to the embedding for the input document. This

document embedding is then used to predict words in a window.

The prediction can be thought of as essentially the same as the prediction in

the SG architecture. A document is given as input to the network. The resulting

document vector obtained via multiplication with matrix D gives the documents

embedding and corresponds to the hidden layer of the network. The activation

function on this layer is the identity. The resulting document vector is then mul-

tiplied with a word vector residing in a matrix that is analogous to the matrix U

from before.

Learning happens by stochastic gradient descent. The objective function can

be explained similarly to the one for Word2Vec. It also uses a window size and

has an extra summation over all of the documents. More precisely:

J(θ) =
1

D

D∑
d=1

d(w)∑
t=1

∑
−m≤j≤m

−log(p(wt+j|Dd))

where D is number of documents, d(w) is the number of words in the dth document,

wt+j is the t + jth word of the document in question, and Dd is the document

embedding for the dth document in the corpus.

For simple stochastic gradient descent, a random document is selected as

input and a random word and the gradient for that word and that document is

computed and used to update the weights. Since the objective function calculates

the summand based on the word and document, the location of the word in the

window may be ignored in the update. A diagram of the network for Doc2Vec is

identical to the one shown in Figure 9.
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In essence, Doc2Vec attempts to generate document embeddings that are

representative of and related to the meaning of the words (as captured by the

word embedding) of the document. Because of this, if two documents share many

of the same word meanings, they should be similar documents. By the same

logic, if two documents do not share many word meanings at all, they should be

dissimilar documents. Furthermore, since we expect Doc2Vec to learn the meaning

of words, if a document contains words that are synonymous to words of another

document, those documents should still be considered similar.

3.3 Dataset

Text was gathered from three distinct topics. Those topics, broadly, are card

game articles, sports articles, and dance papers. These documents were chosen

because the author is familiar with all three topics. The specifics of what the

portions of text are, how they were processed, and the method used to obtain

them is described in the remainder of this section.

3.3.1 Gathering Data

The card game articles in our dataset all pertain to a specific popular playing

card game known as Magic: The Gathering. It is a card game with a rich history

and with many content creators writing articles and producing videos about it ev-

ery day. The articles for the game were obtained from CoolStuffInc1. Specifically,

50 articles split between 2 authors were obtained from the company website. The

content in these articles consists of various keywords relating to the cards that

have been printed in the game that we believed would set these documents apart

1https://www.coolstuffinc.com/
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from other documents discussing other topics.

The sports articles were all obtained from the ESPN2 website. Out of the

38 articles that were gathered, 10 were written about baseball (MLB), 10 about

football (NFL), 8 about basketball (NBA), and 10 about hockey (NHL). These

articles contain different keywords relating to the sports they discuss while also

containing some commonalities between them. In a sense, there are 4 sub-topics

within the sports articles corresponding to the 4 different sports discussed. We

found this valuable because we could put all 38 articles under the topic of sports

while also having a smaller dataset that we could use to try to understand the

intra-clustering properties of Doc2Vec.

Our last topic that we chose was dance. Specifically, the documents that were

selected for the topic of dance were articles and papers discussing the traiditional

Indian form of dance known as Bharatanatyam. There were 26 articles gathered.

Bharatanatyam is a particular form of dance that the author had studied briefly

and was familiar enough with to justify including it as a topic. The content of these

dance documents was certain to be somewhat distinct from the other documents

gathered.

All documents gathered were cleaned and stripped of unnecessary charac-

ters. In machine learning, there are certain words that are referred to as stop-

words. Stopwords are words or characters that have been generally agreed upon

by researchers to not add any value to the learning process for natural language

processing algorithms. For example, the single quote mark ’ is removed from text

as it is uneccessary to store. The effect that it has on differentiating the words

2https://www.espn.com/
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“its” and “it’s” (and other similar word pairs) is generally agreed upon to be ir-

relevant to the learning of algorithms. Words such as “a”, any other single letters,

and punctuations were also removed from the documents. These characters are

considered to not have much weight on the semantic meaning of a document. All

words in the document were also normalized to be in lower case. Because of this,

the words “Jack” and “jack” would be treated as exactly the same.

3.3.2 Justification of Data

These documents share words, phrases, and terminology. However, if a hu-

man were given these documents, they would be able to sort them into three

general categories. The card game articles are very clearly discussing happenings

in the card game and are analyzing different strategies and cards. The sports

articles deal with different players in the sports and news regarding what has hap-

pened in those sports. The dance articles and papers are full of different keywords

and ideas that are sure not to show up in most other contexts due to their very

specific topical context. However, we decided that human reasoning was not a

stringent enough criteria for determining that these documents belonged to three

separate classes.

In order to make the distinctions more rigorous, we evaluated these docu-

ments using two traditional supervised classification algorithms. Supervised ma-

chine learning algorithms require a human to pre-define what sort of the thing

the algorithm should be learning. In the case of text classification, a human must

split documents into separate classes and then tell the supervised algorithm which

documents are in which class. The performance of the algorithm is evaluated by
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tasking it with classifying new documents that is has never seen. These two sets

of documents (i.e. the set the algorithm learns on and the set it is tested on) are

commonly referred to as the “training” data and the “test” data. Each set of data

contains documents that are classified before training by a human. Our goal with

these two classification algorithms was to see how well a supervised learning algo-

rithm could learn the classes of the documents that we, as humans, have defined.

If traditional supervised algorithms could not perform this task, then it would be

difficult to test Doc2Vec on its abilities to do the same thing.

For both supervised algorithms that are discussed in the rest of this section,

70% of the data in the dataset was used for the training data and the remaining

30% was used for testing. Specifically, 70% of each predetermined class of docu-

ments was used for training data and the remaining 30% of each predetermined

class was used for testing. For training, this results in 35 card game articles, 27

sports articles, and 18 dance articles. For testing, this results in 15 card game

articles, 11 sports articles, and 8 dance articles. The accuracy of each of the su-

pervised algorithms is reported as a percentage representing what percentage of

the testing data the algorithm correctly classified.

The first algorithm that we used on the documents is the Näıve Bayes

algorithm. There are multiple Näıve Bayes algorithms including Multinomial,

Bernoulli, and Gaussian. For our purposes, the Multinomial Classifier is the most

appropriate. Traditionally, this algorithm has been used for classifying documents

into categories such as sports, politics, technology, etc. [4, 5]. It is also often used

as a standard for determining which emails among many are spam and not spam.

At its core, the Multinomial Classifier determines the probability that a
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document is in a certain class based on the frequency of words in the document.

That is, once the classifier has learned on a set of documents, it determines if a

new document belongs to a class by calculating the similarity of documents based

on the frequency of common words between documents. In that sense, we expect

this classifier to be a good representation of whether or not the documents we

chose are actually representative of three different classes.

After training the Multinomial Classifier, we obtained an 85% success rate

on the classification of the testing data. It classified all card game articles and

sports articles given to it correctly. Out of the 8 dance documents it was given,

it classified 3 as belonging to the “dance” class and 5 as belonging to the “card

game” class.

The second algorithm that we considered is referred to as Support Vector

Machines or SVMs. SVMs were originally designed for binary classification of

data. That is, it was originally intended to find the boundary, if one existed,

between two sets of data that belonged to distinct classes. Much research has

been done to adapt this method of supervised classification to work with more

than just two classes [6, 7]. Figure 10 shows an example of how SVMs work to

classify data in a binary setting.

In the figure, there are two classes in the data: the black dots and the white

dots. The three lines H1, H2, and H3 show three different ways of trying to

separate this data. The line H1 does not the separate the data and would be a

poor attempt at trying to classify the data. The line H2 technically does work; it

separates the data correctly and would be good to use as a separator if the dataset

3Licensed Under Creative Commons: https://creativecommons.org/licenses/by-

sa/3.0/deed.en
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Figure 10: A Graphical Representation of an SVM Classifier

Used with permission from [8]3. Last Accessed on July 26, 2020

were to never change. SVMs attempt to build a line of separation more closely

resembling the line H3. This line not only separates the data, but does so while

also maximizing the margin between the line (see the gray lines in Figure 10) and

every single data point. In this regard, one would consider the line H3 to be the

best line separating the data.

Of the methods devised for extending SVMs beyond binary classification, the

method we used is known as “one-vs-the-rest”. In this method of classification,

each document in a certain class is treated as though it and other documents in

that class are separate from everything else. In essence, it treats the problem as a

binary classification for multiple subsets of the data. Because of the distinct topics

we chose, we believed that this method would be appropriate for determining if

those topics are, in fact, distinct from one another.

After training the SVMs, we obtained a 100% success rate on the classifica-

41



tion of the testing data. In fact, we lowered the training data to only 25% of the

total documents in the dataset (where the documents were split as before) and

after running 1000 simulations with different random initial states, the classifier

achieved an average of 99.8% accuracy.

Because of our own intuition of the classes for the documents and the results

of the supervised classification algorithms, we determined that the dataset was

sufficient to evaluate Doc2Vec on the criteria we had established for it.

3.4 Evaluation Criteria

In this section, we explain to a greater degree the criteria that were men-

tioned at the beginning of Chapter 3. We detail how we evaluated the criteria and

explain why the criteria are reasonable to use to determine how “good” Doc2Vec

is for our purposes. The next few sections breakdown each criteria and how we as-

sessed them in the project. The results for assessing these criteria on the outcome

generated by Doc2Vec learning will be given in Chapter 4 later in this paper.

Before transitioning into a discussion of the criteria, we explain the phrase “a

large enough set of documents” that is mentioned in the first and second criteria.

The definition of this is a bit arbitrary. Doc2Vec, along with most machine learning

algorithms, can work on many different sizes of datasets. In general, more data is

better. Theoretically, the more examples something has to learn from, the better

it will learn (assuming the data is “good” data, however “good” is defined in the

particular domain).

We considered the dataset we have gathered to be “large enough”. This is

because we wanted to test to see if Doc2Vec could handle a dataset of this size. For
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the broader goal of this project, datasets will be relatively small. In general, the

dataset we have compiled would be considered extremely tiny. However, to ensure

that we obtain results that are the most pertinent to our purpose, the dataset we

have gathered is considered “large enough”.

3.4.1 Criteria 1

The first criteria we stated was that “for a large enough set of documents that

are classified by a human into several distinct classes, to what extent does Doc2Vec

learn document embeddings that mirror those (human) classification decisions?”.

We approached this by looking for clusters in the document embeddings learned

by Doc2Vec. There are various ways to do this. One popular way is by using the

k-means clustering algorithm, which is the approach we use to assess the criterion.

The k-means clustering algorithm works by partitioning observations in a

dataset into k different clusters. The algorithm can work for data in any finite

number of dimensions. The input to the algorithm is the expected number of

clusters. The output is a list of which of the entries in the dataset belong to which

cluster that the algorithm identified.

When the algorithm receives the number of expected clusters, it randomly

initializes that number of cluster centers. That is, given an input of 3 expected

clusters, the algorithm generates 3 points in the input space m1, m2, and m3 to be

the center points of the 3 clusters by selecting 3 points at random from the data.

The data is then partitioned by associating each data point with the closest cluster

center among m1, m2, and m3. The algorithm then iteratively moves each of these

randomly chosen center points such that the sum of the means of the distances for
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points in each cluster from its center point is smaller than the previous step. One

may specify the number of iterations for the algorithm, but this is not necessary

as the algorithm may stop once there is a neglible change in the quantity that the

algorithm minimizes.

The k-means algorithm will tell us how Doc2Vec clusters the documents. If

Doc2Vec clusters most of the document embeddings such that the topically similar

documents are in the same clusters, then we assert that Doc2Vec has demonstrated

learning the classes among the documents.

3.4.2 Criteria 2

The second criteria we stated was that “for a large enough set of documents

that Doc2Vec separates well into distinct classes, to what extent do the document

embeddings learned by Doc2Vec capture inter- and intra-cluster relationships?”.

We approached this by examining the relative positions of documents in 2D projec-

tions of the document embeddings produced by Doc2Vec. We analyzed documents

that consistently showed up on the “outside” of their cluster, consistently showed

up “inside” their cluster, or consistently showed up “between” two clusters. What

is meant by “inside”, “outside”, and “between” will be defined in Chapter 4.

The 2D projections of the document embeddings are created using the t-

SNE projection algorithm4. This algorithm works by examining local relationships

between points in the input space (the document embeddings) in order to ensure

that the points in the output space (the 2D projection) are a good representation

of the input space. That is, points that are close in the input space will be close

in the output space and vice versa.

4https://lvdmaaten.github.io/tsne/
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Using this projection algorithm, we can then analyze the documents which

often show up next to each other. The documents that exhibit consistent behavior

are of special interest as they indicate to an observer that there is a reason they

show consistent behavior. We then analyzed these documents in order to identify

what about them is causing them to exhibit this consistent behavior.

We analyzed different examples on a case by case basis in Chapter 4 in

order to determine different relationships that Doc2Vec captures. Each pair (or

set) of documents analyzed is given a rating which indicates the certainty of the

analyst having noticed similarities explaining the closeness (or lack thereof) of the

documents. The rating is a numerical value from between 0 and 5, inclusive. 0

represents that the analyst is not confident why the specific behavior is exhibited

and a 5 indicates that the analyst is confident why the behavior is exhibited. In the

case that Doc2Vec associates documents based on human noticeable similarities

between documents, we assert that it has performed well.

3.4.3 Criteria 3

The third criteria we stated was that “given a Doc2Vec model that has

clustered documents according to their topcis by humans, is that model able to

accept another brand new document with a topic that has been given to the model

and cluster that document with the pre-existing documents of the same topic?”.

If Doc2Vec is truly learning general relationships among the different classes of

documents, it should be able to take a new document that is decided to clearly

belong to one of the classes and produce a document embedding for it that is near

other embeddings of documents of the same class. In each case, we describe where
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and how these new documents were obtained.

For this criteria, we compare document embeddings using cosine similarity,

which was mentioned in section 2.3.3. Doc2Vec has the ability to infer an embed-

ding for a new document. Once this embedding has been inferred, we then check

all of the other embeddings in the document to see which ones are closest to it

using the cosine similarity. Once these have been obtained, we analyze how many

of these resulting vectors are of the same class as the document we inferred an

embedding for.

We assert that, at the very least, the first closest embedding to a new docu-

ment embedding should be in the same class as the new document embedding. If

Doc2Vec consistently places new documents in the appropriate classes by giving

embeddings for them that are close to embeddings of other documents of the same

class, we say that it is “good”.

4 Results

In this section, a general overview of commonalities in the experiments that

were run is presented followed by a more detailed look at the experiments and the

collected data. We show results for each of the three criteria we have discussed

for Doc2Vec separately in sections 4.2, 4.3, and 4.4.

4.1 Overview of Experiments

In this thesis, all experiments utilized the python programming language

with the gensim5 library. This library provides implementations of Word2Vec,

5https://radimrehurek.com/gensim/
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Doc2Vec, and various other natural language processing algorithms.

Some variables and properties of the Doc2Vec models remained consistent

throughout all experiments. The window size was fixed to be 5. The architecture

used for all experiments was the PV-DBOW architecture, which is the architecture

for Doc2Vec that is discussed in section 3.2. The dataset was fixed i.e. all Doc2Vec

models that were trained were analyzing the same dataset discussed in a previous

section. After training, Doc2Vec models were saved and used for analysis. That is,

new models were not trained each time we ran analysis on them, unless otherwise

noted. To be precise, when the models were trained in python, the objects corre-

sponding to them were saved through process known as pickling6. This process is

common in python and simply serializes data so that it can be unserialized later.

We note that the learning rate is continuously updated to approach a rel-

atively small value throughout the training process for the implementation of

Doc2Vec in the gensim library. This is a common technique in machine learning.

As the neural network “learns” more, it should approach a local minimum of the

objective function. Reducing the learning rate as the neural network trains helps

to ensure that the parameter updates do not make the objective function “jump”

over a minimum. If the learning is too high of a value, it is possible to move too

far in one direction when taking steps to minimize the objective function, which

can result in a minimization process that skips over local minima of the objective

function.

The variables that were manipulated for our experiments were the document

embedding size and the number of epochs for training a model. The document

6https://docs.python.org/3/library/pickle.html
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embedding size is the number of dimensions that the resulting embeddings from

Doc2Vec have. We experimented, generally, with document embedding sizes from

5 to 50, in increments of 5. We experimented with a number of epochs from 10 to

100, in increments of 5. Some results in these ranges are not discussed here if there

were no noticeable differences. For instance, some models trained for 60 epochs

compared to models trained for 100 epochs (with the same document embedding

size) show no difference when evaluated against our criteria due to the relatively

tiny changes to the document embeddings that happen at that point of learning.

For each different set of parameters, a new model was trained from scratch.

The rest of this section contains the individual results for each of the three

criteria.

4.2 Criteria 1

Recall that the first criterion stated was as follows: “The first criteria we

stated was that for a large enough set of documents that are classified by a human

into several distinct classes, to what extent does Doc2Vec learn document em-

beddings that mirror those (human) classification decisions?”. We analyzed this

criterion with an implementation of the k-means algorithm given by the scikit-

learn7 library in python.

Figure 11 shows the results for running the k-means clustering algorithm

on models with varying document embedding sizes and number of epochs for

training. The important aspect to notice of the bar charts in the figures is that each

document embedding size eventually reaches a state where the k-means clustering

7https://scikit-learn.org/
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algorithms finds clusters of size 50, 38, and 26. Recall that there were 50 card

game articles, 38 sports, and 26 dance documents. Note that it is not necessarily

the case that the embeddings that the k-means algorithm identified as being in

these clusters actually correspond to the classes of documents we have identified

solely because the numbers line up. Upon further investigation of the clustering,

however, we found that the k-means algorithm was asserting that the 50 card

game articles, 38 sports articles, and 26 dance documents each belonged to their

own cluster.

Note that in most models represented in Figure 11, the card articles are

associated with cluster 1, the sports with cluster 2, and the dance articles with

cluster 3. There is an exception in the model shown in Figure 11d. In the columns

for epochs of 40 and 45, the sports belong to cluster 3 and the dance articles

belong to cluster 2. This also happens in Figure 11e with epochs 35 and 40. Since

the label for each cluster does not actually convey any meaning, this clustering is

essentially equivalent to the other clusterings.

Before we assert that Doc2Vec has performed well at this criteria, we inves-

tigate this criteria a bit further. The data in Figure 11 show multiple examples of

the k-means algorithm being evaluated on individual models. While this is promis-

ing, it is not yet conclusive. Recall from earlier discussions that the embeddings

that are produced by Word2Vec and Doc2Vec are initialized to be random before

training occurs. Thus, we investigate further by isolating examples from Figure

11 and running multiple trials of the k-means algorithm on Doc2Vec models with

the same parameters but different random initializations. In particular, we choose

a specific number of epochs from each of the sub-figures in Figure 11 and generate
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(a) Document Embedding Size 5 (b) Document Embedding Size 10

(c) Document Embedding Size 15 (d) Document Embedding Size 20

(e) Document Embedding Size 25

Figure 11: Results for Criteria 1 Experiments
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multiple models trained for that number of epochs and a document embedding

size determined by the sub-figure being considered.

Figure 12 shows a graphical representation of the data obtained from running

multiple trials with selected numbers of document embedding sizes and epochs to

train a model. The selection of the number of epochs for each document embedding

size was chosen such that they represent the largest number of epochs for which

a model resulted in clusters with sizes equal to the number of documents in each

predetermined class. 100 trials were run for each set of parameters with the models

having different random initializations for each trial.

It can be deduced from Figure 12 that Doc2Vec generally clusters the doc-

uments according the number of documents we expect to be in each of the three

classes. It is notable that class 1, which corresponds to the card game articles, is

clustered fairly consistently into its own cluster as compared to class 2 and class

3 which correspond to sports and dance, respectively (except in a few cases). It

is also notable the models with a document embedding size of 10, 15, and 25 per-

formed much better on average than models with other parameters. Models with

the other parameters have more discrepancies more often.

Most of the “mis-clusterings” occurs between the sports and dance docu-

ments. It is important to note that the “mis-clustering” of these documents is

not necessarily a bad thing. Doc2Vec can and should be learning relationships

between documents. It is not only meant to split documents according to their

differences. It should also give us insight into which documents are similar. In this

regard, it is an interesting phenomena that the sports and dance documents have

a consistent “mis-clustering” across the board. This phenomena in particular will
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(a) Document Embedding Size 5 - Epochs 20 (b) Document Embedding Size 10 - Epochs

15

(c) Document Embedding Size 15 - Epochs 15 (d) Document Embedding Size 20 - Epochs

35

(e) Document Embedding Size 25 - Epochs 45

Figure 12: Results for Criteria 1 Experiments
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be discussed more in Section 4.3.

Based on the results gathered, we conclude that Doc2Vec does perform very

well on the dataset that we have. It clusters the document embeddings such

that they are able to be recognized as three distinct clusters with a minimal

amount of overlap. Based on our results from the supervised learning algorithms

discussed earlier in this paper, this behavior is to be expected if Doc2Vec is learning

topical information about the dataset. These results give evidence that Doc2Vec

is recognizing and reflecting that there is a distinct difference between the three

classes of documents.

4.3 Criteria 2

Recall that the second criterion stated was as follows: “For a large enough

set of documents that Doc2Vec separates well into distinct classes, to what extent

do the document embeddings learned by Doc2Vec capture inter-cluster relation-

ships?”. We analyzed this criterion by using an implementation of the t-SNE

algorithm mentioned in the earlier section of this paper describing the evalua-

tion criteria. We projected the document embeddings to 2D and then analyzed

patterns in the projections.

Before discussing specific examples for this section, we first show what the

projections look like in general and establish some common terminology that is

useful for the discussion. Figure 13 shows an example of a 2D projection using

the t-SNE algorithm. In this projection (and in all subsequent 2D projections),

boxes with numbers in them represent 2D projections of the higher dimensional

document embeddings. Original document embedding size along with the number
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Figure 13: t-SNE Projection Example

of epochs that the corresponding was trained for is displayed at the top as a title

for the plot. We use the convention that boxes colored blue represent card game

articles, boxes colored red are sports articles, and boxes colored black are dance

articles. The numbers inside of the boxes represent the index of the document in

the corpus for the project.

Note that the bounds on the horizontal and vertical axes may not necessarily

be consistent throughout all examples. The horizontal and vertical coordinates of

points projected to 2D are relatively arbitrary. The t-SNE algorithm tries to keep

the 2D projections somewhat close to the origin and therefore these bounds are

not pertinent to the discussion.

To discuss this criterion, we showcase specific examples in the subsections

that follow. Pairs of two documents were chosen based on patterns that have

been noticed in the 2D projections of the data and those documents were then

analyzed by the author to determine what might have caused the pattern noticed.

The author then assigned a score from 0 to 5 for each example where a higher
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score indicates that the author felt more confident in noticing what had caused

the pattern.

4.3.1 Example 1

For the first example, we consider two sports articles. Figure 14 shows some

projections for the data. Notice that in all these projections, there are two red

boxes labeled with 71 and 72 that consistently overlap each other and are on the

outside of the rest of the red boxes. This behavior is consistent throughout other

projections.

The content of these two documents were analyzed. Upon reading the doc-

uments closely, the author found that out of the over 1000 words in each article,

the first 462 were exactly the same. After loading the websites from where these

articles were retrieved, it is true that this is how the articles were added to the

website. That is, there was not an error in the processing of the articles or in the

retrieval of them from the website. The articles do, in fact, share a significant

portion of their text.

While this explains why those document embeddings would be projected

to 2D in relatively the same position, it does not necessarily explain why these

two document embeddings were consistently projected to be on the outside of

the sports article clusters. Upon further examination of these documents, it was

found that they both discuss a tweet made by a general manager of the Houston

Rockets. This particular tweet happened to offend many people in China because

it showed support for Hong Kong anti-government protesters. The articles discuss

ramifications of this and generally speak about sports in China and the global
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(a) Document Ebmedding Size 5 -

Epochs 30

(b) Document Embedding Size 10 -

Epochs 10

(c) Document Embedding Size 10 -

Epochs 25

(d) Document Embedding Size 15 -

Epochs 45

Figure 14: Results for Example 1
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influence of the NBA. Knowing this, it makes sense why these documents would

show up on the outside of clusters in these 2D projections. The other sports

articles in the dataset discuss sports in general (anywhere from general sports

news to specific players) and do not make mention of politics or Chinese sports.

Because of the inherent difference between these two documents and the rest

of the dataset along with their overlap in content, the author gives this example

a rating of 5.

4.3.2 Example 2

For the second example, we consider a sports article and a dance paper.

Figure 15 shows projections for the data. In these projections, the red box with

a label of 68 consistently shows up close to the black box labeled 104. This

behavior is not as consistent throughout other projections as the behavior was

for the previous example. However, it interesting to investigate the possibility of

these documents being related in some form.

Upon analyzing these documents the author was unable to determine any

key factors that may relate the two documents. The sports article with the label

of 68 generally discusses some friends in the NFL and their relationship on and off

the football field. The dance document with the label of 104 discusses personal and

background stories of different dancers across India. The only somewhat feasible

connection between these documents that the author noticed is that they both

discuss personal stories and relationships of people in general. The author did not

feel that this constituted a very deep or inherent connection.

Because of the lack of obvious connection between these two documents, the
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(a) Document Ebmedding Size 15 - Epochs

10

(b) Document Embedding Size 15 - Epochs

25

(c) Document Embedding Size 20 -

Epochs 10

(d) Document Embedding Size 20 -

Epochs 45

Figure 15: Results for Example 2
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(a) Document Ebmedding Size 10 -

Epochs 40

(b) Document Embedding Size 15 -

Epochs 30

(c) Document Embedding Size 20 -

Epochs 20

(d) Document Embedding Size 25 -

Epochs 25

Figure 16: Results for Example 3

author gives this example a rating of 1. While it is possible to somewhat stretch

the meaning of “similar” in this case to make these two documents seem close in

topical information, they are not easily determined to be similar.

4.3.3 Example 3

For the third example, we consider another pair of sports articles. Figure 16

shows projections for the data. In these projections, the two red boxes with labels

78 and 77 consistently show up on top of each other.
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Upon reviewing these sports articles, it was found that they consist of exactly

the same text. They are, in fact, the exact same article. The first thing to note is

that these articles actually did come from different URLs. The fact that the articles

are exactly the same is an interesting coincidence. Nevertheless, this explains why

the projections always put the embeddings for these two documents relatively close

in 2D.

The more interesting thing to note here is that Doc2Vec actually does put

things that are exactly alike in very similar places in the output space. That

is, for documents that are extremely similar in content, Doc2Vec produces docu-

ment embeddings that are extremely similar. This is not necessarily surprising;

it certainly would make sense for a human to say that two documents that are

actually the same document should be exactly similar in any other non-textual

representation of those documents.

It is interesting, however, to note that Doc2Vec does perform exactly as

we might expect it to in this situation. Recall from the Approach section that

Doc2Vec does not actually compare documents. It “learns” document embeddings

based on the words in the document. It never updates documents based on their

relation to other documents. Thus, it is interesting that even though it is perform-

ing stochastic gradient descent and it is not necessarily comparing documents, it

is still able to converge to similar document embeddings for documents that are

exactly alike.

The author gives this example a rating of 5. It is quite evident why two

documents that are exactly the same would have extremely similar document

embeddings and projections into 2D.
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(a) Document Ebmedding Size 10 -

Epochs 15

(b) Document Embedding Size 10 - Epochs

30

(c) Document Embedding Size 15 - Epochs

15

(d) Document Embedding Size 20 - Epochs

15

Figure 17: Results for Example 4

4.3.4 Example 4

For the fourth example, we consider two card game articles. Figure 17 shows

projections for the data. In these projections, notice that the blue boxes labelled

9 and 11 consistently show up next to each other. This activity is consistent

throughout other projections as well.

The documents were analyzed that corresponded to the boxes with labels

9 and 11. Upon examining the documents, it was not entirely apparent at first
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why they might be considered similar. However, when compared to the rest of

the card game articles, the similarities to each other and the differences to other

documents became apparent.

The card game that these articles were written about is casual, but it also

has many tournaments associated with it. There are competitive players in the

game who compete for prizes, money, etc. The documents with labels 9 and 11

actually discuss the tournament side of the game. They address mentality during

tournaments, the atmosphere of tournamnets, and give tips on succeeding in them.

That alone helps to justify why the documents are consistently similar; they are

discussing the same sort of information. When comparing them to the rest of the

card game articles it becomes clear why they tend to be on the outside of the

clusters that are projected into 2D.

The other card game articles deal more with analysis of specific cards in the

game and how to best understand the impact that a certain card or collection of

cards has on the card game in general. They often show different decks built from

these cards and discuss strategies involving the decks. The documents with labels

9 and 11 do not discuss this sort of information. While all the documents talk

about the same card game, the two documents in question actually represent a

different part of the game. Namely, they talk more about the aspect of competing

in the game rather than specific strategies or cards. It is interesting that these

may be the things that Doc2Vec is recognizing.

The author gives this example a rating of 4. While it is not as clear cut

as previous examples why these documents would overlap or why they would be

different from other documents in the same class, the author feels confident that
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the documents do show similarities with each other and clear differences from

other card game documents.

4.4 Criteria 3

Recall that the second criterion was as follows: “Given a Doc2Vec model

that has clustered documents according to their topics determined by humans, is

that model able to accept another brand new document with a topic that has been

given to the model and cluster that document with the pre-existing documents of

the same topic?”. We analyzed this criterion by selecting 5 new documents from

each predetermined topic in the dataset (for a total of 15 new documents) and then

calculated the document embedding for each of these new documents based on the

Doc2Vec models we had trained. We then analyzed the document embedding for

each of these new documents by calculating the top 10 nearest other document

embeddings in each Doc2Vec model. This calculation was done using the built in

similarity functionality in gensim which implements the cosine similarity measure.

New documents were given a score between 0 and 10 representing how many

of the 10 most similar documents to it were of the same predetermined class. This

was done for each document and for each Doc2Vec model that we had trained to

analyze. Each model was then given a score out of 150 representing how well it

classified new document embeddings. This score was simply a sum of the rating

for each document. Thus, since there are 15 documents each having a possible

score between 0 and 10, a Doc2Vec model with a score 150 represents that it

classified the new documents very well.

The analysis of this criteria is motivated by the fact that new documents
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that Doc2Vec has not seen should be represented with an embedding that shows

up in a cluster that Doc2Vec has already defined. The ability of Doc2Vec to place

new documents close to other documents of the same topic is important so that

we may see if Doc2Vec is actually “learning” relationships between documents or

if it is simply separating documents because of differences between them.

Figure 18 the peak of the scores tend to vary between different document

embedding sizes. Models with a document embedding size of 5 tend to have the

results that are closest to 150 out of all the models tested. In fact, models with the

embedding size of 5 are the only models (aside from one model with embedding

size 10) that achieve a score of 150. In this sense, these models perform the best.

It is interesting to note that models rarely dropped below a score of 140. This

generally only happens when the number of epochs that a model trained for was

equal to 5. It is also notable that models that trained for 10 epochs always achieve

the highest score out of all other models with the same document embedding size.

Based on the results gathered here, we conclude that Doc2Vec performs well

on our dataset when appropriate training conditions are chosen. Recall from the

analysis of the first criteria that most models were able to perform well in that

task which exhibited the fact that Doc2Vec is able to cluster things according

to how humans recognize content. This criteria is markedly different in that it

demonstrates how, with the correct training configurations, Doc2Vec can not only

make these clusters, but it can see new data and cluster it appropriately.
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Figure 18: Model Scores
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5 Conclusion and Future Work

Based on the results shown in Section 4, we conclude that Doc2Vec is well

suited for the tasks we want it to perform. We believe, though, that the fact

that Doc2Vec did not consistently achieve everything to be considered good under

each criteria is an encouraging thing. We do not necessarily want Doc2Vec to

perfectly cluster documents such that there is no ambiguity in topics. Part of

our interest in the way that humans classify topics is that it is not necessarily

completely distinct; there are relationships between different topics of information

even if they are somewhat impercetible at first.

The results of this project can be used as a grounds to explore deeper,

more interconnected data in the future. We have established resonable criteria to

evaluate Doc2Vec models and interpret the output of the model in terms of how

well topics among the data are learned. Further analysis can be done on bigger

datasets where the data has already been partitioned into topics by humans and

our tests here can be replicated on those datasets.

In the future, the author would like to explore different ways of learning

document embeddings. Doc2Vec is not the only technique to accomplish this and

it would be very fruitful to analyze other unsupervised methods of doing this.

Work must also be done on the issue of viewing these resulting embeddings in

2D. The success of the overarching ambition of this project hinges on the ability

to meaningfully project document embeddings of high dimensionality into a 2D

space. This is a separate project and the t-SNE algorithm was considered good

enough for this thesis. It may be that this algorithm is good enough in the long

run, but more analysis needs to be done on this front.
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Analysis may also be done on modifying the Doc2Vec technique. It may be

reasonable to tag data with specific topics and add this as a training parameter to

the Doc2Vec learning algorithm. This would, in essence, for Doc2Vec to become

a more supervised method of learning. It would be of much interest to see if the

results shown in this paper can be replicated after making this modification to

Doc2Vec.

Another interesting point of exploration would be to have Doc2Vec produce

embeddings for a set of documents that have all been prescribed a single topic by

a human. It would be worthwhile to see if Doc2Vec creates any sort of clusters

in that data using some of the criteria we’ve laid out here to evaluate it. For

instance, we could do the same sort of analysis with only the sports articles we

have. It would most likely be necessary to train on more than just 38 articles, but

it would be interesting nonetheless.
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Appendix

The articles discussed in the criteria 2 results section are available at the

following links, organized by the document number that was specified. They are

listed in the order they were discussed.

71 → http://www.espn.com/espn/wire?section=nba&id=

27788802

72 → http://www.espn.com/espn/wire?section=nba&id=

27780769

68 → http://www.espn.com/espn/wire?section=nfl&id=

28044115

104 → https://ntnuopen.ntnu.no/ntnu-xmlui/bitstream/

handle/11250/2561634/SaraAzzarelli-Choreomundus.

pdf?sequence=1

77 → http://www.espn.com/espn/wire?section=nba&id=

28046151

78 → http://www.espn.com/espn/wire?section=nba&id=

28046097

9 → https://www.coolstuffinc.com/a/

jimdavis-08232019-exploring-different-ways-to-play-on-a-digital-playground

11 → https://www.coolstuffinc.com/a/

jimdavis-08162019-the-future-of-magic-esports-and-organized-play
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