8-1-1995

The Utility and Usefulness of an In-house Database: An Aid to Understand Student Ratings

Mark Tolley

Western Kentucky University

Follow this and additional works at: http://digitalcommons.wku.edu/theses

Part of the Education Commons, and the Psychology Commons

Recommended Citation

http://digitalcommons.wku.edu/theses/890

This Thesis is brought to you for free and open access by TopSCHOLAR®. It has been accepted for inclusion in Masters Theses & Specialist Projects by an authorized administrator of TopSCHOLAR®. For more information, please contact topscholar@wku.edu.
THE UTILITY AND USEFULNESS OF AN IN-HOUSE DATABASE:
AN AID TO UNDERSTANDING STUDENT RATINGS

A Specialist Project Presented to
the Faculty of the Department of Psychology
Western Kentucky University
Bowling Green, Kentucky

In Partial Fulfillment of the
Requirements for the Degree
Educational Specialist

by
Mark David Tooley
August 1995
THE UTILITY AND USEFULNESS OF AN IN-HOUSE DATABASE:
AN AID TO UNDERSTAND STUDENT RATING DATA

Date Recommended 7/19/95

Director of Project

Elizabeth A. Jones

John Olmstead

8/1/95

Director of Graduate Studies Date
Acknowledgments

The past three years of graduate school will always be remembered with nostalgia— an ending to a new beginning. With the completion of this project, I will be completing my Ed.S. in School Psychology. These are the long awaited "final moments" of my quest for knowledge that has truly shown that I have much more to learn. The long hours of guidance, hard work and some frustration are all over and hopefully a job well done.

This project would not have been possible without the cooperation and help from a number of people who deserve to share the credit for its completion. First and foremost my Lord and Savior Jesus Christ, followed by my wife Katherine who is half of this degree, is my better half and my forever/best friend, and also my Advisor, Dr. Leroy Metze, Professor, Director of Educational Technology - thank you for your patience, guidance and encouragement. I also give many thanks to Dr. John O'Connor and Dr. Elizabeth Jones, for their suggestions, insights and cooperation. It goes without saying that their suggestions and guidance have been vital for this projects completion.
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acknowledgments</td>
<td>iii</td>
</tr>
<tr>
<td>Abstract</td>
<td>v</td>
</tr>
<tr>
<td>Chapters</td>
<td></td>
</tr>
<tr>
<td>I. Introduction</td>
<td>1</td>
</tr>
<tr>
<td>Overview</td>
<td>1</td>
</tr>
<tr>
<td>Purpose</td>
<td>3</td>
</tr>
<tr>
<td>II. Review of the Literature</td>
<td>5</td>
</tr>
<tr>
<td>The need for Student Ratings</td>
<td>5</td>
</tr>
<tr>
<td>Ratings and improvement of instruction</td>
<td>9</td>
</tr>
<tr>
<td>Validity and Reliability of ratings</td>
<td>13</td>
</tr>
<tr>
<td>Student judgments on instruction</td>
<td>15</td>
</tr>
<tr>
<td>Ratings - not popularity contests</td>
<td>16</td>
</tr>
<tr>
<td>Ratings of alumni</td>
<td>17</td>
</tr>
<tr>
<td>Reliability of ratings</td>
<td>18</td>
</tr>
<tr>
<td>Validity of ratings</td>
<td>18</td>
</tr>
<tr>
<td>The utility of an in-house database</td>
<td>21</td>
</tr>
<tr>
<td>Ratings and grades received</td>
<td>21</td>
</tr>
<tr>
<td>Ratings and extraneous variables</td>
<td>21</td>
</tr>
<tr>
<td>Database and classroom instruction</td>
<td>24</td>
</tr>
<tr>
<td>III. Conclusion and Summary</td>
<td>30</td>
</tr>
<tr>
<td>Rational for database variables</td>
<td>30</td>
</tr>
<tr>
<td>Summary</td>
<td>31</td>
</tr>
<tr>
<td>Appendix</td>
<td></td>
</tr>
<tr>
<td>Database manual</td>
<td>33</td>
</tr>
<tr>
<td>Bibliography</td>
<td>41</td>
</tr>
</tbody>
</table>
The purpose of this project is three fold: (a) a review of the literature regarding student ratings, (b) the creation of a student rating database and (c) the development of an applications manual to accompany the database.

From a thorough review of the literature, this project identifies the utility and usefulness of student ratings as one element in the evaluation of instruction. The literature review addressed the following questions: (a) Do we need student ratings of instructors? (b) Can student rating data be used to improve instruction? (c) can we be sure that the data and the means by which they are acquired are valid and reliable? (d) Are there variables that may bias student ratings?, and (e) How can a database be used to help improve the effectiveness of classroom instruction?

The second goal of this project was to established a student rating database designed to house data from past, present and future student ratings. The database contains
variables currently collected by the student rating system of Western Kentucky University. In addition, the database contains variables identified by the research as helpful in the interpretation of rating data.

Lastly, a database applications manual (see Appendix) was developed which provides the user step-by-step directions for program access, data entry, data storage, and data retrieval/export.
Introduction

Overview

Proposed in this paper is a moderate approach for the use of student ratings - namely that they be used primarily as a way to help teachers become better instructors. Additionally, a database used in concert with student ratings is addressed. Using ratings and a database for the primary or exclusive purpose of improving instruction may increase the acceptance of student ratings as a component in the evaluation of instruction.

It is logical that universities, colleges, and departments have a similar goal of providing the best instruction for their students. Furthermore, one would like to believe that administration and faculty would embrace elements designed to improve the effectiveness of instruction, further enhancing the quality of their product (i.e., education/knowledge of their students). Therefore, students can be thought of as consumers who purchase the services (i.e., instruction) of the university. Furthermore, the knowledge and/or experience gained by the students can then be thought of as the university's product. It can be argued that a primary goal of any educational institution should be the constant improvement of this product using the most appropriate means and methods.
There are numerous methods that could assist institutions to meet the demands of an increasingly competitive educational market. Many colleges and universities, including various departments within (e.g., Teacher Education) Western Kentucky University (WKU), currently give a guarantee stating that students graduating from their institutions will have the basic skills required for entry level positions. Logically this guarantee mandates the need for effective instruction (Cashin, 1989). Therefore, university and college administrators should be open to the use of creative tools that may be used to improve the effectiveness of instruction within the classroom - thus improving the university's product (i.e., the student's knowledge/experience).

It is proposed that a database expressly constructed to house student rating data could help facilitate the ongoing analysis of rating data, making it a quality tool used for the improvement of instruction. Student ratings can be used as a tool to improve classroom instruction, thereby meeting the increasing demand for faculty to be productive teachers rather than productive researchers (Cashin, 1989). Therefore, it is intended that this database will be used to enter data from past, present, and future student ratings. Interested faculty could benefit from an ongoing analysis of the data. For example, faculty might conduct longitudinal research aimed at identifying various elements/variables available.
(e.g., student, instructor, and course) which, when manipulated, could increase the quality of instruction. (see Chapter III for more uses for the database).

Peterson, Gunne, Miller, and Rivera (1984) identify the audiences for whom student rating data would most likely be used. These include: administrators, instructors, and students. Each audience differs in its purpose, goals, and use of student rating data and each audience views the usefulness of the data from its own individual perspectives. Using an in-house database can help to satisfy a variety of goals held by each audience.

In addition to identifying the utility and usefulness of the proposed database, it is necessary to provide rationale and empirical support for the use of student ratings. Therefore, a review of the literature was conducted. The review revealed that the body of research regarding student ratings is large. The volume and variety of research, however, makes it possible "to derive meaningful findings that can be applied to evaluation practice" (Cohen, 1990, p.125).

Purpose

This project has three goals:

1. To identify whether student ratings are an essential component in the overall evaluation of instructional effectiveness. More specifically, a literature review will discuss: (a) Do we need student ratings of instructors?,

(b) Can the student rating data be used to improve instruction?, (c) can we be sure that the data and the means by which they are acquired are valid and reliable?, (d) Are there variables that may bias student ratings?, and (e) How can a database be used to help improve the effectiveness of classroom instruction?

2. To present the rationale for the creation and use of a database, which houses student rating data. Archived in the WKU Psychology department, the database is intended to house past, present, and future student rating data for future analysis. The database will contain items or variables as collected by the student rating system currently used by Western Kentucky University. The database will contain additional items which have been identified in the literature as important to the interpretation of student rating data.

3. To develop a manual to accompany the student rating database. The manual (see Appendix) will provide step-by-step instruction for users who enter, store, and access student rating data. The database manual is not designed to be an exhaustive "how to" regarding databases or more specifically, Microsoft Access (Microsoft Access for Windows 2.0, 1994). Rather, the manual provides the user with appropriate steps to house data and later export the data to other computer programs for further analysis.
Review of the Literature

The focus of the following review is to determine whether student ratings can be an effective element used in the evaluation of instruction and to determine how an in-house database can assist faculty and administration toward a goal of quality instruction. It was hypothesized that the research would support the use of student ratings as a valuable component in the overall evaluation of classroom instruction. Such support for the use of student ratings would provide a foundation for the use of a database and its possible applications (literature question #5). The review is not designed to provide an exhaustive analysis of the literature on student ratings. Rather it is to lend support for the use of student ratings in evaluating and improving instruction and as one component in the administrative decision-making process relative to promotions and salary increases.

Review Question #1

Do we need student ratings of instructors? There are a number of useful purposes for student ratings. For example, McKeachie (1979) suggests that student ratings be used to encourage students to critically evaluate the quality of their education, to provide students with
information in order to make judgments when choosing courses and instructors, to yield data to support the effectiveness of instruction and lastly to provide instructors with feedback used for the improvement of instruction. Sheehan (1975) states that ratings have an ability to identify instructors whose teaching effectiveness is either very strong or very weak, help instructors improve instruction by providing feedback and monitor instructors' ratings over time and after specific interventions are implemented.

There is support for the identification of student ratings as a primary contributor for use in the improvement of classroom instruction (Braustein, Klein, & Pachla, 1973; Cashin, 1988; Cohen, 1990; L'Hommedieu, Menges, & Brinko, 1990; Kemp & Kumar, 1990; McKeachie, 1979; Sheehan, 1975; Theall & Franklin, 1991). As McKeachie (1979) indicated, student ratings are a measure of the teaching process and not solely the product of teaching. Using ratings to measure the process of teaching and to improve this process provides a "non-threatening and useful" tool for improvement of instruction. Moreover, "in such a model, the utility of the ratings to individual faculty members [becomes] the criterion by which to judge the [usefulness of] ratings...and not empirical validity" (Sheehan, 1975, p. 698); that is, student ratings should provide, for the instructor and administrator, a method to identify meaningful information about the quality of instruction and possible instructional adjustments. If a student rating
system can provide this type of information, the usefulness or utility of this information to produce instructional/behavioral changes becomes the criterion by which faculty and administrators judge a rating's usefulness or successfullness.

Regarding personnel decisions, the research indicated that student ratings have been and will continue to be used by administrative faculty (Sheehan, 1975); that is, tenure and promotion decisions will continue to be effected by student ratings. The overall process of faculty evaluation involves several methods when personnel decisions are made. However, the weight of importance given to each method is subjective and the research does not provide unequivocal evidence regarding the weight the institution should give to each evaluative component. Moreover, to use every method of evaluation would be costly as well as time consuming. Many institutions frequently choose instead to focus on the following three methods: a review of an instructors' classroom instruction/teaching (e.g., student ratings), research and/or publication record (e.g., articles and/or books), and some form of community involvement related to their discipline (e.g., tutoring or adult education programs). Howard (1985) identifies additional methods for evaluating the effectiveness of instruction such as objective in-class observations, instructor self ratings, collegial ratings and ratings completed by former students.

The literature, however, is somewhat mixed as to
whether student ratings should be used for personnel decisions (Miller, 1984). Sheehan (1975) argues that information from student ratings, although useful for instructional feedback, should not be used as the only component for promotional and salary decisions. Sheehan (1975) points to research showing the potential invalidity and bias as well as the lack of "appropriate norms that would permit the comparison of instructors" (p. 696). As a result, Sheehan recommends that the use of student ratings, for administrative purposes, be forbidden especially if ratings are seen as "perfectly valid measures of instructional effectiveness" (p. 697).

Murray (1984) and others (Aigner & Thum, 1986; Dunkin & Barnes, 1985; Kemp & Kumar, 1990; Lin, McKeachie & Tucker, 1984; Marsh, 1982; Meany & Ruetz, 1972; Paterson et al., 1984; Shingles, 1977) argue that student ratings can be a valuable administrative tool used for the purpose of reviewing and evaluating faculty - if used within the context of additional evaluative information. In addition, after analyzing student rating data collected across instructors and across varying course levels and content, Aigner and Thum (1986) indicated that student ratings were of "limited value" by themselves (p. 253). However, when interpreted carefully and used in conjunction with peer and self-evaluations and objective observation, student rating data should be a useful way of evaluating the overall effectiveness of instruction. Lin et al. (1984) state that
"research suggests that [data from student ratings] has more impact [on instructional improvement and personnel decisions] when statistics are coupled with direct quotations [from students]" (p. 589). Believing student ratings to be a fairly valid and reliable method of acquiring information; Aubrecht (1979), Cashin (1989), Cashin (1990), Cohen (1990), Stewart and Roach (1993) and Theall and Franklin (1991) suggest that data from student ratings be used as an aggregate or composite - as one of many factors that contribute to the entire faculty evaluation process.

Thus, the literature provides support for the use of student ratings for the evaluation of instructional effectiveness. Student ratings are considered to be best utilized in the improvement of instruction and as one component of information which administrators utilize for personnel decisions. This consideration leads us to the next question regarding student ratings.

Review Question #2

Can student rating data effectively be used to improve instruction? Given that student ratings should be used to gather and provide information to administrators and faculty, it is important that the rating data received by each group be as informative as possible. Useful feedback from student ratings is important for the critical decisions made by each group, such as decisions about faculty's promotion and salary or the individual elements of teaching
that need more attention for instructional improvement (Dunkin & Barnes, 1985). It is to the latter that many institutions give little time and effort. However, as mentioned earlier, this practice is changing as more institutions' focus is placed on quality instruction and the elements that help instructors become better teachers.

Although there is relatively little research that suggests feedback from student ratings serves little purpose (Dunkin & Barnes, 1985), there is substantial evidence which indicates that feedback can be a most useful tool to improve instruction (Aleamoi, 1978; Aubrecht, 1979; Cashin, 1988; Cashin, 1989; Cashin, 1990; Centra, 1973; Cohen, 1990; Theall & Franklin, 1991). When student ratings are utilized, instructional improvement can be accomplished provided feedback is given in a manner that is free from "statistical and educational jargon" (L'Hommedieu et al., 1990, p. 238) and information is "clear and...accompanied by guides for interpretation and use" (Cashin, 1990; Theall & Franklin, 1991, p. 89). More specifically, the reports generated from analysis of student ratings should provide useful information and, most importantly, faculty should be able to make some sense of this information. Theall and Franklin (1991) indicate that "at minimum analysis of evaluation results for teaching improvement should include descriptive information (distributions of responses by item), measures of central tendency and a direct estimate of error such as confidence intervals for means" (p. 88).
McKeachie (1979) identifies three reasons that feedback from student ratings may not have the desired effect of improving instruction. First, the information may not supply the instructor with novel and useful data. Second, the information may be so disparaging that it does not enhance positive change or encourage the zeal for teaching. Third, feedback may not provide faculty with information necessary to make changes that would improve their instruction. In addition, Aubrecht (1979) suggests that "teachers... are given feedback from their own students [having] no comparisons with other teachers [and therefore] find it difficult to interpret their [own] ratings" (p. 4).

Many researchers (Aubrecht, 1979; Cashin, 1990; Dunkin & Barnes, 1985; L'Hommedieu et al., 1990; McKeachie, 1979) suggest that faculty should be given assistance with the "interpretation and application of the information" in student ratings (L'Hommedieu et al. 1990, p. 238). Given the potential for faculty to misunderstand feedback, Aubrecht (1979), Cashin (1990), and Sheehan (1975) suggest that institutions provide opportunities for faculty to discuss rating results with trained consultants. Due to tight budgets in higher education, it appears unlikely that departments would contract with an individual for this purpose. However, Sheehan (1975) suggests that one or more faculty members knowledgeable in measurement and instruction could provide helpful insight into reports generated from the analysis of student ratings. In addition, "graduate
students trained as teaching improvement specialists [could] provide individualized assistance and supervision to instructors" (p. 697). Furthermore, consultants and/or specialists may provide opportunities to ameliorate misunderstandings and improve faculty acceptance of student ratings - especially when used to improve instruction.

Finally, there are methods that can assist administration, faculty and educational consultants interpret the reports generated from student ratings. Theall and Franklin (1991) and Cashin (1990) have several recommendations for interpreting and developing reports. First, make sure that an appropriate percentage of students within the class respond to the ratings (i.e., the reliability increases significantly as the number of raters increase). Furthermore, Cashin (1990) suggests that ratings be obtained from at least ten raters, at least two-thirds of the class and, for generalizability, "two or more courses from three or more terms" (p. 4). Second, determine any uncompleted items and adjust for their absence. Third, review the distributions of responses and the mean scores and standard deviations of individual items for any anomalies to gain a more robust picture of the instructor.

Because there is a tendency for students to rate instructors favorably, using a 1 to 5 scale (1 = low, 5 = high) where the average instructor is rated as 3.5, averages may become useless when judgments in the classroom are "strongly divided" (p. 90). Using the average score when
there are standard deviations of 1.2 or higher may not be good practice. Thus using standard deviations provides "an important source of information about student opinion" (p. 90). Theall and Franklin (1991) further suggest that "for personnel decision making, use t-scores, percentile-ranked groups, or other appropriate measures of relative performance. In teaching improvement, use means only to locate the individual's performance in context" (p. 90).

Review Question #3

Can we be sure that the data and the means by which they are acquired are valid and reliable? This question has been well researched. The conclusions regarding the validity and reliability of student ratings are somewhat mixed; however, conclusions can be reached which lend support for student ratings. Even though there are certain to be continued questions of doubt about utility of student ratings, these questions of doubt are sure to foster ongoing research and improvement in the faculty evaluation process.

Lack of faculty support for the use of student ratings can be found in virtually every educational institution. Citing Franklin and Theall (1989), Cohen (1990) reports that faculty and administrators continue to disapprove of the use of student ratings even though research, in varying degrees, supports their usefulness (Cashin, 1988; Dunkin & Barnes, 1985; Kemp & Kumar, 1990; Lin et al., 1984; Marsh, 1987; McKeachie, 1979; Meany & Ruetz, 1972; Paterson et al., 1984; Shingles, 1977; Theall & Franklin, 1991). Attributing these
attitudes to widespread "misconceptions about the literature," Cohen (1990) identifies seven common "myths" that faculty are reluctant to abandon - even in the face of "empirically based research" (p. 125). This reluctance is largely due to their faith in "personal and anecdotal evidence" (p. 125). These myths are as follows:

1. Students are not qualified to make judgments about teaching competence.
2. Student ratings are popularity contests.
3. Students are not able to make accurate judgments until after they have been away from the course for several years.
4. Student ratings are unreliable.
5. Student ratings are invalid.
6. Students rate instructors on the basis of the grades they receive.
7. Extraneous variables and conditions affect student ratings. (p. 124)

Believing these myths to be true, one is left searching for the purpose and usefulness of student ratings. After a thorough review of the literature by means of meta-analysis, Cohen (1990) concluded that these myths have largely been dismissed, stating, "we can attempt to dispel these myths with research-based refutations" (p. 124). The following are refutations addressed by Cohen (1990) and others that identify the usefulness, reliability and validity of student
ratings. Myths 1 through 5 will be evaluated in the discussion of literature review question number three.

Regarding myth number one, Cohen (1990) indicated that "students are qualified to rate certain dimensions of teaching" (p. 124). Murray (1983) and Cashin (1990) report findings that suggest students have the ability to identify effective and ineffective instruction. Researchers found that after conducting careful and objective classroom observations of effective and ineffective teaching and correlating observations with ratings completed by students within the same class, students do have the ability to identify behaviors which exemplify effective and ineffective teaching. Moreover, their research suggests that for instructional improvement rating questions should be low-inference (i.e., where students and faculty do not have to infer what the question means, thereby promoting inaccurate/inappropriate conclusions) and diagnostic (i.e., questions that are able to identify instructional strengths and weaknesses) in nature. A rating system which includes low-inference questions can make it easy for instructors to identify elements of their instruction in need of improvement. Furthermore, low-inference questions leave little room for students and faculty to misinterpret in-class instructional behaviors. In addition to low-inference, diagnostic questions, Cashin (1990) indicates that students have the ability to evaluate instruction using global or summary items which "tend to correlate more highly
with student learning than do more specific items" (p. 2). Therefore, it becomes important for the student rating instrument to have a good combination of low-inference and global items to allow students the opportunity to evaluate specific instructional behaviors and determine overall effectiveness of instruction. However, for specific behavioral changes to occur in instruction more low-inference questions become necessary. The inclusion of low-inference questions can provide information which may be used to identify specific behaviors that global questions can not. Incorporating these two types of questions make the student rating system a valuable tool/method in providing not only the instructor but administration with useful information to improve the quality of instruction.

Regarding myth number two, Cohen (1990) indicated that "students do discriminate among dimensions of teaching and do not judge solely on the popularity of instructors" (p. 124). Erdle, Murray, and Rushton (1985), in a study investigating the effects of personality and classroom behavior on student ratings, indicate students can discriminate between those behaviors which are typically associated with effective teaching. They found that two types of personality traits correlate with highly rated teachers, "achievement orientation (e.g., dominance, intelligence, leadership) and interpersonal orientation (e.g., supportiveness, nonauthoritarianism, nondefensiveness)" (p. 404). These findings suggest that
students do have the ability to discriminate some content elements of effective teaching that go far beyond the shallow concept of popularity. Costin, Greenough, and Menges (1973), after a exhaustive review of the validity research conclude, "it would appear, then, that students are at least partially capable of distinguishing certain qualities of instruction which increase their knowledge and motivation" (p. 514). Although it is inappropriate to suggest that students have the ability to identify and differentiate all elements of good and bad instruction, there is evidence which supports that students do have the ability to identify what they like and do not like about the instruction they receive. There is a need to conduct additional research to determine effective and ineffective instructional behaviors most easily and appropriately observed by students - especially when rating questions are designed to be low-inference in nature.

Regarding myth number three, Cohen (1990) indicated that "ratings by current students are highly correlated with those of former students (alumni)" (p. 124). Although correlations may appear to be weak, Cashin (1988) suggests that for validity purposes correlations "between .20 and .49" should be considered as "practically useful" while correlations "between .50 and .70 are very useful but rare when studying complex phenomenon [such as student ratings]" (p. 2). It is unclear, however, what Cashin (1988) means by "practically useful" (p. 2). Cashin (1988) and Howard,
Conway, and Maxwell (1985) report that student ratings not only significantly correlate with instructor's self ratings - ".20 to .69", colleague's ratings - ".48 to .69" and administrative ratings - ".47 to .62" but also with alumni ratings - ".40 to .75" (Cashin, 1988, p. 2). Additionally, "former-student [alumni] and student ratings evidence substantially greater [significant correlations] of teaching effectiveness than do self-report, colleague, and trained observer ratings" (Howard et al., 1985, p. 195).

Regarding myth number four, Cohen (1990) indicated that "student's ratings are reliable in terms of both agreement (similarity among students rating a course and instructor rating) and stability (the extent to which the same student rates the course and the instructor similarly at two different times)" (p. 124). Costin et al. (1973) report that reliability studies, from the 1950's on, have shown consistently significant reliability coefficients that range from the .70's to low .90's. Cashin (1988) reports interrater agreement, using the Instructional Development Evaluation Assessment (IDEA) system, of .81 and .89 when there are 20 to 40 raters, respectively. Thus the more raters the higher the reliability. Also, ratings conducted by alumni who completed the same ratings in college show remarkable stability.

Regarding myth number five, Cohen (1990) indicated "student ratings are valid, as measured against a number of criteria, particularly students' learning" (p. 124). There
is considerable research evidence supporting the validity of student ratings (Blackburn & Clark, 1975; Cashin 1988; Cashin 1989; Centra, 1977; Costin et al, 1973; Frey, Leonard, & Beatty, 1975; Helmstadter & Krus, 1982; Marsh, 1982; Marsh, Fleiner, & Thomas, 1975; Marsh & Overall, 1980; Marsh, Overall, & Kesler, 1979). This research lends wide support for the use of student ratings in the evaluation process. Cohen (1990) reports that recent reviews of the literature using meta-analysis indicate support for the use of ratings and show "much greater agreement... [regarding there] validity" (p. 129).

Student learning is a frequent criteria used in validity studies. Cashin (1988) reports that student learning is "theoretically, the best criterion of effective teaching..." (p. 2). It is argued that as instruction is more effective, students learn more, as further indicated by higher test scores. Thus, test scores can help to validate student ratings not only as a general means of identifying effective instruction but also as an identifier of specific elements of instruction that make it effective (see myth answer #2).

Student ratings can provide much information about instruction. For example, student ratings, using low-inference questions can be used to identify behaviors which make up good instruction (both in and out of the classroom (i.e. "my instructor is readily available for consultation outside of the classroom"). Moreover, when rating
instruction, test scores can provide basically only one general description of the instruction such as overall effectiveness. Test scores alone do not provide detailed information that is useful to administration, faculty and students. Although, it appears logical to argue that student learning is influenced by the quality of instruction and thus identified by test scores, there is arguably more to learning than can be influenced by in-class instruction. Student ratings can be used to identify out-of-the-classroom elements such as motivation that influence a student's acquisition of knowledge (Cashin, 1988).

In a meta-analysis review of multisection validity studies Cohen (1981) reports significant correlations with items on student ratings and exam grades. The majority of the research methodology used an exam drafted independently for classes taught by different instructors teaching different courses and using the same syllabus and textbook. Cashin (1988) reports the correlations ranging from .22 to .50, with a mean of .41, for such items as "achievement...(how much students thought they learned), overall course and instructor effectiveness, teacher skill... explains clearly, teacher structure... (uses class time well), teacher rapport... (is friendly), and teacher interaction... (facilitates classroom discussion)" (p. 2).

Additionally, concurrent validity has been established when comparing student ratings with instructor's self
ratings, administrator's ratings, colleague's ratings and alumni ratings (see myth #3 for these correlations).

Review Question #4

Are there variables that may bias student ratings?

This question can be answered by reviewing the research regarding the following two myths. Cohen (1990) indicates in myth number six that "student ratings are not unduly influenced by the grades students receive or expect to receive" (p. 124). In a review of the research, Cashin (1988) reports there is a significantly low positive correlation between student ratings and expected grade, ranging from .10 to .30. He identifies three hypotheses for this outcome: (a) grading leniency; (b) validity - that is, "students who learned more earn higher grades and give higher ratings;" and (c) student characteristics - indicating that "some student characteristics [such as motivation] lead to both greater learning and, therefore, higher grades and higher ratings" (p. 3).

Regarding myth number seven, Cohen (1990) indicates that "student ratings are not unduly influenced by such external factors as student characteristics, course characteristics and teacher characteristics" (p. 124). In a review of the literature surrounding confounding variables in student ratings, Cashin (1988) identifies variables which significantly bias student ratings and groups them according to category. These include (a) instructor variables - faculty rank (IDEA correlation including graduate teaching
assistants is .10) and expressiveness as it relates to
teacher enthusiasm and/or style of presentation ("making a
lecture interesting as well as informative helps students
learn content, especially when incentives and testing are
missing"); (b) student variables - motivation (average IDEA
correlation is .39) and expected grade (see myth #6); and
(c) course variables - level of course (average IDEA
correlation is .07), academic field (art, humanities, and
social science courses receiving higher ratings than
math/science courses) and workload/difficulty (i.e., classes
where students who work harder give higher ratings. Cashin
(1988) indicates that these "results support the [general]
validity of student ratings rather than suggest that they
are [unduly] biased") (p. 3-4).

Cashin (1988) also identifies variables the research
indicates "show little to no relationship to students
ratings" (p. 3). These include (a) instructor variables -
gender, age, teaching experience, personality and research
productivity; (b) student variables - age, gender,
classification, GPA and personality; (c) course variables -
class size (however there is a very weak inverse correlation
(r=-.09) were smaller classes tend to receive higher
ratings) and time of day; and (d) administrative variable -
time rating data collected (i.e. when in the semester the
rating was taken). The forgoing correlations should be read
with caution. The results are primarily with IDEA data and
any educational institution using a different rating system should obtain their own results.

Perhaps the greatest concern most cited by instructors about student ratings involves biasing variables. After reviewing the literature regarding biasing variables, many instructor's concerns become legitimately clear. For example, Cashin's (1988) review of the literature identifies the instructor variable of "personality" as a variable having "little to no relationship to student ratings" (i.e., nonbiasing) (p. 3). This interpretation is somewhat misleading. Instructor personality can be assessed from two different perspectives, that of the instructor and that of the student. In his review of student rating literature, Cashin (1988) indicated that when the instructor's personality is assessed by the student there is a very strong relationship to student ratings -- yet Cashin identifies "personality" as a nonbiasing variable (p. 3).

To further strengthen the argument that instructor personality can be a biasing variable, Cashin (1988) identifies instructor "expressiveness" as a biasing variable (p. 4). An instructor's expressiveness can logically be argued as a function or part of the instructor's personality -- yet "personality", as Cashin (1988) indicates, is a nonbiasing instructor variable. It appears there is some contradiction in Cashin's (1988) report of the literature.

These are just two examples of the confusion within the literature regarding biasing variables within student...
ratings. Although there is empirical evidence which supports instructors' concerns about student rating results, we should not throw the baby out with the bath water. The forgoing research has shown that student ratings can be a useful tool to help instructors improve their instruction and help administrators in the evaluation of effective instruction. However, just as it is logical to make important life decisions after gathering and considering all possible data, so it is with student ratings. Any major administrative decision made strictly on the basis of student ratings would not be considered wise (Sheehan, 1975).

Given the usefulness of students ratings, it becomes necessary to additionally highlight the advantages of an in-house database. As mentioned in the introduction, this database is expressly designed to house student rating data from past, present and future ratings. Data collected from student ratings will be housed for future analysis and used to further enhance the quality and usefulness of feedback given to administration and faculty.

Review Question #5

How can a database be used to help improve the effectiveness of classroom instruction? The following will provide a list of possible uses/recommendations and advantages of an in-house student rating database. It is this writer's opinion that each recommendation will help administration and faculty gain a more accurate picture of
their teaching staff and teaching ability, respectively. It is also believed that as administration and faculty take an active role in the improvement of instruction that the quality of instruction can improve. Pressure from the workforce to provide employers with skilled and knowledgeable employees can prove to be an effective motivator for instructional improvement. Therefore, with the help of the database as a means to this end, the goal of quality education can be realized. The following are recommendations which were partially derived from the research of Cashin (1990), Costin et al. (1973), and Theall and Franklin (1991). They are:

1. The database could be used for the development of multiple regression equations to identify patterns within instruction relative to course (e.g., class size and time of day), instructor (e.g., gender and research productivity), student (e.g., gender and level of student) and administrative (e.g., time during term) variables.

2. The database can be used for self-improvement of instruction through feedback enhanced by the use of the database. Having an in-house database provides assistance to further analysis and monitor student ratings data collected by the current WKU rating system.

3. The database should be used to amass longitudinal demographic data on instructor and student populations. Doing so will logically provide the means for further analysis; for example, a database can provide longitudinal
rating data to administration "on areas of relative strength or weakness in undergraduate [and graduate] teaching, suggest directions for the development of new programs or [curriculum changes] and provide evaluative information and norms on the various new programs which are implemented" (Costin et al., 1973, p. 512). For example, Theall and Franklin (1991) have taken actual data to provide an example of how analyzed data from a database can provide faculty and administration with valuable information for future possible changes to improve instruction.

Professor Y requested help from a teaching consultant in interpreting recent student ratings. The consultant noted the following pertinent information about the teaching situation and its evaluation: (1) ratings were somewhat lower than usual on the overall items, (2) ratings were low on items relating to testing, pacing, relevance, and clarification of problems, (3) many items had unusually high standard deviations and (4) the course's workload was considered "heavy" and the course was rated "more difficult than average." All in all, ratings were considerably lower than usual for this instructor and were marginal in comparison to the norms for the department. The overall ratings of the course were to appear in the ratings catalog and were probably going to be considered in an upcoming tenure decision. Professor Y was concerned about whether this evaluation would
help or hinder a favorable decision. The consultant responded that the effect might depend on whether the results would be fully interpreted.

After reviewing the results, Professor Y and the consultant decided to inspect other information. A check of student demographics revealed the following: (1) About 40% of the class were seniors, 40% were freshmen, and the rest were equally divided among the other classes. (2) These percentages were similar to the distributions of responses on the items about prior preparation of students, difficulty, pacing and, in fact, most of the specific items with depressed scores. Also, a review of teaching load revealed that since employment four years prior, this teacher had taught only upper-level or graduate courses. The conclusion (borne out by further analysis of the evaluation results) was that he succeeded with upper-level student, but the lower-level students had difficulty keeping up and thus negative in their opinions. (p. 93-94)

Theall and Franklin (1991) argue that professor Y's results may be more related to a scheduling and/or curriculum problem than to professor Y's instructional abilities. As a result of this type of data analysis, various changes might be necessary such as having the instructor teach upper-level courses or increase his/her skills with beginning students.
This example shows the power of collecting data over time. It provides all parties involved important information to critically review and maintain current curriculum or make changes that would clearly benefit student, faculty and administration.

4. The analysis of student rating data can be used to aide consultants in the interpretation of reports generated. Having a database and then analyzing the data by means of a statistical program (i.e., SPSS) provides individuals more information than the currently used system and can provide consultants (in-house or contracted) data and access to data for the express purpose of improving the effectiveness of instruction. Analyzing data from the database can provide information not only about the instructor but also about the student, for instance student motivation (e.g., answers to rating questions such as "expected grade," "would you take this class again" or "would you recommend this class to others"), prior preparation, in addition to class information and GPA. Answers to questions like these provide administration, faculty and possible consultants more appropriate information to better understand and come to conclusions regarding an instructor's teaching. Furthermore, critically reviewing the data with the help of a consultant protects the instructor against misinterpretation of the data (Theal & Franklin, 1991).
5. The data base can be used to establish departmental and college norms for the interpretation and comparison of data. (Cashin, 1990; Costin et al., 1973).

6. The data collected and analyzed by the department and/or instructors can be used along with other data to demonstrate teaching effectiveness for such purposes as promotions and salary increases (Costin et al., 1973).

7. Students can use reports published by the department to assist them in course selection (Costin et al., 1973).
Conclusion and Summary

Rational for the inclusion of database variables

The database is divided into five forms (Course Information, Instructor Information, Student Information, Question Answer and Template Questions), each housing their own specific items (see Appendix "Applications Manual for the WKU Student Rating Database" for more information regarding the database). Each item within the five forms is included in the database because (a) they are included in the currently used WKU rating system, or (b) they were identified by the literature review as having importance in the interpretation of rating data. The database includes variables, identified by Cashin (1988), which have "little to no [biasing] effect" on student ratings as well as variables identified by the research as biasing (see literature review question #4). Specifically, these variables (biasing and nonbiasing) are included in the database to provide WKU administration and faculty information that, after analysis, can identify potential biasing effects on rating data when using the WKU rating system.

Regarding the student variables in the database, Cashin's (1988) review of the literature (see original
article for listing of reviewed research) identified the following variables as having "little or no relationship to student ratings" (p. 3). These variables include student age, student gender, student classification, and student GPA. Variables the research indicated as having a significantly biasing effect on student ratings results include student motivation (e.g., the level of student motivation for taking the class - required or elective or class as part of major/minor) and expected grades.

Regarding course and instructor variables, Cashin (1988) identifies the following variables as having "little to no relationship to student ratings" (p. 3). These variables include (a) course - class size, time of day, and date of rating; and (b) instructor - gender, age, teaching experience, and research productivity. Variables included in the database which Cashin (1988) identifies as possible sources of bias include (a) course - level of course and academic field, and (b) instructor - faculty rank.

Summary

One of the most important goals of any educational institution is to provide the finest education possible. To attain such a goal takes many elements collectively working together. One purpose of this project is to present support for one such element - that is a database for student evaluations. Improvement of the quality of instruction requires "valid and reliable information, which students can provide efficiently and effectively through the use of
[student] ratings" (Theall & Franklin, 1991, p. 94). Cashin (1990) and Theall and Franklin (1991) suggest that careful steps must be followed to ensure that data is useful and accepted by faculty and administration. First, multiple investigative sources should be used to evaluate faculty (i.e., don't use student ratings alone), especially when used for personnel decisions. Second, faculty should be provided with information regarding the purpose(s) of student ratings prior to collecting data. Third, faculty should receive competent assistance to aide in the discernment of rating data. Lastly, everyone involved should be informed about how "different evaluative purposes affect evaluation results" (Theall & Franklin, 1991, p. 95). How one is informed may be different in each department, college and university.

The present rating system can be enhanced through the appropriate use of a database as outlined in this paper. A database alone cannot solve the problems commonly associated with the use of student ratings; however, if used at all, a database can help to move us one step closer to possible resolutions and, most of all, quality instruction.
APPLICATIONS MANUAL FOR THE
WKU STUDENT RATING DATABASE

A Specialist Project Presented to
the Faculty of the Department of Psychology
Western Kentucky University
Bowling Green, Kentucky

In Partial Fulfillment of the
Requirements for the Degree
Educational Specialist

by
Mark David Tooley
August 1995
Appendix

Applications Manual for the
WKU Student Rating Database

The following manual provides a step-by-step procedure for accessing the database, data entry, data storage and data retrieval/exporting. The database is archived in the Psychology Department located in the College of Education and Behavioral Sciences.

System requirements

System requirements include at least a 286 PC with hard drive. Software requirements include Microsoft (MS) Windows [3.0 or higher] (Microsoft Corporation, 1985) and MS Access 2.0 (Microsoft Corporation, 1994).

Definitions

Before continuing, it is necessary to identify various terms. The following definitions will allow the user to understand steps and procedures used throughout the database. These terms include:

1. **Field**: A field is the unique location at which the user can enter data. Each field is labeled with its own identification, such as "student age or student gender".

2. **Form**: A form contains all fields. There are five forms within this database.

3. **Record**: A record is one set of data per form. For example, each form contains a number of fields. Once the
user has entered information in all fields within one form, the user can save that set of data and thus the user has saved one record.

4. **Primary Key(s):** Primary Key(s) are identical fields within each form. This allows the user, when creating reports, the ability to recall specific data related to the primary keys. For example, the current database has seven primary keys: (a) Course Name, (b) Department Identification (ID), (c) Course ID, (d) Semester ID, (e) Course Year, (f) Student Social Security Number, and (g) Instructor ID. All forms have part or all of these seven primary key fields which allow the user to identify, retrieve and sort specific data as needed. Furthermore, it allows the user to incorporate records from each form for report purposes (see MS Access (Microsoft Corporation, 1994) manual for information on generating reports).

Identification of forms

The database contains five independent forms, each housing specific fields. These forms are:

1. **Course Description Form,** which includes the following fields: course name, department identification, course identification number, semester identification number, instructor identification number, course year, core requirement (i.e. is the course required), class size, time of day (i.e. what time course is taught) and date of rating (i.e. when in the semester the ratings were completed)
2. **Instructor Description Form**, which includes the following fields: department identification, instructor (I) identification number, I name, I gender, I age, I faculty rank, I teaching experience, I number of published journal articles, I number of published books/book chapter(s) and I number of other published.

3. **Student Description Form**, which includes the following fields: course name, department identification, course identification number, semester identification number, instructor identification number, course year, student (S) social security number, S age, S gender, S classification, S GPA, S expected grade, Psychology major and Psychology minor.

4. **Question Answer Form**, which includes the primary key fields and sixteen open fields for instructor/department chosen questions and their relating student rating answer.

5. **Question Template Form**, which includes the psychology department's 206 item questionnaire (for a printout version of this questionnaire, please see attached WKU Instructor and Course Appraisal Cafeteria System).

Accessing the program and database

The following steps should guide the user in accessing Microsoft Access (Microsoft Corporation, 1994). It is recommended the user create a directory on their hard drive and copy the database to that directory, thus working from
the hard drive rather than a floppy disk.

To load MS Access (Microsoft Corporation, 1994) and database, observe the following steps: (a) double click using the mouse on the MS Access icon in MS Windows (Microsoft Corporation, 1985), (b) single click on "file" (upper left of screen), (c) single click on "open database...", (d) place disk containing the database program into A drive (e) at the "drives" section (located at bottom right of screen), single click on arrow, locate "A" or "C" depending on the location of the database and single click, and finally (f) highlight the database identified as "PSYSTRAT.MDB" (i.e. Psychology Student Rating).

Data Entry

It is necessary that data entry be done by hand rather than electronic scanner. This is due in part to additional information within the database than is currently used in the WKU rating system. Furthermore, the syntax of the WKU rating data may not equal the syntax of the database forms.

When entering data, it is recommended there be a master list that contains the instructor's identification number (a number which can be determined by the user or instructor) matched with the instructor's name. The database allows for the user to enter the instructor's name when appropriate, although it is not necessary if confidentiality is requested.
After loading the "PSYSTRAT" database, the user should be able to identify the screen "database: PSYSTRAT". From this screen, the user can access forms and even change the database if knowledgeable with MS Access (Microsoft Corporation, 1994).

To enter data, the user should single click on "form", which allows the user to select from the five forms as mentioned above. The user can choose a form by highlighting it and pressing enter or "open". The cursor will automatically be located at the first field within the form. To enter data, simply begin typing the required information (hitting "return" key will place cursor at next field). Located in the bottom left of the screen is a description of each field. If the user has any questions as to the type of data required in each field, simply read the description and an example is usually given.

It is recommended that a list of data be completely entered into one form (making sure order is maintained) followed by the second form and so on. Furthermore, it is recommended the user enter all data in the following order beginning with the "course description form", "instructor description form", "student description form" followed by the "question answer form". This allows the user to maintain order during data entry.

Before entering data into the "question answer form", the user should, at the same time the "question answer form"
is open, access the "question template form". Splitting the screen with these two forms allows the user to see the question chosen by the instructor (both on the template and the student's evaluation form) and the corresponding question number within the database. This allows the user to simply locate the instructor's chosen question(s) within the "template question form", identify the number of each question and enter this number and the corresponding student rating answer in the "question answer form". Thus the only data within the "question answer form" should be numeric. That is, there should be one number which represents the corresponding question within the "template question form" and a second number identifying the student's answer on the evaluation form administered in the classroom. By doing this, it will allow the user to move through the database in such a way that helps to maintain order during data entry. Although this type of data entry may appear to take a great deal of effort and time, the benefits of having data which are categorized pays off in latter data analysis.

Data Storage

Storing data allows the user to save an infinite number of records. This can be accomplished by performing the following steps: (a) upon completion of each data entry for all fields within a given form, the user may single click on "file" (located in upper left corner of screen): and (b) single click on "save record". The user does not have
to change drives. The computer will automatically save the data within the "PSYSTRAT" database on the appropriate drive. It is recommended the user enter a number of records before saving. This can save time and effort.

Data retrieval/export

When the user wishes to enter more data at a later point, follow the directions for accessing the database as described above and go to the end of the previously entered data and begin entering new data from that point. By adhering to the following steps, the user can download data into other computer programs. These steps include: (a) access the database as described above, (b) single click on "File", and (c) single click on "Export". The "Export" command allows the user to choose from a list of destinations. Highlight the desired destination, choose "OK" and follow the directions given on screen. MS Access (Microsoft Corporation, 1994) gives the user the power to export data to another database or spreadsheet application.

Conclusion

Although there is much more information regarding MS Access and its applications, it is recommended the user consult a more comprehensive manual that usually accompanies a Microsoft program. The current manual only addresses the student rating database and information relative to its applications (i.e. program access, data entry, data storage
and data retrieval/export). Any further questions regarding changes within the database can be answered by consulting the original MS Access (Microsoft Corporation, 1994) manual.
Below are listed the CAFETERIA items available for analysis of specific teaching methods and materials. The 205 numbered items, from which you may choose, are designed to assist instructors analyze specific teaching methods and materials. Selections are recorded on the MARK SENSE ANSWER FORM by darkening bubble "A" of the question number which corresponds to the desired catalog item. A maximum of 23 items may be selected for any single course appraisal. The University-wide Item, and Departmental Core Items will automatically be added to all appraisal forms.

CLARITY AND EFFECTIVENESS OF PRESENTATIONS

001 I UNDERSTAND EASILY WHAT MY INSTRUCTOR IS SAYING.
002 MY INSTRUCTOR DISPLAYS A CLEAR UNDERSTANDING OF COURSE TOPICS.
003 MY INSTRUCTOR IS ABLE TO SIMPLIFY DIFFICULT MATERIALS.
004 MY INSTRUCTOR EXPLAINS EXPERIMENTS AND/OR ASSIGNMENTS CLEARLY.
005 DIFFICULT TOPICS ARE STRUCTURED IN EASILY UNDERSTOOD WAYS.
006 MY INSTRUCTOR HAS AN EFFECTIVE STYLE OF PRESENTATION.
007 MY INSTRUCTOR SEEMS WELL-PREPARED FOR CLASS.
008 MY INSTRUCTOR TALKS AT A PACE SUITABLE FOR MAXIMUM COMPREHENSION.
009 MY INSTRUCTOR SPEAKS AUDIBLY AND CLEARLY.
010 MY INSTRUCTOR draws AND EXPLAINS DIAGRAMS EFFECTIVELY.
011 MY INSTRUCTOR writes LEGIBLY ON THE BLACKBOARD.
012 MY INSTRUCTOR HAS NO DISTRACTING PECULIARITIES.

STUDENT INTEREST/INVOLVEMENT IN LEARNING

013 MY INSTRUCTOR MAKES LEARNING EASY AND INTERESTING.
014 MY INSTRUCTOR HOLDS THE ATTENTION OF THE CLASS.
015 MY INSTRUCTOR SENSES WHEN STUDENTS ARE BORED.
016 MY INSTRUCTOR STIMULATES INTEREST IN THE COURSE.
017 MY INSTRUCTOR DISPLAYS ENTHUSIASM WHEN TEACHING.
018 THIS COURSE SUPPLIES ME WITH AN EFFECTIVE RANGE OF CHALLENGES.
019 IN THIS COURSE, MANY METHODS ARE USED TO INVOLVE ME IN LEARNING.
020 MY INSTRUCTOR MAKES ME FEEL INVOLVED WITH THIS COURSE.
021 IN THIS COURSE, I ALWAYS FELT CHALLENGED AND MOTIVATED TO LEARN.
022 MY INSTRUCTOR MOTIVATES ME TO DO FURTHER INDEPENDENT STUDY.
023 THIS COURSE MOTIVATES ME TO TAKE ADDITIONAL RELATED COURSES.
024 THIS COURSE HAS BEEN INTELLECTUALLY FULFILLING FOR ME.

BROADENING STUDENT OUTLOOK

025 MY INSTRUCTOR HAS STIMULATED MY THINKING.
026 MY INSTRUCTOR HAS PROVIDED MANY CHALLENGING NEW VIEWPOINTS.
027 MY INSTRUCTOR TEACHES ONE TO VALUE THE VIEWPOINT OF OTHERS.
028 THIS COURSE CAUSED ME TO RECONSIDER MANY OF MY FORMER ATTITUDES.
029 IN THIS COURSE, I HAVE LEARNED TO VALUE NEW VIEWPOINTS.
030 THIS COURSE FOSTERS RESPECT FOR NEW POINTS OF VIEW.
031 THIS COURSE STRETCHED AND BROADENED MY VIEWS GREATLY.
032 THIS COURSE HAS EFFECTIVELY CHALLENGED ME TO THINK.
033 THE CLASS MEETINGS HELPED ME SEE OTHER POINTS OF VIEW.
034 THIS COURSE DEVELOPS THE CREATIVE ABILITY OF STUDENTS.
035 MY INSTRUCTOR ENCOURAGES STUDENT CREATIVITY.
TEACHING/LEARNING OF RELATIONSHIPS AND CONCEPTS

036 MY INSTRUCTOR EMPHASIZES RELATIONSHIPS BETWEEN AND AMONG TOPICS.
037 MY INSTRUCTOR HELPS ME APPLY THEORY TO SOLVE PROBLEMS.
038 MY INSTRUCTOR CLARIFIES TOPICS WITH DEVELOPMENTS IN OTHER FIELDS.
039 MY INSTRUCTOR EFFECTIVELY BLENDS FACTS WITH THEORY.
040 MY INSTRUCTOR EMPHASIZES CONCEPTUAL UNDERSTANDING OF MATERIAL.
041 MY INSTRUCTOR MAKES GOOD USE OF EXAMPLES AND ILLUSTRATIONS.
042 RELATIONSHIPS AMONG COURSE TOPICS ARE CLEARLY EXPLAINED.
043 THIS COURSE BUILDS UNDERSTANDING OF CONCEPTS AND PRINCIPLES.

INSTRUCTOR PROVIDES HELP AS NEEDED

044 MY INSTRUCTOR IS ACTIVELY HELPFUL WHEN STUDENTS HAVE PROBLEMS.
045 MY INSTRUCTOR RECOGNIZES WHEN SOME STUDENTS FAIL TO COMPREHEND.
046 EVERYTHING POSSIBLE IS PROVIDED TO HELP ME LEARN.
047 MY INSTRUCTORS EXPLANATIONS AND COMMENTS ARE ALWAYS HELPFUL.
048 MY INSTRUCTOR EVALUATES OFTEN AND PROVIDES HELP WHERE NEEDED.
049 MY INSTRUCTOR APPEARS TO GRASP QUICKLY WHAT A STUDENT IS SAYING.
050 MY INSTRUCTOR IS CAREFUL AND PRECISE WHEN ANSWERING QUESTIONS.
051 MY INSTRUCTOR IS READILY AVAILABLE FOR CONSULTATION.

PROVIDING FEEDBACK TO STUDENTS

052 MY INSTRUCTOR REGULARLY CHECKS AND REWARDS PROGRESS IN LEARNING.
053 MY INSTRUCTOR SUGGESTS SPECIFIC WAYS I CAN IMPROVE.
054 MY INSTRUCTOR RECOGNIZES AND REWARDS SUCCESS IN THIS COURSE.
055 MY INSTRUCTOR CAN GAUGE WHAT I KNOW AND WHAT I SHOULD DO NEXT.
056 EXAMS ARE USED TO HELP ME FIND MY STRENGTHS AND WEAKNESSES.
057 MY INSTRUCTOR RETURNS PAPERS QUICKLY ENOUGH TO BENEFIT ME.

ADAPTING TO INDIVIDUAL DIFFERENCES

058 THIS COURSE SHOWS A SENSITIVITY TO INDIVIDUAL INTERESTS/ABILITIES.
059 MY INSTRUCTOR ADJUSTS TO FIT INDIVIDUAL ABILITIES AND INTERESTS.
060 THE FLEXIBILITY OF THIS COURSE HELPS ALL KINDS OF STUDENTS LEARN.
061 MY INSTRUCTOR TAILORS THIS COURSE TO HELP MANY KINDS OF STUDENTS.
062 THE DESIGN OF THIS COURSE LETS ME LEARN AT MY OWN PACE.
063 STUDENTS PROCEED AT THEIR OWN PACE IN THIS COURSE.
064 I WAS ABLE TO KEEP UP WITH THE WORK LOAD IN THIS COURSE.
065 MY BACKGROUND IS SUFFICIENT TO ENABLE ME TO USE COURSE MATERIAL.

RESPECT AND RAPPORT

066 A TEACHER/STUDENT PARTNERSHIP IN LEARNING IS ENCOURAGED.
067 EACH STUDENT IS ENCOURAGED TO CONTRIBUTE TO CLASS LEARNING.
068 I AM FREE TO EXPRESS AND EXPLAIN MY OWN VIEWS IN CLASS.
069 WHEN I HAVE A QUESTION OR COMMENT I KNOW IT WILL BE RESPECTED.
070 I FEEL FREE TO ASK QUESTIONS IN CLASS.
071 I FEEL THAT I AM AN IMPORTANT MEMBER OF THIS CLASS.
072 MUTUAL RESPECT IS A CONCEPT PRACTICED IN THIS COURSE.
073 MY INSTRUCTOR RESPECTS DIVERGENT VIEWPOINTS.
074 MY INSTRUCTOR RESPECTS CONSTRUCTIVE CRITICISM.
075 I feel free to challenge my instructor's ideas in class.
076 My instructor relates to me as an individual.
077 My instructor deals fairly and impartially with me.
078 My instructor readily maintains rapport with this class.
079 This instructor encourages divergent thinking.
080 The climate of this class is conducive to learning.

COURSE GOALS OR OBJECTIVES

081 This course has clearly stated objectives.
082 The objectives of this course were clearly explained to me.
083 The stated goals of this course are consistently pursued.
084 I understand what is expected of me in this course.
085 The course objectives allow me to know when I am making progress.
086 I was able to set and achieve some of my own goals.
087 I had an opportunity to help determine course objectives.
088 Lecture information is highly relevant to course objectives.
089 The course content is consistent with my prior expectations.

USEFULNESS/RELEVANCE OF CONTENT

090 This course material is pertinent to my professional training.
091 This course contributes significantly to my professional growth.
092 I can apply information/skills learned in this course.
093 This course will be of practical benefit to me as a student.
094 My technical skills were improved as a result of this course.
095 This course directly contributes to my vocational preparation.
096 This course is a valid requirement for my major.
097 The relationship of this course to my education is apparent.
098 The practical application of subject matter is apparent.
099 This course gives me an excellent background for further study.
100 This course is up-to-date with developments in the field.
101 This course includes adequate information on career opportunity.
102 This course includes a sufficient number of practical exercises.
103 The content of this course is relevant to my needs.
104 The amount of material covered was reasonable.

DISCUSSION

105 My instructor develops classroom discussion skillfully.
106 There is sufficient time in class for questions and discussions.
107 My instructor allows student discussion to proceed uninterrupted.
108 My instructor does not monopolize classroom discussion.
109 My instructor encourages students to debate conflicting views.
110 One real strength of this course is the classroom discussion.
111 Challenging questions are raised for discussion.
112 This course provides an opportunity to learn from other students.

EXAMS AND GRADES

113 Exams accurately assess what I have learned in this course.
114 Exams are fair.
115 Exams are free from ambiguity.
116 Exams cover a reasonable amount of material.
EXAMS STRESS IMPORTANT POINTS OF THE LECTURES/TEXT.
EXAMS IN THIS COURSE HAVE INSTRUCTIONAL VALUE.
EXAMS ARE CREATIVE AND REQUIRE ORIGINAL THOUGHT.
I KNOW HOW I STAND RELATIVE TO OTHERS IN THE CLASS ON EXAMS.
EXAMS ARE REASONABLE IN LENGTH AND DIFFICULTY.
EXAMS ARE COORDINATED WITH MAJOR COURSE OBJECTIVES.
MY FINAL GRADE WILL ACCURATELY REFLECT MY OVERALL PERFORMANCE.
GRADES ARE AN ACCURATE ASSESSMENT OF MY KNOWLEDGE IN THIS COURSE.
GRADES ARE ASSIGNED FAIRLY AND IMPARTIALLY.
THE GRADING SYSTEM WAS CLEARLY EXPLAINED.
THE CONTRACT GRADING METHOD IS USED APPROPRIATELY IN THIS COURSE.
MY INSTRUCTOR HAS A REALISTIC DEFINITION OF GOOD PERFORMANCE.

ASSIGNMENTS

THE ASSIGNED READINGS SIGNIFICANTLY CONTRIBUTE TO THIS COURSE.
THE ASSIGNED READING IS WELL INTEGRATED INTO THIS COURSE.
LENGTH AND DIFFICULTY OF ASSIGNED READINGS ARE REASONABLE.
ASSIGNED READINGS ARE INTERESTING AND HOLD MY ATTENTION.
ASSIGNMENTS ARE OF DEFINITE INSTRUCTIONAL VALUE.
ASSIGNMENTS ARE RELATED TO GOALS OF THIS COURSE.
COMPLEXITY AND LENGTH OF COURSE ASSIGNMENTS ARE REASONABLE.
DIRECTIONS FOR COURSE ASSIGNMENTS ARE CLEAR AND SPECIFIC.
THE NUMBER OF COURSE ASSIGNMENTS IS REASONABLE.
CLASS PROJECTS ARE RELATED TO COURSE GOALS AND OBJECTIVES.
THE COURSES PROGRAMMED LEARNING MATERIALS ARE EFFECTIVE.
THE GROUP WORK CONTRIBUTES SIGNIFICANTLY TO THIS COURSE.
STUDENT PRESENTATIONS SIGNIFICANTLY CONTRIBUTE TO THIS COURSE.
STUDENT PRESENTATIONS IN CLASS ARE INTERESTING/STIMULATING.
I AM GENERALLY PLEASED WITH THE TEXT(S) REQUIRED FOR THIS COURSE.
I FIND THE COURSE EMPHASIS ON INDIVIDUAL PROJECTS STIMULATING.
MY INSTRUCTOR IS NOT OVERLY DEMANDING OF MY TIME.

MEDIA: FILMS, TV, ETC.

THIS COURSE HAS MADE EXCELLENT USE OF TV.
THE TELEVISION PORTIONS OF CLASS ARE A GREAT HELP TO LEARNING.
TV RECEPTION WAS OF GOOD QUALITY.
AUDIO RECEPTION (TV, RECORDER, ETC.) WAS OF GOOD QUALITY.
The use of television made the course very interesting.
MEDIA (FILMS, TV, ETC.) USED IN THIS COURSE ARE WELL CHOSEN.
MEDIA (FILMS, TV, ETC.) ARE AN ASSET TO THIS COURSE.
FILMS IN THIS COURSE CONTRIBUTED SIGNIFICANTLY TO MY LEARNING.
THIS COURSE HAS MADE EXCELLENT USE OF FILMS.
FILMS IN CLASS WERE WELL-INTEGRATED WITH COURSE TOPICS.

TEAM TEACHING

TEAM TEACHING IS EFFECTIVELY USED IN THIS COURSE.
INSTRUCTION IS WELL-COORDINATED AMONG THE TEAM TEACHERS.
TEAM TEACHING PROVIDED INSIGHTS A SINGLE INSTRUCTOR COULD NOT.
THE TEAM TEACHING APPROACH ADEQUATELY MEETS MY NEEDS/INTERESTS.
GENERAL METHOD

160 Course topics are dealt with in sufficient depth.
161 Teaching methods used in this course are well chosen.
162 The format of this course is appropriate to course purposes.
163 The teaching strategy used in this course is appropriate.
164 This course is accurately described in the Catalog.
165 Lecture information is adequately supplemented by other work.
166 Class lectures contain information not covered in the textbook.
167 Bibliographies for this course are current and extensive.
168 Mimeographed handouts are valuable supplements to this course.
169 The guest speakers contribute significantly to this course.
170 The speakers who addressed us communicated effectively.
171 An appropriate number of outside lecturers is used.

LABORATORY

172 Lab procedures are clearly explained to me.
173 My instructor thoroughly understands lab experiments/equipment.
174 Assistance is always available throughout lab sessions.
175 The lab sessions are well-organized.
176 The content of the lab is a worthwhile part of this course.
177 Lab assignments are reasonable in length and complexity.
178 Lab assignments have instructional value.
179 The lab in this course has adequate facilities.
180 My lab assignments are promptly returned to me.

GENERAL STUDENT PERCEPTIONS

181 The class mixture of Fr, So, Jr, Sr, or Grad. is appropriate.
182 The size of this class is appropriate to course objectives.
183 The facilities for this course are excellent.
184 I have easy access to equipment/tools required in this course.
185 I had sufficient opportunity to use lab/practice room facilities.
186 The lab/practice room is well equipped.
187 I highly recommend this course.
188 I would enjoy taking another course from this instructor.
189 I like the way the instructor conducts this course.
190 Frequent attendance in this class is essential to good learning.
191 I am satisfied with my accomplishments in this course.
192 These items let me appraise this course fully and fairly.

INSTRUCTOR-SUPPLIED ITEMS (CONTACT ACADEMIC COMPUTING FOR INSTRUCTIONS)

193 Instructor-supplied item number 1
194 Instructor-supplied item number 2
195 Instructor-supplied item number 3

ADDITIONAL ITEMS

196 My instructor identifies major or important points in the course.
197 I have put much effort into this course.
198 I feel that I have done very well in this course.
199 Field trips offered insights that lectures or readings could not.
200 Field trips, relative to course objectives, are well planned.
PREVIOUS UNIVERSITY CORE ITEMS

201 MY INSTRUCTOR MOTIVATES ME TO DO MY BEST WORK.
202 MY INSTRUCTOR EXPLAINS DIFFICULT MATERIAL CLEARLY.
203 COURSE ASSIGNMENTS ARE INTERESTING AND STIMULATING.
204 OVERALL, THIS COURSE IS AMONG THE BEST I HAVE EVER TAKEN.
205 OVERALL, THIS INSTRUCTOR IS AMONG THE BEST TEACHERS I HAVE KNOWN.

UNIVERSITY-WIDE ITEM (will automatically added to all appraisal forms)

OVERALL, MY INSTRUCTOR IS AN EFFECTIVE TEACHER.

Cashin, W. E. (1988). *Student ratings of teaching a summary of the research: IDEA paper no. 20*. Manhattan, KA: Kansas State University, Center for Faculty Evaluation and Development.

