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ABSTRACT 

 

All bacteria contain a multi-subunit RNA polymerase (RNAPs) that is essential 

for gene expression. Because of the centrality of these enzymes in cellular life, the 

structure and function of the various subunits is intensely studied. The primary sequence 

of the RNAP β’ subunit contains five cysteine residues that are highly conserved. Four of 

the cysteines coordinate a zinc atom and form the beta prime subunit zinc binding domain 

(ZBD). Mutation of any one of the ZBD cysteines is lethal to the cell. However, the role 

of the fifth residue (C58), which is located upstream of the ZBD cysteines, has not been 

investigated. In previous work, we cloned a copy of the E. coli rpoC onto a plasmid and 

changed the cysteine at position 58 to an alanine (C58A). Phenotypic analysis suggested 

that expression of the mutant subunit from the multi-copy plasmid did not support E. coli 

growth at high temperatures. In this study, we describe the generation of the C58A 

mutation in single copy on the chromosome using a chromosomal engineering technique. 

In addition, we investigated if the mutant subunit affects RNA-mediated transcription 

antitermination.  
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CHAPTER ONE: INTRODUCTION 

 

RNA Polymerase (RNAP) is an essential enzyme for all life. Its proper function is 

necessary for gene expression and consequently, cell function and survival. Cellular 

RNAPs are complex molecules that are made up of multiple subunits and each subunit 

has critical domains that contribute to the overall structure and function of the enzyme. If 

mutations occur in certain critical regions of the protein, RNA transcription will cease, 

and the cell will die. Alternatively, mutations may simply alter the behavior of the 

enzyme. For example, the RNAP found in the bacteria Escherichia coli has a very 

important region called a zinc-binding domain located in the β’ subunit of the enzyme 

(Clerget et al., 1995). Four conserved cysteines in the β’subunit—residues C70, C72, 

C85, and C88—are responsible for zinc atom binding (Bergsland & Haselkorn, 1991). 

While the function of this highly conserved region is unknown, specific mutations in the 

zinc-binding domain prevent the growth of certain viruses that use E. coli as a host. The 

deletion or mutation of any of the four conserved cysteine residues in this domain is 

deleterious to the cell. 

A fifth highly conserved cysteine, C58, is located nearby (Bergsland & 

Haselkorn, 1991) but the role it plays in the structure and function of the enzyme is 

unknown. Its conservation suggests that it too may be critical for the function of RNA 

polymerase. The research described here investigates the role of C58 in RNAP function. 
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RNA Polymerase in Prokaryotes and Eukaryotes 

Though RNA Polymerase is found in organisms across all domains of life, there 

are important distinctions between RNAPs from the different domains. For example, 

prokaryotes possess a single multi-subunit RNAP which is responsible for all 

transcription within the cell. This polymerase contains six subunits:  β, β’, ω, and two α 

subunits form the core enzyme, and the σ initiation factor binds to the core to form the 

holoenzyme (Geszvain & Landick, 2005). The α dimer functions as a scaffold for the 

assembly of β and β’, the two largest subunits of RNAP. The β and β’ subunits form a 

cleft that allows the DNA template to enter the active site, which is composed of two 

double-psi beta-barrel domains, one from each of β and β’. In addition to this catalytic 

domain, the β’ subunit of RNAP contains a trigger loop necessary for catalysis and a 

bridge helix required for DNA/RNA translocation as nucleotides are added (Sutherland 

and Murakami, 2018). The smallest subunit of the core enzyme, ω, is the only subunit 

that is not critical for cell survival. It is thought to play a role in maintaining RNAP 

catalytic activity, but given its non-crucial role, the subunit’s function has not been well-

characterized (Sutherland and Murakami, 2018). The σ subunit, which along with the 

core enzyme forms the holoenzyme, is responsible for the specific binding of the 

holoenzyme to promoter DNA (Geszvain & Landick, 2005). Figure 1 shows the structure 

of E. coli RNAP. 

While eukaryotic RNA transcription occurs via the same fundamental 

mechanisms as transcription in prokaryotic cells, there are substantial differences 

between the process in prokaryotes and eukaryotes. Notably, eukaryotes utilize different 

RNAPs to transcribe distinct kinds of RNA. RNA Polymerase II is responsible for 
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transcription of mRNAs, while RNAP I and RNAP III are responsible for the 

transcription of non-protein coding RNAs such as ribosomal RNAs, transfer RNAs, 

snRNAs, and scRNAs (Cooper, 2000). Additionally, while prokaryotic RNAP binds 

directly to promoter sequences, eukaryotic RNAPs interact with additional proteins 

(transcription factors) to regulate and initiate transcription (Cooper, 2000).  

Like prokaryotic RNAP, eukaryotic RNAPs are composed of multiple subunits, 

ranging from 8-14 in number.  For example, human RNAP II, which is responsible for 

the transcription of mRNA, contains 12 subunits. Each subunit and its respective function 

are listed in Table 1. 

Two major subunits are found in all three eukaryotic RNAPs and are related to the 

β and β’ subunits found in prokaryotic RNAP. Given that the β and β’ subunits form the 

active site of RNAP, it is not surprising that the structure of these regions is so well 

conserved. This conservation across nearly all species highlights the functional 

importance of this critical enzyme, demonstrating the importance of conserved regions in 

RNAP. 
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Figure 1: X-ray crystal structure of the Escherichia coli RNA polymerase sigma70 

holoenzyme. PBD ID: 4YG2. Structure determined by Murakami, 2013. Image generated 

using the RCSB PBD (https://www.rcsb.org/) and Mol* (Senhal, D., D. Sehnal, Rose, 

A.S. , Kovca, J., Burley, S.K., and Velankar, S., 2018). Mol*: Towards a common library 

and tools for web molecular graphics. MolVA/EuroVis Proceedings. 

doi:10.2312/molva.20181103).  
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Subunit gene Function 
DNA-directed RNA polymerase II RPB1 Part of the core element of the central large 

cleft, which helps form the “jaw” that is 
thought to grab the incoming DNA template 

DNA-directed RNA polymerase II RPB2 Contributes to RNAP catalytic activity and 
forms the active center along with RPB1 

DNA-directed RNA polymerase II RPB3 Part of the core element with the central large 
cleft and the clamp element that moves to 
open and close the cleft 

DNA-directed RNA polymerase II RPB4 RPB4 complexes with RPB7 to prevent 
double-stranded DNA from entering the 
active site; binds single-stranded DNA and 
RNA 

DNA-directed RNA polymerase II RPB5 Involved in gene transcription regulation 
DNA-directed RNA polymerase I, II, and III 
RPABC2  

Part of the clamp element and along with 
RPB1 and RPB2 forms a pocket to which the 
RPB4-RPB7 subcomplex binds 

DNA-directed RNA polymerase II RPB7 Complexes with RPB4 to prevent double-
stranded DNA from entering the active site. 
Binds single-stranded DNA and RNA 

DNA-directed RNA polymerases I, II, and III 
subunit RPABC3 

Essential subunit with unclear function 

DNA-directed RNA polymerase II subunit 
RPB9 

Part of the upper jaw surrounding the large 
central large cleft and thought to grab the 
incoming DNA template 

DNA-directed RNA polymerases I, II, and III 
RPAC5 

Part of the core element with the central large 
cleft 

DNA-directed RNA polymerase II RPB11-a Part of the core element with the central large 
cleft 

DNA-directed RNA polymerases I, II, and III 
RPABC4 

Small subunit with no well-characterized 
function 

 

Table 1: Human RNAP II subunits and respective functions. All descriptions retrieved 

from the UniProt database (https://www.uniprot.org/). 
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The β’ Subunit of RNA Polymerase.  

Given that the β’ subunit of RNAP is one the most highly conserved subunits, it is 

expected to be important to the enzyme’s function. Thus, the exact mechanisms of the β’ 

function and the subunit’s precise role in RNA transcription is of great interest, as 

understanding β’ gives insight not only the function of the bacterial subunit, but also into 

the function of the homologous subunit found in eukaryotic RNAP (RPB1).  Bacteria are 

excellent model organisms for the study of RNAP as they grow quickly, require simple 

culturing (as compared to, for example, human tissues), and are easily transformed. For 

these reasons, bacterial RNAPs have been heavily researched. It is important to note that 

the use of bacterial RNAP to study RNAP in general has some drawbacks. While the 

simplified bacterial RNAP contains fewer subunits and serves as a simplified model for 

study, the complexity of eukaryotic RNAPS, which transcribe a variety of RNA types 

and are temporally regulated, cannot be fully captured by studies of bacterial RNAP. 

Still, advancements in the understanding of prokaryotic RNAP give insight into the basic 

function of RNAPs across domains. The study described in this thesis investigates E. coli 

RNA polymerase, and, specifically, the effect of modifying a highly conserved domain.  

Five Cysteine Residues are Conserved in the β’ subunit of RNAP. 

Within the β’ subunit lies five highly-conserved cysteine residues. These amino 

acid residues are present in all prokaryotes regardless of type (e.g., gram-positive, gram-

negative, anaerobic, aerobic, methane-dependent etc). Additionally, the sequences are 

present in the mitochondria and chloroplast DNA of eukaryotes, which are derived from 

prokaryotic cells according to the endosymbiotic theory. The conservation of these amino 

acid sequences across such organisms is displayed in Figure 2. 
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  rpoc_ecoli     100.0%     
MKDLLKFLKAQTKTEEFDAIKIALASPDMIRSWSFGEVKKPETINYRTFKPERDGLFCARIFGPVKDYECLCGKYKRLKHRGVICEKCGVEVTQTKVRRERM     
  rpoc_salti     100.0%     
MKDLLKFLKAQTKTEEFDAIKIALASPDMIRSWSFGEVKKPETINYRTFKPERDGLFCARIFGPVKDYECLCGKYKRLKHRGVICEKCGVEVTQTKVRRERM     
  rpoc_salty     100.0%     
MKDLLKFLKAQTKTEEFDAIKIALASPDMIRSWSFGEVKKPETINYRTFKPERDGLFCARIFGPVKDYECLCGKYKRLKHRGVICEKCGVEVTQTKVRRERM     
  rpoc_pholl     100.0%     
MKDLLKFLKAQTKTEEFDAIKIALASPDMIRSWSFGEVKKPETINYRTFKPERDGLFCARIFGPVKDYECLCGKYKRLKHRGVICEKCGVEVTQTKVRRERM     
  rpoc_yerpe     100.0%     
MKDLLKFLKAQTKTEEFDAIKIALASPDMIRSWSFGEVKKPETINYRTFKPERDGLFCARIFGPVKDYECLCGKYKRLKHRGVICEKCGVEVTQTKVRRERM     
  rpoc_aquae      71.8%     ----------------
FSKIKLMLASPEDIRSWSHGEVKRPETLNYRTLKPEKDGLFCAKIFGPIKDYECLCGKYRGKRYEGKICEKCGVEVTTSYVRRQR-     
  rpobc_helhp     71.3%     ---------------
DFSSFQLVLASPEKILSWSNGEVKKPETINYRTLKPERDGLFCTKIFGPVRDYECLCGKYKKMRYKGIVCEKCGVEVTKAKVRRSRM     
  rpoc1_anasp     70.8%     -------------
TNQFDYVKIGLASPERIRQWgvGEVTKPETINYRTLKPEMDGLFCERIFGPAKDWECHCGKYKRVRHRGIVCERCGVEVTESRVRRHRM     
  rpoc1_synp2     75.8%     ------------------------------------
EVTKPETINYRTLKPEMDGLFCERIFGPAKDWECHCGKYKRVRHRGIVCERCGVEVTESRVRRHRM     
  rpoc1_proho     75.8%     ------------------------------------
EVTKPETINYRTLKPEMDGLFCERIFGPAKDWECHCGKYKRVRHRGIVCERCGVEVTESRVRRHRM     
  rpoc1_fismu     75.8%     ------------------------------------
EVTKPETINYRTLKPEMDGLFCERIFGPAKDWECHCGKYKRVRHRGIVCERCGVEVTESRVRRHRM 
  rpoc_urepa      63.0%     ---------------------
ISIASPEQILNWSKGEITKPETINYKSLKPEPNGLFDESIFGPSKDYECYCGKYRKVKHKGKICERCHVEITESIVRRERM     
  rpoc1_nosco     60.7%     -------------TNQFDYVKIGLASPERIRQWgvGEVTKPETINYRTLKPEMDGLFCERIFGP-
KDWECHCGKYKESVIEVLSVSAVVLEVTESRVRRHRM     
  rpoc1_nepol     70.7%     -----------------------------------GRITKAETINYRTYKPEMDGLFCERAFGPVKDWECHCGRTK---------------
-----------     
  rpoc1_adica     54.2%     -------------------
LRIGLASPEQIRSWaiGQVDQPYTLHYKTHKPERDGLFCERIFGPTKSGVCACGNCRSVNDEGefCKHCGVEFTDSRVRRYRM     
  rpc1a_chlre     69.2%     -----------------------------------GEVINPETIHYKTLKPIKGGLFCERIFGPLKDHECACGK-----------------
-----------     
  rpoc1_phypa     55.2%     -----------------------------------
GQVTKPYTLHYKTHKPEKDGLFCERIFGPIKSGICACGKYQIIEKYSKFCEQCGVEFVESRVRRYRM     
  rpoc1_antfo     55.2%     -----------------------------------
GRITEPYTLHYKTHKPEKDGLFCERIFGPIKSGICACGKYRSIENqsKICEQCGVEFTESRVRRYRM     
  rpoc1_oenho     65.9%     -----------------------------------GEVTKPYTFHYKTNKPERDGLFCERIFGPIKSGICACGTYR---------------
-----------     
  rpoc1_marpo     52.2%     -----------------------------------
GQVTKPYTLHYKTHKPEKDGLFCEKIFGPIKSGICACGKYQGikENIKFCEQCGVEFIESRIRRYRM     
  rpoc1_psinu     52.2%     -----------------------------------
GKVTQPYTLHYKTHKPERDGLFCERIFGPIKSGFCACGNYQAvkEFSSFCKQCGVEFTESRVRRYQM     
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  rpoc1_soybn     63.4%     -----------------------------------GEVTKPYTFHYKTNKPEKDGLFCERIFGPIKSGICACGNYR---------------
-----------     
  rpoc1_lotja     63.4%     -----------------------------------GEVTKPYTFHYKTNKPEKDGLFCERIFGPIKSGICTCGNYR---------------
-----------     
  rpoc1_atrbe     63.4%     -----------------------------------GEVTKPYTFHYKTNKPEKDGLFCERIFGPIKSGICACGNYR---------------
-----------     
  rpoc1_spiol     63.4%     -----------------------------------GEVTKPYTFHYKTNKPEKDGLFCERIFGPIKSGICACGNYR---------------
-----------     
  rpoc1_arath     63.4%     -----------------------------------GEVTKPYTFHYKTNKPEKDGLFCERIFGPIKSGICACGNYR---------------
-----------     
  rpoc1_calfe     63.4%     -----------------------------------GEVTKPYTFHYKTNKPEKDGLFCERIFGPIKSGICACGNYR---------------
-----------     
  rpoc1_sinal     63.4%     -----------------------------------GEVTKPYTFHYKTNKPEKDGLFCERIFGPIKSGICACGNYR---------------
-----------     
  rpoc1_chagl     62.5%     -----------------------------------GKVTKPYTLHYNSHKPEKDGLFCERIFGPIKSGICACGKY----------------
-----------     
  rpoc1_pinko     63.2%     -----------------------------------GQVTKPYTLHYETNKPERDGSFCERIFGPIKSRVCACG------------------
-----------     
  rpoc1_pinth     63.2%     -----------------------------------GQVTKPHTLHYETNKPERDGSFCERIFGPIKSGVCSCG------------------
-----------     
  rpoc1_wheat     63.2%     -----------------------------------GEVTRPSTFHYKTDKPEKDGLFCERIFGPIKSGICACG------------------
-----------     
  rpoc1_orysa     63.2%     -----------------------------------GEVTRPSTFHYKTDKPEKDGLFCERIFGPIKSRICACG------------------
-----------     
  rpoc1_chlvu     63.2%     ------------------------------------EVTSSETVNYKTLKPEPHGLFCQTIFGPVVDFTCACGK-----------------
-----------     
  rpoc1_maize     63.2%     -----------------------------------GEVTRPSTFHYKTDKPEKDGLFCERIFGPIKSGICACG------------------
-----------         

 

Figure 2: Conservation of cysteine residues in the E. coli β’ subunit of RNA Polymerase (top) in various other organisms. Sample 

rpoc1_wheat is an example of conservation of rpoC-C58 in chloroplasts. Data obtained from the lab of Dr. Rodney King. 
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Four of the five conserved cysteines form a zinc-binding domain. Mutation of 

residues C70, C72, C85, and C88—which form the zinc-binding domain—is deleterious 

to the cell and affects response to termination and put-mediated antitermination (King et 

al., 2004). Anti-termination is a process that allows the expression of genes for which 

transcription is usually turned off via transcription termination. Terminators are important 

gene regulators and are thought to be useful in the temporal regulation of genes 

(Santangelo & Artsimovitch, 2011). For example, the timing of the expression of phage 

Lambda late genes, which are involved in cell lysis, must be carefully regulated. 

Transcription terminators may contribute to the temporal regulation of these genes by 

preventing premature expression and, consequentially, premature cell lysis (Chang, Nam, 

& Young, 1995). However, phage late genes must eventually be expressed, as they are 

required for the completion of the lytic life cycle (Wang, 2005). To accomplish 

expression of these genes, transcription termination is overridden by anti-termination 

mechanisms. In phages such as Lambda, this process is accomplished through the 

interaction of antitermination factors with RNAP which block termination by preventing 

the disassociation of the ternary complex at the termination site (Adhya & Gottesman, 

1978). In an alternative mechanism for anti-termination, RNA transcripts directly modify 

RNAP to overcome transcription termination. The put (polymerase utilization) site RNA 

is thought to form a double stem-and-loop secondary structure that interacts with the β’ 

subunit of bacterial RNAP to change the conformation of the elongation complex, 

enabling transcription of genes that lie downstream of terminators. Put-mediated anti-

termination was discovered in the bacteriophage HK022. Mutation of the conserved 

residues C70, C72, C85, and C88 reduces RNAP response to intrinsic terminators and 
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decreases put-mediated antitermination (King et al., 2004.). The role of the fifth 

conserved cysteine residue, rpoCC58, in put-mediated anti-termination has not been 

investigated.  

In addition to their role in anti-termination, these conserved cysteines have also 

been shown to play a role in the processivity of transcription elongation (Nudler et 

al.,1996). Nudler et al. substituted both C85 and C88 with serines and compared the 

mutant RNAP to the wild-type enzyme. To assess the effect of the mutation on RNAP 

function, ternary complex of both mutant and wild-type RNAP with a 20-nucleotide 

transcript was prepared with RNAP in excess. The mutant RNAP produced shorter RNA 

products of parts of the transcribed region, indicating premature disassociation of the 

RNAP complex. In contrast, the wild-type RNAP yielded the stochiometric amount of the 

transcript. Furthermore, while the wild-type RNAP complex remained intact in high-salt 

conditions, the mutant RNAP complex fell apart. Thus, Nudler et al. concluded that 

mutation of these conserved cysteines reduced RNAP processivity, increased sensitivity 

to salt, and prevented cell growth in the absence of the wild type rpoC allele (Nudler et 

al., 1996). However, results from King et al. (2004) contradicted these findings, 

indicating that the zinc binding domain is not needed for the stability or activity of the 

elongation complex, suggesting this proposed function is not the reason for the high 

conservation of the four conserved cysteine residues. 

While these four cysteine residues have been shown to play an important role in 

put-mediated anti-termination, the fifth cysteine residue, rpoC-C58, has no clear 

contribution to RNAP function. The high conservation of rpoC-C58 and its proximity to 

four other critical residues suggests the cysteine residue may have an important role in 
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RNAP function. Previous evidence from our lab suggested a potential function for rpoC-

C58. An Alanine substitution appeared to confer temperature sensitivity to E. coli cells. 

In previous experiments, a plasmid containing rpoC-C58A on a plasmid was introduced 

into a temperature-sensitive strain of E. coli.  However, this plasmid failed to 

complement the temperature-sensitive defect, suggesting rpoC-C58 confers temperature 

sensitivity on the enzyme. It is thus necessary to study the potential temperature-related 

function of C58 with the rpoC-C58A mutation present in single copy. The research 

described here investigated the functional role of rpoC-C58A and its potential 

relationship with temperature sensitivity. 

  



12 

CHAPTER TWO: METHODS 

 

Bacterial Strains. 

The bacterial strains used in this study are detailed in Table 2.  

Growth of bacterial cultures. 

Unless otherwise noted, all bacterial cultures were grown under the following 

standard conditions. Cultures were inoculated from frozen archived stocks into 5mL of 

LB in 15mL conical centrifuge tubes. Cultures were shaken at 200 rpm overnight at 

either 30°C or 37°C, with strains containing rpoC-C58A grown at 30°C due to suspected 

temperature sensitivity. Strains not suspected to be temperature sensitive were grown at 

37°C. After approximately 12 hours of growth, cultures were centrifuged at 3,000 rcf 

(Eppendorf Centrifuge 5702 R) at 4°C for 10 minutes. The supernatant was decanted, and 

the pellet was suspended in 2.5mL of 10mM MgSO4. Stocks were stored at 4°C up to one 

month. 
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Strain Name Genotype Source 

RK1106 
E. coli strain MG1655 (WT rpoC) transformed with an 

ampicillin resistant pBADrpoC-C58A plasmid construct 

(Sen et al., 2002). Construct contains the rpoC-Y75N 

mutation and a cloned copy of the rpoC gene with 

Cysteine 58 substituted with an Alanine 

 

King R. A., 

unpublished 

(MG1655: Guyer, 

M. S., 1981) 

RK1008 E. coli strain SBS672 (rpoC-Y75N strain that contains 

HKpL-putL-Tr’T1T2-lacZ fusion) transformed with 

pRW4714, an ampicillin resistant plasmid that confers 

recombineering functions 

pRW4714: Datta 

et al., 2006 

RK1004 E. coli strain SBS672 (rpoC-Y75N strain that contains 

HKpL-putL-Tr’T1T2-lacZ fusion) 

Sloan et al., 2007 

RK1005 E. coli strain SBS650 (WT rpoC strain that contains 

HKpL-putL-Tr’T1T2-lacZ fusion) 

Sloan et al., 2007 

RK898 WT E. coli, MG1655 Guyer, M.S., 1981 

RK1120 Strain containing plasmid PGB2ts, which confers 

resistance to chloramphenicol.  

Clerget, 1991 

RK928 Stain RW4207 (MG1655, rpoC397c (RK486), recA – 

Tn10). Contains temperature-sensitive rpoC. 

King, R.A. 

RK486 rpoC397c. MG1655 with temperature-sensitive rpoC. Christie et al., 

1996 

 

Table 2. Bacterial strains. Abbreviations: Wild Type (WT).   
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Plasmid isolation. 

Plasmid isolation was performed with the Qiaprep Spin Miniprep Kit (Qiagen; 

ID: 27104). All centrifugations were performed at 11,600 rcf (Eppendorf 5452 Minispin 

Centrifuge; Rotor F-45-12-11) at room temperature unless otherwise noted. A 1mL 

volume of cell suspension in 10mM MgSO4 was added to two 1.5mL microcentrifuge 

tubes. Then, the tubes were spun for 3 minutes. The supernatant was decanted, and the 

pellets were suspended in 250μL Buffer PI.  A 250μL volume of Buffer P2 was added to 

the suspension. Tubes were mixed by inverting until the solution turned clear. Next, 

350μL of Buffer N3 were added. Tubes were mixed by inverting 8 times and centrifuged 

for 10 minutes. Following centrifugation, 800μL of supernatant were transferred to the 

spin column and centrifuged for 1 minute. The flow-through was decanted. A 500μL 

aliquot of Buffer PB was then added, and columns were centrifuged for 1 minute and the 

flow-through was decanted. Then, 750μL of Buffer PE were added to the columns and 

centrifuged for 1 minute. After decanting the PE buffer, the columns were centrifuged 

and additional 1 minute and transferred to new collection tubes. The DNA was recovered 

from the columns by adding 50μL of elution buffer, incubating at room temperature for 1 

minute then centrifuging for 1 minute. The eluate containing the plasmid DNA was 

collected and stored at -20°C.  

Polymerase Chain Reaction. 

PCR reactions were prepared in 100μL PCR tubes. The following volumes of 

each reactant were added in the order given in Table 3. Note that for PCRs performed 

prior to sequencing, the primer concentration was 1/8X of the concentration listed in 

Table 3. This concentration eliminated occasional primer dimer formation observed in 
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earlier experiments. The PCR was run in an MJ Research PTC-200 Peltier Thermal 

Cycler on the cycle described in Table 4. Following completion of the program, 5μL of 

each PCR reaction were run on a 1.2% agarose gel at 120 volts to confirm successful 

amplification. Reactions were stored at -20°C until further use. Oligonucleotides used as 

primers are listed in Table 5.  

 

Volume Component 

66μL Deionized Water (Thermo Scientific Barnstead Nanopure) 

30μL PCR mix (Appendix A) 

1μL DNA template 

1μL Forward primer (100 μM) 

1μL Reverse primer (100 μM) 

1μL Taq DNA Polymerase (Fisher Bioreagents; 5 U/μL; FB-6000-15) 

100μL Total reaction volume 

Table 3: PCR components and volumes per 100μL reaction.  



16 

Step Temperature (°C) Duration (minutes) 

1 94 2 

2 94 0.5 

3 55 0.5 

4 72 1 

5 Repeat from step 2 for 30 repetitions  

6 4 Forever 

7 END  

 

Table 4. PCR reaction conditions. 

 

 

Name Sequence Use 

RK121 TAGTCAACACGCTTACCGAGC Primes within rpoC 

RK170 ATTAAAGTTTCTGAAAGCGCAG Primes at the beginning of rpoC (at 
approximately the fourth amino acid) 

RK219 CAGAATCCTTCAACGTATTG Primes immediately after the SphI site 
at the C-terminus of rpoB 

RK229 GGGAAGCCAGTTCGATG Primer for amplifying from rpoC. 
Located approximately 60bp upstream 
of the Y75N codon 

RK818 AACGGTCGTACCAAGATG Primes within rpoB 

 
Table 5: Oligonucleotides used for PCR. 
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PCR reaction purification and concentration. 

A QIAquick PCR purification Kit (Qiagen, ID: 28104) was used to concentrate 

PCR-amplified DNA fragments. Approximately 95μL of PCR reaction was added to a 

1.5mL microcentrifuge tube. Then, 5 volumes of Buffer PB were added to the 

microcentrifuge tubes, mixed 8 times, and added to the provided column. The column 

was spun for 60 seconds at 12,000 rcf. Flow-through was discarded and the wash was 

repeated with 750μL of PE. The flow-through was again discarded. Columns were then 

placed in clean 1.5mL microcentrifuge tubes. Then, 30 μL of buffer EB were added to the 

columns. Columns were incubated at room temperature for 2 minutes and centrifuged as 

before.  

Gel purification of DNA fragments. 

A 10μL aliquot of 6X loading dye (Appendix A) was added to each 50μL of 

concentrated PCR product. A 100bp DNA ladder was prepared by mixing 1μL of DNA 

ladder (New England Biolabs N3231S; 500μg/mL) with 1μL of 6X loading dye 

(Appendix A) and 4μL of sterile Nanopure water and loaded onto the gel. The entire 

volume of PCR product plus loading dye was loaded into the wells of a 1.2% gel (6μL 

aliquots/well). The gel was run at 100V, constant voltage, for approximately 45 minutes 

using a Fisher Scientific FB300 Power Supply. To visualize DNA bands, gels were 

placed in ethidium bromide (0.5μg/mL) for 10 minutes. Gels were then placed on a 

transilluminator, and the desired bands were excised using a new razor blade. Gel 

fragments containing DNA bands were collected in 1.5mL tubes and chopped into 

smaller fragments using a sterile 80-gauge beveled needle. Next, 800μL of phenol were 

added to all tubes. The tubes were mixed well and incubated at -80°C for 5 minutes.  
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After freezing the samples, they were centrifuged for 10 minutes at 12,000 rcf 

(Eppendorf 5452 Minispin Centrifuge; Rotor F-45-12-11). Approximately 500μL of the 

aqueous top layer, which contained the desired rpoC-C58A DNA fragment, was 

recovered from each tube and stored at -20°C until further processing. 

Processing and ethanol precipitation of gel-purified DNA fragments. 

 Frozen DNA samples were thawed at room temperature. Then, 500μL of 

chloroform were added to each tube. Tubes were vortexed for 8 seconds, then centrifuged 

for 1 minute at 12,000 rcf (Eppendorf 5452 Minispin Centrifuge; Rotor F-45-12-11). The 

upper aqueous phase was then transferred to a new tube. This process, from addition of 

the chloroform through removal of the aqueous phase, was repeated twice for a total of 

three extractions. Next, the aqueous layers from all tubes were combined, and the 

combined volume was equally distributed into clean microcentrifuge tubes. Then, 1/10 th 

of the total volume of sodium acetate (3M, pH 5.2) was added to each tube and mixed. 

Two volumes of 100% ethanol were then added to each tube. The tubes were mixed well 

and stored at -20°C until processing was continued. 

 After chilling at -20°C, the ethanol DNA precipitates were then pelleted by 

centrifugation. Samples were centrifuged at 12,000 rcf for 30 minutes at 4°C. The 

supernatant was decanted from all tubes, and pellets were allowed to dry lying on their 

sides at room temperature. Then, 100μL of 10mM Tris-Cl (pH 8) were added to the first 

tube and the pellet was rinsed well. This mixture was then transferred through the 

remaining tubes until each pellet containing the ethanol-precipitated DNA had been 

rinsed. To collect any remaining DNA, the tubes were rinsed a second time with 100μL 

of Nanopure water, which was combined with the 100μL of 10mM Tris-Cl. To 
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concentrate the precipitated DNA, filtration units as described in PCR reaction 

purification and concentration, were used. The final recovered product was stored at -

20°C. 

Measuring DNA concentration with a NanoDrop Spectrophotometer. 

 The DNA concentration and purity of recovered DNA samples were measured 

using a NanoDrop spectrophotometer (ThermoFisher Scientific; No. ND-2000). 

Following cleaning of the pedestal with a Kimwipe, the spectrophotometer was blanked 

with 2 μL of elution buffer. Then, the pedestal was wiped dry, and 2μL of sample were 

added. Sample concentration was measured in ng/μL, and DNA quality was assessed 

using the measured A260/280 and 260/230 ratios. 

Gel electrophoresis. 

Unless otherwise noted, a 1.2% agarose gel was prepared by adding 1.2g of DNA-

grade agarose (Fisher Scientific, BP 164-500) to 100mL of 1X Tris-Acetic Acid 

Ethylenediaminetetraacetic acid (TAE; 40mM Tris, 20mM acetic acid, 1mM EDTA) 

solution in a 250mL Erlenmeyer flask. The mixture was heated until the agarose fully 

dissolved. If a 2% agarose gel was used, it was prepared by dissolving 2.0 g of DNA-

grade agarose in 100mL of 1X TAE. Then, 30mL of the agarose mixture were transferred 

into a gel apparatus with a ten-well mold and allowed to solidify. The resulting gel was 

placed with the wells on the side of the cathode and submerged in 1X TAE.  

A 100bp DNA ladder was prepared by mixing 1μL of DNA ladder (New England 

Biolabs N3231S; 500μg/mL) with 1μL of 6X loading dye (Appendix A) and 4μL of 

sterile Nanopure water. DNA ladder was loaded into the first well. A 5μL volume of each 

DNA sample was mixed with 1μL of 6X loading dye and added to a lane. The apparatus 
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was then covered with a lid and connected to a voltage supply (Fisher Scientific FB300 

Power Supply) and run at 100V with constant voltage for approximately 40 minutes, or 

until the indicator on the 100bp ladder indicated sufficient band separation. To visualize 

the DNA bands, the gel was placed in an ethidium bromide solution (0.5μg/mL) for 10 

minutes and imaged under UV light (FluoroChem HD2 Imager, EtBr Colorimetric). 

Preparation of cells for electroporation and recombineering. 

 Recombineering was employed to insert the DNA containing the C58A mutation 

into E. coli chromosome. First, RK1008 cells suspended in 10mM MgSO4 were prepared 

for electroporation as described in Growth of bacterial cultures. Cultures containing 

30mL LB (Appendix A) and 50μg/mL ampicillin were inoculated with 200μL of RK1008 

cell suspension. Following approximately 4 hours of growth at 37°C, the optical density 

at 600nm of a 100μL aliquot of culture was determined (Shimadzu BioSpec-mini, CAT: 

241-06250-92). Once the OD600 reached approximately 0.4 (indicating early logarithmic 

phase), cultures were placed in a 42°C water bath to induce the expression of the 

recombineering functions for induction; the cultures were shaken at 250 rpm for 20 

minutes. After induction, cultures were transferred to an ice-water slurry and swirled for 

three minutes to turn off the expression of the recombineering functions. Next, 12mL of 

the cooled culture were transferred into two 15mL conical centrifuge tubes. Cultures 

were then centrifuged at 4°C and 3,000 rcf (Eppendorf Centrifuge 5702 R) for 10 

minutes. The supernatant was decanted, and pellets were suspended in 5mL 10% ice-cold 

glycerol. The wash step was repeated for a total of 2 washes. After the washes, the cells 

were pelleted by centrifuging with the same settings as above and the supernatant was 

decanted. The pellets were suspended in approximately 1.3mL of ice-cold 10% glycerol 
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to achieve a total volume of 1.5mL. This suspension was transferred to microcentrifuge 

tubes and centrifuged at 4°C and 5,400 rcf (Eppendorf 5452 Minispin Centrifuge; Rotor 

F-45-12-11) for 10 minutes. Most of the supernatant was removed by pipetting until a 

50μL volume remained. The pellet was suspended in the glycerol that remained in the 

tubes. The electrocompetent cells were used immediately or stored at -80°C until further 

use. 

Electroporation with DNA fragment. 

Electrocompetent cells were thawed on ice then electroporated with the purified 

DNA fragment. Typically, 441.2ng of DNA fragment were added to 50μL of 

electrocompetent cells in a 2mm electroporation cuvette (Bioexpress E-510-2). The mix 

was then electroporated with the settings given in Table 6. 

Voltage 2500 V 

Capacitance 25 μF 

Resistance 200 Ω 

Cuvette 2mm 

Time Constant 5 milliseconds 

 

Table 6: Electroporation settings. 

 

 Immediately after electroporation, 1mL of SOC media (Appendix A) was added 

to the cuvette and mixed. The mixture was transferred to a conical centrifuge tube and 

incubated at 30°C for 30 minutes to allow cells to recover. 
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Electroporation with plasmid. 

Electroporation was performed as described in Electroporation with DNA 

fragment. Instead of electroporating with 441.2ng of DNA, cells were electroporated with 

a minimum of 25ng of isolated plasmid. 

Screening for the desired recombinants. 

To determine the proper concentration of cells for colony screening, a series of 

dilutions was made to determine the optimal concentration to achieve the maximum 

number of cells per plate without saturating plates with bacterial growth. One hundred 

microliters of each dilution were spread-plated onto X-gal plates (Appendix A). Plates 

were allowed to dry and incubated for approximately 48 hours at 30°C.  

Restriction enzyme digest screen to identify rpoC-C58A mutants. 

 The DNA sequence that encodes cysteine at position 58 of the RpoC protein 

contains a restriction enzyme recognition site for the enzyme HhA1. When the DNA is 

mutated to yield an alanine at position 58 of the RPOC protein, this restriction site is 

destroyed. Thus, if the C58A change is successfully incorporated into the chromosome of 

the host, HHA1 will no longer cut. This rationale served as the foundation for a 

streamlined screening of potential C58A mutants that does not rely on DNA sequencing. 

PCR amplification was performed using primers that amplified the rpoC-C58 region and 

HhaI restriction site but no other HhaI restriction sites that are present in the rpoC gene 

sequence. Then, a Hha1 restriction digest was performed on the amplified DNA. Wild 

type DNA generated two DNA fragments that are smaller than the no-enzyme control 

DNA. By comparing DNA samples digested with HHA1 to no-enzyme controls, one can 

determine whether the restriction site was destroyed. 
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For each suspected mutant, two restriction digests were prepared according to 

Table 7. Reactions were prepared in 0.1mL PCR tubes. Then, reactions were incubated at 

37°C for 1 hour. Following the digest, tubes were stored in -20°C until further use. 

 
Table 7: Restriction enzyme digest screen setup. HhA1: New England Biolabs, R0139S. 
  

DNA sequencing. 

Samples were prepared for sequencing by combining 10μL of 1ng/μL amplified 

DNA with 5μL of primer at 5μM. Sequencing reactions were sequenced by a commercial 

vendor (Genewiz). 

Quantitative β-galactosidase assays. 

 Overnight cultures were diluted 1/500 in 25mL of LB. Diluted cultures were 

grown at either 30°C or 42°C and shaken at 200 rpm. The optical density at 600nm of a 

100μL aliquot of culture was monitored throughout the incubation period (Shimadzu 

BioSpec-mini, CAT: 241-06250-92). Once the OD600 reached approximately 0.4 

(indicating early logarithmic phase), cultures were placed on ice. Then, β-galactosidase 

were performed according to the procedure given by Miller (1992). Assays were prepared 

by combining 0.5mL of culture with 0.5mL of Z-buffer (Appendix A) in a 10x75 mm 

Component Candidate Sample – No Enzyme 

Control 

Candidate Sample- 

Enzyme 

Enzyme (HhA1) -- 1μL (20,000 units/mL) 

DNA (PCR-amplified 

DNA) 

10μL 10μL 

Buffer 2μL 2μL 

Water 8μL 7μL 
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glass tube. Then, 50μL of 0.1% SDS (sodium dodecyl sulfate) solution and 100μL of 

chloroform were added to the tube. Tubes were vortexed for 8 seconds, then incubated at 

28°C for a minimum of 5 minutes. To start the reaction, 200μL of ONPG (o-nitrophenyl-

β-D-galactopyranoside; 4mg/mL; Appendix A) was added to the tube and mixed well. 

When a bright yellow color began to develop, 500μL of 1M sodium carbonate was added 

to the mixture to stop the reaction. The time it took to develop yellow color was recorded.  

A blank solution of Z-buffer, 0.1% SDS, chloroform, LB, and sodium carbonate was 

prepared in proportion to the volumes in the reaction tubes, and the absorbance of the 

reactions at 420nm (to measure hydrolysis of the substrate) and 550nm (to correct for 

light scattering by cell debris) were recorded using a Shimadzu BioSpec-mini (CAT: 241-

06250-92). Then, Miller Activity Units of enzyme activity were calculated according to 

Equation 1. 

 

𝑀𝑖𝑙𝑙𝑒𝑟 𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝑈𝑛𝑖𝑡𝑠 = 1000 ×  
𝑂𝐷ସଶ − (1.75 ×  𝑂𝐷ହହ)

𝑂𝐷 × 𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒
 

Equation 1: Miller Activity Units. 

 

Archive of strains. 

 An 800μL aliquot of cells suspended in 10mM MgSO4 was mixed with 200μL of 

80% glycerol in a cryotube, mixed well, and stored at -80°C. 
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CHAPTER THREE: RESULTS 

 

Generating an amino acid substitution in the E. coli β’subunit of RNA 

polymerase using recombineering.  

Previous work in our lab suggested that an alanine substitution at position 58 of 

the β’ subunit protein conferred a temperature sensitive phenotype: a cloned copy of a 

mutated rpoC gene failed to complement the growth defect of a temperature sensitive 

strain of E. coli (strain RK928). The cysteine at position 58 is one of the most highly 

conserved amino acids in the β’ subunit, but its function is unknown. Thus, this study set 

out to determine whether the observed temperature sensitivity is a true biological 

phenomenon or perhaps an experimental artifact. Expressing the rpoC-C58A gene from a 

plasmid may be problematic for a number of reasons. First, many copies of the gene 

would be present rather than a single copy.  Second, the gene would not be under the 

control of its natural promoter. To ensure these issues were not responsible for the 

previous results, the potential temperature sensitive phenotype of rpoC-C58A mutant 

must be confirmed in a strain containing the mutation in single copy and in its natural 

chromosomal location. 

To generate the rpoC-C58A mutation in the chromosome, a technique called 

recombineering was employed. Recombineering is a genetic engineering technique based 

on homologous recombination that enables site-specific modification of chromosomal 

DNA. Like CRISPR-cas9, recombineering allows in vivo modification of the genome, 



26 

unlike its in vitro predecessor techniques of genetic engineering. A schematic of 

recombineering in the context of this experiment is given in Figure 3. 

Figure 3. A diagram of recombineering. DNA containing the desired DNA sequence is 

added to the cells and replaces the original DNA sequence. 

 

When recombineering is performed in E. coli and the recombineering functions 

are supplied by a defective λ prophage, recombination efficiency reaches 1% (Ellis et al., 

2001).  Such efficiency is possible because expression of the phage genes from their 

endogenous promotor enables tight regulation and coordinated expression. This 

prophage-based system uses a temperature-sensitive repressor to tightly repress the phage 

recombination functions at temperatures between 30°C and 34°C degrees but highly 

expresses these genes at 42°C (Thomason et al., 2005). When this prophage-based system 

is combined with host mismatch repair inactivation, the recombination frequency can be 

as high as 20% to 25% (Constantino and Court, 2003). Because of the high frequency of 
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recombination achieved with this method, it is possible to use a screen rather than 

selection to identify desired recombinants. 

To facilitate the identification of recombinants, recombineering was performed on 

a strain that contained a lacZ reporter gene construct. This strain, RK1008, contains the 

following useful features (Figure 4): first, it contains a single copy of a lacZ reporter 

fusion in its chromosome. The lacZ gene in this strain can only be expressed if 

transcription termination at a set of terminators located between the promoter and the 

lacZ reporter are suppressed.  Antitermination in these fusions is normally promoted by a 

cloned copy of the HK022 putL site located just upstream of the transcription terminators 

(King et al., 1996).  However, RK1008 also contains the rpoCY75N substitution (Clerget 

et al., 1995) which prevents put-mediated anti-termination and consequently prevents the 

expression of the lacZ reporter.  By replacing the chromosomal copy of rpoC with DNA 

containing both the C58A substitution and the N75Y reversion, antitermination should be 

restored and the cells should express the lacZ reporter.  Expression of lacZ was used to 

distinguish the desired recombinants from unmutated cells through a standard 

colorimetric assay (e.g. blue-white screening using media supplemented with the X-gal 

(5-bromo-4-chloro-3-indolyl-β-D-galactopyranoside, a synthetic chromogenic substrate 

of lactose). Successfully generated mutants would produce the enzyme beta-galactosidase 

(“beta-gal”), the protein product of lacZ. Beta-gal can cleave X-gal. Cleaved X-gal 

spontaneously dimerizes and oxidizes to create a blue insoluble pigment, 5,5'-dibromo-

4,4'-dichloro-indigo. Colonies that have been successfully recombineered should have the 

rpoC-N75Y reversion. Thus, when grown on agar plates containing X-gal, recombinants 
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produce a blue color, while the parental E. coli strain (RK1008) that contains the rpoC-

Y75N substitution and wild-type cysteine at position form white colonies. 

Figure 4: (A) Schematic of antitermination and its relation to lacZ reporter expression. In 

rpoC-Y75N cells, RNAP stops transcription at the terminators (indicated by the stop 

sign). In rpoC-Y75 cells, antitermination occurs. This allows read-through of lacZ. (B) 

rpoC-75 residues and their corresponding phenotype. 

 

The desired DNA fragment containing the rpoC-C58A substitution (the 

recombineering substrate) and the wild type Tyrosine at position 75 was generated by 

PCR amplification. The 316-base pair recombineering substrate was amplified from a 

pBADrpoC-C58A plasmid construct (isolated from RK1106) with primers RK170 and 

RK229 (Figure 5). The size of the amplified fragment was verified by gel electrophoresis 

on a 1.2% gel (Figure 6). After purifying the amplicon, recombination was performed 

using appropriately prepared cells of RK1008, the recombineering strain.  Electroporated 

cells were appropriately diluted and plated on medium containing X-gal and grown at 

30°C.    
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Figure 5. Location of primer RK170 (1) and RK229 (4) in relation to rpoC. The location of C58 (2) and Y75 (3) on rpoC are 

indicated.
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Initially, recombineering was performed according to the protocol described in 

Current Protocols in Molecular Biology (2007). However, very few potential 

recombinants were generated, and the ones that were analyzed contained the rpoC-N75Y 

reversion but not the rpoC-C58A substitution. Three such rpoC-Y75N revertants were 

identified in a screen of 760,000 colonies. This result led to the speculation that rpoC-

C58A substitution might be deleterious, resulting in a RNAP protein unable to support 

cell growth. However, when the recombineering experiment was repeated with a 

concentration of the recombineering substrate double that of previous trials (441.2ng/μL 

vs 220.6ng/μL), we observed an increase in the frequency of probable mutants; the 

estimated frequency for initial trials was extremely low (~0.000394%) but increased to 

~0.0145% in the second trial.  

Figure 6. Agarose gel (1.2%) of the isolated rpoC-

C58A DNA recombineering substrate. Band size 

of approximately 300bp in reference to a 100bp 

DNA ladder indicates successful amplification of 

the 318bp DNA fragment. 
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Due to the low frequency of successful mutants generated in our hands, a 

selection for the desired mutation would be ideal. However, a selection was not available, 

and it was therefore necessary to implement a screen as previously described. To identify 

the desired recombinants, it was necessary to plate a large quantity of recombineered 

cells. The dilution that led to the growth of the most colonies without reaching 

confluence was empirically determined and selected for spread plating. Initial plating of 

dilutions of recombineered RK1008 cells resulted in the formation of nine blue colonies. 

However, previous attempts to generate rpoC-C58A mutants showed that mutants 

containing rpoCY75 but not rpoC-C58A were frequently generated. It was therefore 

necessary screen more cells to identify more candidate rpoC-C58A mutants. Spread 

plates were made and grown at 30°C for approximately 48 hours. In total, 99 blue 

colonies were ultimately identified (Figure 7) out of an estimated 681,000 screened 

colonies. 
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Figure 7. A: Plates containing blue colonies (circled on plates). These colonies were 

identified as possible rpoC-C58A mutants. B: Positive (blue) phenotype of recombinant 

cells. 

 

Verification of the rpoC-C58A mutation.  

The DNA amplicon containing the rpoC-C58A substitution and the N75Y 

reversion (the recombineering substrate) is only 318 base pairs in length and the codon 

for Y75 is a mere 48 base pairs away from the C58A codon. Thus, it was expected that if 

the Tyrosine codon at position 75 was recombineered into the chromosome of the cell, 

the Alanine codon at position 58 would also be incorporated because it is tightly linked. 

In our initial attempts to generate the C58A substitution mutants, this did not occur. DNA 

sequence analysis of the potential recombinants showed the sequences contained the 

rpoC-N75Y revertant, but the cysteine at position 58 of the beta subunit protein was 

unchanged. Thus, the presence of blue colonies, which indicates the successful insertion 

of the tyrosine codon at position 75, did not appear to be sufficient to verify the presence 
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of the C58A mutation. It was also important to distinguish potential spontaneous N75Y 

reversions from successfully generated recombinants. DNA sequencing of the 

recombineering substrate is an effective way of verifying the presence of both desired 

mutations, but his approach is inefficient and expensive. Thus, we searched for a different 

way to specifically verify the presence of the C58A mutation  

The DNA sequence that encodes a cysteine at position 58 of the RPOC protein 

contains a recognition site for the enzyme Hha1. When the DNA is mutated to generate 

an alanine codon at this location, the restriction site is destroyed and Hha1 will no longer 

cut at this location.  To exploit the observed restriction fragment length polymorphism 

(RFLP), a DNA fragment containing the single Hha1 cut site was PCR amplified with 

primers RK312 and RK313 (Figure 8). After digesting with HhaI, the samples were run 

on a 2% agarose gel. When wild type DNA was digested, two DNA fragments were 

generated. This cut DNA traveled further and was easily distinguished from the control 

uncut DNA, whereas DNA containing the C58A mutation traveled the same distance as 

the control, as expected.  Using this method, 21 likely rpoC-C58A mutants were 

identified (Figure 9).
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Figure 8. Geneious alignment of primer RK312 (1) and RK312 (5) in relation to rpoC. The location of C58 (2) and Y75 (4) as well as 

the Hha1 restriction site (3) on rpoC are indicated. 
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Figure 9. Gel images of Hha1 restriction digests. Stars indicate potential mutants. CT 

indicates controls amplified from DNA isolated from RK1004, the wild type (rpoC-Y75) 

strain. NE indicates no-enzyme control reactions, while E indicates reactions to which 

HhaI enzyme was added. 
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DNA Sequencing of probable rpoC-C58A mutants. 

 Some of the 21 rpoC-C58A candidates had somewhat unclear results in the 

restriction digest screen; most samples had bands in both positions (likely due to the 

formation of primer dimers), and others, like 93 (Figure 9), were somewhat smudged and 

difficult to interpret even after repeating the screen. Four of the 21 candidates deemed 

likely to contain the rpoC-C58A mutation were selected for sequencing verification. PCR 

amplification of the rpoC-C58A region was performed using primers RK229 and RK818 

(Figure 10). The length of the amplified DNA, approximately 500 base pairs, was 

confirmed via gel electrophoresis. The PCR products were purified and sequenced using 

primers RK229 and RK818. These primers amplified the C58A and Y75 regions of rpoC 

but not the entirety of the recombineering substrate. Thus, while sequencing with these 

primers can be used to verify the presence of the rpoC-C58A mutation, it does not 

exclude the possibility that other, potentially compensatory, mutations were made within 

the recombineered region. Additional sequencing was later performed to verify that no 

other mutations were introduced during PCR amplification. The sequenced mutants were 

named RK1443A, RK1443B, RK1443C, and RK1443D. Sequencing confirmed that 

RK1443A, RK1443C, and RK1443D have the rpoC-C58A substitution. Strain 

RK1443A, had a secondary silent mutation. This mutation substituted a thymine for a 

cytosine, changing the codon for phenylalanine at position 62 from TTT to TTC. Strain 

RK1443C contained additional, unintended mutations within the sequenced region, and 

strain RK1443D contained only the desired mutations. Thus, strains RK1443A and 

RK1443D were selected for further study.  
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Additional sequencing was performed to ensure that the region in which the 

recombineering substrate was inserted contained only the intended genetic changes. PCR 

amplification was performed using primers RK123 and RK219, which amplified the 

entire region that was used to generate the recombineering substrate (Figure 11). 

Following confirmation of an amplicon of approximately 714 base pairs, DNA 

sequencing was performed with primers RK123 and RK219. With the exception of a 

silent mutation in RK1443A, no other genetic changes were present within the 

recombineering substrate. 
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Figure 10. Location of primers RK229 (1) and RK818 (2) in relation to rpoC and the recombineering substrate (indicated by the star). 

RK818 was selected because it primes in the RPOB gene, ensuring that the insertion was indeed present within the chromosomal 

DNA.
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Figure 11: Location of primers RK123 (1) and RK219 (2) in relation to the recombineering substrate (indicated by the star).
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Plasmid shuffling to remove the recombineering functions.  

The recombineering functions in strain RK1008 are contained on a low copy 

plasmid that confers ampicillin-resistance. The goal of this study was to determine the 

effect of the rpoC-C58A mutation on growth at high temperatures; a temperature-

sensitivity experiment would not be possible to perform if the plasmid containing 

recombineering functions remained in the cell because growth at high temperatures 

triggers overexpression of recombineering functions and, consequently, cell death. Thus, 

plasmid shuffling, or the replacement of one plasmid with another, was performed to 

remove the recombineering plasmid.  

Plasmid incompatibility is a phenomenon that prevents two plasmids from being 

stably maintained in the same cell line. Thus, a plasmid can be removed by transforming 

cells with an incompatible plasmid that confers a different antibiotic resistance. This 

method is referred to as plasmid shuffling. To remove the recombineering plasmid 

pRW4714, an incompatible plasmid containing the chloramphenicol resistance gene was 

electroporated into strains RK1443A and RK1443D. The chloramphenicol resistance 

plasmid was isolated from strain RK1120 and electroporated into competent RK1443A 

and RK1443D cells and grown on plates containing chloramphenicol. To ensure the 

recombineering plasmid had been successfully kicked out, the cells were tested for 

growth on ampicillin (100μg/mL). Failure to grow on ampicillin plates confirmed loss of 

the recombineering plasmid. The newly transformed strains were named RK1445 

(RK1443A) and RK1446 (RK1443D). 
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Growth of RK1445 and RK1446 at 42°C to test temperature sensitivity.  

Previous data from our lab suggested that the rpoC-C58A mutation might confer a 

temperature sensitivity to E. coli cells. To test this hypothesis, strains RK1445 and 

RK1446 were grown at 30°C and 42°C along with a temperature-sensitive control 

(RK486). In two replicate experiments, there was no observable difference in size, shape, 

or color between rpoC-C58A recombinants grown at 30°C and those grown at 42°C 

(Figure 12). A temperature sensitive strain (RK486) was used as a control and showed an 

observable decrease in growth at 42°C. 

 

 

  

Test of rpoC-C58A complementation at 30°C and 42°C. 

As initial attempts to generate a rpoC-C58A mutants were unsuccessful, we 

performed additional experiments with rpoC-C58A on a plasmid in case investigations 

with the mutation in single copy would not be possible. These experiments yielded results 

worth mentioning. Two plasmids, pBADrpoC-C58A and pBADrpoC, were 

A 

Figure 12. Growth of RK1445 and 

RK1446 at 30°C and 42°C. Temperature 

sensitive controls (RK486) had an 

observable reduction in growth at 42°C. 
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electroporated into strains RK1004 and RK1005 (see Table 2, Figure 13). The names and 

descriptions of these new strains are given in Table 8. Ampicillin resistant transformants 

were selected and single colonies were isolated and grown according to Growth of 

bacterial cultures.  

 

Strain Name Genotype 

RK1447 
E. coli strain RK1004 transformed with a pBADrpoC (WT rpoC) plasmid that 

confers ampicillin resistance. 

RK1448 E. coli strain RK1004 transformed with pBADrpoC-C58A plasmid that confers 

ampicillin resistance. 

RK1449 E. coli strain RK1005 transformed with a pBADrpoC (WT rpoC) plasmid that 

confers ampicillin resistance. 

RK1450 E. coli strain RK1005 transformed with pBADrpoC-C58A plasmid that confers 

ampicillin resistance. 

 

Table 8. Generated RK1004 and RK1005 transformants. 

 

Figure 13. Streak plates of RK1004, RK1005, and RK1449. 
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If rpoC-C58A hinders RNAP from functioning at 42°C, the plasmid copy of 

RNAP, which enables anti-termination, would not be functional at 42°C.  To determine 

whether complementation in RK1448 was affected by growth at high temperatures, 

strains RK1447 and RK1448 were plated and grown at 30°C and 42°C (see Figure 14). 

Anti-termination, which could only occur if complementation occurred, was not affected. 

This result suggests complementation was not hindered by growth at 42°C. 

 

 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14. Growth of RK1447 and RK1448 at 30°C and 42°C. No 

distinct phenotypic differences were observable. 
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Quantitative β-galactosidase Assays. 

Quantitative analysis of anti-termination was performed using β-galactosidase 

assays. Reactions were run in duplicate on RK1004 (rpoC-Y75N), RK1005 (WT rpoC), 

RK1445 (rpoC-C58A), and RK1446 (rpoC-C58A). In this assay, cells were supplied with 

ONPG, which acts as an artificial substrate for β-galactosidase. If β-galactosidase cleaves 

ONPG, o-nitrophenol is produced and gives the solution a bright yellow color. The 

absorbance of the solution can then be measured by spectrometry and, along with other 

measured values, used to calculate Miller activity units (see Methods), which indicate a 

standardized amount of β-galactosidase activity. These values can then be used to 

compare differences in expression of the reporter gene, lacZ, and therefore differences in 

anti-termination. Tables 9 and 10 contain the Miller activity units for the tested strains at 

30°C and 42°C respectively. Results are averages of two internal trials and are given in 

Table 9 and Table 10. 

 

30°C Avg Miller Units Standard Error
RK1445 (rpoC- C58A) 178 0.3
RK1446 (rpoC- C58A) 97.1 0.8
RK1004 (rpoC -Y75N) 0 0
RK1005 (WT rpoC ) 64.4 2.3  

Table 9. Average Miller units and standard error of the mean for β-galactosidase assays 

of rpoC-C58A mutants and controls at 30°C. RK1004 represents minimum lacZ 

expression, and RK1005 represents constitutive lacZ expression. Note that no yellow 

color developed in RK1004 samples after 1 week; this result has been equated to zero β-

galactosidase activity. 
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Table 10. Average Miller units and standard error of the mean for β-galactosidase assays 

of rpoC-C58A mutants and controls at 42°C. RK1004 represents minimum lacZ 

expression, and RK1005 represents constitutive lacZ expression. Note that no yellow 

color developed in RK1004 samples after 1 week; this result has been equated to zero β-

galactosidase activity. 

 
Quantitative analysis of anti-termination in RK1147, RK1448, RK1449, and 

RK1450 was also performed using β-galactosidase assays. The assays were performed 

according to Quantitative β-galactosidase assays. Results are given in Table 10 and 

Table 11. 

 

 

Table 11. Average Miller units and standard error of the mean for β-galactosidase assays 

of RK1147, RK1448, RK1449, and RK1450 and controls at 30°C. RK1004 represents 

minimum lacZ expression, and RK1005 represents constitutive lacZ expression. Note that 

no yellow color developed in RK1004 samples after 1 week; this result has been equated 

to zero β-galactosidase activity. 
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Table 12. Average Miller units and standard error of the mean for β-galactosidase assays 

of RK1147, RK1448, RK1449, and RK1450 mutants and controls at 42°C. RK1004 

represents minimum lacZ expression, and RK1005 represents constitutive lacZ 

expression. Note that no yellow color developed in RK1004 samples after 1 week; this 

result has been equated to zero β-galactosidase activity. 
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CHAPTER FOUR: DISCUSSION 

 

The high conservation of rpoC-C58 indicates that the cysteine has an important 

function and raises two primary questions. First, can a functional rpoC-C58 amino acid 

substitution be generated, or is it deleterious? If such a mutant can be generated, how 

does mutation of the conserved cysteine residue affect RNAP function? 

The first of these questions has been answered by the work shown in this thesis. 

Despite the conservation of rpoC-C58, an alanine substitution of the cysteine residue was 

successfully generated, and the mutant is viable. Note, however, that the frequency for 

the generation of these mutants was relatively low. The reported frequency of 

recombinants when recombineering functions are supplied from a defective λ prophage is 

approximately 1%. However, initial recombineering with the rpoC-C58A DNA fragment 

(the recombineering substrate) led to the generation of rpoC-N75Y revertants with a 

frequency of .000394%. A frequency so low compared to the expected frequency 

suggests that these are likely to be revertants and not recombinants. Given that E. coli 

cells have a generation time of a mere 30 minutes, there is ample opportunity for 

spontaneous mutations to occur. The reversion only requires a single nucleotide mutation 

(TAC to AAC), increasing the likelihood we could identify these rare mutations with our 

screen. The DNA sequence results that showed the suspected recombinants generated in 

early experiments contained the rpoC-N75Y reversion but not the rpoC-C58A mutation.  

This supports the possibility these were true revertants. An experiment could be designed 



48 

to determine the frequency at which spontaneous reversion occurs; performing the 

recombineering procedure without addition of the recombineering substrate would be one 

such experiment. Though the experiments described in this thesis did not explicitly 

measure the frequency of rpoC-N75Y reversions, the arguments given above suggest 

reversion did occur. Sequencing of the potential recombinants generated in these 

experiments did not contain the rpoC-C58A mutations, thus our initial attempts to 

recombineer the desired mutation were unsuccessful. 

 To generate the rpoC-C58A mutation, alteration of the recombineering protocol 

was necessary. A 2X increase in the concentration of recombineering substrate led to the 

successful generation of multiple rpoC-C58A mutants which were eventually verified by 

DNA sequencing. Still, the observed frequency of recombination, 0.0145%, is much 

lower than the expected frequency of 1%. It is possible that the low frequency of 

recombinants was indicative of a deleterious effect of the rpoC-C58A mutation. It is 

possible, for example, that a cell can only survive the rpoC-C58A mutation if a 

simultaneous compensatory mutation is made. The requirement of generating two 

mutations—one intended and one spontaneous—could result in a low frequency of 

recombinants being generated. 

 To ensure that no potentially compensatory mutations were present within the 

immediate region of the rpoC-C58A mutation, a region containing the entire 

recombineering substrate was sequenced for all suspected rpoC-C58A mutants. Mutants 

containing additional alterations within the recombineering substrate region were 

eliminated from further study. While this measure decreases the likelihood that a 

compensatory mutation was present in these mutants, it did not exclude the possibility 
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that a compensatory mutation had occurred in other regions of rpoC or elsewhere in the 

E. coli genome. To reach such certainty, it would be necessary to sequence the entire 

genome of rpoC-C58A mutants. Such an experiment is beyond the scope of this study but 

might be considered for future work. However, evidence of complementation by 

plasmids containing rpoC-C58A in strain RK1448 does suggest that a compensatory 

mutation is not needed to produce a functional RNAP. 

 Now that it is known that an amino acid substitution of rpoC-C58 can be 

generated, the function of the amino acid can be investigated. Preliminary results from 

our lab showed that plasmids containing rpoC-C58A could not complement a 

temperature sensitive copy of rpoC (RK928). This result led to the question of whether 

the rpoC-C58A mutation might confer a temperature sensitivity to RNAP. The rpoC-

C58A chromosomal mutants were therefore tested for a temperature sensitivity. Despite 

the observations of the earlier data, mutants RK1445 and RK1446 did not appear to 

demonstrate any change in colony size, shape, or color. Note, however, that there are a 

few potential problems with the experimental design. First, while the incubators were set 

to 42°C, the actual temperature continuously cycled between 40.5°C and 43.5°C. This 

variation may have affected the outcome of this experiment. Second, this temperature 

growth experiment was designed to be preliminary and to be followed by a quantitative 

growth experiment but could not be completed due to COVID-19. Since a standard 

number of cells was not added to each plate, we cannot draw conclusions about the effect 

of temperature on colony number. In the future, such an experiment might reveal an 

effect on mutant growth that may have been overlooked here. 
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 As other conserved cysteines have a demonstrated role in antitermination (King et 

al., 2004), β-gal assays were performed to determine whether the rpoC-C58A mutation 

affects anti-termination. Surprisingly, RK1445 and RK1446, which contain the rpoC-

C58A mutation, produced substantially higher Miller units than the RK1005 control 

(which represents constitutive expression). At 30°C, mutants RK1445 and RK1446 had 

Miller unit values of 178.0 and 97.1, respectively, compared to 64.4 units in RK1005. 

Note that no external replicates were performed, and it is possible this result is not 

replicable. However, if the result is reproducible, such an increase in antitermination is 

notable. Future work should determine whether this difference is biologically significant, 

and if so, it might be interesting to further evaluate the relationship between rpoC-C58A 

and antitermination. 

 Given that rpoC-C58A mutants were originally hypothesized to be temperature-

sensitive, β-galactosidase assays of RK1445 and RK1446 grown at 42°C were also 

performed. For all samples, the Miller units were quite low. This finding may be the 

result of experimental error; during early growth, the incubator reached a temperature of 

44.5°C; such a temperature is barely tolerable for E. coli cells and could have affected the 

results.  

 Regardless of the overall low levels of β-galactosidase activity, a pattern of 

relative activity at 42°C exists. Both mutants, RK1445 and RK1446, show higher levels 

of β-galactosidase activity (25.6 and 28.4 units respectively) than RK1005 (17.3 units). 

This result is consistent with the earlier observations at 30°C. Again, these assays were 

replicated internally, and the experiment should be repeated to ensure that the result is 

true. Still, the observation of higher β-galactosidase activity in mutant samples compared 



51 

to controls in two separate experiments suggests that rpoC-C58A mutants may 

antiterminate more efficiently than wild-type rpoC E. coli strains.  

 To determine whether rpoC-C58A mutants truly do antiterminate more efficiently 

than rpoC-C58 strains, a few potential future experiments might be performed. First, 

antitermination in other confirmed rpoC-C58A mutants should be tested and compared to 

these mutants. The finding that other mutants display similar phenotype would warrant 

further investigation into how rpoC-C58A affects antitermination. First, it would be 

important to ensure that the mutation itself is responsible for the increase in 

antitermination. As previously discussed, it is possible that a compensatory mutation 

might occur for rpoC-C58A mutants to survive. If the same compensatory mutation 

occurred in each of the rpoC-C58A mutants, it is possible that the compensatory mutation 

is responsible for the increase in antitermination rather than rpoC-C58A itself. To 

determine whether the rpoC-C58A mutation is responsible for the phenotype, the mutants 

could be recombineered to change the mutant rpoC-A58 back to wild type rpoC (C58). If 

the effect on antitermination is lost, one could conclude that rpoC-C58A increases 

antitermination. 

β-galactosidase assays were also performed on strains RK1447 (rpoC-Y75N 

transformed with pBADrpoC), RK1448 (rpoC-Y75N transformed with pBADrpoC-

C58A), RK1449 (rpoC-Y75 transformed with pBADrpoC), and RK1450 (rpoC-Y75 

transformed with pBADrpoC-C58A). A few interesting trends are apparent in these data. 

At 30°C, complementation by the wild type copy of rpoC occurs in RK1447. However, 

the plasmid copy of rpoC-C58A complements very poorly in RK1448. Interestingly, 

RK1450, which contains a copy of rpoC-C58A on a plasmid, had a higher value of Miller 
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units than RK1449 (which contained wild type rpoC). This result is consistent with the 

observation that rpoC-C58A mutants appeared to have increased antitermination, 

substantiating the suggestion that there may be a relationship between rpoC-C58A and 

antitermination. These assays were also repeated at 42°C. The high-temperature assays 

were subject to the same experimental limitations described previously, and thus the 

observed Miller units are much lower in all assays performed at 42°C. Still, the same 

pattern of complementation seen at 30°C was observed. 

 This work has demonstrated that the rpoC-C58A mutation can be generated in the 

chromosome of E. coli. However, the reason for the high conservation of rpoC-C58 

remains unclear. Our results do not indicate a temperature-sensitive phenotype in rpoC-

C58A mutant. but additional experiments are necessary to support this conclusion. A 

screen for an effect of the mutation on other phenotypes, such as RNAP response to 

different growth conditions, might also reveal the reason for rpoC-C58A conservation. 

Experiments such as these could determine the basis for rpoC-C58 conservation and will 

lead to a better understanding of this critical RNA polymerase domain. 
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APPENDIX A 

 

Luria Broth (LB), Lennox Recipe 
 The following were combined: 
 -5 g NaCl (Fisher BioReagents; BP358-212) 
 -5 g Yeast Extract (BD; 212750) 

-10 g Tryptone (Fisher BioReagents; BP9726-500)  
-1 L DI water 
Contents were heated until solution was dissolved. Solution was autoclaved and 
stored at room temperature. 
 
To make LB plates, 15g of agar (Difco; 281810) were added and the solution was 
heated to dissolve prior to autoclaving.  
 

 
Luria Broth (LB) with Ampicillin, Lennox Recipe 

LB was made as described. Then, 100μg/mL Ampicillin (Fisher BioReagents; 
BP-1760-25) was added. Mixture was stored at 4°C for up to 14 days. 

  
To make LB plates with ampicillin, 15g of agar (Difco; 281810) were added and 
the solution was heated to dissolve prior to autoclaving.  
 
 

Polymerase Chain Reaction Mix 
 The following were combined: 

-6 μL 10 mM dATP (Fisher Scientific Kit; FB-6000-10)  
-6 μL 10 mM dCTP (Fisher Scientific Kit; FB-6000-10)  
-6 μL 10 mM dGTP (Fisher Scientific Kit; FB-6000-10)  
-6 μL 10 mM dTTP (Fisher Scientific Kit; FB-6000-10)  
-330 μL 10X Buffer A (Fisher Scientific Kit; FB-6000-10) 
Mix was stored at - 20°C and kept on ice during use. 

 
 
Super Optimal Broth (SOC Broth) 
 The following were combined: 
 -20 g Tryptone (Fisher BioReagents; BP9726-500)  

-5 g Yeast Extract (BD; 212750)  
-0.5 g NaCl (Fisher BioReagents; BP358-212)  
-1.25 mL 2 M KCl (Acros; CAS: 744-40-7)  
-10 mL 1 M MgCl2 (Fisher Chemical; M13448)  
-1 L DI water 
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The solution was heated to dissolve, autoclaved, and cooled to room temperature. 
Then, the following were added: 
-1 mL 1 M MgSO4 (Sigma; M2773) 
-2 mL 10M glucose (Fisher Scientific; D16500) 
The mixture was stored at room temperature. 
 
 

X-gal plates 
LB was made as described. Following autoclaving, 2mL of 20mg/mL X-gal were 
added prior to pouring plates. 

 
  
Z-buffer 

The following were combined: 
-16.1 g Na2HPO4 ● 7H2O (Sigma-Aldrich; 7782-85-6)  
-5.5 g NaH2PO4 ● H2O (Sigma-Aldrich; 10049-21-5)  
-0.75 g KCl (Acros; CAS: 744-40-7)  
-0.246 g MgSO4 ● H2O (Sigma-Aldrich; 10034-99-8)  
-57 2.7 mL β-mercaptoethanol (SigmaAldrich; M-3148)  
-1 L water 
After the salts were dissolved, the pH was adjusted to 7.0, and the solution was 
stored at 4°C. 

 
 
6X Loading Dye 

The following were combined: 
-0.25% Bromophenol Blue (Sigma-Aldrich; CAS: 115-39-9)  
-0.25% Xylene Cyanol FF (Research Organics; 7113X)  
-30% Glycerol (Fisher Chemical; CAS: 56-81-5) 
Dye was stored at room temperature. 

 
 
50X Tris-Acetic Acid Ethylenediaminetetraacetic acid (TAE) 
 The following were combined:  

-242 g Tris-base (Fisher BioReagents; M-11645)  
-57.1 mL Glacial Acetic Acid (Amresc; 0714-4L)  
-100 mL 0.5 M EDTA (Sigma; E-5134) 
The volume was brought to 1L with DI water, and the solution was stored at room 
temperature. 
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