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ABSTRACT 

 

The natural enzyme carbonic anhydrase has gained attention in recent years for its 

ability to catalyze the interconversion of aqueous carbon dioxide (CO2) and bicarbonate. 

However, it lacks the efficiency to qualify practical usage on a large scale due to its inherent 

deficiency and fragile nature. On the other hand, its active center can be used as an ideal 

model for the design of novel catalytic materials targeting carbon dioxide capture and 

sequestration. This study focused on the synthesis of a zinc-based metal-organic 

framework (Zn-MOF-1) mimicking the carbonic anhydrase using the solvothermal method.  

Important properties such as catalytic ability, thermal stability, and reusability were 

investigated as well. Zn-MOF-1 demonstrated the ability to catalyze the para-nitrophenyl 

acetate hydrolysis, the thermal stability up to 400 ℃, and the high reusability in basic 

solutions. These results suggested that the Zn-MOF-1 can be potentially applied to CO2 

conversion. 
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INTRODUCTION 

 

Over the last few decades, human emissions of greenhouse gases such as carbon 

dioxide (CO2) have increased significantly and are a primary driver of climate change, 

which presents one of the world’s most pressing challenges.1 Therefore, it is urgent to 

develop effective methods to capture CO2 and mitigate CO2 emissions. Biological CO2 

sequestration based on enzymes has demonstrated great potential because of its 

environmentally friendly nature. This method has great sustainability in terms of regulating 

the atmospheric carbon dioxide level and helping to reduce the greenhouse effect. However, 

the application of natural enzymes has often been limited due to its inherent deficiency 

caused by its high sensitivity to pH, slow carbonation rate, low thermal stability, and high 

cost.2 Hence, biological sequestration will not be practical for the economic industrial 

process unless these critical problems are solved. Our approach is to develop new materials 

to simulate the properties of carbonic anhydrase (CA). 

 CA plays an important role in the mammalian tissues, plants, algae, and bacteria. It 

is a family of enzymes that catalyze the interconversion from CO2 and water to the 

dissociated ions of carbonic acid. The equilibrium position of this reaction is pH-dependent. 

Hydration of CO2 takes place when pH<7, and the dehydration of bicarbonate 

predominates when pH>7.3 Thus, the ideal environment of the catalysis should be 

consistent in pH. The CA’s family consists of three distinct classes (alpha, beta, and 

gamma). CA from mammals belongs to the alpha class, the plant enzymes belong to the 

beta class, and the enzymes from methane-producing bacteria belong to the gamma class. 
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Members of these different classes share very little sequence or structural similarity, yet 

they all perform the same function and rely on a zinc ion at the active site.4   

  

Figure 1. The tetrahedral Zn2+ center in carbonic anhydrase (left) and imidazole (right) 

As Figure 1 indicates, the active site contains a tetrahedral Zn2+ center, which coordinates 

three nitrogen atoms from the imidazole group and an aqua ligand on the fourth 

coordination site. Histidine residues on the active site increase the Lewis acidic character 

of the central Zn2+ metal ion by withdrawing electron clouds towards themselves.4 The 

structure of the active center allows CA to perform a nucleophilic attack from a zinc-

hydroxyl group toward CO2, forming bicarbonate anions (Figure 2). Brauer5 et al. studied 

the mechanism of intramolecular proton shifts in individual steps of the catalytic reactions. 

Specifically, the zinc-bonded oxygen attacked carbon dioxide, and the formation of 

bicarbonate is followed by either an intramolecular proton transfer (Lipscomb mechanism) 

or an internal rotation of the bicarbonate (Lindskog mechanism).  
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Figure 2. Lipscomb and Lindskog mechanisms for the rearrangement of the 

intermediate5 

Density functional theory calculations and computer simulations indicated that the 

intermediate tends to form the Lindskog product first. However, due to its kinetic instability, 

a rotation about the CO2 bond axis to yield the Lipscomb product takes place instead. This 
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process is comparably faster than the hydration of aqueous CO2. Thus, the formation of the 

intermediate is generally considered as the rate-limiting step for CO2 uptake.6,7 

Inspired by the structural and catalytic properties of CA, our focus for this project 

is to design and synthesize a metal-organic framework (MOF) containing a metal center 

that mimics the active centers of CA. Metal-organic frameworks (MOFs) are a class of 

compounds consisting of metal ions or clusters coordinated to organic ligands to form 

porous structures. Because MOFs are hybrids of organic and inorganic structures, they are 

an excellent platform for mimicking CA’s active center while having a robust open 

framework.2 Additionally, MOFs are featured with versatile structures, high surface area, 

and tunable porosity. These properties grant MOFs great potential to be customized and 

designed for certain coordination. Combining the features of MOFs and CA, we expect to 

simulate the structures of natural CA using specially designed MOFs that can perform the 

same catalytic ability but with better efficiency.  

 In fact, some researchers have studied the catalytic properties of Zn-based MOFs 

on CO2 conversion. For instance, Jin8 et al. synthesized CFA-1 and ZIF-100 to mimic CA 

to convert CO2 gas into carbonate. These compounds exhibited excellent reusability, 

solvent, and thermal stability. Huang9 et al. developed a nonanuclear zinc coordination 

complex that possesses an even better performance than CFA-1. Pan10 et al. developed a 

rapid synthesis of ZIF-8 using Zn(NO3)2 and 2-methylimidazole. However, there are no 

reports on using histidine as a ligand in the synthesis of MOFs to mimic the properties of 

CA.  

In addition to synthesizing Zn-based MOFs, incorporating CA within MOFs via 

co-precipitation has been investigated. For instance, Ren11 et al. assembled CA@ZIF-8 
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nanocomposites to a membrane that captures CO2 sequestration. Moreover, small 

molecules containing Zn mimicking CA have also been studied. For example, Floyd12 et 

al. reported the catalytic activity of a zinc cyclen molecule under rigorous conditions 

resembling an industrial process. Naturally, enzymes work best at room temperature and 

atmospheric pressure, and especially strict with ambient pH values. Zinc cyclen, however, 

showcased unusual durability against these conditions. It was also found that the catalytic 

activity of zinc cyclen increased with increasing temperature (100-130 ℃) and pH (>12). 

However, its activity is diminished at pH<9.  

In this study, we chose Zn(NO3)2 as the source of active centers, not only because 

the vast majority of CA are zinc-based, but also due to the ideal nature of zinc in 

coordination chemistry. Comparing to cadmium, a less common active center for CA, zinc 

is more prone to have a coordination number of 4, especially with ionized ligands. L-

histidine was used as the source of imidazole nitrogen. Figure 3 shows that L-histidine 

consists of an imidazole side chain, a primary amine, and a carboxylic acid group. The 

structure of L-histidine has the potential to repeat coordination entities in two or three 

dimensions.  

 

Figure 3. Structure of L-histidine 
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Figure 4. The decomposition of p-NPA 

The catalytic activity of the new material was studied using the self-decomposition 

reaction of para-nitrophenyl acetate (p-NPA). As Figure 4 demonstrates, under room 

temperature and atmospheric pressure, p-NPA can gradually turn into its hydrolyzed 

product para-nitrophenol (p-NP). Because this reaction can also be catalyzed by CA, 

utilizing a UV/vis spectrometer to monitor the concentration changes of p-NP over time 

with the addition of synthesized product becomes a viable method to determine whether 

the material has the catalytic activity.9  
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EXPERIMENTAL PROCEDURES 

 

Materials 

L-histidine monohydrochloride monohydrate (C6H9N3O2·HCl·H2O, Mw: 209.63), 

potassium hydroxide, and zinc nitrate hexahydrate, 99% (Zn(NO3)2·6H2O, Mw: 297.47) 

were purchased from Alfa Aesar. Deionized (DI) water was used in all experiments. All 

the reagents were analytical grade and were used without further purification.  

Synthesis of ZnMOF-1 

In a PTFE cup, Zn (NO3)2·6H2O (594 mg, 2.00 mmol) and L-histidine (253 mg, 

1.21 mmol) were dissolved with DI water (10 mL). To the resulting solution, 8 mL of 0.5 

M KOH solution was added. The solution became cloudy immediately. After a thorough 

stirring, the reaction mixture was then sealed in a steel autoclave and heated at 130 ℃ for 

48 hours in an oven. The white solids were filtered and washed with DI water three times. 

After dried in the air, 47.4 mg (yield 10.9% based on L-histidine) of products were obtained.  

Powder X-ray diffraction 

The X-ray diffraction pattern of the synthesized material was obtained from a 

Bruker AXS D2 Phaser diffractometer. Approximately 20 mg of the sample was used. 

Scattering angle 2θ ranged from 10° to 50° with an increment of 0.01°. The initial PSD 

was set to 4.5°.
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Infrared spectroscopy 

The infrared spectra of ZnMOF-1 were recorded on a Flourier-transformed infrared 

spectrometer (Perkin Elmer Spectrum 100) in the 4000-400 cm1.  

Thermogravimetric analysis 

The thermal stability of ZnMOF-1 was run on an STA 449 F1 Jupiter thermal 

analyzer with samples held in platinum pans in a continuous flow nitrogen atmosphere at 

the rate of 20 mL/min. Samples were heated at a constant rate of 10°C/min from room 

temperature to 800℃.  

Elemental analysis 

 The C, H, and N elemental analyses of ZnMOF-1 were carried out on the Flash 

2000 Elemental Analyzer. 

Biomimetic catalysis study  

 The catalytic activity of ZnMOF-1 was examined by coupling with the hydrolysis 

reaction of p-NPA.  

1. Preparation of HEPES buffer (50 mM, pH 8.0) 

HEPES (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid) buffer was prepared 

by dissolving 5.96 g of HEPES in 400 mL of DI water. The pH of the solution was 

measured with a pH meter. KOH pellets were added to the solution until its pH reached 8. 

Then, the solution was transferred into a 500 mL of volumetric flask. DI water was added 

up to the mark of 500 mL. 
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2. The p-NP calibration curve 

The calibration curve for p-NP concentrations was plotted by UV-vis absorptions 

at 402 nm for various known concentrations (5, 10, 25, 50, 100 μM) of p-NP. The p-NP 

solutions were prepared using HEPES buffer (50 mM, pH 8.0).  

3. Assay of activities of the ZnMOF-1 

 In a 100 mL beaker, 4.9 mg of p-NPA was dissolved in 2.5 mL of acetonitrile. 

Then, 47.5 mL of HEPES buffer, and 10 mg of MOF were added to this solution. The 

absorbance at 402 nm of the mixture was measured with a UV-vis spectrometer every 5 

minutes for 2 hours. The blank control was carried out under the same conditions without 

adding the ZnMOF-1 catalyst. This can be used to determine the reaction rate of self-

decomposition of the p-NPA, and as a reference to the rate of the decomposition of the p-

NPA catalyzed by ZnMOF-1. 

Stability of zinc coordination compound in buffer solution.  

To determine if the catalyst can be recycled after the reaction, the stability of 

ZnMOF-1 in HEPES buffer (50 mM, pH 8.0) was evaluated. 47.4 mg of the catalyst was 

added to 20.0 mL of HEPES buffer (50 mM, pH 8.0).  The mixture was stirred at room 

temperature for 2 hours. Subsequently, the solids were separated by centrifugation and 

dried at 120 C for 12 hours for PXRD analysis. 

   



10 

RESULTS 

 

Synthesis  

Hydrothermal (using water as the solvent) reactions of Zn(NO3)2·6H2O with L-

histidine have led to the formation of a white solid product (ZnMOF-1), while solvothermal 

reactions of anhydrous Zn(NO3)2 with L-histidine (using methanol as the solvent) have led 

to an orange solid product. PXRD patterns of both products were obtained. The orange 

product exhibited very weak X-ray diffractions. Thus, no further studies on it were 

performed.  

Infrared spectrum  

The infrared spectrum of ZnMOF-1 was shown in Figure 5. This spectrum provided 

us important information on functional groups. Following bands are observed: N-H 

stretching at 3225 cm-1, O-H stretching at 3195 cm-1, cyclic C=C stretching at 1581 cm-1, 

carboxylate bending at 1451 cm-1, and Zn-O stretching at 664 cm-1.13 
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Figure 5. FTIR spectrum of ZnMOF-1 

Catalytic study 

A calibration curve was prepared with stock p-NP solutions at 5, 10, 25, 50, and 

100 mM (Figure 6). 
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Figure 6. Calibration curve of p-NP 

 

Figure 7. Catalytic analysis of ZnMOF-1 
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The results of the catalytic activities of ZnMOF-1 on p-NPA hydrolysis were shown in 

Figure 7. The blue line represented p-NP solution concentration changes with time under 

the catalysis of ZnMOF-1, and the orange line represented the p-NP concentration changes 

without adding the ZnMOF-1 catalyst.  In both cases, the concentration of p-NP and 

reaction time show a linear relationship. However, the reaction catalyzed by ZnMOF-1 

shows a steeper slope of the p-NP concentration-time plot (blue line). After 2 hours of 

reaction, the reaction catalyzed by ZnMOF-1 had a p-NP concentration 63% higher than 

the reaction without the catalyst. The reaction rate of catalyzed solution is 2.1 times that of 

the blank control. These results demonstrated that ZnMOF-1 can mimic the functions of 

CA and catalyzed the p-NPA hydrolysis reaction.  

Thermal stability 

4.395 mg of ZnMOF-1 was analyzed with TGA to evaluate its thermal stability 

(Figure 8), and a 60% loss of weight was observed.  

 



14 

  

Figure 8. TGA curve of ZnMOF-1 

As the TGA plot indicated, at 400 ℃, the sample started to have a significant loss of mass.  

It can be attributed to the removal and the decomposition of the organic ligand in ZnMOF-

1. Around 500 ℃, the TGA curve suggested the decomposition of the organic ligand and 

the possible formation of zinc oxide. The residue of the TGA shows a white color, 

indicating the formation of zinc (II) oxide.  
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Elemental analysis  

The average percentages of the three samples for ZnMOF-1 were 17.9% N, 32.1% 

C, and 3.3% H. These values are close to the theoretical values 19.2% N, 32.9% C, and 

3.23% H  for ZnMOF-1 (Empirical formula: ZnC6H7N3O2). 

Stability of zinc coordination compound in buffer solution 

 After stirred for 2 hours in HEPES buffer (pH=8) solution, ZnMOF-1 was retrieved 

by centrifuging the solution and drying it in an oven. 36.2 mg of ZnMOF-1 was recycled 

from 47.4 mg input, which leads to a 76% recycling rate. PXRD pattern was recorded for 

the recovered ZnMOF-1 and compared to the one before catalytic analysis. As Figure 9 

shows, their patterns match very well, indicating no major change of the structure for 

ZnMOF-1 took place in the buffer solution. 
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Figure 9. XRD patterns of ZnMOF-1 before(top) and after(bottom) catalysis 
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DISCUSSION 

 

 The focus of this study is synthesizing metal-organic frameworks that can mimic 

the catalytic properties of CA. The features of MOFs can make up for the disadvantages of 

CA so that the biomimetic MOFs can be broadly used under more practical conditions. 

Herein, we have successfully made a zinc-based MOF (ZnMOF-1) using Zn(NO3)2·6H2O 

and L-histidine as starting materials. KOH solution was used to adjust the pH of the 

reaction mixture and to neutralize the hydrogen ions formed in the synthesis.  

Successful synthesis of ZnMOF-1 involves several factors such as reactant 

concentrations, molar ratios, reaction temperature, pH, and reaction time. Sometimes, even 

the order of adding reactants to the reaction vessels can significantly affect the results. Thus, 

several changes in reaction conditions were carried out throughout this study to grow big 

crystals and to increase the yield of the product. For example, the pH of the reaction mixture 

was adjusted with KOH. Because L-histidine is a weak acid, the formation of the MOF 

from L-histidine and zinc (II) nitrate will need to produce a strong acid (nitric acid). Hence, 

the reaction equilibrium is not favored for the forward reaction and KOH was added to 

neutralize the acid produced during the reaction. The molar ratio of Zn(II) to histidine is 

also very important. If the molar ratio of Zn(NO3)2·6H2O to histidine is 1:1, no solid 

products were obtained. We found out the best molar ratio of Zn(NO3)2·6H2O to histidine 

is 1.6:1.  We also used different reaction temperatures (25, 70, 90, 110, 120, and 130 ℃) 

and reaction times (24, 36, 48, 72, and 144 hours) for the syntheses of ZnMOF-1. Generally, 

ZnMOF-1 can be made at temperatures above 100 ℃ and with a Zn: histidine molar ratio 
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of 1.6:1. In a typical synthesis, ZnMOF-1 can be made by heating the reaction mixture at 

130 ℃ for 48 hours.  

Because single crystals of ZnMOF-1 made from hydrothermal reactions were not 

big enough for single-crystal X-ray diffraction studies, the layering method (solvent 

diffusion) was used to grow big crystals of ZnMOF-1. 20 mL of 0.2 M Zn(NO3)2 solution 

was made by dissolving Zn(NO3)2  in anhydrous methanol, and 20 mL of 0.2 M L-histidine 

solution was made by dissolving L-histidine in DI water. The L-histidine aqueous solution 

was added to the bottom of a thin glass tube. Then, various amount (0.6-1.2 mL) of KOH 

solution was added on top of the L-histidine aqueous solution. This was followed by adding 

a layer of anhydrous methanol, which served as a separation of the two reactants. Finally, 

Zn(NO3)2 methanol solution was added on to the anhydrous methanol layer in the tube. 

The tubes were then placed under room temperature for 72 hours. However, this method 

did not yield any crystals.   

 In addition to the hydrothermal method and the layering method, we also tried to 

grow large crystals of ZnMOF-1 using the solvothermal method. Same mole ratio of zinc 

(II) nitrate and L-histidine was used as those in the hydrothermal method. Zinc(II) nitrate 

hexahydrate was preheated at 150 ℃ for 2 hours to remove the water in the compound. 

Anhydrous methanol was used as the solvent for the solvothermal reaction. The products 

from the solvothermal reactions are orange plate-like solids. However, the PXRD pattern 

of this product is different from that of ZnMOF-1, and only showed one strong peak around 

2θ = 2°, which was likely from the background. Other peaks were very weak.   

As mentioned in the introduction, there is more than one type of CA available in 

nature. This implies that the active center of MOF should not be limited to zinc. For 
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example, Zhang14 et al. synthesized a cobalt-centered novel material (Co-2,6-bis(2-

benzimidazolyl) pyridine), which mimicked the active site of CA. Theoretically, 

transitional metals other than Zn should have the possibility to mimic CA as well. Thus, in 

order to make new MOFs mimicking CA, a similar methodology was applied to 

Ni(NO3)2·6H2O, Cu(NO3)2·2.5H2O, Co(NO3)2·6H2O, and FeCl2·4H2O in substitute of 

Zn(NO3)2·6H2O. However, the results were either no solid precipitates or no crystals from 

those reactions. For instance, using copper (II) nitrate as the reactant under the same 

conditions as that of ZnMOF-1 resulted in black solids. It is likely that the Cu(II) was 

reduced to copper metal by the histidine under the reaction condition. 

The IR spectrum of ZnMOF-1suggested the existence of functional groups in its 

structure, such as N-H stretching at 3225 cm-1, intramolecular -OH stretching at 3195 cm-

1, cyclic C=C stretching at 1581 cm-1, carbonyl O-H bending at 1451 cm-1, and Zn-O 

stretching at 664 cm-1. These signals showed the presence of L-histidine in ZnMOF-1, as 

well as the linkage between zinc and oxygen from L-histidine.  

To investigate if ZnMOF-1 can mimic the catalytic center of CA, the p-NPA 

hydrolysis reactions were studied with and without the ZnMOF-1 catalyst. As the results 

indicated, ZnMOF-1 catalyzed reaction had a higher reaction rate than the blank control, 

in which no catalyst was added. This result suggested that ZnMOF-1 has the catalytic 

ability to catalyze the p-NPA hydrolysis reactions and can mimic CA. Moreover, the 

thermal stability of ZnMOF-1 was tested with a thermogravimetric analyzer and had shown 

excellent stability. The TGA curve suggested that ZnMOF-1 can remain stable between 

room temperature and 400 ℃. This is a sign that our MOF could function properly in this 

temperature range. Considering the condition for the typical application of biomimicking 
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MOF, 400℃ can satisfy most of the thermostability needs. Additionally, the stability of 

the catalysts in a HEPES buffer solution (pH=8) was also examined. The retrieved catalyst 

was proved to be stable under the reaction condition. It showed a good recycling rate of 

76% and excellent stability in the catalyzing environments. 
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CONCLUSION 

 

In this research, a novel zinc-based MOF mimicking the catalytic center of carbonic 

anhydrase has been synthesized using Zn(NO3)2·6H2O and L-histidine. Its catalytic ability 

was examined through the hydrolysis reaction of p-NPA, and the reaction rate of catalyzed 

reaction was more than twice of the uncatalyzed reaction. In addition, ZnMOF-1 possessed 

great stability in HEPES buffer (pH = 8). About 76% of the original amount was recovered 

after a 2-hour reaction. ZnMOF-1 can be thermally stable up to 400 ℃.   

The growth of big single crystals of ZnMOF-1 has been the biggest challenge in 

this research. We were unable to grow crystals large enough for single crystal X-ray studies. 

However, the TGA and CHN elemental analysis have confirmed the formula of ZnMOF-

1. Additional research is needed to investigate the crystal structure of ZnMOF-1 and its 

activities to convert CO2 under commercial conditions.  
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