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Abstract

In this project, a one-dimensional wave equation, which is a partial differential
equation (PDE) describing vibrations on a string, is considered. It is known that
the PDE model is exactly observable and exponentially stabilizable. The main goal
of this project is to construct a numerical approximation technique, so-called the
direct filtering technique, to prove that the Finite Difference and Finite Element
space-discretized 1-D wave equations (i) with homogeneous Dirichlet boundary
conditions are uniformly observable, (ii) with controlled boundary conditions are
uniformly exponentially stable, as the approximation parameters tend to zero. It is
crucial to develop reliable numerical approximation techniques for the controlled
systems modeled by wave equations so that engineers can design reliable and

robust controllers and sensors.
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1 Introduction

Consider a vibrating string of length L clamped at both ends, as in Fig. 1.
The equation of motion is described by a partial differential equation of the one-

dimensional wave equation with Dirichlet boundary conditions

Wy — CWep = f(w,1), (z,t) € (0,L) x R*
w(0,t) =0, w(L,t)=u(t), te Rt (1)
w(x,0) = wo(x), w(x,0) = wi(x), x € (0,L)

where u(t) is a boundary controller, f(z,t) is a distributed controller, and c is
the speed of the wave propagations of vibrations on the string. The initial and
boundary value problem (1) is often used to model the control/stabilization of

vibrations on a string of length L which is fixed on both ends, see Figure 1.

Figure 1: Waves on the string can be controlled based on the observer’s measurement at the
right end. For the choice of boundary conditions in (1), the slope of the displacement at the tip,
i.e., uz(L,t), is measured in real-time and fed back into the controller to suppress vibrations on
the string.

The investigation of exact observability /stabilization of (1) by a boundary u(t)
or a distributed f(z,t) observer/controller aids understanding other mathematical
physics problems using the same wave equation model (1). For example, longi-
tudinal vibrations on a piezoelectric beam [9] without magnetic effects, which is
a smart beam that can be used as both an actuator and sensor, can be modeled
exactly the same as (1). Additionally, sound vibrations inside a perfectly insulated

duct also follow the same model (1).



FEzact controllability of systems is simply to apply an external force (or forces),
a controller, to steer the system from any initial state to a final state in a finite
amount of time. Exactly controlling the sound or mechanical vibrations propagat-
ing on a finite medium has been a major research problem in the field of control
theory of partial differential equations. Fzact observability of systems in control
theory is measuring a certain system property for a finite time to be able to dis-
tinguish two different initial states. It is well-known that exact controllability and
exact observability are dual problems of each other [6, 7]. In other words, prov-
ing exact observability is the same as proving exact controllability, and vice versa.
Therefore, proving the exact boundary controllability problem (1), i.e. f(z,t) =0,

is equivalent to proving the exact boundary observability inequality:

T L
| Lt = 1) [T (z0@) + 2 (@))de 2)
for the control-free initial and boundary problem

2t — C2 gy = 0, (z,t) € (0,L) x RT
2(0,) =0, =z(L,t)=0, teR* (3)
2(2,0) = zo(x), 2t(x,0) = 21(z), =€ (0,L)

where T' > 0 is the observation time, z,(L,t) is the observed quantity, and C(7T')
is the observability constant depending on T'. For the wave-type equations, T is
supposed to be large enough, i.e., T" > %, which is twice the total distance traveled
from one end to the other divided by the speed at which the wave propagates.

Additionally, in control theory, exponential stabilizability is an important prop-

erty, where one looks for a boundary-type state controller, i.e., u(t) = —aw;(L,t)
with a > 0 :

Wy — Wy = 0, (x,t) € (0,L) x R*

w(0,t) =0, wy(L,t) = —aw,(L,t), teR" (4)

w(x,0) = wo(x), w(x,0) = wy(z), z e (0,L)



to steer any initial state to decay exponentially to equilibrium state (rest position)
in finite time. This is only obtained if the infinitely many eigenvalues have strictly
negative real parts, which means that a finite input or non-zero initial condition
will not cause the system to "blow up” (i.e., give an unbounded output). Moreover,
for a fixed, finite input, oscillations in the output will decay at an exponential rate
and the output will tend asymptotically to a different final, steady-state value. In
order to prove that a system is exponentially stable, it must first be proved to be
exactly observable, and therefore, exactly controllable.

Partial differential equations such as (1) are infinitely dimensional systems
because they have infinitely many eigenvalues [9], so exact controllability and ob-
servability of vibrations and exponential stabilization are all infinite-dimensional
control problems. In practice, sensors (or observers) work through algorithms on
the chip, and therefore, they are doing calculations in finite dimensions (i.e., the
computer world). However, sensors only observe a finite number of vibrational
modes. For that reason, the sensor, designed for the observed quantity z,(L,t) in
(2) at the tip of the string, must have an algorithm in its chip based on a finite-
dimensional numerical approximation of (2). This project will be focusing solely
on the semi-discretization of the space variable x in (1), not the time variable t.
The exact observability inequality (2) is proved rigorously in Section 2, mimicking
the steps in [6]. However, this does not hold for the well-known numerical ap-
proximations of (1) such as Finite Difference Method, Finite Element Method, or
Finite Volumes Method [4, 10, 13]. The major issue in showing the observability
of the discretized system is losing the uniform gap between two consecutive eigen-
values that exists naturally for the infinite dimensional system. The existence of
the uniform gap allows us to rely on vibrational observations measured by the
sensors. When this gap is not present due to the numerical approximation, the
sensor cannot distinguish one vibrational mode from another. When this happens,
the system is not observable.

A previous undergraduate student member of Dr. Ozer’s research group, in-



vestigated the issues that arise from blindly applying the Finite Element Method
(FEM) [3] via a senior thesis project. A spectral analysis is performed on the FEM
discretization of (1); that is, the eigenvalues and eigenfunctions of the approxi-
mated system are precisely described. In doing so, it is found that, despite holding
up slightly better than the Finite Difference Method, applying the Finite Element
Method by itself still does not uphold the uniform gap condition among any two
consecutive eigenvalues, as can been seen in Figure 2. This project picks up where
3] left off. The lack of the uniform gap condition among the all eigenvalues, which
implies lack of observability, is shown in [2, 3], but the lack of observability is not
proved. This requires proving several non-trivial energy estimates. Moreover, the

exponential stabilizability is also investigated completely.
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Figure 2: (a) Eigenvalues Ay, ..., Ag, ..., Ax of (1), Finite Differences, and Finite Elements for
N =10, 30,80. (b) The gap between two consecutive eigenvalues [Agr1 — Agp| — 0 as N — co.

In other words, this project will prove that systems of equations modelling the
vibrations on a string retain the observability/controllability properties, meaning
the vibrations can be controlled in a finite time, after discretization only when a
filtering technique is used to eliminate some of the eigenvalues. It will also show
that the system discretized using the Finite Difference Method has the exponential
stabilizability property, meaning that, with the addition of a control term in the
boundary conditions, the initial energy decays exponentially to an equilibrium.

To illustrate the necessity of the filtering in the Finite-Difference discretization

of (1), consider a string of length 1 attached to a wall on the left end x = 0,



and free at the other end x = L. The boundary damping-type observed quantity,
v (L, t) is fed back to system as in (4). Once, the string is exposed to an initial
conditions comprised of high-frequency sinusoidal waves, which is the worst kind
of scenarios, the overall vibrations are simulated for 7' = 10 seconds and two main

cases are observed as follows
» Filtering vs. non-filtering with the boundary damping.
o Boundary damping vs. non-boundary damping under the effect of filtering.

The simulations of these two cases are implemented via the recently published
Wolfram Demonstration Project [12], and the references therein.

In contrast to the exponential decay results for the solutions of (4), Figures 3
and 5 show that the existence of the boundary controller at the tip of the string
alone is not enough to stabilize the system to the equilibrium. The vibrations still
stays on the string after 7' = 10 seconds if there is no filtering. This is due to
the previously mentioned loss of the gap condition and lack of observability of the
system. Figure 5 proved that the exponential stabilizability of (4) can only be

achieved with the implementation of the filtering.

-3
—4
-5

Figure 3: [Column 1] Vibrations on the string (top) and tip velocity (bottom) with indirect
filtering and boundary damping. [Column 2] Vibrations on the string (top) and tip velocity
(bottom) with boundary damping and no filtering.
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Figure 4: [Column 1] Vibrations on the string at time T (top) and tip velocity (bottom) without
filtering and boundary damping. [Column 2] Vibrations on the string at time T (top) and tip
velocity (bottom) with no filtering but boundary damping.

Figure 4 demonstrates that filtering by itself allows the system to be controlled

to the equilibrium, and that a controller on the boundary hastens the process.
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Figure 5: [Column 1] Vibrations on the string at time T (top) and tip velocity (bottom) with

indirect filtering and boundary damping. [Column 2] Vibrations on the string at time T (top)
and tip velocity (bottom) with indirect filtering and no boundary damping.

The results proved in this project are already published in two papers by the
pioneers in the field [4, 1, 13]. Our major task here is to understand and decipher
the complicated proofs of the results. In particular, the results of interest from
these papers are the lack of observability of the semi-discrete Finite Difference and

Finite Element approximations of (1) [4], the application of the direct filtering



technique to these approximations and resulting proof of exact observability [4],
and the proof of exponential stability with two boundary controllers. [1, 13]:
Here is the outline of the project. In Section 2, the exact observability in-
equality is established for 3. In Section 3, the semi-discretized Finite Difference
approximations are introduced together with the finite-dimensional spectral anal-
ysis. Then, discrete energy estimates are proved to show that the discretized
system lacks uniform observability as the discretization parameter tends to zero.
This discrepancy is removed by introducing the direct filtering of spurious eigen-
values so that the discretized system retains the exact observability. We let the

filtering space of numerical solutions be

Cn(y) == {u = Y [ak sin( )\k(h)t> + by cos( )\k(h)t)} UF ag, by € R} . (5)

2\ (h) <y

In Section 4, the semi-discretized Finite Element approximations are introduced
instead together with the finite-dimensional spectral analysis. Then, similar to
the Finite Difference-discretized model, discrete energy estimates are proved to
show that the discretized system lacks uniform observability as the discretization
parameter tends to zero. This discrepancy is removed by introducing the direct
filtering of spurious eigenvalues so that the discretized system retains the exact ob-
servability. Finally, in Section 5, the exponential stability of the Finite Difference

discretizations of the PDE model (4) after the application of the direct filtering.

2 Exact observability of the wave equation

Consider the control-free PDE model for the wave equation, u(t) = 0, f(z,t) =0

in (1). For simplicity, take also ¢ =1 in (1):

Ut — Uz = 0, (x,t) € (0,L) x RT
w(0,t) = u(L,t) =0, teR* (6)
u(z,0) = ug(x), ur(z,0) = uy(z),z € (0, L).



The energy of the solutions of (6) is

1 L 2 1 L 2
E(t) = 5/0 (o (2, )| dx+§/0 (e, ¢)2d, > 0. (7)

Potential Energy Kinetic Energy

It is straightforward to show that di—it) = 0, and therefore F(t) = E(0) for allt > 0.
The next result is the so-called exact observability result for the wave equation,
which implies that the the measurement of wu,(L,t) for T > 2L seconds is enough
to recover the initial data (ug(z),u(x)) € H, where H = H}(0,L) x L*(0, L),
H(0,L) = {f(z) : f, [ € L*(0, L), f(0) = f(L) = 0},

L2(0, L) = { f(x) : Jy’ |f(x)]*dz < 0o}. Note that T = 2L is optimal.

Theorem 1 Let T > 2L. Then there exists a constant C(T') > 0 (to be deter-

mined) such that for every (ug,uy) € H the following inequality holds:
T
[ lua(L, )Pt = C(T)E(0). (8)
0

Proof: The multiplier technique is already used to prove (8) for higher-dimensional
wave equations [6]. Now, we are going to adopt the same approach for the one-
dimension (6). First, multiply the equation in (6) by the multiplier zu,, and

integrate, to obtain

T /L
/ / (Ugy — Upy)TUzdadt =0
o Jo

Next, integrate by parts and simplify to obtain

L T L T /L
0 = / xuxut\gdx—/ / xutuztda:dt—/ / TUgpUgdxdt,
0 o Jo o Jo

L T Ly d T Ly d
0 = /Oa:uxut\gd:v—/o /0 2dmlut|2da:dt—/0 /0 5%\ux|2dmdt. 9)



By letting X (¢)|F := [ zupu, | dx,

T Tx o el Tx oL
XOF = [ Shullde+ [ ["Sluldadt = [ ZjuPlfat

T L]
+/ / —|u,|Pdzdt = 0.
o Jo 2

By the boundary conditions (6), this becomes

T LT 2 IR 2 2
XOF =5 [ ez oPdt+5 [ [ [l + ] dedt =0, (10)

and therefore,

5/0T|um([/,t)|2dt _ ;/OT/OL [|ut|2+|uw‘2} dl’dt—l—X(t”g
= [ B+ X0l 1)

= TE(0)+ X()|;. (12)

Next, an estimate is sought for | X ()] :

L T
‘X(tﬂg“ < L/o ||| |
0
L T
< '2/ (el + [ua]?] do
t=0
L L I L
< ‘2/ [\m!?ﬂux,?} dx +|2/ “ut\zﬂuxﬂ dr| = 2LE(0)
t=0 0 T

where the Young’s inequality (226) is used, i.e. |ab] < % + % Now, by (13),

X(@)|F > —2LFE(0) and (11) becomes
5 | ue(LpPae > C)EO) (1

where C(T') = @ Here, T' > 2L for the inequality to holds true. It can also

be shown that 7" = 2L is optimal [7]. O



2.1 First-order form and spectral analysis

Let @ = (u,u;)”. Then (6) can be re-written in the first-order form (in terms of

the time derivative) as the following

0 I||u
b, = AT = (15)
D2 0 Ut

where D2 = -2 and I = D is the identity operator.

- 8I27

Now consider the following eigenvalue problem corresponding to (15):

AT = M. (16)

A straightforward calculation, see i.e. [2], shows that the operator .2/ has infinitely

many and purely imaginary distinct eigenvalues

An:%, neZ- {0} (17)
with A_,, = —\,,, and the eigenvectors
sin A,z
Vo = , ne€Z-—{0} (18)
Ap SIn A,z

It is observed that the gap between two consecutive eigenvalues is [An, 41— Ap| = T
for all n € Z — {0}, and this uniform gap is independent of frequency n. It is
crucial to point out that the existence of a uniform gap is strongly related to the

exact observability result in Theorem 1.

10



3 Finite Difference semi-discretized wave equa-
tion

Consider the Finite Difference space semi-discretization of (6) such that u(z;,t) ~
u;(t), where u(x;,t) is the approximations of u(x,t) at x = z;. So, given N € N,

we set h = ﬁ to discretize the interval [0, L] as follows:

$0:0<I1:h<...<ZEN:Nh<ZEN+1:L, (19)

where z; = jh,j=0,..., N + 1.

Uj+1(t)+uj}:21(t)*2uj(t) to

Then, use the central difference formula w,,(z;,t) ~

generate the following finite-difference semi-discretization of (6):

wl(t) — sl 0260 — o 0 <t < T,j=1,..,N

up(t) = unpr(t) =0, 0<t<T (20)
u;(0) = ud, u(0) =ul, j7=0,..,N+1,

R} j

where primes denote derivation with respect to time. Analogously, the energy (7)

of the solutions of the PDE model (6) is also discretized as the following
2
} . (21)

3.1 First-order form and spectral analysis

uj1(t) = u;(1)

Ey(t) = 3

| =

> [|u;<t>|2 +

First, consider the auxiliary eigenvalue problem corresponding to the finite difference-

. . . . 2
discretized second order differential operator % :

_W =M, j=1,...,N,

o = Yn41 = 0.

(22)

11



The eigenvalues, \;(h),j =1, ..., N, are explicitly found as follows (see [4, 2]):

ey N 23
EArY) ’ (23)
Likewise, the eigenvectors Jk = (Vg1 Yxn)T are
hkj
Yrg=sin =L, j=10N, k=1 .N. (24)
Here, i.e., 1y, would be of the form ¢y = [sin X7h gin 2NTh - gin w]

Let @ = [u, usg, ..., uy] so that the discretized model (22) can be re-written in

the first-order form

i = i, (25)
—-A;, 0O
where the matrix Aj, is defined by
2 -1 0 o0 0
-1 2 -1 0 0
1l o =12 -1 ... o0
A = h2 : : D : : (26)
o 0 o0 -1 2 -1

NXN.

0 I U] W
=\ ) (27)
—A;, 0O s s

12



Theorem 2 (St.Clair-Ozer [2]) The solutions of (27) are

Me(h) = =iy Ai(h), 28)
uv L gin(dzkh
Lk X (h) '( ) .k j=41,42, .. N, (29)
uzk Sin<J7rLkh)

where A_, = \g, Ai(h), and ¢y ; are defined in (23)-(24).

3.2 Technical results

Now, the results of the following lemmas are essential to prove one of the main
results, the lack of observability. Compacter versions of these proofs are already

provided in [4].

Lemma 1 For any eigenvector 1/7 with eigenvalue X of (22), the following identity
holds:

i\f: ¢y+1

N
=AYl (30)

If 1/_)7“ and 1/_)7 are eigenvectors associated to eigenvalues N\, # N\, it follows that

N

(VU — Yrjr1) (g — 1) = 0. (31)

J=0

Proof: Multiply the equation (22) by v; and take the sum for j =1,..., N:

> - [w“/; ] ZMW (32)

j=1

The left-hand side of (32) becomes

N B N
> - lwﬂl - 1%2 : 2%] i = hl Z (215" = itbian = Ystbin)-

Jj=1

In order to prove (31), we use the fact that, since A, is a symmetric matrix, its

eigenvectors associated with distinct eigenvalues are orthogonal, and in particular,

13



Ap-orthogonal, i.e., (¢F ¢') =0, and (Ay*, ') = 0, respectively. Therefore,

N
> rjthi; =0, (33)
=

and

N N
0= (Yrjr1 +rj1 — 20)hi; = > (kg1 + Yrj1)thry. (34)
j=1 Jj=1

Therefore,

N N N
S kit = — Y kit = — Y Ukt (35)
=1 =1 j=1

In other words,

N
D (ki1 + e jibijal =0, (36)
j=1

which, considering (33), is equivalent to (31). O

Lemma 2 For any eigenvector J: (U1, ..., 0Nn)T of the system (22), the follow-

ing tdentity holds:

2 2

2L
4 — \h2

Vi1 — Py

, (37

Yn
h

N
hy
j=0

Proof: Start with the identity (30) in Lemma 1 for a normalized eigenvector z;

so that

N
hY =1, (38)
j=1

Then, (30) becomes

2

Gim Wil ) (39)

0

J

14



Thus,

1 X 2
E Z |¢j|2 + |¢j—|—1|2 21/@#’3—}—1) h Z ¢]¢j+17 (40)
and thus,
N DY)
j;%%’ﬂ =5, "5 (41)

Next, multiply both sides of (22) by j%, and take the sum for j =1,..., N
(note that this is a discrete version of the multiplier zt,). On the left-hand side,

use (38),(41), and j < N + 1 to obtain

N .
—; Z(¢]+1 + i1 — 205)] w
Jj=1 N j
Z 3 [j51)® = [j-1]* = 200 (W51 — ¥j-1)]
) L
2_25 ’wj+1’ - W}j 1| FZ: % 2ﬂj+1 2ﬂj71>

wa [ol?) + (sl — 1al) + S ([l — ) +
A owoal? = Bonl?) + o (owal? = Bl + 2 — o)
+2(¢3 — )+ -+ (N — 1)y — Un—2)¥n-1+ N(¥n-1 — Uni1)UnN]

2#\}; w\H :\H

1 3 N -2
= = [P+ (5= 3) + Wl - 2) -~+wmﬁ(—fz
N N —
b )+ bl (=S )]+ plinets — 201 + 2 — B+
+(N = Dpn—1¥n + Noy_1¢n]

1 X, N+1,, , 1 &
—h2j2|¢j| SETY U] _h?];ijj“

_1<1>_N+1 L1 A\ A N4l
— 12 \h 2 h?

h

h 2

h

2h 2

15



On the right-hand side,

A () - 3 2t~ i)

J=1

= ;[(@/)1%/}2 — P1vo) + (202003 — 20pth1) + - -+ (N — D)Yyy_1¥n
—(N = Dyatn-2) + (NYNYN 1 — Ny 1))

Pyl A1 Ak
=75 Yivj = —% (-)
2; I 2\ h 2
Therefore, ﬁ — % ‘%’2 = —% (% — %) . In other words,
Llvx]? (N+Dh|vn? A A AR Ah?
Liyn|" _ YNl _A LA 1=, 42
2 | h > |n| "2t27 4 1 (42)
Combining (39) and (42), we find that
N 2 2 2
Y — Y L YN 2L |Yn
jzo h 2(1_%2) h 4 —Mh2| h (43)

Lemma 3 (Conservation of Energy) For any h > 0 and u being solution of (20),

the energy is convserved

E,(t) = E,(0), Vte[0,T]. (44)
Proof: First, multiply (20) by u}(t) and take the sum for j =1,..., N to obtain
(45)

N 1N
"n—=r __ T . . _ . —/
> iy = 72 > (W1 + i1 — 2uy)4
= j:l
Let 2z = uju; so that z = @}u’. Then,

q N 1N N
— — — —/
pr E_ (ujuf) = 3 > (uft; 4 u;uf) = Re E uju; |

&‘Q‘
DN | —

DO | —

N
ZU|2=

16



Moreover,

= 5 2005~ i)y )+ (o~ 050)(55 )
1 N
"2

! = / — / — —/ —/
[ty — ity — W Uy + Wy U+ Uyt — gl

—/
—Uj1 U A U Uy

= Re Z Uﬂjb; — Uja;-+1 — uj+1ﬁ;- + Uj+1U;-+1)
[ N
= Re Z(—Uj+1ﬂ;~ - U,j_ll_l,; + QUJ’L_L;)]
=1
[ N
= Re |— Z(Uj+1 + Uj—1 — QUJ)Q_L; . (46)
L J=l1

Now, (45) and (46) leads to

d N 2 Uj — Ujt1 2 d N 2 d 1 N
az_% Jujl® + o —%Zo\ug\ +£ﬁ§|u] Uji1]
j= j= j=
N N
1
= 2Re (Zuﬁé) ( 2Re h—Z(ujH—i—uj | — 2u;)i) )
j=1 j=1
1 Y 1 Y
= 2Re ﬁZ(uﬂl—i—uj,l—Zuj)ﬂ; —2Re EZ(ujH—l—u] 1 — 2u;)
j=1 j=1
:[)7

which is equivalent to (44). O

Lemma 4 Let X,(t) = h¥ ), j (%) wj. For any h > 0 and u being a

solution of (20), the following identity holds

]dt+Xh 2/

Proof: First, multiply (20) by j“*5%=%, which is a discrete version of the clas-

Uj+1 — un (¢

h

’ dt. (47)

17



sical multiplier zu, for the wave equation (6), to obtain

N T ) o 1 N T . — s
Z/ u;(jwdt == Z/ (ujg1 + g — 2uj)jMdt. (48)
j=1"0 2 L=ty :

The left-hand side, after integrating by parts, becomes

Z/ " Uil — Uj Ujt = U1 gy Z U]H Z/ ]+1 ] ldt

and since

N N
ZU;‘j(U;'H - U;'—l) = ZU;‘jU;‘H u; JU] 1
=1 i=1
= (ujuh — ujug) + (2uyus — 2uyuy) 4 (Suzu) — usuy) + .
(N = Duy_yuy — (N = Duy_ )y o) + (Nuyuy,, — Nuyuy )

. ! ! / / ! !
= —u1u2 T UgUz — - — Uy oUn_ 1 — Uy _1UN

= Z uJ J+l’
the left-hand side of (48) becomes

/
uj—l

N T N !

n - %j+1 j—1 o 1 g+l
g / ujj72 dt = g ujjiz
j=170 j=1

The right-hand side of (48) can be also simplified to

Yo (U1 —ujq) A
Z/o (ujp1 +uj—1 — 2uy)j %dt = Z/o 5] [Uj 11 — Uit
=1 j=1

+Uj+1Uj_1 — Uj—1Uj—1 — QUj(Uj+1 — Uj_l)]dt

1 X T ) ) NooT
= 52/ Jllwja]® = Juj_q|[7]dt — Z/ Juj(wjpr — uj_q)dt.
=170 j=1"0

18



We use the following facts that

ZN:juj(ujH —uj_1) = ug(ug — ug) + 2uz(ug — ur) + 3us(ug — uz)
+o 4+ (N = Duy-1(uy — un—2) + Nuy(uns1 — un_1)

= Uy + 2usuz — 2uius + uguy — ugug + -+ + (N — Dun_juy
—(N —1Dun_1un—2 + Nunuy_1

= —U1U2 — UU3 — **+ — UNUN-1

N
= Z UjUjt1,
j=1

and
1Y 1
3 ;j[lujHIQ = luj ] = 5l(ug = ug) +2(u5 — ) +3(ui —uz) + ...
FOV = 1)y — ) Ny — wey)] = 3 (3 + 203 — 23
+3uf — 3uz + -+ (N — Duy — (N — Duiy_, — Nury_,)
=t + T
= —ul —us—ui— - —uy_ —uxn Fuxy -+ (N2_1>u?\,
j=1 j=1
to find

N T N T
Z/O il = w1 [*]dt — Z/O Juj (i1 — uj1)dt

i=1

= _Z/ |UJ|2dt+ |UN| dt—i—Z/ U1 dt

N+1
=— |uN] dt—fZ/ w4 uly, — QuJu]H]
N—l—l

|uN| dt—fZ/ N

19



Finally, combining (48-50) yields the desired result

hQ, (7 |u |
B2 [ it + 5 s xo)
Jj=0
h & (T Ujp1 — Ujq ,T
=2y [ ”Hdw%z/ g 0y (M
i—0 Jj=1 0

N T Ui — Ui
+Z/0 I gy

J
N . —_— .
=h (—Zu;juﬁl 5 i1
1
h

1 N7 s
= h 722/ (Uj+1 +Uj_1 — QUJ)]MC%
h* 5= Jo 2

1 N+1 U Ui
7 (_/ |UN| dt-i—Z/ uj_u—i-uJ 1 2u])j]+12]1dt)

h 2 i+
N+1 /T N+ 1)h (t)
- |UN|2dt:( 1 / “N dt / “N 0
2h  Jo 2 0 2

Lemma 5 (Equipartition of Energy) Let Y, (t) = h )., wju;. For any h >0

and u being a solution of (20), the following identity holds:

u]—l—l

dt + Y, ()|g = 0. (51)

—hZ/ )| dt+hZ/

Proof: First, we multiply in (20) by u;, the discrete version of the classical

multiplier u for the wave equation. This gives us

N
Qs

Z/ u; ujdt—Z/ uﬁl—i_uj L uj)ujdt:(). (52)

=1

20



By the integration by parts for the left-hand side,

T

N N T
Z/ wiudt =Y ujuf| — Z/o | [Pt (53)
P R P

Moroever,

N

N
D (W + wjon = 2u)uy = Y gy 4 uoau — 25
=1 j=1

= (U2U1 + Uuguy — 2U1U1) + (U3U2 + urug — 2U2U2)

<.

+oo A+ (unyun—1 +un2un-—1 — 2un_1UN 1)
+(uyp1uny + un_1uy — 2unuy)
= —[(uoup — upuy — urug + uguy) + (Ugu; — Uty — Uty + Ugls)
+(ugug — uguz — ugug + ugug) + . ..
+(UN_1UN—1 — UN_1UN — UNUN_1 + UNUN)
+H(UNUN — UNUN1 — UNF1IUN + UNF1UN11)]

= — Z(Ujuj — Ujllj 1 — Uity + Uj1Ujyn)

= Z — Ujp) (U — Ujr1) Z luj — u]+1] (54)

Now, combining (52-54) lead to

N

2
g/uujdt—g/ u]+1—|—u}i21 uj)ujdt
j=1

N T r
2
3 [gpas S

h2 Z/ Uj+1| dt

—hZ/ |uydt+h2/ T “dt+ ([T = 0.
Thus, we conclude that (51) holds. O
Let
N B Ah2
Zn(t) = h3 [ Y+t 5 el 5 UJ] (55)
=1



Lemma 6 For any h >0, t € [0,T] and u being a solution of (20) in which A is

the upper bound on the eigenvalues entering in its Fourier development, it follows

that
Ah* 3AR?
Zn(t)] <y L% — — EL(0). 56
20 12 = 20N (56)
Proof: Let n = %hz. Then,
N . J— .
2t =3 [ ) ) 57
j=1

Using the Cauchy-Schwartz Inequality (223), (57) becomes

N|=

(U1 — UJ 1)

1Zn()] <

273
+ nu; } (58)

iwzw]

j=1

[ N
Using the Triangle inequality (222) we also have
(ujp1 — 1)

2
+nj (w1 — uj_1)u;]

+ nu,;

j=1
N[5 2, J 9
ShZ[ U1 — ujl §|U uj—1| ] + 0wy + nj(uj — uj—1)u,.(59)
=1
And since
N
hzn](uﬁ-l — wj_1)uj = hnf(ug — uo)uy + 2(us — up)ug
j=1

+ o+ (N = 1)(uny —un—2)un—1 + N(uns1 — un—1)un|
= hnlujug + 2ugus — 2uqug + -+ + (N — Duy_juy
—(N —1lun_sun_1 — Nun_qup]

= hn—wiuz — usuz — -+ — un-_1uy] = —hn Y _ujug,
=1

22



the following is immediate

(U1 — uj_q) 2 2, J 2, 22
—J = tuy < hZ[ (g1 = " + Tl = i | + 07
—NUjUj1] . (60)

Smceh—N—Hand]<N+1 J2<(N+1)2= hg,we proceed by

2 .2 2

N
AUj41 — Uj—1
Comt 282 ] <03 S =+ S =P

N
hZ] 5

j=1

+ nu;
+n’uf — nujuj—kl}

<L2hN |uj — uj ] 2.2 2 2
< L*hY + g — nuguge + nlug — |nlu;

—~ h2
]:
2 al ’uj_uj—1|2 al 2 al 2
=L h27h2 — Inlh Y (uf — ujusin) + 0" + Inl]h Y
=0 J=1 Jj=1
Yy =i nlh .
:L%Z —5 T 2)<“§+U?+1—2Ujuj+1)+[’0 + [nl]h 2‘1 u;
J= J= Jj=
h 2 N
= <L2 dl ) uﬂ S )Y (61)
j=1

From here, we use the discrete form of Poincare’s inequality (225)

.y 2
U; Uj—1

h

Y

N 1
hZuJQ < —hz
j=1 A1 j=0

and the fact that n* + [ < 2|n|, which is due to the fact that |n| = %hz <1, as

can be seen from (23), to find that

Uy+1 uj_1) o

2 N
In|h U; -
j §<L2_2 hzji

9
i+ Il Z [ |77|h2 (n ;rl|77l)]

2

Lo Ant 3R

N

< uﬂl
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Next, combine (58) and (62) to obtain

hE

Zy < h

1

L] |

N
< Rl
j=1

D=

Ah? 3Ah2 N
P —
([ 55+ ] e e

N

j(uj+1 — Uj_1)
2

+ T]Uj

|

22— 4

16
\/ AR 3AR2 % ?
16 ' 16X, —~

([

=0

By the Triangle inequality (222) again,

1 N 21

2 |l
J=1

1 N

2 |l
7=1

IN

and therefore

D=

ujl

)

2
U]1

(

) = E3(0),

Ah* 3Ah?

Zn| <12 = = Ey(0). O
|h|_\/ 16 1 16n, 2n(0)-

Theorem 3 (Lack of Observability)

For any T > 0, we have

E,(0)

sup [

@ solves (20)

Proof: Every solution @ = (uy, ...

Jo Tun (t)/h|2dt

1—)00 as h— 0.

,uyn) of (20) can be written as

N
Z [ak sin \/ A, (h)t + by cos )\k(h)t} Vg,

which can also be written as

N
_ Z ckei‘ /)\k(h)th'
k=1

24
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Since each eigenvector solves (20), we consider the N*® eigenvector just for @
ii(t) = eV My, (68)

where @ = (uy,...,uy)? and @/;N = (Yn1, - ¥nn)T. The discretized version of

observability (8) is of the following form

un(t)[?
; ’ dt. (69)

E,(0) < C(T h) /0 !

So, looking at (69) and using Lemma 2, we have

r

h h?

[Yn

12

(4 — An(h)h?)h

N
A

2
UN(t)‘ di — /T |¢N,N|2dt
0

=T

YN — YN+

=T
h

2

J
N
_ Z;;l( Z wNJ wN]+1 (70)
The energy for the solutions « is
_ & (1) = (@)’
En(t) = 2;)_|Uj(t)\2+ ’ hj
_ b > e = g f
_ 2;)‘ A(B)uy| +[HEE=E
N [ AN 2
_ ZZ N CAUEL G } o)

From Lemma 1,

= AZ 517 (72)

25



so that (71) becomes

N
Eyt)=hY" WN’J' _h‘fN’j“q .
=0

Using the results from (70) and (73) leads to

2L [} X024y
Eh(o) — h .fO | h |
Th(4 — Ay (R)R2)
So,
E,(0) 2L

ST gy~ T(4— Ay(h)h2)’

Moreover, in view of (23),

4 Nh
)\N(h)hZ = <h2 Sin2 (71-2[/>> h2

2L 2L
T  hrw
— 4gin? (= = =
(2 QL)
h hrl®
= 4 sinzcos—w—cosisin—7T
2 2L 2 2L

and therefore,

hm hm
1 2 —_— - 1 2 — p— 1 2 P 1 =
}lllg(l)llcos <2L> 4 lim cos <2L> 4%1{}1(1)(308 (0) =4lim 1 = 4.

h—0 h—0

Finally, combining (75) and (77) results in

lim 7Eh(0) = lim ( 2L >
=0 \ [ [es@i2gy | 0 \T(4 = An(h)R?) )

26
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Ash — 0, T(4 — Ax(h)h?) — 0, so

. 2L
i (T(4 - )\N(h)h2)> oo (79)

3.3 Filtering the numerical scheme and numerical observ-
ability

Theorem 4 Assume that 0 < vy < 4. Then, there exists T'(vy) > 2L such that, for

all T > T(v), there exists C = C(T, ) such that the observability inequality

un(t)

En(0) < O(T, %) /OT n

’ dt (80)

holds for all solutions of (20) in the class Cy(7y) as in (5), uniformly as h — 0.

Moreover,

(a) T(y) /oo as~y /4 and T(v) Ny 2L as v\, 0.

(b) C:C(T,v)\ﬁ as v\ 0.

Proof: With the conservation of energy result in Lemma 3

N T
h Z/ lugugﬂ +
2550

where X,(t) =h YN, j (W) u, becomes

2
w@‘ﬁ

o — ]2
Ujr1 — Uy

h

L T
1ﬁ+xﬁ%=2ﬁ

3 [ (B0~ i+

L T
= TEW(0)+ 5 Z/ i — [ Pt + X0 =5 [
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We also have

Z/ |u — u]+1|2dt =1- Z/ |U |2 + |Uj+1|2 2“] j+1)

1 2 2 2 2

o |l e = 2t [P e — 2
T , 9 /12 / ’ 7 12 / 2

+ --+/0 (Jun—q | + [uy] _2UN—IUN)dt+/O (lun ™ + | ]

—QU/NU/N_H)dt]

T
= — [P+ bl + iy 4 i = whdy — - — iy )t

= Z/ ] ]+1 ;|2>dt (81)

The left hand side of (81) can be estimated as follows, with A as the largest

eigenvalue in the Fourier development of w:

u= Y apetEtyP, (82)
|| <VA

with e = VA for k> 0 and p_y = —pi. Therefore,

W= Y apupetyr (83)
k| <VA

28



So,

N

N

Dol =P =300 D awme™ oy — Y appe g
=0 =0 | g |<VA |l <VA

2

> appre™ (Y — Vi)
k| <VA

<
Il
o

o

o

<
Il
o

> appe™ (g — Yrga)| | Do anpwe” " (W — Vr i)
k| <VA k| <VA

ST JarlPid oy — Y|

0| <VA
N

303 pnpman@e T Wy s — g i) (Vg — i) (84)
I=0 |k |<VA
|| VA
HEFE

o

J

Using the identities (30) and (31) from Lemma 1, (84) can be rewritten as

N N
Z ’U; - U;‘+1’2 = Z \ak|2ui (hQ/\k Z Wk,j\Q)
§=0

k| <VA J=1

N N
= > |alPNRDY kP = DY larPAR® D [l

k| <VA J=1 k| <VA j=1
N N
S S N [ R VY R (| e\ S S [ T SR [
k| <VA J=1 k| <VA j=1
N ? N
=AY i Y apme™ | = AR U (85)
=1 |l <V =1

Therefore,

o T / /12 1N r / / 2
> | g — Pl = =5 3 [ g —
j=0

j=0
| N AR2, T
> = A2 /'2 :_7/ /42 .
> 2/0 (h;]u]])dt R (86)
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Combining (81) and (86), we find

,;/OT uN<t>| g = TE0 ’;;/T iy — [ Pldt + X, (1)
> TE,(0 Z( hZz/ |u|dt>+xh<>|o
— TE,(0 Ahsz/ 2t + X,(8)|2. (87)

Using (51), the equipartition of energy identity, we find

u]+1

hZ/ o Pt =

dt +Y,()5

_h/ (Eh Z|u |2)dt+Yh()

- /TEh(t)dt—hZ/ e AGIH

_/ (0 dt+;Yh()| —TEh(O)Jr;Yh(t)\g. (88)

By combining (87) and (88), we deduce that

20 > v hz/| Pt + X0
= TE,0) — Af (TEh(0)+ ;Yh(t) :) + Xu(t)lg
— (1_A4h2>TEh(o)—/th() + Xu(t)ly
_ T(l—AjQ) E(0) + Z(0), (39)
where
Zlt) = Xh<t>—A§2Yh<>
Uil Uj—1 ’ Ah2
— hz <]+> 4——h2uu1
_ hz [ (u;+12u1'—1)_/\;1 Uj‘| (90)
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for every solution of (20) in which A is the largest eigenvalue entering its Fourier
development.

Next, we estimate the term Z; using Lemma 6. So,

Zn®o = 1Zu(T) = Zu(0)|

< |Z,(D)| + | Zx(0)|

Ah*  3AR?
< /L[P——+——F . 1
< \/ 6 T 16N, n(0) (91)
Therefore,
Ah*  3AR?
Zn(T) — Z > 2L — — . 2
() - 20 2 212 A I ) (92)
Using (89) and (92), we deduce that
Ah? ARt 3AR2 L (T uy(@)|
T(1-=0) -/ - 2 Ei0) <5 [ dt.
( 1 ) \/ 6 "o | OS50 | (93)

From (93) and considering that A = 7% in the class of solutions Cj(7) of (20), we

find that

Considering that \; > % for h sufficiently small, we have

2\/L2 (1+&)-%

4
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and

(T, ) = 2 (95)
2{ — 2 —2\/L2 1+ 2% Vh]
So as v N\ 0
2\/L2 1+ 87r2 71}:32
lim 7T'(y) = lim = lim 2V [? = 2L (96)
y—0 ~—0 1—7
and
lin% C(T,~) = liII(l)
Y = 2[ _ _2\/L2 1+ ’Yhz}
L
=lim —.
250 2(T — 2L) (07)
So, as 7 N\ 0, T(y) \« 2L and C(T,7) \« gicary-
Asy 4,
2\//;2 (1+&) -2
My T0) =l = %)
and as v — 4, (1—%) — 0,80 T(y) S oo. Asy 14,
hlr}l C(T,y) = lirr}1 (99)
AH 2 [ —1)- 2\/[’2 87?2 71}252}
= lim (100)

y—4 h2 ’
_4\/L2 L+ 271'2) T4

So the statements of Theorem 4 hold. [J
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4 Finite Element semi-discretized wave equation
by linear splines

The idea of the Finite Element Method is to create a piecewise polynomial ap-
proximation of partial differential equations. In order to apply this method to
the wave equation, the strong/continuous (PDE) form of the wave equation (6) is
transformed into the weak formulation. This formulation allows to find different
solutions that cannot arise from the strong form because solutions of the strong
form must be twice differentiable over the interval of the string, [0, L]. To con-
struct the weak form, we multiply both sides of the equation by ¢(z), which is
a continuously differentiable test function which satisfies the following boundary

conditions:
#(0) = ¢(L) =0 and ¢(x) =0, for z < 0, x > L.

Then, both sides of the equality (uy — uz) - ¢ = 0 - ¢ is integrated over [0, L] to

obtain the weak form of (6):

/OL(utt — Uyy) ¢dz = 0. (101)

After the integrating by parts and noting that ¢(z) is zero at the endpoints, z = 0

and z = L, the weak form of the wave equation is as the following :

L L
/ Uy @ dx —{—/ Up Py dx = 0. (102)
0 0

Next, we partition the interval [0, L] into finite elements and for each subinterval

we define a basis function. Like with the Finite Difference method, we use the mesh

parameter h = NLH See Figure 6 for an image depicting these basis functions.

Indeed, the basis functions are explicitly defined as hat functions, also known as
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0.2 0.4 0.6 0.8 1.0

Figure 6: Basis equations {¢;(z)}?_; for the Finite Element Method.

piecewise linear splines. At each node x;, the splines are defined as the following

fori=1,2,..., \:

0, T < Ti—1
%(I — ZL’i_l), Ti1 < T <x
¢i(x) = (103)
—(@ = @), T <T < Ty
07 T > Tit1
Piecewise polynomial basis functions, ¢;(x) fori = 1,2,..., N are chosen such

that they are linearly independent to one another. So the weak form can now be

written for each type of hat function:

L L
/ Ut D; da:+/ Up@ip dz =0, fori=1,2,..., N+ 1. (104)
0 0

where ¢g = ¢y = 0 due to the boundary conditions. The functions ¢;(x) form a
basis of linearly independent functions on the interval [0, L]. Therefore, no linear
combination of the functions in the basis can result in another function in the
basis. This also means that all linear combinations in (104) will span the solution

space of the weak formulation. Thus, the general solutions are sums of linear
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combinations of ¢;(x), seen below.

u(z,t) =Y ci(t)pi(x),

%

such that the weak formulation can then be used to solve for all scalar coefficients,
¢i(t) fori=1,2,..., N+ 1.

It follows that

N+1

f\gl Z Citt( ), (105)
and
N+1
upg =Y cilt)gia(@). (106)
i=0

Substituting the above summations (105) and (106) into (104) and letting ¢;(x)

be equal to ¢;(x) for j =1,2,,..., N +1 one at a time, (104) can be rewritten as:
N+1 N+1
0 = / <Z cin(t >¢] dx—l—/ ( ()i (2 )) ¢jz(z)dr =0
N+1 N+1

- Zcm /@ 2)é;(x dx+ZcZ /m )6;.0(x)d (107)

We must evaluate every instance of each integral in (107) to identify all of the
coeflicients of the functions of time ¢; 4 (¢) and ¢;(t).

Note that, by the orthogonality of these “Galerkin” basis functions,

L L nonzero, |i—j| <1
| e@)s @)z, [ 61a(2)6iaw)de =
0 0 0, i —j| > 1

Therefore, we need only solve the nonzero portion of these integrals where ¢;(x), ¢;(x)

and ¢; »(x), ¢;.(z) are not orthogonal to each other. The details for this can be
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found in [3]. It shows the following:

Jy ¢7dz = 3h, j=i
Iy éi - ¢;dx = §h, j=itl
s (108)
fOL ,ideE = %’ ] =1
Iy bia- bjads = —f,  j=il
From this, we can write the system (6) in the following discrete form:
Zuf L Ly =B 0 0<t< T, j=1,2,...,N
ug = uns1 =0
(109)
The discrete energy for the system (109) is also given by
h & h & h X (g1 — uy |
Bu(t) = & 2l 4 55 2l + [+ 5 3| = — (110)
j=1 =0 =0
4.1 First-order form and spectral analysis
Letting the matrix M be
2/3 1/6 0 0 0
1/6 2/3 1/6 0 0
0 1/6 2/3 1/6 0
M /6 %3 1 (111)
0 0 0 1/6 2/3 1/6
0 0 0 1/6 1/3
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and using A, in (26), (109) can be written as the following matrix equation:

Ci,tt C1
Cott Co
M + Ay =0. <112)
c c
N+Lt | o N sty
Letting ¢ = [c1,¢2, .-, CN41, Clt, Coy - - - ,cNH,t]T we rewrite (112) in the first-order

differential equation form

- 0 1
M_lAh 0

Now, consider the eigenvalue problem AZ = 2z, corresponding to (113)

0 1 21 .| A
= ) (114)
M=t4;, 0 2 2

Solving (114) is equivalent to solving

M_lAhZ_i = 5\2271.

The details for this can be found in [3]:

Theorem 5 The solutions of the eigenvalue problem (114) are given by

6 — 6 cos (%{;gﬁ)

2 + cos (%ﬂ(;);)h)

forj=1,2,....N+1. (115)

SRS
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4.2 Technical results

Lemma 7 For any h > 0 and any eigenvector of the system (109), the following

identity holds:

2

ij 64+ 2R

_ O ey
12— A2

h

'

Moreover, A\h? < 12h for any h > 0 and any eigenvalue and
An(R)h* — 12 as h — 0.

Proof: By (37) in Lemma 2, we have

N
Z h2 77Z}]+1 wj

where p is the eigenvalue of the matrix A associated to .

The eigenvalues and eigenvectors of the system

— [emmtvim] = N [2g; 4 g+ By, j=1,2,

o =Yn41 =0

(116)

(117)

(118)

N

)

(119)

are the eigenvalues and eigenvectors of the matrix M ' A;,. From [3], these are

Ak(Ap)

M(M™rA) = ——5— (120)
— 2 \e(A4)
S0 p = ++?2/\ Therefore,
oL oL o 2L(145)
4—ph? - B B2 \) — AR2
p 4 (1+¢L2A> B2 4(1+ /\) Ah 4 (1 + % )\) Ah
ey
_( SAL(2eaL 6R 1a)

4h2)\ A2 24+ 4h2\ — 6 h2 12 — \h2

38



In addition, using h = N+1,

= lim 6

h—0

, 1 —cos(Nwh/L)
21
hgtl))\N(h)h hlir(l)ﬁ [2+cos(N7rh/L)]

e[y

1 — cos(m — hm/L)
[2 + cos(m — hm/L)

= 1im 6 m =12 (122)

Lemma 8 For any eigenvector J with eigenvalue of X\ of (119), the following

identity holds:

N 'lvb]-i-l - al 2 2 1
Z _ Ajzl(3|¢j| + St
NS B | 5
= AL (Gl + gl eal). a2

Proof: We multiply in (119) by ¢; and add for j =1,..., N to find

1 1
Z A [ Vi + 6¢j+1 + 6%1} V. (124)

al i1+
y - |t ),

=1

The left-hand side is the same as in the proof of Lemma 1, so we only need to
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check the right-hand side:

Jj=1

N1, N1, 1 1
:/\Zgwﬂ +>‘Z{3‘¢j| +6¢jwj+1+6¢j¢j—1}
=1 j=1

I T Lo, 1 1 IV |
= AR gl A [ (Gl + g+ o) + (ool + o

+€15¢21/J1) +--+ (1’¢N—1|2 + 1¢N—1¢N + (13¢N—1¢N—2>
1 1
+ (3’¢N’2 + NN + 1/1N¢N 1)]

12 1 1 N2 1 1
A {3%‘ t ¥t 6%‘—1} by =A Z_:l {3|¢j|2 + Uit g ¥ia

6
N1 1 1
= /\Zg|¢j|2+/\{ ([n? + -+ |¢N|2)+§(¢1@/}2+¢2¢3+"'+¢N—1¢N)

Nor1
—AZfW NS [SHl + 35
7j=1
_ Nl 2, o 1 5 1
_)\jz::l‘wj‘ ;{6‘ é‘ijrl‘ +§ijj+1
N 1
:/\Z ¢J|2 Zé¢1+¢1+1||¢3+¢3+1|
j=1 j=1

1
3
N
= Z ( |?/Jg|2 Wj + ¢j+1’2> ;
as needed. [

Lemma 9 (Conservation of Energy)

For any h > 0 and any solution of (109), it follows that X =0, i.e.,
En(t) = En(0), Vite (0,7).

Proof: We multiply in (109) by u; and add for j =1,..., N to find

N

Uil + Uj_1 — 2u,
<u + uj+1+ —uj )u’—El : sz Ll = 0.
J
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The right-hand side of (126) is the same as in the proof of Lemma 3, so we know

g:( Ujp1 + U1 — 2u,

1d Xju
h2 )J’ 5672;

2
qu

(127)

J=1

We also know from the proof of Lemma 3 that

N dN
///_7
22y = g 2l (128)

Additionally, we find

1 1
6 D (Ul 4wl ul) = 6[(u’2'u’1 +ugul) + (uguh + ufub) + .
7=1

FH(unyuly_y +uy_ gty ) + (W uy + uy_uy)]

[(uiuh + vhuy) + (uhus + uyuy) + - - - 4 (uy_uy + uy_uy)]

CT:\»—t Cm»—t

al ", 1 ron 1d
Z U J+1+uuj+1 6dtzuj Jj+1 (129)

So combining (128) and (129), the left-hand side becomes

j=1 j=1 ’
1d & 1 N 1d & d
Sdt i te T 6dt 12dt — 7T

Recalling (110) and combining (126), (127), and (130), we have

2) = 0. (130)

d h al /2 2
7\ g2 [wl+ ZW gt Z
Jj=1 ] =0

Ujt1 — Uy
h

Therefore, %Et) = 0.0

Theorem 6 (Lack of Observability)

For any T > 0, we have

Ep(0)
sup [foT |uN(t)/h|2dt] — 00 as h—0. (131)

4 solves (20)
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Proof: Like with the proof of Theorem 3, we consider the Nth eigensolution just

for
i = eV Wl (132)

where @ = (uq, ...,uy)? and Uy = (Yn1, - ¥nN)T. The observability inequality

is

dt, (133)

and our goal is to prove the non-existence of C(T').
The energy for the system (109), (110) can be written as follows for the Nth

eigensolution:

¢N,j+1 - ¢N,j

- (134)

h 1 a / 2 1 a / / 2 h i
En(0) = 513 DIl + 6 Do+ Nl ]+ 5 >
et j=0 j=0

By (134), Lemma 8, and uly ; = Avty, the discretized energy of (109) is

Avh (L1 N1 ho b |?
Eh(O) _ % (Z §|wN7]|2 + Z éle,j + r(/}N,j+1‘2) + 5 Z ¢N,J+1h ¢N7]
j=1 j=0 Jj=0
= YN+ T YNy (135)
— h
7=0
By Lemma 7, the discretized observation of (109) is
/T YN N 2dt _ 7 Y| _ Th12— Ayh? g: Ungi — U |
o | h h L 6+ah? = h
T 12 — Ayh?
=—-—— " F ) 1
L 6+ Ayh? +(0) (136)
So,
En(0) L 6+ Ayh? 137)

fOT’wNT,N‘?dt T T 12— Ayh?
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So by (117),

. Ey0) . L64+Ayh® . 18L
%%W—hﬂ%m_w—%%m%m' 0 a3
h

4.3 Filtering the numerical scheme and numerical observ-
ability

Lemma 10 Forall0 < e < 1. the gap between the roots of consecutive eigenvalues

associated to indexes such that (j + 1)h < €L satisfies

1+ cos 1/2
\/ s (h \/)\ ( EQicosEewii) ' (139)

Proof: From (23) and (120),

4 2 7k
)\ (M 1A) )\k(Ah) o h?2 511 2L
_h N B2 (4 i 2 mkh
L= (Arn) 11— : (h2 sin 2L)
4 2 wkh 6 2 wkh ;2 wkh
_6<hzsm%>_hgsmn_6[sm o ]
- _ 4 gn2mkh | T3 _ a2 7kh T p2 |3 2 wkh
4 \1 5 sin” o7 5 — sin” 57 h sin® 57
1—cos Tkh
6 5 6 |1— cos’erh
=13 Ccontih | = ik (140)
h2 |3 1-cosZE | T p2 |9 4 (og ThR
2 2

And from (122), we have Ay(h)h? — 12ash — 0. For j fixed, we can use

L’Hospital’s rule twice to find

6 [1 wkh 6jm mih
lim A;(h) = lim — | —————L | = lim e .
h—0 n=0 h2 |2 + cos = h=04h + 2h cos M — % sin &
N2
6 (%) cos ’Tih
lim . . , 2
h=04 4 92 cos %h — 2hI% sin “]{h h]7r sin mh — h? (%) coS ”ih
N2
6(%) _ (imy?
=TI T (L) (141)

Looking at the gap between the roots of the eigenvalues, we have |iy/Aj41(h) —

iy/A;|, but because this is an increasing function and the modulo of i is 1, we have,
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for some ¢ € [jmh/L, (j + 1wh/L)],

. 1/2 .
\/ \//\ \/_ 1 — cos W / 1 — cos % 1/
it b |\ 2 + cos U 2+ cos 7%

_ V6 [1 (1—cos£> ( 2+ cos)sin & — (1—cos§)(—sing)>
|

S

 h |2 \24cosé (24 cos&)?
*<(]+1 )h jﬂ'h)

B \/(_377 2+Cos£ 2sin€ + cosésiné +siné — cosEsin§
L 1 —cos¢ (2+cos§)
B \/677 1 2+cos§ 3sin &
~ L |2 \1—cos¢ (2 + cos€)?
V6 [1 (24 cos&)M? [3(1 — cos? 5)1/2
L _2( 1—0085)1/2> < (2 + cos §)? )]
V6T [1 (24 cos€)V?Y [3(1 — cos€)V3(1 4 cos &)/
L |2 \(1—cosé)l/? (2 + cos §)?
_ \/57r 1 (3(1 +cos&)/?
_5 (2 + cos £)3/2
L, [3r(l4cos)? \/7 7(1 + cos &)Y/2
"V 2L(2 4 cos )32 =3 2 L(2+ cos&)(2 + cos&)1/? (142)

v

\/§ T (1+ cos€\!

2L \2+cos&

where we used the Mean Value Theorem and the fact that the maximum of (2 +
cos§) is 3.

Assume we consider eigenvalues corresponding to the indexes (7 + 1)h < €L

with 0 < e < 1. Then £ < W < “ZL =em. So 0 < ¢ < m. Thus, because cos

is a decreasing function between 0 and 7, cos§ > cos(er). We can combine this

with (142) to find
7 (31 +cos&)\? _ 7 (3(1+ cos(em)) )"
\/ j1(h \/>‘ = ((24—0056)) = (2(2 - cos(ew))) - (143)

as needed. [

Lemma 11 For any h > 0 and any solution u of (109), the following identity
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holds:

h al T / ! 2 T
TE(0) - 122%/0 o, — [Pt + Xn (1)
]:
L7 [lun@)" | Jup(t)?
=5 dt 144
2 Jo h + 6 ’ (144)
with
N 1 1 1
:hzlj(uj+l_uj—1>(3uj+ 5 Wy + — 5 wi_y). (145)
]:

Proof: We multiply in (109) by j(%“giufl) to obtain

1 (U1 —ujq)
Z/ {u+6uj+1+6u j%dt

. = 2w (Wi — U
—Z/ uj+1+l;i21 ujj(uj“ 2“3 l)dt:[l_[zzo, (146)

The second term, I, can be treated as in the proof of Lemma 4. So we have

1 N

T
h=-33

0

unN 2
—| dt. 147
2 (147)

Uj — Uit

h

2 T
dt+(N+1)/
2 0
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For the first term, in view of (49), we have

1 (Ui — u,
Il Z/ |:'U/+ u‘/],+1+6',7/1:|j< J+12 jl / ,]]+1

T
2 N (U 1—U'_1) ]_ N T .
+ 3 ZU;J% + 19 Z/o (uf 1+ uj_g)j(wj — ujr)dt
=1 0 =1
T

1T
- gZ/ uj ]+1dt+ ZU J(wir — uj1)
j=1"70 3= 0
A N T
+ﬁ Z [(%‘H + uj—l)](“j-f—l - “j—l)‘o
j=1
T / / - /
—/0 (Wyyy +uj_y)j(ufy, — 1 / uj J+1

T

1& L [T 2 12
MEPNECHE R /yh%n R
Jj=1 j=1 0
1 & '
+ i) Z(U;'H + u;’-lj(uj-i-l — uj-1)
Jj=1 0
T
LS gt S s ]
= u wj_1) | SU = —u
32 Jo U1 Z 1J g1 T U1 g e T 5 i
1 (T
— 5 o Ll = Jugl?) + 2(fus* — i + 3(Jul ] — [us]*) +
HINV = D) (Juy* = Juy of*) + Ny al* = [uy o |)]dt
T

1 / 1 / 1 /
0

1 X r
= gZA j ]+1dt+ ZJ Ujr1 — uj—l)
j=1

1 T
—15 (P21l = 2 — = 2fuly [P+ (N = Dy [t
T
1 X T 1,1 1
= 3]21/0 Ui adt + ]le Ujy1 — Uj1) {3“912“}1 + 12“3—1}
+1§j/ it — Y (148)
6 = Jo 12 Jo NI

Combining (146-148), we have

1 N+1
[ ,MH-Z/|ww—770|mm%+m@%
j=1
1 N T uj_uj—i-l N+1 T U,N(t) 2
- —52/0 G g /0 D) =0 (49)
7=0
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Using h = we can find

N+1’
N+1 (T 0 N+1 (Tlux® L (T,
o [ P+ = / 2=~ [ (P
LoTlun@ L7 fun@ | fuy ()
= ﬁ:—/ .
ol | ' ko | Tn | e | (150)
Combining (149) and (150), we find
LT {lun @) | |un(®)? =t
2 ([ |+ 6 / K
hL T
Hg 2 [ wde + Z/ 2t + X (1)
=
T h al /12 h al 2
= [ |Bn0) = 5 Sl = 5 S0+ e P e
j=1 7=0
h T
Hg 2 ) iadi+ Z/ [t + X (1)
J:
h N
:TEh(O)—FBX%)/O UJUJ_Hdt 122/ ‘U; +U,]+1‘ dt—i-Xh( )‘0
j:
BN T ! + u' |2
:TEh(O)—i-gz%/O lu;-u;#l—]zl]“ dt + Xu(t)]g - (151)
=

Next, we find that

ju + s 2 gl
Z/[HH — | = Z/ Wil =~

2
u%;] dt:_z/o [‘ui L +“9‘;9'+1]dt
=0

N T ‘Uf — |2
J Jj+1
= — — = dt. 152
> [ (152)

Jj=0

Combining (151) and (152), we find

h al r / / 2 T
TEWO0) = 153 [ 1) = lPat + Xa(0);

L T
=2,

h 6

UN<t>|2 ) |u;v<t>r1 " (159)
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as needed. O

Lemma 12 For any h > 0 and any solution u of (109), the following identity

holds:
TN, w; |2 TN or1 1
h/o > ’“h Hodt = h/o > [3|u;|2+6|u;—|—u;+1|2} dt = Yu(t)|5, (154)
j=0 =0
with
ol 2 ! 1 / 1 !
Yh(t) = hz <3U] + éujﬂ + 6Uj_1> Uj. (155)

Proof: We multiply in (109) by u; and find

Uj1 + ua 1

2 .
“J} wjdt. (156)

hg: ! gu"—irlu —|—1u w;dt = hz
3J' 6]+1 6J1 J

=179

For the left-hand side, we integrate by parts to find

N T2 1 1 1 1 '
hzl/o <3u]+6u3+1+6uj 1>ujdt—h2( u + u]+1+6u 1)uj
J= 0
1
—hZ/ ( u + uj+1+6u] 1)udt
5 1
|0 hZ/ |u|+ u;;+1 dt
2 1
|0 h/ [( Juy [ + U1U2>+<3’“/2|2+3U,2u§)+~-
1 1
- (|u;v_1|2 - 3u'N_1u;v) + (Sl + guvaty, )| ae
1 1 1
= V0§ —h [ [P+ g+ Sl + (Sl + gl
1 ro /2 112 1 1 2 1 /2
+§UOU1 + 6|U1| +6|U2| +3U1 )+ 6|“N—1| +6|UN|
1 1 1
gy ) + (Gl Sluval? + guval )| de
T al rr1 112 1 / / 2
) —h}%/o (3|uj| +6|uj+uj+1| >dt. (157)
‘7:
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For the right-hand side, we have

Ujy1 + Uj 2u
j+1 J 1 J} Z/ UjUj1 + UjUjq — 2|“J|}

hZ/

b T
= ﬁ/o [(Uluz + ugug — 2Jur|?) + (ugus + uguy — 2|usl?) + ... + (uy_1

un + un_1un—o — 2uy_1]?) + (ununi1 + unuy -1 — 2|UN|2)} dt

h

T
= (2 — ol? — s ) + s — s uf?) +

-+@uN,ﬂ”V—¢uN,ﬂ2—wuNP)+-@uNuN+1—|uNP-mN+ﬂ%}dt

—hZ/

2
u]+1

dt. (158)

By substituting the results from (157) and (158) into (156), we find (154) imme-

diately. U

Lemma 13 For any h > 0 and any solution u of (109), it follows that

AR*  3ARZ
)| <y L2 — — + —— L t<T 1
with
Ah?
Zn(t) = Xa(t) — 5 Ya(t) (160)

and A being the largest eigenvalue entering the Fourier develpoment of the solution

u of (109).

Proof: We start by putting Zj(t) into the tensor notation.

AR?
Zn(t) = Xp(t) — ﬂYh(t)
N[ (u u;  Ah? 2 1 1
= hz < ( ]+12 J o Uj> <3u; + 6u;+1 + 6uj_1>
j=1

=h Z mijaibj, (161)
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where

a; =1 — u;; by =, (162)

M is the matrix (111), and m,; are the entries of M. Then, because M is a positive

definite and symmetric matrix, we have

N
Zn(t) = h' Y myab; = hat Mb = h(a” MY?)(M*/?).

ij=1

Using the Cauchy-Schwartz Inequality (223), we find

| Zy| < h(C—L»TMl/Q . C—L»TMl/z)(Ml/QB" M1/2g>

_ h(C—L»TMl/2 . MI/QC—L»T)(BTMI/Z . MI/QE)

= n(@ Ma)(b" Mb) = h (i ml-ja,iaj> (gj mi]‘bib]‘) (163)

4,j=1

On the right-hand side, we have

al al 2 /12 1 / / ! 2 /12 1 ! AW,
hy " mibib;=h) {3’%1 + 6(“3‘-{-1“]’—1)”]} =h KB‘UJ + 6(“2 + UO)U1>
ij=1 j=1
2 1 2 1
(Gl + Gl 4w ) + o+ (Sl + 5l + b )
2 1 1 1 1
(Gl + 5l + )y )| = [+ Gl o+ Sl
2 1 1 2 1 1
(b + glubl? + ghutl?) + (Suhus + Sl + gl + .

2 1 1 N1 1
+ (Suvuen +glun P+ glungal?)] =Y |G + gl + ] (164)
j=0

By using (123) and the fact that A\; < Ay < ... < Ay, we can find that

2

R T ! o b
LS BLEEE S ST L + gl vial] 2 Y Sl (165)
>\1j:0 h j=1 3 6 j=13
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Now, letting n = Az—]f and using (165) and the fact that n < 1, we also find

N N
— .. 2 . . . . . . . .
h Z mi;aia; = hz(m%]aj +my1ja;1a; + My jaja;)
3,j=1 Jj=1

2 2
= h[(m171a1 + mp 10001 + m2,1a2a1) + (m272a2 + my 2a1G2 + m3,2a3a2)]
2
+...+ (mN_1,N—1aN_1 +mpy_2 N—1aN—2aN—1 + My N_1aNaN — 1)

2
+(my yay + My_1,NAN_1GN + MN11 NAN+1AN).

We can use the inequality zy < %2 + % and the values of the elements of M to

show
al 2 2 mo1 , o 2 mi2 , o 2
h Z m;;a;Q; < h [mual + ...+ myNQy + 7(@2 + al) + 9 (a’l + a2) + ...
ij=1

M(N+1)N
PN (08, + )|

m m m m
= h[(m11 + % + %)af Fo ot (may + N(2N+1) I (N;l)N)a?v]

=h[(2/3+1/6+1/6)a? + ...+ (2/3 +1/6 + 1/6)a%] = hla] + ... + a’/]
- h;|aj|2-

We can then plug in (162) to obtain

N h N Ah2 2
h ) miaia; < 750 [J(um —Uj-1) = 5 U
ij—=1 =1
h N . ' A2h4
< 4]21 [232|uj+1 — ;] + 257 u; — w1 * + i Ju; |

AR? ]

_Tjuj(ufrl —Uj_1)
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L
then use j < ¢ to find

N N 2 215 N 3 N
Ujr1 — Uy A°h Ah
h Z m;;0:0; S LQhZ J ; J + e ; |uj|2 + M;ujujH

ij=1 §=0 J

N a2 B2 N a2 N
e S e e D e R O D AT
=0 h 2 Jj=0 J=1
vh? 3002 +v), X uj — ;)2
< (I?— _ 2+l 7
< 2 A1 )hz_: h
7=0
vh? v Ujyr — ujl?
< L2—7—7h J+1 J 1
<( > o) - (166)

Combining (163), (164), and (166), we find

N 1/2 N 1/2
|Zh| S h Z mijaiaj h Z mijbibj

i,j=1 6,j=1

1/2 1/2
N o1 1 nh 9n U; uj|?
< |h AP T 4 2) L2 . h j+1 J
< B (Gl + gl + 6 o)
<o | (12 - nh? EURY (0) v _ g2 N (0) (167)
= 2 o) 2 an

Theorem 7 For any 0 < ~v < 12, there exists T(y) > 0 such that, for any

T > T(v), there exists a positive constant C(T,~y) such that

() <y [ [ (168)

un ()] Jul(t)]?
o ihior],

for any solution u of (109) in the class C((vy). Moreover,

(a) T(y) /oo asy /12 and T'(y) \¢ 2L as v\, 0,
(b) C(T,~) — ﬁ as v\ 0.

Proof: Let A be the largest eigenvalue entering the Fourier development of the

solution u of (109). That is,

u= > ape™ P, (169)
k| <VA
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with pux = VA for £ > 0 and pur = —p—p when k& < 0. Therefore,

I . ipgt, )k
u =1 Z ap et Pt
k| <VA

(170)

So we can use Lemmas 1 and 8 to find an estimate for the term Z;V:o i | —
wpy [Pdt in (144).

So similarly to (84), we have

N

Z Z akﬂkemkt(wk,j_wk,frl)

N
Z |U; - U;+1|2 =
J=0 I=0 ||uk|<VA

N
=3 Y alPeilvn; — Ykl

7=0 |k |<VA
N .
300 pmanane’ T (g — i) (g — Yuea)
7=0 g | <VA
| <VA
HiF
N
=3 > P Melvny — Yrgel?
7=0 g | <VA
= 2y2 (1 9, 1 2
=m*> " > |l (3|¢k,j| +6!¢k,j+¢k,j+1| >
I=1 || <VA
2 2 2 al ]' 2 1 2
=pi Y laPh ) (3\¢k,j\ +6\¢k,j+¢k,j+1\ )
k| <VA j=1
2 2 al 1 2 1 2
<A DY Jar]PAR?) g\wk,ﬂ +6Wk,j+¢k,j+1\
|| <VA J=1
2 2 212 al 1 2 1 2
= AR Y aPph? )y <3|¢k,j| + 6|¢k,j + Vgt )
i SVA =1
2 N 1 2 2 2 1 2 2 2
= AR 3 > kil vn,| + > kPl + il
I=E T k] <VA || SVA
r 2 2
N , 1 .
= AR 3 > dagppuee™ | + 6 Y dappre™ (Yry 4 i)
I=LT [kl <VA || <VA
2 ol _1 112 1 / / 2
= AR §|u]| + 6’”3 +ufy (171)
=0t

Now, using Lemmas 9 and 12, the conservation of energy identity and equipartition
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of energy, respectively, we find

a2
Ujt1 — Uy dt + Y, ()7

hz/ (Gl + |u;+uj+1|2)dt=h§/f
Iz —*Z/| |dt+f2/ o+ Pl

— TE,(0) + §Yh<t>|€. (172)

=2 +Ya(t)lo

Combining (151), (152), (171), and (172), we find

L (T
2

uN<t>|2 . |u;v<t>rﬁ} dt

N T |u/.+u/. |2
Z/ [u;ugﬂ —34”11 dt + X, ()|

!/

_Z/T |uj _u9+1|2dt
—5 /0 4

+ Xn(®)g

T 2 al 1 /12 1 / / 2 T

T

Ya(2)
2

) + X5 ()5

- (1 _ 12) TE,(0) — Immg + Xu(t)[g (173)

where
Zp(t) = Xn(t) — -~ Ya(D). (174)

In Lemma 13, we estimated |Z,(t)| as

h*A  3h2A
Iyl < L2 — — + ——E3(0). 1
7 < 2 B B (175)
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So,

Zn(O)l5 = 12u(T) = Zp(0)| < |Z0(T)| + | Zn(0)]

hiA  3h2A
< 2/L2— — E3,(0). 176
\/ I + 16, 1(0) (176)
Therefore,
hAA  3h2A
Zn(T) — Z > L2 — — E3,(0). 177
w(T) — Zn(0) > \/ st 16A, n(0) (177)

Now, let A = ;5. Combining (173) and (177), we have

i

> [(1—172>T—2\/L2_74};+ 12’11] En(0). (178)

So from (178), we know

6

un(t ‘ |UN( )’2] dt

B0 g R b |

16)\1

provided that

2 _ oh? 3y
2\/L 13 T Ton

So we have

- ELl (179)
and

C(T,v) = (180)

2[(1—11) —2\/L2 ST )
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where

6 (1—cos™
M=—|—L). 181
TR <2+cos7;:h> (181)
So as v\ 0,
9. /12— 22 4 3
lim T'(v) = lim \/ B 1M im 2VL2 = 2L (182)
¥—0 y—0 (1 _ l) 7—0
12
and
L L
lim C(T,~) = lim = = lim ——— . (183)
70 'HOQ[O_%)T_Q\/[;_%_F%KJ 70 2(T — 2L)

As v N0, T(v) \(2L and C(T,v) \, ﬁ And, as v " 12,

2 LQ _ % + 3y }
16 6 17cos%
B h?2 2+cos% 184
Jg, Ty) = lizg, =y (184)
12
and as v — 12, (1 — %) — 0, 80 T(y) / co. Finally, as v 7 12,
L
i, O ) = i,
h2 3
2 ( _%)T_2 L2 178—’_ 6 1jcos7TL—h
=9
L
= lirr112 — ( ) ) (185)
= 3h2(2+cos =2
2 _ h2 I AV
4\/L 12 + 8(17005 %h)

C(T,~) must be positive, so as v 12, C(T,~) does not exist. So the statements
of Theorem 7 hold. [J
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5 Stabilization result for the Finite Difference
semi-discretized wave equation

The model for the 1-dimensional damped wave equation with clamped-free bound-

ary conditions is

Yt — Yo = 0, (z,t) € (0, L) x RT
¥(0,t) =0, wo(L,t) +ay(L,t) =0, tcR" (186)
y(x,0) = yo(x), ye(x,0) = y1(x), v € (0, L)

such that (yo,v1) € HE(0, L) x L*(0,L), L = 1, and « is positive.

The energy for the system is
Lot 2 2
() =5 [ () + (e, O)de, Ve 2 0. (18)

By the dissipation law, %}Et) = —aly(1,%)]?. So, for all M > 0,w > 0 independent

of solution, we have

E(t) < Me™“'E(0), Vt>0.

Set y = u + z with u} = 3, uj = y;, where yo € €,(7) and y; € (7). Then,

discretizing using the Finite Difference Method, our model becomes

yi(t) — et =@ — g g <t <T,j=1,..,N
yo(t) = 0, eelun(® ooy =0 0<t<T (188)

y;(0) =95,4500) =y, j=0,.,N+1
The energy of the solutions of the system is given by

ym(t) —y;(?)
h

_h
2

i:v: [ij

2] . (189)

Therefore,

Ey(y,t) = —alynial.
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The unfiltered system is given by

Wi(t) — O O=200 _ g g <t < T, j=1,.,N

up(t) = 0, un41(t) = un(t), 0<t<T (190)

u;(0) = uf, u3(0) =uj;, j=0,..,N+1

7770

Let z solve

Z;/(t) _ Zj+1(t)+zj];21(t)*2Zj(t) =0, 0<t<T,j=1,..,N
2o(t) = 0, 202y — 0, 0<t<T (191)

2;(0)=0,2;(0)=0, j=0,..,N+1

The observability result for the clamped-free case can be found in [13], and the

proof mimics the proof of Theorem 4.

Theorem 8 Assume v < 4. Then there exists Ti(7y) > 2 such that for all T >

Ti(7), the following inequality holds:

3 17
[T(1 - %) — 2,1+ 1610] En(u,0) < 5/0 iy, |2dt. (192)

Lemma 14 Let T > 0. There exists C' > 0 and K > 0 such that, for all 0 < h <

1, we have

T T
| levaPdt < C [ Pt + KE(y,0) (193)

Proof: The energy of the solutions of system (191) is given by

h& MOESTOlE
Bu(e,t) = 250 |2 + |22 =201 (194)
24| h
so its derivative is
Ej(2,1) = —azy 1 Yn+1 (195)
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So

t t
Bz 0] = | [ —azhprthvadt]| = | [ aphihade].

Applying Young’s inequality, i.e. (226) for e > 0, we find

(,1) </ <|04?JN+1| €|Z§V2+1|2>dt.

Let € — 2¢. Then (196) becomes

T |04ij+1|2 ' 2
Eh(z,t)g/o EINAL el ) dt

042 t ! 2 r ! 2
< Wl +e [l P

P Zj41— ZJ 1

We use multiplier j and integrate by parts to find

(196)

(197)

N Ziv1 — 22; + Zj—1\ .%j+1 — Zj-1 N (T 2 — 2
h / ( n_ 2yl J J= ) - <J+ =L =n / <t =1
230 g 0 7T jzlo 5T

zj—1 9 .
L (e (e
T
N T !/ ——
Zj+1 Zj—l) _p / e e di
Ry 5 (25| > [

j=1

N
Zjt1 = 21\ ((Z+1 — 2% + Zj—l)
dt = 0.
() (R :

By rewriting the following summation, we find

T T

h Z Z]-I—l -1

N
L (Zie1 — 22— Zi1
:hzj’z;'(] N )
j=1

0 0

N
. 1Rl T R
:hZJZ}%

Jj=1

N
Zi — Ri—
j=1

0

29

(198)

(199)



Then, since

thz h[ +24 2y
2 2
AN—-1 — ZN-2 ;) AN — ZN-1
N -1 N
+( ) 5 +Nzy 5
N
Z J+ Z;'+1 (Z]H ) )
j=0 2
(199) becomes
N T N T N-1 T
hY g T = WY g Y (5 1) (200)
j=1 0 Jj=0 0 7=0 0

We can also rewrite the following summation in order to find

— 2 h T
—hZ/ Ve ]H Sl Selgr — 3 (zizé—ziz(ﬁ—?zgzé 22521

+3252 — 3z322 + .+ (N — 1)zN_1z§V — (N — 1)2y_12n_2 + Nzy2niq

Nh

h T
—Nzﬁvzﬁvfl)dt:§/0 ' 252 g dt — - zNzEVHdt

h T Nh (T
/ Z 22 1dt+2/ 2N 412Nat — 2/ 2y 412Ndt — <>, ZnZn1dt
/2d h 2 2
SIS [Mpa [ dt—fz/ (EEREALE BN
7=0

(N +1)h (T h T
_T/o INEN st = 9 Z/o ]z;-|2dt + Z/o |2l *dt
j=0

RS &L T2y — 7 1 /T
_ i B ﬁ—f/ 1 dt
4 ]Z:%)/O h 2 0 |Zn+1 ZNl
h N h T h3 N 1 — 2
:2§A|#%Hqé|4ﬂmp-2/ J+ SR TA g
j:
1 T / 2 /|12 / / 1 ! 2 /12
1 [l 1l = 202kt = § [ (200l + | )
h & h3 N — 2P
:52/1ﬂﬁ+ /pMﬂﬁ / ﬁ4 ST A g
=0

Q

1 T
N Wl <|Z;V+1P+|zzvr?>dt
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Next, we rewrite the following summation and use the boundary conditions to find

~2n2 Jo

_hZ/ (ZJH Zj— 1> (ZJH —2};3 +Zj1> dt

Z/ 2h2 Zg+1|2 — 2252541 225251 — ‘ZJ'—1|2) dt

_h T
/ [(|2’2|2 — 22129 + 22129 — |z0|2) + 2(|z3\2 — 22923 + 22921 — |z1|2)

+3(’Z4|2 — 22’324 + 22322 — ’22’2) + ...+ (N — 1)(’2]\[’2 — 2ZN_1ZN

+2zn-12v-2 — |znv—a|’) + N(lzval® — 22n2ni1 + 22nzn-1 — |zv-a )] dt

h T
@/0 [=2]z1]* = 2|22 — ... = [an [P + (N = D]zn* + Nlzn |
+22120 + 22120 + 22023 + ... + 22N _12N—2 + 22n2N-1 — 2N zy 2N 41]dE
h T
W/o [—2z1|* — ... = 2znvoa P+ (N = D)|zn]* + Nlzyal? + (J20f* + |21

—l20 — 211?) + (|21 + |22f* — |21 — 22*) + (|22)* + |23)° — |22 — 23]°) +

H(lan|* + lavaal® = lan — 2val®) = N(lawl® + [aval® = low — 2] dt

—h

_W/o (20 — 21 — |21 — 20f? — |20 — 252 — oo — |2 — 2na[?
Mg zj = Zjp | h(N —1) (T 2

+N|ZN —ZN+1| ]dt = 5 e T dt — T/O |ZN —ZN+1| dt

ho Tz — % (+1—=1)h [T|zy — 2541 ]2
_ GRS | P / dt
2/0 Z 2 0 h
2

2/ Z ZJ“ 2/ dt (201)
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Plugging (200-201) into (198), we find

T
hZ]Z (ZJH Zj_l) —hi/sz; <Z3+1gzél>dt
j=1"0
—hZ/ (ZJ-H Zj—l) (Zj+1 — 2z + Zj—l) dt

2
N T N1 T
Z <MJ> +h22(9+1)y+l(”1]>
= —0 2h
- . = )
h N h3 N v 2
52/ |zt + 4/ |2 1] dt—*Z/ JH I dt
j=
Oéth 1 T h N T Z‘+1 — . 2
0 ‘ N+1’ dt — Z/o (’Z§v+1|2—0—|2§\,]2)dt+2§/0 RN N 7
a2

2 ‘yN+1’ dt - O
We move terms over and combine them to find

>/

!
J+1 A

1 —h 7 17
dt+T/0 |zjv+1|2dt+1/0 12 |2t

’ N-1 N T
—hQij (Zf“ ZJ) + 2 S (1), (Z“;hz”) +/0 En(z, t)dt
7=0
O W+ [ g P (202)

From the left-hand side, we use the boundary conditions and the inequality (a +
b)? >~ — 1? to find

1—h (T 1 /T 1—h (T 1 /T

| Pt g [t = =2 [Pt 7 [ oy + el
1 A a2

> <4 — 4>/ |2 N+1‘ dt + - / |ZN+1 / YN 1 2dt

2h2
= 22 [ e P -

P (203)
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From the right-hand side, we can find

T T
/ En(z, t)dt g/ Ep(z,8)|dt < TEw(,T)
0

0

T
/ En(z, t)dt <
0

042 T / 2 T ! 2
ST 5[ WPt +e [ e at (204)

and

T

z z\ T Nl Zitl — Zi
hQij (J+1 ]>’0+h2 Z<J+1) j+1(]+12h g>

j=0

0
NE: (j+1) ]+1 Zj+1 — Zj
= \/§ V2h

Using the fact that 7 < N and Young’s Inequality, (205) becomes

(205)

0

N-1

2.0+ D <2h>

iz 0
|

LR e = Sl | s = 2l
h2N J+1 7 j+1 741 7
Z( T A\ T2 T o

)
h 0
|ZN+1—ZN|2T 1 T
S| <25 - DB

h? .
=2(1 — h)Ey(z,t)|3 < En(z,T) (206)

2 J+1 Z\[T e
h ij +h
0

N—
+ h:N
J

>0
2>T 2N

N—-1
+ N > <’Zj+1’2 +
0 J=0

=

ZJ+1 <j

Zj+1 — %

h

7N
2

= hNE(z,t)|I + N [Eh(z, t) —
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Z/

Substituting (203),(204), and (206) into (202), we find
]+1 J 3 —2h

}:u/ 2 P
a2 T / 2 T / 2
< Ey(2,T)+T E/ YN 41l dt“‘ﬁ/o |2y 4| "dt
2h2

9 / |yN+1| dt + —— / | N+1| dt
< M a%ﬁ+—g/ el + T ([Pt e [P
— 4e Jo * 0 + 4de Jo + 0 +

o’h?

+70 N+1|dt

dt +

a2

=04 [l 4T [ e P+
~ Ae 0 YN+ 0 N+1

[ WP 207

We choose € = 15’(11’}) so that
- 3—2h
Z/ ]H & t+T/ |2y [Pdt
<MHT>(1+T)/ | / ‘2dt+(3_2h)(1+T)/T|Z/ |2dt
= "4(3—2n) o N+ 16(1+17) o N1
2h2 )
ot
becomes
4Py /O ST g4 (3 - 2h) /0 B (208)
=0

64a%(1 + T)® [T
< (3—2h)/0 |y§v+1|2dt—|—8a2h2/ |y [Pt (209)

We can also check that
8MM/wmnﬁSKmmm. (210)

If 4, is a solution to (186), then so is ), since (186) is linear. By substituting (¢ )’
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for 4, in Ej(y,t), we can obtain the energy Fj, given by

Yin(t) — y5(t)
h

2
TAGINES

hN
FhZQZ[
7=0

2]
F}, is a non-increasing function of the time variable ¢ with
F(t) = —alyﬁ'v+1!2~
Consequently,
212 r " 2 2 2
o?h /0 W1 |2t < ah?[F3,(0) — Fy(T)] < ah2F,(0).

Now all that is left is to check that there exists K > 0 independent of h, the
initial data, and T such that h*F,(0) < KE(y,0). If we take K = M\?h% we
obtain h?F},(0) < Ah?Ej,(y, 0), which satisfies the inequality.

Plugging (210) in, we find
T e 2 2 (T 2
| et < 642+ 1) [ ly o Pdt + K En(y,0), (211)

which means we must have C' = 64a(1 + T)% O

Theorem 9 The exponential decay of Ey to zero is uniform with respect to the
mesh size in the range €, (), i.e., there exists positive constants My and w; inde-

pendent of h such that, for every y° and y' in the class €,(7),

en(y,t) < Mie “'Ey(y,0), t>0, 0<h<l. (212)
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Proof: From the observability result Theorem 8, and the fact that y = u + 2,

Y 37 1 /T / 2
T(1——)—241 E <= dt

< T|z’ 2dt + T|’ |2dt
= J, AN+ 0 YN+ .

(213)

Because we have Fj(y,0) = Ej(u,0), which implies that Ej (y,t) < 0, and there-

fore Ej, is strictly decreasing, we can use (193) from Lemma 14 to find

T<1—7>—2 1+ 0k Eh(u0)<(0+1)/T|y' [*dt.
4 16)\0 ’ N 0 A

3y
2, /1+ T +K

-
-7

So, for T > , we have

v 3y -1
< A o ! 2 ]
En(y,0) < (C+1) [T (1 4) 2,/1 + Toh K] /0 Yy |dt

Since Ej(y,t) = —alyy41]* and T > 0, we have

~1
C+1 v 3y T

< 7(1-2) —2,/1 _K /—E’ £)dt.
=2 {< 4) RSO ] o~ Enw1)

Letting ' = % [T (1 — %) —2,/1+ 12—}0 - K}_l, we have
/ T / /
En(y.T) < C' | ~Ej(y.1) = C'(Eu(y.0) ~ Enly, T)).
which becomes
(1 + C/)Eh(y7T) < C/Eh(y> 0)
So we find

En(y,T) <
h(yJ )—1+C/

Eh(y,O).
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As the system is invariant by translation, we can deduce that for all n € N,

!

C'+1

By iteration, we find

'
C'+1

En(y, (n+ 1)T) < ( ) En(y,0)

C'+1
cr o

Therefore, with w; = %ln we have

En(y, (n+ 1)T) < e ITE, (4.0). (217)

For ¢t > 0, there exists n € N such that nT' <t < (n+ 1)T. Using the equation

E}(y,t) = —alyj,,|?, which implies that E), is strictly decreasing, we find

En(y,t) < Ep(y,nT), (218)
which implies that
En(y,t) < e Ey(y,0). (219)
Hence,
En(y,t) < %e_wl(wl)irEh(y, 0).

Cl
Using the inequality ¢t < (n + 1)T, we find

C'+1

ol e " E(y, 0). (220)

Eh(ya t) S

’
Thus, we have M; = <. O
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6 Conclusion

This paper first proves the exact observability of the continuous model of the 1-D
wave equation, then the lack of exact observability for the FDM (Finite Differ-
ences) and FEM (Finite Elements) semi-discretized models. The latter is due
to the disappearance of the uniform gap condition for the eigenvalues, which an
observer cannot differentiate between different high frequency eigenvalues. As a
remedy, a direct filtering technique is applied the FDM and FEM semi-discretized
models to successfully prove the exact observability of the discrete models, mim-
icking the continuous system. Finally the exponential stabilization of the FDM

semi-discretized model is proved for the clamped-free wave equation.

— FDM
— FEM

Figure 7: For N = 20, the observation time T'(+y) as v approaches its maximum value blows up
faster for FDM than for FEM, so FEM produces better observation times for a given «y. (Note
that for FDM 0 < v < 4 and for FEM 0 < v < 12).

The results shown in this paper allow a comparison between these two dis-
cretization techniques. For FDM and FEM the filtering parameter v comes with
different ranges , 0 < v < 4 and 0 < v < 12, respectively, due to the differ-
ent spectrums (eigenvalues) for each discretization, see also (5). The optimal ~
to retain m < N eigen-solutions after filtering can be calculated by taking the
maximum of hy/)\j, for set L and N and taking k = 1,...,m. As an example, let

m = 10, N = 20, and L = 1. Then, we can find filtering parameters ro retain 10
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eigen-solutions as yrpyr = 1.85054 and ypgy = 2.66026. Plugging that into 7'(7)
for each discretization, we have the minimal observation times Tryp = 6.26476
and Trry = 2.51077. Notice that the minimal observation time found in The-
orem 1 is 2L = 2 seconds. Comparing the minimum observation times found in
(94) and (179) and plotted in Figure 7, it is evident that FEM results in faster
observation times for a given . Therefore, the FEM results are more reliable and
more realistic in comparison to the FDM results.

The methodology and techniques in the proofs in this projects are needed for
future applications, i.e., the following 1-D, strongly coupled PDE model used by
a former graduate student of Dr. Ozer describing the longitudinal vibrations of a

piezoelectric beam of length L with the addition of magnetic effects [14]:

POt — OUgq — ’YBPx:v = 07

ppet — Bpare — ¥BVzz = 0, (z,t) € (0,L) x R*

v(0,t) = p(0,t) =0,

avg(L,t) — vBp.(L,t) =0, (221)
Pa(L,t) — yuu(L,t) =0, t e R*

v(x,0) = vo(x), ve(x,0) = v1(2),

p(x,0) = po(x), pe(x,0) = p1(x), =€ (0,L),

where p, a, 7, i1, 5 denote material constants. The coupling of the equations makes
the discrete energy estimations much more complicated, but the same techniques
are still used to prove uniform exact observability of the PDE and its Finite-
Difference approximations [15] as the discretization parameter tends to zero. The
uniform observability of the Finite Element-based filtered approximated model, or
the uniform exact stabilizability of the these models are left as open problems in
[15].

Future work will include a master’s thesis proving the stabilization of the FEM
model from this paper, the stabilization of the FDM semi-discretization of the

system (221), and the observability and stabilization of the FEM discretization
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with linear splines of the system (221), as the exact observability is already proved

[15] for the FDM semi-discretization of (221).
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Appendix A: Known Inequalities

Theorem 10 (Triangle Inequality) Let @ and ¢ be vectors in R™. Then
|@+ 0] < || + |7 (222)

Theorem 11 (Cauchy-Schwartz Inequality) Let @ and ¢ be vectors in R™.
Then,

(Se) = (50) (54) o

Theorem 12 (Discrete Poincaré’s Inequality) Let @ € R™, and h > 0. Then,

n 1 n L . 2
Wy < =y Bl (224)
j=1 A1 j=0 h
where A\ is the first eigenvalue of the following eigenvalue problem
L — QU .
_ G h“; TSy, j=1.2,...m (225)

Theorem 13 (Generalized Young’s Inequality) Let f and g be in L?(0,L).

For any € > 0,

[ s@at@yiz < o [C 1@+ 5 [lgt)Pdr (226)
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