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ABSTRACT 

 

 

Object recognition is an important area in computer vision. Object recognition has 

been advanced significantly by deep learning that unifies feature extraction and 

classification. In general, deep neural networks, such as Convolution Neural Networks 

(CNNs), are trained in high-performance systems. Aiming to extend the reach of deep 

learning to personal computing, I propose a study of deep learning-based object 

recognition in low-end systems, such as laptops. This research includes how differing 

layer configurations and hyperparameter values used in CNNs can either create or resolve 

the issue of overfitting and affect final accuracy levels of object recognition systems. The 

main contribution of this thesis research is an evaluation of various approaches in 

structuring and training deep learning neural network object recognition algorithms. The 

experiment discovers what patterns exist in the hyperparameters and layering designs to 

achieve high performance under limited computational resources.   
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INTRODUCTION 

 

 

As artificial intelligence becomes increasingly common in the real-world, people 

are naturally drawn to explore the capabilities of advanced machinery. One of these 

exciting advancements comes in the form of Computer Vision. Computer Vision is 

described as a branch of artificial intelligence that helps a computer to “see” like a 

human, allowing it to understand and properly react to learnt behavior. The goal of 

computer vision is to programmatically take in information from visual sources and 

accumulate data to make inferences or perform actions based on the results [21].  

Object recognition stands as a paramount element in the domain of computer 

vision. When presented with an image, recognition algorithms are designed to identify a 

category to which the object belongs. The advancement of object recognition has 

significantly progressed through the adoption of deep learning that unifies feature 

extraction and classification processes. Deep learning-based object recognition has 

demonstrated exceptional classification accuracy, especially when equipped with large 

training datasets and neural networks of deep layers. These networks demand substantial 

computational power and high memory capacity, usually fulfilled by high-performance 

systems leveraging powerful processors and extensive memory resources [14]. However, 

few works have been done to explore the performance of deep learning systems with 

limited computing resources in the context of object recognition.  

In this thesis, I aim to investigate the functionality of a deep neural network 

operating within a low-end system, such as a laptop. The motivation behind this research 
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is to expand the application of deep learning to personal computing. My focus will be on 

examining Convolutional Neural Networks (CNNs) composed of numerous convolution 

layers for feature extraction and multiple fully connected layers for classification. It is 

essential to highlight that CNNs differ from traditional classification methods, as their 

convolution filters are learnt from the training data, as opposed to being pre-designed by 

experts for a specific classification task.  

Specifically, this thesis will examine the accuracy levels through an experiment of 

creating a neural network with a public training dataset in a low-end system, to determine 

the effectiveness of various approaches in structuring and training object recognition 

algorithms. This experiment attempts to find the best hyperparameters needed to achieve 

the highest accuracy rate. The experiment results show the differences between using a 

max or average pooling layer and balancing the quantity of training data with the number 

of system layers. From the results, we can conclude that a max pooling layer outperforms 

an average pooling layer. The training data set and number of layers in the CNN must be 

balanced to best classify and predict data. Additionally, there needs to be a larger amount 

of feature maps created in the feature extraction phase and number of neurons fired in the 

classification phase when training the system with more complex or detailed visual data.   

There are many challenges hindering the achievement of high-accuracy rates in 

computer vision systems. This thesis will focus on two primary obstacles found in many 

computer vision systems that affect the overall quality of object detection and recognition 

systems. The first issue being a lack of training data, as seen in some systems utilized in 

automated vehicles. The second issue will observe obstacles caused by ineffective 

hyperparameter values, such as an unbalanced correlation between the quantity of visual 
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data in training data sets versus the number of system layers, that could result in 

overfitting. 
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WHAT IS COMPUTER VISION? 

 

 

Before delving into the accuracy of final descriptions gained from computer 

vision systems, it is important to understand the process behind building a system to best 

obtain and read these results. Therefore, we ask the question: what is computer vision and 

how is it being used? 

Computer vision is a branch of Artificial Intelligence (AI). In this branch of AI, 

systems using computer vision will programmatically read in information from images, 

videos, and other visual representations, to accumulate data and make inferences or 

perform actions based on the received data [20, 6]. Computer Vision helps the computer 

to “see” human behavior, allowing it to understand and properly react to the learnt 

behavior [21]. 

One of the main goals of computer vision is to try to match or even surpass the 

average human visual capability [22]. These visual capabilities include telling distance 

between objects, motion or direction of objects, recognizing and distinguishing between 

objects, and determining if something is wrong or if an object contains any flaws [21, 7]. 

Human beings already have these capabilities, now the goal is for computers to do the 

same. To achieve these lofty aspirations, software developers and AI specialists have 

been researching and experimenting with computer vision systems since as early as the 

1950s [20, 3]. 

There are three main steps in computer vision systems: gaining visual data, 

analyzing the given data, and reacting to the compiled results [20]. With today’s 

technology, computer vision systems can rely on various aspects such as sensors, 
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cameras, or visual databases to acquire visual input. The system can communicate with 

advanced mechanical devices, such as monitors, cell phones, or even vehicles to carry out 

the appropriate responses to the visual data. The question then becomes, between the 

stages of obtaining visual data and acting on it, how do computers recognize what they 

are seeing? In other words, how do computers know what they are looking at? 

 

DEEP LEARNING AND CNNS 

 

One of the main techniques computer vision systems use to break down and 

recognize inputted visual data are CNNs through deep learning [6]. 

Deep Learning 

Machine learning is a technique used by advanced technology to allow computer 

systems to learn from input and recognize patterns for future data. Machine learning 

allows computer systems to make predictions, create categories, and perform other 

calculations on inputted data [3]. 

There are multiple categories of machine learning with the three main categories 

being Supervised, Unsupervised, and Semi-Supervised learning. A system’s 

corresponding category is determined by the amount of user interaction needed when 

training the system to assign the correct categories for the data. Supervised learning 

requires training data with inputs containing clear labels. After learning the patterns 

associated with the given data, it can then receive unlabeled data to correctly recognize 

and categorize. On the other hand, unsupervised learning reads from training data sets 

without any labels, only looking at the raw data. Semi-Supervised learning is a balance 

between the two, where the system is given a small set of labeled training data, and then 
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another larger set of unlabeled training data [22]. Deep learning algorithms can be trained 

using Supervised, Unsupervised, or Semi-Supervised learning. For the scope of this 

report, we will assume the computer vision system is developed using supervised 

learning.  

Deep learning is a type of machine learning that is used by many computer vision 

systems. Machine learning requires human interaction to correct any errors the system 

makes [21]. However, deep learning aims to minimize or eliminate any human interaction 

by utilizing a neural network to correct any mistakes and create accurate results [22]. 

Deep learning is typically used in high-end systems. These systems include high-speed 

GPU and a larger storage in main memory. As a result, the systems can handle larger 

computational tasks than low-end systems.  

Hyperparameters are an important aspect in deep learning algorithms. 

Hyperparameters are set before the system is trained. These are parameters that can be 

manually changed to best optimize the system and receive the greatest accuracy rate. 

There are multiple hyperparameters including the number of nodes in each fully 

connected layer, number of final classification categories, learning rate, number of layers, 

training data size, decision of pooling strategy (maximum vs average vs minimum 

pooling), filter sizes and more. Fluctuations in any of these values can affect the way in 

which the object recognition system breaks down, filters out, and classifies objects 

through a CNN. 

When implementing a deep learning system, advanced algorithms are used to 

recognize key features in the images based on past training data. The system is given 

multiple different inputs with annotations or final categorical labels to train the system 

[22]. The training data should encompass enough data points so that the system contains 
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the necessary patterns or key recognizable features to correctly categorize or predict 

future data. Usually, an increased amount of training data used for a system will result in 

more accurate classifications and predictions. However, this is not guaranteed to be the 

truth. For example, increased training data and less layers, or a greater number of layers 

but less data could provide for a weaker or less accurate system.  

There are necessary steps in machine learning algorithms taken after obtaining the 

data. The programmer must choose a model, train the model, evaluate the model, and 

make any necessary changes so that the system can make predictions for future data. 

CNNs 

CNNs, or Convolutional Neural Networks, are a part of deep learning. CNNs are 

used to break down an image into a matrix of pixels. Each point in the matrix is given a 

label based on the pixel RGB count: 0 (black) - 255 (white). In a CNN, processing an 

image is based on the studying of these matrices and determining a pixel’s relation to its 

neighbors [3]. 

The CNN first uses edge detection to determine edges and hard lines before 

depicting simple shapes; thereby identifying objects and related entities in the image 

through processes such as object detection and image segmentation [21].  

There are various operations and algorithms used to understand the contents of an 

image including convolutions, pooling, non-linear activations, and more [3]. CNNs 

perform convolutions to create predictions about the contents in the provided images. 

These predictions are checked by the neural network and the process is repeated until the 

predictions are within a close accuracy range. The following sections will provide more 
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in-depth explanations about the construction of CNNs describing some of the capabilities, 

layering designs, and methods used to increase accuracy within the system.  

 

LAYERS IN A CNN 

 

A neural network is composed of multiple layers, each performing a distinct job 

to help understand the patterns and recognize objects found in an image. Each layer in a 

neural network is composed of a series of nodes. There are no links between nodes in the 

same layer; instead, relationships between one design of the same layer are determined by 

nodes in the next layer. Each node is specified with a weight. The weights of each node 

are constantly updated as the process continues. The final output of the CNN is 

determined by node weights. 

The three main types of neural network layers commonly used when designing a 

computer vision system for object recognition are convolution, pooling, and fully 

connected layers. A neural network is separated into Preprocessing (feature extraction) 

and Recognition (classification) layer groups with convolution and pooling making up 

the preprocessing groups, and fully connected layers being a part of the recognition group 

[22]. 

Convolution 

The convolution layer is one of the most important layers used for computer 

vision systems. In many examples of functioning CNN networks this is the first function 

applied to the given visual data. Convolution integrates the neighboring pixels and can 

eliminate or blur some detail in the image value. This layer uses small filters (kernels), 

often set to 3x3 or 5x5 size, to segment the image. In the past, these kernels were 
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manually constructed by the programmer based on similar categorical systems. 

Nowadays, for more modern systems using deep learning the kernels are constructed 

during the training process. The filter is originally set to random values, then as the 

system is trained the kernel values change using the gradient descent of the system to 

create more accurate results. These kernels are shifted across the image matrix, 

multiplying the small convolution sections by the filter value to create a convoluted 

feature [22]. In other words, convolution layers take surrounding pixels and view them as 

a single group, resulting in a feature map or activity map. 

 

Figure 1: Diagram showing the process for the convolution layer to create a feature map 

The ReLU (Rectified Linear Unit) function often occurs after the convolution 

layer and before the pooling layer. The ReLU is a non-linear activation function 

commonly used due to its high level of fast convergence. The ReLU affects the feature 

map created from the previous convolution layer by getting rid of negative values [22]. 

The function sets negative values to be zero; however, if the value is larger than zero then 

outputs the raw data. A formula for the ReLU layer is: R = max(0,y) with y being the 

original value for the selected data [22]. 
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Pooling 

A pooling layer is generally added after a convolution layer. In a pooling layer, 

the network applies another, often smaller, filter to further break down the output in the 

feature map generated from the previous convolution layers [2]. Depending on which 

type of pooling layer is required, mathematical operations are performed to calculate the 

average, minimum, or maximum values found in these smaller filtered versions of the 

feature map from the previous convolution layer [2]. Pooling layers are used to recognize 

individual aspects or objects in an image. The resulting feature map is important in 

distinguishing aspects from their background or surroundings [2]. 

 

Figure 2: Diagram showing the process for the pooling layer to create a feature map 

Both Convolution and Pooling layers are part of the Feature Extraction process. 

These layers work directly with feature maps created by filtering and extracting smaller 

segments of the original image. 

Up to this point, the layers in the system have been processing the image through 

a study of matrices. However, the result of the computer vision object recognition process 

must result in a numerical prediction based on node weights. As a result, programmers 
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introduce the concept of “flattening” at the end of the Feature Extraction process. In this 

way, the program is transferring the data from the 2-dimensional matrices gained from 

the feature maps into one-dimensional arrays to be used as the input for the fully 

connected layers [2]. 

Fully Connected 

The fully connected layer is composed of a series of nodes, or neurons. In a 

“fully” connected layer, all neurons in one layer connect to all neurons in the previous 

layer. The connection between these nodes is referred to as the “weight” between the 

nodes. Typically, these weights are generated randomly with values ranging between 0 

and 1. The fully connected layers represent the last layers included in a CNN. There may 

be more than one fully connected layer found in a CNN. The layers between the original 

input and final output layers are commonly referred to as hidden layers. Fully connected 

layers are part of the Classification process, narrowing the final classification down by 

calculating each node’s final weight. 

The final output of the CNN will result in a prediction for the determined image 

category. There are different types of final output layers depending on whether an image 

can be classified in more than one category. Images that contain one main subject and can 

be classified into a singular category often utilize a SoftMax layer, where the final weight 

leads the system to a singular output node [15, 10]. However, visual data that can be 

conformed to multiple categories require more complex examinations. For these images, 

the system utilizes multiple logistic regressions to determine a number between 0 and 1 

and assign a final category [22]. 
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In a SoftMax layer, each node in the final layer represents an individual image 

category. Therefore, the SoftMax layer must have an equal number of nodes as the 

number of available classification categories [10]. The final weights of each node should 

fall within a range of 0 to 1, with 1 being 100% certain the image should be organized as 

part of the selected category. All individual weights should sum up to 1 [15, 10]. The 

classification with a weight closest to 1 will be deemed the final classification [15]. 

 

Figure 3: Diagram showing the process for the classification stage through fully connected layers 

Each of these layers can be repeated as needed throughout the process. In fact, 

many systems use multiple convolution, pooling, and fully connected layers to increase 

the accuracy of the final prediction. 



 13 

 

Figure 4: Diagram showing the full Convolutional Neural Network (CNN) 

However, this classification prediction may not always be extremely accurate on 

the network’s first try. Therefore, to increase the accuracy of results, programmers have 

developed ways in which to optimize the system. 

 

OPTIMIZING THE RESULTS 

 

A neural network is essentially a long, somewhat complicated, function. The 

training process of a neural network is the optimization of all the parameters of the 

function. Optimization is not used to find the final classification, but rather to find the 

best parameters to use for the data set [16]. In this way, as the neural network function 

continues, the weight of the nodes can be adjusted to better fit a final classification. 

While there are many ways to optimize a computer vision system, one of the most widely 

used methods is finding the gradient descent, or minimum cost of the loss function [9]. 

Gradient descent is an important topic in understanding how this final 

classification is calculated. Gradient descent is used when training a CNN to help correct 

any mistakes made throughout the weight calculation processes and help guide the final 
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decision to the correct output node [9]. The error in a CNN is repeatedly calculated after 

the completion of each layer. The gradient descent calculation returns a number value 

stating the determined error range based on the node’s calculated weight; the layered 

network will then adjust and update the weight calculations [17]. As a result, once the 

CNN receives real data, not meant for training, the parameters will have an increased 

accuracy rate and provide data with a decreased error margin. 

Gradient descent is calculated through backpropagation. This means that gradient 

descent is calculated after the image is processed and the network provides an original 

“guess” as to the corresponding category [16]. If the output classification is incorrect, the 

neural network will attempt to correct itself through a process called backpropagation. 

The system back-propagates through the layers. In this way, the network starts at the final 

classification node layer and works backwards towards the beginning input layer, 

recalculating the weight by applying the calculated gradient of descent [16]. 

Gradient descent is calculated through an equation of derivatives to find the 

minimum value of the cost function. In more simple terms, gradient descent is searching 

through the function where the gradient, or slope of a function at any given point, is at a 

minimum or closest to 0 [17]. Seen below is the function used to find Gradient Descent: 

p(n+1) = p(n) - N * ▽f(p(n)) 

p(n) → Represents a point on the function 

N → Represents the system’s learning rate 

▽f(p(n)) → The gradient (slope) at a point on the function 

p(n+1) → The next point, or step, on the function 
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Utilizing the above formula, the following steps are completed to calculate gradient 

descent: 

1. Initialize the formula by choosing a random starting point on the function (p(n)). 

This random initialization will also help in the long run by reducing the 

probability of falling into a saddle-point trap. 

2. Use this starting point and solve for ▽f(p(n)). 

3. If ▽f(p(n)) is less than or equal to your determined minimum acceptable error 

range, then stop calculations and return the found parameters for gradient descent. 

If not, then use ▽f(p(n)) and your learning rate to solve for p(n+1). 

4. Repeat steps 2 and 3 until you have either found a point with slope close enough 

to zero, or reached a specified iteration limit [6, 9, 17]. 

 

The user-defined learning rate can greatly impact the final gradient descent 

calculation. Multiplying the found gradient with the learning rate is used to calculate the 

“step size” between the determination points [16]. A smaller learning rate can lead to a 

more effective and specific calculation, while a larger learning rate can negatively impact 

the calculation by “stepping over” the local minimum point [16]. For instance, the 

MATLAB code found in Appendix A, Code A calculates gradient descent and plots each 

determination point as it is used in the function. As seen below, example A has a smaller 

learning rate of 0.1 while Example B has an increased learning rate of 0.9.  
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Figure 5: Graph from Code A, all determination points plotted with learning rate of 0.1 

 

Figure 6: Graph from Code A, all determination points plotted with learning rate of 0.9 

Many gradient descent algorithms are charged with finding a local minimum 

rather than the global minimum. As the CNN becomes more complex, the loss function 

will also expand with more variables. In multivariable loss functions, the calculation for 
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gradient descent runs the risk of failing to find a global minimum, but instead locating a 

local minimum [9]. During calculations, the current point could fall into a plateau where 

the slope is neither increasing nor decreasing in either direction of the current point, 

instead the graph appears to be flat. Likewise, the algorithm could locate a local 

minimum in a ridge, where the slope is increasing on both sides. As a result, the system is 

not guaranteed to find a global minimum. Most of the time this will not drastically affect 

the system accuracy; however, a few possibilities of escaping this saddle point issue 

would be to adjust the learning rate or restart the calculations with a different random 

starting point.  
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POTENTIAL ISSUES IN OBJECT DETECTION AND RECOGNITION 

 

 

Although it is an extremely important part of the system, object detection and 

recognition itself is a major issue in computer vision. There are multiple issues that can 

affect the overall accuracy results of an object recognition algorithm. To start, object 

detection can be difficult with clustered backgrounds or poor-quality images. Similarly, 

pictures taken at angles so the object looks distorted or is hard to recognize can also 

confuse many object detection and recognition systems [14]. Additionally, computer 

vision itself can be difficult if businesses lack the machinery or resources necessary for 

analyzing large amounts of inputted data [4]. 

Another large issue is a lack of data provided for a “new” object. For example, a 

system designed to recognize different forms of architecture may be confused by houses 

built in weird or modern shapes. Another more common example would be found in 

automated vehicles. There have been many instances where a self-driving car does not 

have enough training data to determine a classification for unusual objects such as a 

horse-drawn carriage or pedestrian walking beside a bicycle [11]. 

Furthermore, overfitting and underfitting are two large issues that must be 

addressed in computer vision machine learning systems. Overfitting refers to configuring 

the hyperparameters of the function so closely to the training data that it cannot account 

for extra or new data. On the other hand, underfitting of the system fails to recognize 

patterns within the learning data and sets hyperparameters too loose to truly understand 

the data. Both issues can lead to inaccurate predictions for future data. To mitigate the 
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issue of overfitting and underfitting, it is important to pay close attention to the system’s 

hyperparameters and attempt to configure these hyperparameters wisely. 

While many of these issues may not seem extremely advanced or dangerous to the 

human eye, these conditions can lead to major differences in determination in computer 

vision systems. Depending on the system’s purpose, these differences can lead to 

devastating and potentially life-ending results. To further demonstrate the tremendous 

impact these systems can have on everyday life, a person should study the recent 

achievements and setbacks found in modern computer vision systems such as the ones 

incorporated in automated vehicles. 
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REAL LIFE USAGES 

 

 

Currently, these technologies and neural networks are actively working in almost 

every aspect of daily life. Computer vision is used in daily activities such as using facial 

recognition systems and image restoration programs. Retail stores are now using robots 

equipped with AI object detection systems to quickly count inventory or restock 

products. Computer vision is also used widely in manufacturing and construction 

companies wherein image segmentation is used during safety inspections to find any 

flaws in production. Augmented reality has also become increasingly popular among the 

public, object recognition systems are used within these high-definition systems to 

construct and recognize real-time object data in the environment around a person. 

Additionally, CNNs are used in more dire situations such as with medical imaging 

and video surveillance systems. For medical imaging, the machine uses image 

segmentation on X-rays or other medical images to find different diseases, tumors, and 

other harmful issues in the image. Intelligent video surveillance and analysis systems use 

image segmentation to identify key objects, such as humans, in the visual data. These 

systems can also incorporate facial recognition to later identify people in these captured 

instances. A market analysis report conducted in 2022 determined the Global Computer 

Vision Market was valued at about $14.10 billion. As computer vision grows in 

popularity, this number is predicted to also expand to reach a compound annual growth 

rate of about 19.6% within the next 7 years [4]. 
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In current times, computer scientists and AI specialists are more closely 

examining the impact of computer vision capabilities specifically in the transportation 

industry. According to a market analysis report conducted regarding the 2022 market, 

49% share of the Global Computer Vision Market was computer vision systems designed 

for industrial purposes. While this category does include other manufacturing businesses 

such as pharmaceutical and electronics development; this category was largely composed 

of automotive and transportation industries [4]. AI research and understanding has 

rapidly expanded in recent years, allowing companies such as Tesla and Waymo to 

attempt to develop fully functioning self-driving cars. The end goal of these autonomous 

vehicles is creating an increased accessibility and ease for the consumer along with 

decreasing roadway hazards [4]. However, these cars are not currently filling the market 

as there are still many potential hazards the car companies must fully solve before they 

are safe for the masses. This thesis will more closely examine the CNNs used when 

designing and developing the AI systems in these independent vehicles. 

 

AUTOMATED VEHICLES 

 

The Society of Automotive Engineers (SAE) created five different levels of 

automaticity for self-driving cars. Currently, modern technology limits self-driving car 

designs to be categorized as level two, with the driver still maintaining control over 

necessary functions such as steering and braking. However, the goal for self-driving cars 

is to be able to be categorized as level five, giving complete control to an AI system 

driving the vehicle so that there is little to no need for human interaction [13].  
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An additional goal for AI driven vehicles, other than human convenience, is to 

improve roadways by lowering traffic rates and cut down on accidents caused by 

distracted driving. According to Abhishek Balasubramaniam and Sudeep Pasricha 

following a NHTSA 2021 report, “more than 36,000 people died in 2019 due to fatal 

accidents on U.S. roadways”. Of these accidents, about 94% were caused by distracted 

driving or other human errors [13].  

Software developers and engineers intend to achieve these goals of automated 

driving and lowering roadway hazards by utilizing high-detection sensors, including 

cameras, radars, and lidars, to take real-time snapshots of the vehicle’s surroundings. The 

AI computer vision software would then classify any objects or roadway hazards in the 

snapshots and use this information to determine the best course of action to avoid any 

accidents or mistakes on the road.  

However, car designs today are still a long way away from reaching these goals. 

According to statistics gained from a medical and legal referral company, “Around 9.1 

driverless car crashes occur per million miles driven…Over 20 months, Waymo’s self-

driving cars have been involved in 18 accidents…In the past four years, eleven Tesla 

self-driving vehicle accidents have been reported…Overall, there have been around 37 

Uber test vehicle crashes” [11]. This shows that there are definitive issues that still need 

to be addressed before humans can take a fully hands-off approach on the road. 

Among these issues include a lack of trust in many consumers. A survey taken by 

the Boston Consulting Group in 2016 determined that the number one concern people 

have with self-driving cars is that they would not feel safe in the vehicle; 50% of all 

respondents agreed with this statement. People do not feel willing to get in a self-driving 
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car while others do not even trust being on the road with AI driven machines [11]. Many 

consumers want to always maintain control of their vehicles in case of emergencies or 

unsafe roadways.  

Another issue arises in the lack of knowledge and statistics concerning the 

reliability of functions of the cars. While the dream for self-driving cars has been present 

since as early as the 1930s, the actual development of AI driven cars is still a relatively 

new feature [11]. Therefore, data is still being gathered about the machines’ 

performances and the idea is still in the development phases.  

While these issues cause a lack of headway in the future of self-driving cars; one 

of the most prevalent and deadly issues with the technology is the lack of certainty in 

object detection and recognition systems. This decreased certainty can stem from many 

places; one of the most common causes is a lack of training data. An extremely large 

quantity of training images is necessary to properly train a system as complex as 

automated vehicles. One instance of automated systems was trained utilizing a DCNN 

with a training dataset of over one million records to avoid overfitting [18]. However, 

even this amount of data cannot always account for new or entirely unexpected obstacles 

that often appear while driving. Humans have the capability of seeing an object on a road 

and, without even fully knowing what the obstacle is, making quick decisions about 

whether to go around the object, stop the car, or continue as normal. Currently, some 

companies struggle to reach the same goal in object detection and recognition systems.  

For instance, the tragic death of Elaine Herzberg on May 7, 2018, was the first 

recorded pedestrian fatality at the fault of a malfunction in an AI driven vehicle. 

Herzberg was walking alongside her bike and crossing the road when she was struck by 
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an AI driven Volvo XC 90. It was later found out that the object recognition system 

lacked substantial data to truly determine what the upcoming pedestrian walking next to a 

bicycle should be classified as. Herzberg was recognized by the AI software as an 

unknown object, car, and bicycle within the span of 6 seconds [11]. Sadly, the AI did not 

make a reasonable decision to stop before colliding with the unexpecting pedestrian. This 

unfortunate incident displayed early the lack of data, software, and technology needed to 

successfully fulfill the object recognition capabilities of self-driving vehicles.  

This lack of data is not a solitary incident. Other systems have reported issues in 

identifying unknown objects such as road signs with attached stickers and even horse 

drawn carriages on roadways. Researchers have reported that more data should be 

obtained for dealing with changes in weather conditions, terrain, traffic, and location 

[13]. Training the system using semi-supervised learning or an open dataset can also 

account for new data such as changes in weather or light [13]. 
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EXPERIMENTS 

 

 

As previously mentioned, there are multiple attributes that could affect the 

system’s final classification results of an image. For instance, image quality, object 

orientation, and extraneous noise could all potentially disrupt the accuracy of the outputs. 

However, for this thesis, I chose to focus more directly on elements regarding the setup 

of the computer vision system itself that could affect the accuracy of the results in low-

end systems; more specifically, how changing the hyperparameters of type of pooling 

layer and number of hidden layers regarding the size of the training data set will affect 

the final output and accuracy of the system. 

  

Hypothesis 1: The training data size and number of layers are connected in providing 

accurate classification results. A larger training data set with fewer layers will produce a 

decreased accuracy through underfitting, while a smaller training data set with an 

overabundance/immense number of layers will produce a decreased accuracy rate 

through overfitting. 

  

Hypothesis 2: Using a max pooling layer instead of an average pooling layer will result in 

a higher accuracy rate. 

  

To test these hypotheses, I have created a computer vision system using the 

MATLAB programming language. The following sections will go further into detail 
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about the process of setting up and implementing the program, obtaining training data 

sets, running multiple tests, thoroughly examining the obtained results against the 

original hypothesis, and examining any corrections or prevalent errors found within the 

program or additional matters that affect the compilation and output of the program. 

Before beginning, since this program mainly deals with visual data, it is important 

to understand how these imported images are perceived in the code. With the MATLAB 

language, the images are broken down into matrices of values, with each individual value 

being a numerical digit representative of the corresponding pixel in the image. Each 

matrix contains certain attributes for the image including dimension size and RGB value. 

Below is a segment of code used to load a relatively simple, small image into the 

program.   

img = imread("Western_Cup.png"); 

imshow(img); 

The program reads in the image as a matrix value and displays the image on-

screen. Seen below is a visual representation of the image more familiar to what a human 

would recognize and the corresponding matrix of values that is used by the program to 

understand the image. 
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Figure 7: Image of a mug 

 

Figure 8: Section of MATLAB data after reading in the image of the mug 

Now that it is clear how the MATLAB program reads in visual data, we can begin 

to explain how this experiment was set up to interpret the objects within said data. 
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EXPERIMENT SETUP 

Available Resources and Limitations 

As formerly stated, this experiment is written in the MATLAB programming 

language. The program incorporates available computer vision, deep learning, and 

machine learning toolboxes to improve efficiency within the program. 

This program was created and run on a low-end system using the resources from a 

MacBook Air and was thus limited in many ways. The system was trained on a single 

CPU with 8 GB of RAM. Oftentimes, multiple other programs or resources were running 

in the background while the system was being trained. To conform to these constraints, 

the training image datasets were kept relatively small and training time was not allowed 

to exceed 8 hours. Therefore, this experiment focusses on CNNs running on low-end 

systems, rather than high-end systems seen in more advanced computations.  

Training Image Dataset 

One of the most important steps in setting up the experiment was acquiring 

training data. For the purposes of this experiment, I created three different training 

datasets from a free public image dataset from Kaggle [20, 8, 1, 5]. Each dataset has a 

total of 10 different animal categories: cat, dog, squirrel, sheep, horse, elephant, butterfly, 

spider, chicken, and cow. The difference between the sets is the total number of images in 

the dataset: 10 images in each category for a total of 100 images, 100 images in each 

category for a total of 1000 images, and 1000 images in each category for a total of 

10000 images. All images in the dataset must be the same size for the input layer. 

Therefore, after the dataset was read in, all images were resized to an identical 
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300x300x3 size. Seen below is a small selection of randomly chosen images from the 

training image dataset. 

 

Figure 9: Twenty randomly selected images from the training image dataset 

Original Layer Designs 

The following section explains the original layering design in the MATLAB 

program found in Appendix A, Code B for the included layers. The program begins by 

reading in the local image dataset and resizing the images if needed. The dataset is then 

split with 70% of the images becoming a training image dataset and the remaining 30% 

acting as a validation image dataset.  

When setting up the original layer designs, the program included an original input 

layer reading in a matrix of size 300x300x3. The program then contained a convolution 

2d layer utilizing a 3x3 filter to create 8 feature maps. The following ReLU layer was 

used as a non-linear activation function. Afterwards, the feature maps were sent through a 
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max pooling layer with a 2x2 filter and stride of 2 units. This process was repeated, 

doubling the number of feature maps created in the convolution layer each time.  

Next, the feature maps were flattened and transferred to a fully connected layer. 

The last fully connected layer must have the same number of nodes as final 

classifications. Therefore, the final fully connected layer contained 10 neurons for the 10 

available animal categories. As test runs progressed, these convolutional, ReLU, pooling, 

and fully connected layers were duplicated as needed and the parameters were changed to 

provide more precise calculations.  

As the system was being trained, the training data accuracy rates were plotted in 

real time. The figures display two graphs, the training accuracy, and the training loss 

value, each plotted against the iteration number. In each graph, the system plots the 

training data (blue line for accuracy, red line for loss) and the validation accuracy (black 

dotted line). Each point on the validation line is plotted after the completion of a 

validation minibatch, currently set to a size of 32.  

After the CNN is created and trained, the program predicts the categories of the 

validation image set and terminates after calculating a final accuracy percentage. While 

there are many ways to calculate the performance of a CNN, such as solving for mean 

squared error or mean absolute error, this experiment calculates the performance based 

on prediction accuracy. After training the system, the accuracy is determined by 

comparing the network’s predictions with the actual assigned labels and calculating the 

percentage of correct classifications. 
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TEST RUNS 

Observations with Small Dataset 

To fix any minor errors or bugs in the code without fully training the computer 

vision system I decided to run the program with a few test runs using an extremely small 

image dataset. This dataset was compiled of 20 photos on my personal camera roll 

separated into two categories: cat or dog. Therefore, the training data set consisted of 12 

photos with 8 validation images to test for accuracy. The following observations are from 

test runs performed with this incomplete and minimal image dataset. These runs are 

solely for understanding the object recognition system and to discover some of the best 

values to set the hyperparameters for the actual experimental runs. Note that even when 

running the program with the exact same parameter values multiple times, the algorithm 

produces different accuracy rates. This is most likely due to the randomization of 

separating the total image set into training and validation data. 

The following observations were all made with an image set size of 20 images. 

With two sets of convolutional layers the accuracy rate calculated to 75%. When three 

sets of convolutional layers the accuracy rate is calculated to 50%. This is some 

indication that an overabundance of layers with a smaller data set could lead to 

overfitting of the training data. Furthermore, when max epoch is set to 4, the accuracy 

rate is calculated to 75%; however, when increasing max epoch size to 6 the accuracy 

rate improved to 87.5%. Since the algorithm ran through the training data set an extra two 

times it was able to better parameterize the cost function for the system. Originally, the 

chosen data set was resized so that all images were of the same size 100x100x3. After a 
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few processes of trial-and-error, the images were all reset and resized to the current 

300x300x3 dimensions.  

 

Figure 10: Accuracy results from small dataset of 20 images 

Examples of Overfitting 

The main problem encountered when configuring the parameters of the object 

recognition system was accounting for overfitting. Seen below is a screenshot of the 

results for a total image dataset of 1000 images with parameters configured too closely to 

the original training dataset. This does not allow enough room for new predictions in the 

validation dataset and results in overfitting. 
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Figure 11: Accuracy rates depicting overfitting during training 

To counter this overfitting issue, the experiment underwent multiple extensive test 

runs, changing hyperparameters such as learning rate, epoch size, number of features, and 

the number of convolution, pooling, and fully connected layers. Described below are 

some of the optimal hyperparameters found and other observations made throughout 

these test runs. 

 

OBSERVATIONS 

Ideal Hyperparameters 

The initial learning rate is important in the final accuracy rate; after multiple runs 

of trial-and-error it is determined that a learning rate of 0.0001 provides the best accuracy 

results. 
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The number of epochs determines how many times the system will run through the 

complete training dataset. In the experiment, for every training dataset, regardless of size, 

it takes at least 4 epochs for the training dataset to reach near 100% accuracy. The 

optimal number of epochs is 6. In many test runs, the validation accuracy will level off 

but still slightly increase in accuracy up until the sixth and final epoch. 

         The batch normalization layer also helped increase the system’s accuracy. 

Without the batch normalization layer, with a training data set of 20 images, the 

algorithm was stuck calculating only a 50% accuracy rate; however, after including batch 

normalization the system improved to a 75% accuracy rate. 

         The original images are large in scale and contain an abundance of details, both in 

the main object of interest and the background or other aspects in the image. Therefore, 

multiple convolution, pooling, and fully connected layers are required to create feature 

maps for each of the thousands of features in the image. The program starts with a 

convolution layer creating 32 feature maps then doubles in size until there are 512 feature 

maps. There are 6 fully connected layers; the first and fifth layer contain 256 nodes, 

layers two through four contains 512 nodes, and the final fully connected layer contains 

10 nodes matching the number of classifications. There are also two dropout layers after 

the second and fourth layer to improve accuracy.  

Training Time 

Another interesting observation was found in the correlation between the training 

dataset size and the overall training time. The larger the training dataset size, the longer it 

will take to fully train the system. From the image sets gathered for this experiment, 

depending on the dataset size, it can take between a couple of seconds to hours to 
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completely train the system. Ideally, a fully operational computer vision system would 

utilize a training dataset of upwards of 10,000 images. This could take hours or days to 

fully train the system. However, due to the constraints of this experiment, the training 

image sets were kept relatively small and therefore took a short time to train. The longest 

test run in this experiment ran for about 8 hours.  

 

RESULTS 

 

 

From the multiple test runs, the results of the experiment concluded that the 

number of convolution, pooling, and hidden layers does influence overall classification 

accuracy. The original test runs began with a limit of three convolution layers, two max 

pooling layers, and one fully connected layer. After utilizing the dataset of 1000 total 

images, the accuracy rates averaged about 20% and took less than 5 minutes to run. 

 

Figure 12: Accuracy rates for initial test run of 1000 images 



 36 

As the number of convolution and pooling layers increased, the accuracy rates 

also slightly increased. A major difference came from including multiple hidden, fully 

connected layers. While this did increase the total elapsed time for training, it also 

increased accuracy rates by about 10% to 20%. 

 

Figure 13: Accuracy rates for test run on 1000 images with multiple fully connected layers 

However, I discovered that the number of layers was not the only important detail 

in the layering design. The quantity of features extracted in the convolution layers and the 

corresponding number of nodes in the fully connected layers have a high correlation to 

the classification accuracy. This increase in features is due to the large dimensions and 

number of details found within the image dataset, each image being 300x300x3 in size 

and containing multiple important features. Since the images are a large size there will be 

more features in the image. Therefore, the program requires a larger number of filters in 

the convolution layers. The program starts with a convolution layer with 32 features and 

doubles until reaching a desired size. 
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Through multiple trial-and-error test runs; I determined that the current optimal 

number of features for the convolution layers and number of nodes for the fully 

connected layers to be between 512 and 1028. Given the fixed size of input, increasing 

the number of layers will result in long elapsed runtimes, upwards of 8 hours, and a 

decreased accuracy. 

The current highest accuracy was obtained with 4 convolution layers (starting at 

32 features and increasing to 512) and 6 fully connected layers (3 layers each with 512 

nodes, two layers with 256 nodes, and the last fully connected layer containing 10 nodes). 

Utilizing an image dataset of 1000 total images, the system resulted in a final validation 

accuracy of 51.67%.  

 

Figure 14: Accuracy rates for test run of 1000 images with increased feature size in convolution 

layers 
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While this accuracy rate can still be seen as low, the percentage of accuracy 

shows a large improvement from earlier versions. This improvement details some 

important information about the correspondence between the number of layers and 

features in each layer with the overall accuracy.  

Another important discovery to note is how a matching layering design can affect 

the overall accuracy on systems using different training data sizes. After finding the 

layering configuration providing the highest accuracy rate for a training dataset of 1000 

images, I repeated the process of training the system with a dataset of 100 total images 

and a dataset of 10,000 total images. The following graphs display the results after 

training the system with a dataset of 100 total images.  

 

Figure 15: Accuracy rates for test run of 100 images with highest performance layering 

configuration 
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 The smaller dataset performed poorly in comparison to the larger image set. The 

final training accuracy was almost 100%, while the final validation accuracy calculated to 

only 16.67%. The overabundance of layers in comparison to the given training data 

created an imbalance in the system and produced a large amount of overfitting.  

 

Figure 16: Accuracy rates for test run of 10,000 images with highest performance layering 

configuration 

 As seen in the graph above, when utilizing a training dataset of 10,000 images the 

system resulted in a final validation accuracy of 55.8%. While this accuracy rate still has 

room for improvement, the test run is unique by the limited level of overfitting. Unlike 

the more constraining datasets, the training dataset of 10,000 images provided an 

improved balance with the layering configuration, resulting in a very limited amount of 

overfitting.  
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These test runs demonstrate how accuracy not only depends on how the layers in 

a CNN are configured, yet also on the number of images used to train the system. When 

categorizing images containing an abundance of features and requiring multiple 

convolution and hidden layers, it is best to train the network using large data sets. 

Training the system with a limited dataset leads to a greater potential for overfitting and a 

smaller validation accuracy. As seen in the previous test runs, the largest dataset of 

10,000 images provided the highest performance on the low-end system.  

 

ADDITIONAL COMPLICATIONS AND POTENTIAL FUTURE WORKS 

 

As previously mentioned, the current state of the program suffers from issues of 

overfitting. Additional time would be required to find better hyperparameters necessary 

to increase accuracy rates. Additional changes could be made to improve accuracy in 

future works. For example, this experiment could be replicated and conducted on a high-

end system. Obtaining a more powerful machine with increased resources, such as larger 

memory storage, could allow for a larger training data set and increased computational 

resources. Furthermore, future additions or similar projects could focus on utilizing 

different programming languages. While MATLAB is a powerful programming language 

and has advantages when creating a CNN, other languages such as Python have also 

proven useful in the field of computer vision. 
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CONCLUSION 

 

 

In conclusion, as computer vision becomes more prevalent in today’s everyday 

usage, the public is relying on accurate results from object recognition algorithms. 

However, there are multiple attributes that accumulate to influence the accuracy levels of 

a computer vision system’s results. 

The amount and type of neural network layers should develop the system’s 

prediction calculations without becoming overly extensive regarding the amount of 

training data. As seen in the experiment, an overabundance of layers could lengthen the 

system’s time in extraneous and unnecessary calculations as well as create an issue of 

overfitting, harming the overall accuracy of the system. A lacking number of layers could 

also negate the system’s accuracy by not providing enough calculations or thorough 

determinations of details within an image. 

The computer vision system should not be expected to provide perfect predictions 

on the first run-through. Therefore, the system should be equipped with optimization 

methods. The data is better understood and patterns more easily recognizable by using 

backpropagation, allowing the nodes to be adjusted using gradient descent to find the 

minimum cost for each weight. 

The training data should be complete, providing enough examples and details so 

that the system is not confused or shocked by any objects present in the image. The 

training data set should not be overly numerous or lacking in comparison to the number 

of layers. However, the users of the system should also be aware that as time goes on and 

the world develops, the system should be able to recognize new inventions or additions in 



 42 

the data. The system should be somewhat kept up with for the inclusion of new data or 

ability to create new categories to keep the system from becoming outdated.  

Modern systems are developing at a rapid pace towards providing an increased 

accuracy in object classifications. Presently, people are attempting to incorporate object 

recognition systems into scenarios from every aspect of life for the ease and accessibility 

of quick, accurate results. However, programmers and other developers still have a long 

way to go in increasing the accuracy of these systems; a job that will likely take years to 

accomplish since not even the human visual system is 100% perfect. 
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APPENDIX A: CODE 

 

 

Code A: MATLAB program to calculate Gradient Descent 

func = @(x)x^2-6*x+1; 

derivativeFunction = @(x)2*x - 6; 

minAcceptance = .01; 

limit = 100; 

%learning rate 

N = .1; 

allX = []; 

allY = []; 

cnt = 0; 

  

%start at a random point in the graph 

x = -3; 

  

%find first derivative of the function (function for slope) 

gradient = derivativeFunction(x); 

  

%find gradient descent using derivative of the function 

while(abs(gradient) > minAcceptance && cnt < limit) 

allX(end + 1) = x; 

allY(end + 1) = func(x); 
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cnt = cnt + 1; 

  

%go to next point on graph using learning rate 

x = x - N * gradient; 

gradient = derivativeFunction(x); 

end 

  

%plot the function and each determination point visited in 

the function 

fplot(func, [-6,8]) 

title("Solving for Gradient Descent"); 

xlabel("XRange"); 

ylabel("YRange"); 

hold on 

plot(allX, allY, "r*-") 

hold off 

  

  

Code B: Computer Vision Object Recognition program 

%{ 

This is a program to create a computer vision object 

recognition system. The goal is to read in an existing 

image data set to train the neural network and determine 
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which hyperparameters give the most desirable accuracy 

results. 

 

The hyperparameters to change include changing max vs 

average pooling layer, and changing the number of hidden 

layers versus the quantity of training data 

%} 

 

%getting the training data image set  

totalImageSet = 

imageDatastore('CET_CV_ImageSet/100_DataSet','IncludeSubfol

ders',true,'LabelSource','foldernames'); 

%will show how many times a label is used in the image 

dataset 

%countEachLabel(totalImageSet); 

 

%resize all training data to be the same size 

imSize = 300; 

%{ 

while hasdata(totalImageSet) 

    [currentImage, info] = read(totalImageSet); 

    currentImage = imresize(currentImage, [imSize, 

imSize]); 

    imwrite(currentImage, info.Filename); 
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end 

reset(totalImageSet) 

%} 

 

[trainingImages, validationImages] = 

splitEachLabel(totalImageSet, 70, 'randomize'); 

 

%setting up the initial layers 

layers = [ 

    %corresponds to the size of the image 

    imageInputLayer([imSize imSize 3]) 

 

    %first convolution layer 

    convolution2dLayer(3, 32, 'Padding', 'same') 

    batchNormalizationLayer 

    reluLayer() 

    %first pooling layer 

    maxPooling2dLayer(2, 'Stride', 2) 

     

    %second convolution layer 

    convolution2dLayer(3, 64, 'Padding', 'same') 

    batchNormalizationLayer 

    reluLayer() 
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    maxPooling2dLayer(2, 'Stride', 2) 

 

    %third convolution layer 

    convolution2dLayer(3, 128, 'Padding', 'same') 

    batchNormalizationLayer 

    reluLayer() 

     

    maxPooling2dLayer(2, 'Stride', 2) 

 

    %fourth convolution layer 

    convolution2dLayer(3, 256, 'Padding', 'same') 

    batchNormalizationLayer 

    reluLayer() 

 

    maxPooling2dLayer(2, 'Stride', 2) 

 

    %fifth convolution layer 

    convolution2dLayer(2, 512, 'Padding', 'same') 

    batchNormalizationLayer 

    reluLayer() 

 

    %transition to fully connected layers 

    %fully-connected hidden layers correspond with number 

of final classification options 
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    fullyConnectedLayer(256) 

    fullyConnectedLayer(512) 

    %dropoutLayer(.2) 

    fullyConnectedLayer(512) 

    fullyConnectedLayer(512) 

    %dropoutLayer(.2) 

    fullyConnectedLayer(256) 

    fullyConnectedLayer(10) 

 

    %training data should only result in one classification 

    softmaxLayer 

    %output layer 

    classificationLayer 

]; 

 

%extra hyperparameter options for training data 

%using stochastic gradient descent (sgdm) 

options = trainingOptions('sgdm', ...  

'InitialLearnRate', 0.0001, ... 

    'MaxEpochs',6,'Shuffle','every-epoch',... 

    'MiniBatchSize',32,... 

    'ValidationData',validationImages, ... 

    'ValidationFrequency', 10, 'Verbose', true,... 

    'Plots','training-progress'); 
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%use the layers and other hyperparameters to train the cnn 

using  

%the image dataset of labeled images 

cnn = trainNetwork(trainingImages, layers, options); 

 

%use the image dataset of validation labeled images to 

determine 

%accuracy of the cnn's object recognition algorithm 

prediction = classify(cnn,validationImages); 

validationLabels = validationImages.Labels; 

 

percentOfAccuracy = sum(prediction == 

validationLabels)/numel(validationLabels); 

disp("The percentage of accuracy is "+ percentOfAccuracy) 

  

  

Code C: Program to read in an image 

img = imread("Western_Cup.png"); 

%img = imresize(img, .04) 

imshow(img); 
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