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ABSTRACT 
International Journal of Exercise Science 11(1): 1120-1135, 2018. Research over the past 15 years or so has 

shown that an external focus on the effects of one’s movements improves performance relative to an internal focus of attention 

on bodily actions. More recent research has attempted to discover how the focus of attention (FOA) influences underlying 

motor control processes by using kinematic and EMG measures. Research has shown that an external FOA reduces EMG 

activity and the co-contraction between agonist and antagonist muscle groups relative to an internal FOA. The primary goal of 

the current study was to determine how the FOA influences the acceleration pattern during dart throwing, providing a more 

complete kinematic description relative to earlier work. Twenty-four participants threw 24 darts in both an external focus 

condition, focusing on the flight of the dart, and an internal focus condition focusing on the elbow angle at dart release. Surface 

EMGs were recorded from the triceps and biceps muscles and acceleration was recorded in the X, Y, and Z axes. Accuracy 

was better with an external focus relative to an internal focus.  There was greater acceleration in the Y and Z axes in the second 

half of the movement in the external focus condition relative to the internal focus condition. An external focus generated less 

co-contraction between muscle groups compared to the internal focus condition. Overall, the results showed that an internal 

FOA reduces movement efficiency relative to an external FOA. 
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INTRODUCTION 
 
Improving motor performance is a constant goal for athletes in team and individual sports and 
certain health care professions, like surgery. In order to optimize performance, physical training 
needs to be structured appropriately so motor control is achieved. However, recent evidence 
suggests that one’s attentional focus also has a significant effect on physical performance. 
Adopting an external focus of attention on a target rather than an internal focus on the body 
movements has been shown to improve accuracy and movement efficiency in a variety of tasks 
(7, 22, 30) and transfer to novel skills (27). For example, basketball free-throw shooting accuracy 
has benefited from an external focus of attention on the basket or ball trajectory rather than an 
internal focus of attention on wrist flexion or movement form (1, 39). Studies have also 
demonstrated an advantage of an external focus of attention relative to an internal focus of 
attention with hitting golf balls (2, 38), serving volleyballs (35), and throwing (4, 13, 16, 23). 
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There have been three main attempts at providing an explanation for the difference in effects of 
an external and internal focus of attention. These are the constrained-action hypothesis (36, 37), 
the self-evoking trigger hypothesis (33), and more recently the OPTIMAL theory of motor 
learning (34). According to the constrained-action hypothesis, an internal focus of attention 
prompts a more conscious form of motor control relative to an external focus of attention.  
 
These conscious processes interfere with the normally automatic control functions constraining 
the motor system (36, 37). In contrast, an external focus of attention engages more automatic 
control processes that are fast and require less attentional capacity (10, 29). The reduced 
attentional capacity with an external focus has been shown to improve balance (5, 11, 21, 36) 
particularly when one focuses further away from the body (18, 36). These studies concluded that 
increasing the distance of the effect from the action being done (external focus of attention) 
enhances performance, while a focus on close spatial proximity, or on the body itself (internal 
focus of attention), constrains the processes involved with the control of balance. With greater 
automaticity with an external focus of attention one would also expect less failure in skilled 
performance under pressure (19).  
 
The self-invoking trigger hypothesis proposes that referencing one’s body parts or movement is 
assumed to result in self-evaluative and self-regulatory processing by facilitating the access to 
the neural representation of the self. This hypothesis is consistent with the constrained action 
hypothesis and addresses a potential proximal cause of more automatic or conscious control of 
movements (33). So, any cues that cause an individual to reflect about themselves have the 
potential to disturb motor performance (15). Choking under pressure can also be an example of 
misdirected attention that triggers neural activation of the self that degrades performance (3, 
19). Lastly, the OPTIMAL theory for improving motor performance takes social-cognitive-
affective-motor nature into account, which suggests that motivational and attentional factors – 
with an external focus of attention – contribute to performance and learning by the coupling of 
goals to actions (34). According to the theory, an external focus of attention improves motor 
performance by directing attention to the task goal and by reducing a focus on the self. With 
greater success in achieving the task goal, an external focus of attention also leads to an enhanced 
expectation of future success relative to an internal focus of attention.  
 
Regardless of the theoretical explanation for the advantage for an external focus of attention 
relative to an internal focus of attention, studies over the past 13 years or so have investigated 
the underlying causes of the benefit of an external focus of attention. For example, several 
studies have investigated the underlying causes for better accuracy with an external focus of 
attention by evaluating movement kinematics and/or movement efficiency with 
electromyography (EMG). For example, Kal et al. (12) showed that an external focus of attention 
improved movement fluency and regularity in a cyclic leg flexion-extension task relative to an 
internal focus of attention. In addition, Lohse et al. (14) found evidence for reduced co-
contraction between agonist and antagonist muscle groups with an external focus of attention 
in an isometric force production task. One group was instructed to focus on their calf muscles 
(internal focus) and another group was instructed to focus on the force platform (external focus) 
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while pressing against the platform with 30% of their maximum force. The internal focus 
instructions led to less accurate force production and more co-contraction between muscles, 
implying less efficient coordination between muscles. Marchant et al. (17) demonstrated similar 
results with an isokinetic force production task, but also showed that the control condition had 
the same higher level of EMG activity as the internal focus condition. The reduced co-contraction 
between muscle groups with an external focus of attention has been proposed as reason for 
increased jump height (31, 32), increased long jump distances (20), and faster running and 
swimming performances (8, 10, 26). 
 
Other studies have shown that an external focus of attention reduces EMG activity relative to 
an internal focus of attention. For example, Vance et al. (28) showed reduced EMG activity in 
both the biceps and triceps muscles with an external focus relative to an internal focus in the 
biceps curl. These results were replicated by Zachry et al. (39) with a basketball free-throw task. 
Lohse et al. (13) showed that an external focus on the flight of the dart improved throwing 
accuracy and had reduced EMG activity in the triceps muscle compared to an internal focus on 
the throwing motion. An external focus also reduced the degree of co-contraction between 
agonist and antagonist muscles when compared to an internal focus (13). They also provided a 
kinematic analysis of the dart throw by videotaping the throw. The shoulder and elbow angle 
were determined for the dart release point, however, there was no difference between the 
internal and external focus conditions for either angle. In addition, elbow angular velocity was 
estimated, but again, there was no difference between the focus conditions. The main limitation 
of this study was that the kinematic measures were only taken at two points (i.e., the point of 
maximum elbow flexion and the point of dart release) rather than throughout the action. The 
current study proposes to assess acceleration throughout the dart throwing action to provide a 
more complete picture of movement kinematics in internal and external focus conditions.   
 
Based on the studies reviewed here, we expect acceleration to be higher for an external focus of 
attention and lower when attention is focused internally. We also expect performance to be more 
accurate and more efficient with less EMG activity in the muscles with less co-contraction when 
focused externally. These findings would replicate and support previous findings of improved 
movement effectiveness and efficiency with an external focus of attention relative to an internal 
focus of attention. This study will go beyond previous studies (13) that had limitations from 
using static kinematic measurements by measuring acceleration across the entire dart throw.  
 
METHODS 
 
Participants  
Data were collected from 24 healthy subjects (16 female, 8 males, 20.2 ± 3.28 years). Participants 
self-reported their skill in dart throwing with the majority (n=19) only playing 1-3 times per 
year. There were three subjects who reported that they have never played before and two 
subjects who reported they play 1-2 times per month. Two of the subjects were left-handed and 
we did not include them in the statistical analysis to keep handedness a constant. One subject 
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was removed from the statistical analysis of EMG activity and acceleration because of technical 
difficulties in the data collection. Subjects were recruited from introductory statistic classes at 
the University of Colorado at Boulder, and they participated in the experiment to receive extra 
credit in their course. Institutional approval was given for this work. 
 
Equipment and Measurements: A commercially available competition dart-board was set to 
regulation height (1.73 m off the ground) and distance (2.37 m from the throwing line). The darts 
used were regulation steel tip darts (22 g). The center of the board, or “bullseye,” was treated as 
the origin (point 0,0), and the radial error (RE) was calculated for each throw by measuring the 
X and Y coordinates as indicated by Equation 1.1 in Table 1. The mean radial error (MRE) was 
calculated as shown in Equation 1.2, Table 1, representing the average radial distance of all the 
k throws in a block from the target. 
 
Table 1. Equations used to measure X and Y coordinates. 

 Equation 1.1                         Equation 1.2                                            Equation 2.1 

    
  

 

 
    

 
Precision was calculated as bivariate variable error (BVE), shown in Equation 2.1, Table 1, the 
distance of each throw from the average distance of all k throws within a block (XC and YC) on 
the X and Y axes, respectively. Thus, BVE represents the variation of throws around the centroid 
location (XC,YC) for that block (analogous to the standard deviation in one-dimensional 
precision, 9).

 
                          
A wireless tri-axial accelerometer (Bionomadix, Biopac Systems, Inc., Goleta, CA) was strapped 
to the back of the participant’s wrist such that the X axis referred to the sagittal plane, the Y axis 
referred to the longitudinal plane, and accelerations in the frontal plane the Z axis Accelerations 
toward the target, upward, and rightward resulted in initial positive values while accelerations 
away from the target, downward and leftward resulted in initial negative values.  However, 
because the upper arm was slightly internally rotated during throwing, accelerations toward the 
target were registered along both the X and Z axes. 
 
Three movement phases were identified based on accelerations on the X axis, but measurements 
were only made during the latter two of phases. The first phase was the “backswing” phase that 
was initiated when the acceleration changed from zero to negative, indicating a backward 
movement of the upper arm. This phase ended when zero acceleration was achieved. The second 
phase was called the positive acceleration phase that was initiated when the upper arm moved 
toward the target (see Figure 1, window 1) and ended when zero acceleration was achieved. The 
third and final phase was called the negative acceleration phase (see Figure 1, window 2) that 
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was initiated when X acceleration was again negative and ended when zero acceleration was 
achieved following the maximum negative peak in acceleration. 
 
We suspected that greater levels of co-contraction between the agonist and antagonist muscles 
would reduce the peak acceleration primarily in the X and Z axes during the positive 
acceleration phase (window 1, Figure 1). However, for completeness, we also measured the peak 
positive or negative acceleration in the Y axis. During the negative acceleration phase (window 
2, Figure 1) we suspected the sudden deceleration of the accelerometer at the end of the 
movement would result in movement artifacts as shown in the X axis record in Figure 1. So we 
measured the maximum positive value for the Z axis and the maximum negative values for the 
X and Y axes in window 2.  
 
For the EMG recording, the subject’s throwing arm was fitted with pairs of disposable self-
adhesive Ag/AgCl EMG electrodes (Bio Protech U.S.A., Tustin, CA) on the surface of the skin 
over the belly of the biceps (antagonist) and over the belly of the long-head of the triceps 
(agonist). The skin was prepared using alcohol wipes, and the EMG electrodes were applied 
once the skin was allowed to dry. EMG and acceleration data were collected wirelessly at 1,000 
Hz (Bionomadix, Biopac Systems, Goleta, CA) and analyzed using Biopac AcqKnowledge 
software (Biopac Systems, Goleta, CA). The raw EMG signal was rectified and converted to root 
mean squared error (RMSE). We measured the integral (i.e., the area under the curve) of the 
biceps and the triceps separately for windows 1 and 2 as shown in Figure 1. To access the amount 
of co-contraction we divided the biceps integral by the triceps integral. 
 
Protocol 
The participants gave their informed consent for participation and filled out a survey when they 
arrived in the laboratory. There was a brief orientation with the materials as far as showing the 
participants how to hold the dart, how to throw in one plane, and telling them that their feet 
could not cross the throwing line. Next, all of the participants completed 5 sets of 3 throws (total 
of 15) for a baseline warm up with no specific instructions other than to aim for the center of the 
dartboard. A within-subjects design was employed so each subject was engaged in both external 
and internal focus of attention conditions, but the order of which one they did first was 
randomly determined. All subjects were instructed to visually focus on the board, but in the 
internal focus of attention condition they were told to mentally focus on their elbow angle when 
they released the dart. In order to help the participants maintain an internal focus, they were 
asked to rate their elbow angle at release after each throw on a scale from 1 to 6, where a fully 
extended elbow was a 6 and an elbow fully flexed was a 1 (see Figure 2). In the external focus of 
attention condition, participants were instructed to mentally focus on the initial flight of the 
dart. To help them maintain an external focus, participants were asked to rate the angle of dart 
release after each throw with a larger angle of release a 6 and a smaller angle of release a 1 (see 
Figure 2). Both the external and internal conditions required 8 sets of 3 throws totaling 24 throws 
per testing condition. For all of the throwing sets, participants threw one dart at a time and 
accuracy measurements were made after three darts were thrown.  
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Figure 1. Sample integrated EMG for the biceps and triceps muscles and acceleration records for the X, Y, and Z 
axes from one trial. The three phases of the movement are identified on the figure as well. 

 
Statistical Analysis 
MRE, BVE, and the amount of co-contraction were calculated in Excel for each set of 24 throws 
in the internal and external focus conditions, averaged across trials, and analyzed with separate 
one-way ANOVAs with repeated measures on focus of attention (FOA) condition.  The baseline 
trials were not analyzed because they always preceded the focus of attention trials and were not 
true control trials due to possible warm-up effects. The positive and/or negative peaks in 
acceleration identified in the positive and negative acceleration phases were analyzed with 
separate 2 (FOA) x 3 (Axis) ANOVAs with repeated measures on both factors. The integrals of 
EMG activity in the biceps and triceps were compared with a 2 (FOA) x 2 (Muscle) ANOVA 
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with repeated measures on both factors. Mauchly’s test of sphericity was done before each 
analysis and, if significant, the degrees of freedom were adjusted with the Greenhouse-Geisser 
correction.  
 
In order to determine the relation between peak acceleration and accuracy the errors in the Y-
plane (i.e., the vertical plane) were correlated with the peak acceleration in the X, Y, and Z axes 
during the positive acceleration phase for each FOA condition for each participant. Errors in the 
Y plane were chosen for analysis rather than the X plane because lower peak accelerations 
should result in undershooting of the target and negative scores in the Y plane. The correlations 
were converted to Fisher’s Z scores and entered into 2 (FOA) x 3 (Axis) ANOVA with repeated 
measures on both factors The same process was used to determine the relation between the level 
of muscular co-contraction and the peak acceleration in the X, Y, and Z axes during the positive 
acceleration phase. Finally, the level of co-contraction during the positive acceleration phase was 
also correlated with the Y plane errors. Partial eta-squared (ηp2) was provided as a measure of 
effect size. Descriptive statistics are presented as M ± SEM. All of the statistical analyses were 
done using the Statistical Package for the Social Sciences (SPSS) version 24.  
 
 
 
 

 
 

Figure 2. Rating scales used to help maintain the instructed internal focus on elbow angle (left) and the external 
focus on the angle of dart release (right). 

 
RESULTS 
 
Errors: The MRE was lower for the external focus of attention condition (10.27 ± 0.84 cm) as 
compared to the internal focus of attention condition (11.01 ± 0.93 cm). The effect of FOA 
condition was significant, F(1,21) = 4.32, p  = .050, ηp2 = .171. There was little difference (p = .93) 
in the BVE scores between the focus conditions (external = 8.21 ± 0.55 cm, internal = 8.18 ± 0.48 
cm). 
 
Positive Acceleration Phase: The mean peaks in acceleration in the X, Y, and Z axes are shown 
in Figure 3. The peak acceleration in the X axis tended to be lower for the external focus of 
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attention (2.83 ± .12 G) than the internal focus of attention (2.88 ± .12 G), but slightly higher in 
the Y axis (external = 0.98 ± .10 G, internal = .97 G ± .08 G) and the Z axis (external = -2.85 ± 0.16 
G, internal = (-2.77 ± 0.17 G) but the FOA x Axis interaction was not significant, F(2,40) = 2.25, p 
= .12, ηp2 = .10. The main effect of FOA was not significant (p = .46). The effect of axis was 
significant, F(2, 40) = 71.29, p < .001,  ηp2 = .78. The peak accelerations in the X and Z axes were 
both greater than in the Y axis (ps < .001).  
 

Figure 3. The mean peaks in acceleration in the X, Y, and Z axes during the positive acceleration phase in the 
external and internal focus conditions. Error bars are SEMs. 

 
Negative Acceleration Phase: The mean peaks in acceleration in the X, Y, and Z axes are shown 
in Figure 4. The peak acceleration in external focus of attention condition was greater than the 
internal focus of attention for the X axis (external = -4.29 ± .41 G, internal = -4.20 ± .35 G), the Y 
axis (external = -9.01 ± .78 G, internal = -8.24 ± .75 G) and the Z axis (external = 3.56 ± 0.34 G, 
internal = (3.22 ± 0.27 G). The FOA x Axis interaction was significant, F(2,40) = 7.24, p < .01, ηp2 
= .27. LSD post-hoc tests revealed significant differences between the focus conditions for the Y 
(p < .01) and Z (p < .01) axes only. The main effect of FOA was also significant, F(1,40) = 4.82, p 
< .05, ηp2 = .19. The effect of axis was significant, F(2, 40) = 62.59, p < .001,  ηp2 = .76. The peak 
accelerations in the X, Y and Z axes were all significantly different (ps < .05). 
 
EMG Activity during the Positive Acceleration Phase: The EMG integrals of the biceps and 
triceps for the two FOA conditions are shown in Figure 5. EMG activity was greater in the 
agonist triceps compared to the antagonist biceps, with the effect of muscle significant, F(1,20) 
= 35.49, p  < .001, ηp2 = .640. There was a tendency for the biceps to have less activity in the 
external focus condition (.006 ± 0.001 v-s) compared with the internal focus condition (.007 ± 
0.001 v-s), but the muscle x FOA condition interaction was not significant, F(1,20) = 2.50, p = 
.129, ηp2 = .11. Overall, the effect of FOA condition was not significant, p = .89. There was 
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significantly less co-contraction in the external focus condition (.439 ± .044) than the internal 
condition (.464 ± .046), F(1,20) = 6.080, p  = .023, ηp2 = .233. 
 

Figure 4. The mean in acceleration in the X, Y, and Z axes during the negative acceleration phase in the external 
and internal focus conditions. Error bars are SEMs. 

EMG Activity during the Negative Acceleration Phase: During deceleration in the X plane, 
muscle activity was equal in the biceps (.01 ± .001 v-s) and triceps (.01 ± .001 v-s). There was no 
significant effect of FOA condition (p = .36), muscle (p = .64), or any interaction between FOA 
condition and muscle (p = .81). There tended to be less co-contraction in the external focus 
condition (1.38 ± .15) than the internal condition (1.43 ± .17), but the effect of FOA condition was 
not significant, p = .53. See Figure 6.  
 
Correlations between Accuracy and Peak Acceleration: The average within-subject correlations 
between the Y-errors in throwing and peak acceleration in the X, Y, and Z axes for both focus 
conditions are shown in Figure 7 (note since greater accelerations in the Z axis were larger 
negative values, we used the absolute values of these scores when computing the correlations). 
The main effect of FOA (p = .37) and the FOA x Axis interaction (p = .68) were not significant. 
 
The effect of axis was significant, F(1,40) = 28.33, p < .001, ηp2 = .59. LSD post-hoc tests revealed 
that the correlation in the Z axis was greater than that of the X axis, and both the Z and X 
correlations were greater than the Y axis correlation. However, even though the average 
correlations between accuracy and peak acceleration were low, individual participants tended 
to show higher correlations between accuracy and peak acceleration for either the X or Z axis, 
or both. See Figure 8 for a depiction of the pattern of correlations for each participant.  
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Figure 5. Average integrated EMG activity for the biceps and triceps muscles while X was positive in the external and internal 

focus conditions. Error bars are SEMs. 
 
 
 

Figure 6. Average integrated EMG activity for the biceps and triceps muscles while X was negative in the external 
and internal focus conditions. Error bars are SEMs. 
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Figure 7. The average within-subject correlations between the Y-errors in throwing and peak acceleration in the X, 
Y, and Z axes for both focus conditions. Error bars are SEM. 

Correlations between Accuracy, Peak Acceleration, and the Level of Muscular Co-Contraction: 
The average within-subject correlations between peak acceleration in the X, Y, and Z axes and 
the level of co-contraction was .02, .15, and .08, respectively for the external focus and -.02, .09 
and .03, respectively for the internal focus condition. No effects were significant. However there 
were large individual differences in the correlations as shown in Table 2. The correlation 
between the level of co-contraction and Y-errors was .02 and -.05 for the external and internal 
focus of attention conditions, respectively, and they were not significantly different. The range 
in the correlations for the external focus condition was greater (-.53 to .36) compared to the 
internal focus condition (-.44 to .42). 

DISCUSSION 
 
The primary goal of the study was to determine how changes in the focus of attention influences 
the acceleration pattern in dart throwing. During the first half of the movement when the upper 
arm accelerated toward the target, the agonist triceps EMG activity was greater than the 
antagonist biceps, as expected, but there was no difference in peak acceleration between the 
focus conditions. However, there was less co-contraction in the external focus condition relative 
to the internal focus condition. During the second half of the movement during deceleration, the 
EMG activity in both muscles was equal showing greater levels of co-contraction compared to 
the first half of the movement. There was greater peak acceleration in the Y and Z axes in the 
external focus condition compared to the internal focus condition.  As expected, accuracy was 
better in the external focus condition relative to the internal focus condition. 
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Figure 8. The within-subject correlations between the Y-errors in throwing and peak acceleration in the X, and Z 

axes for each participant averaged over both focus conditions, ordered by the magnitude of the X axis correlation. 

 
 

Table 2. The means and ranges in the correlations between peak acceleration and the level of muscular co-
contraction for the internal and external focus conditions 

 Axis X Axis Y Axis Z 

External    
Mean  .02  .15  .08 

Min -.36  -.50 -.43 

Max  .51  .61  .57 
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The better throwing accuracy with an external focus of attention relative to internal focus, is 
consistent with other research that has shown improvement in performance (1, 12, 13, 14, 16, 
23). The accuracy findings here are consistent with the constrained action hypothesis, the self-
evoking trigger hypothesis and the OPTIMAL theory, with respect to motor performance, but 
the accuracy data alone cannot distinguish between the three explanations. It could be that an 
internal focus of attention causes the engagement of conscious control whereas an external focus 
of attention involves a more automatic, unconscious control process as predicted by the 
constrained action hypothesis (36). Or, it could be that internal focus instructions activate self-
evaluative and/or self-regulatory processes leading to poorer performance as expected by the 
self-evoking trigger hypothesis. Regardless of the explanation, an internal focus of attention 
results in larger errors than an external focus of attention. 
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It should be noted that care was taken to control the temporal aspects of the focus instructions 
to coincide with the release of the dart. Participants made judgments about the angle of dart 
release in the external focus of attention condition and the elbow angle at dart release in the 
internal focus condition. We believe our methods provided a better temporal control of attention 
compared to studies where the participant was asked to focus on the “motion of the arm,” for 
example, in an internal focus condition (13). Achieving temporal control of attention has been a 
criticism of focus of attention work in the past (3), so we believe our methods provided an 
important control in this regard. 
 
Focus of Attention and Motor Control: What is clear from this and previous work is that 
changing the focus of attention has a significant effect on motor control. For example, muscle 
activity appears to be more efficient with an external focus of attention relative to an internal 
focus of attention. That is, less EMG activation is necessary to carry out tasks relative to an 
internal focus of attention. In the current study there was a tendency for less EMG activity in the 
antagonist muscles under external focus conditions compared to internal focus conditions. 
Although the differences between the focus conditions were not statistically significant, the 
pattern of results was the same as those shown by Lohse et al. (13) and Zachry et al. (39). Taken 
as a whole, we believe that the reduced muscular activity and the better accuracy with an 
external focus of attention is an indication of better neuromuscular efficiency. In addition, an 
external focus of attention seems to also improve intermuscular coordination relative to an 
internal focus of attention. We showed there was less co-contraction between the muscle groups 
during the first half of the movement when attention was focused externally, and the same trend 
was shown during deceleration although the effect of focus condition was not quite significant.  
The reduced co-contraction in the external focus condition is consistent with previous findings 
as in Lohse et al.’s study (13) and suggests that movement efficiency increases with an external 
focus of attention. Moreover, the increased co-contraction with an internal focus of attention 
suggests an increase in muscle stiffness and decreased movement efficiency relative to an 
external focus of attention. 
 
Although the accuracy and EMG findings support the published literature, the new findings of 
the current study show that the acceleration pattern of the dart throw is affected by the focus of 
attention. Past work by Lohse et al. (13) had shown no difference in angular velocity, or static 
elbow and shoulder angle at dart release between internal and external focus conditions. 
However, by measuring acceleration at a higher resolution during the full motion of the dart 
throw we were able to show differences between the internal and external focus conditions. 
Although there were no significant differences found during acceleration while X was positive, 
there was greater acceleration in the Y and Z axes during deceleration when focused externally 
rather than internally. The findings of increased acceleration with an external focus support 
those studies showing that movement speed increases with an external focus relative to an 
internal focus (10, 26). Although the average correlations between throwing errors and peak 
acceleration were fairly low, the results here support the expected relation between peak 
acceleration and accuracy. Most participants showed positive correlations between acceleration 
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in the X and Y axes and errors. Higher peak correlations were associated with positive errors 
and lower peak correlations were associated with greater undershooting of the target. 
 
Taken together, our kinematic and EMG data suggest there is less co-contraction and therefore 
greater acceleration on average with an external focus of attention compared to an internal focus 
of attention. The mean findings support the idea that movement is more automatic, fast, and 
reflexive with an external focus of attention, which is consistent with the constrained action 
hypothesis. Reduced acceleration and increased co-contraction with an internal focus of 
attention might reduce accuracy by increasing muscle stiffness and disrupting intermuscular 
coordination. Although we showed that an internal focus of attention increases the level of 
muscular co-contraction relative to an external focus of attention, the correlational analysis did 
not support the expected links between the level of co-contraction, peak acceleration, and 
accuracy. We expected higher levels of co-contraction to be associated with lower peak 
accelerations and greater undershooting of the target. On average, the correlations between the 
level of co-contraction, peak acceleration and accuracy were quite low and close to zero in most 
cases. The lack of a relation between the level of co-contraction, accuracy, and acceleration could 
be due to several reasons. We recorded EMG from only two muscle groups (i.e., biceps and 
triceps) but other muscles (i.e., brachialis, brachioradialis) could have contributed to the level of 
co-contraction. We were unable to assess the actual timing and angle of the dart release that 
likely affected accuracy in addition to the accelerations we measured. Also, each participant may 
have had a different throwing style or a different neuromuscular control strategy that involved 
different levels of co-contraction. For example, those participants showing a positive correlation 
between the level of co-contraction and accuracy could have used a higher level of co-
contraction to stabilize the elbow joint to increase stability and maintain accuracy (24, 25). For 
those subjects showing a negative correlation between the level of co-contraction and accuracy, 
increased levels of co-contraction did not result in increased joint stability and increased 
accuracy. This finding supports research suggesting that co-contraction and accuracy are not 
always directly related (6). Perhaps a future study could use high-speed video techniques along 
with acceleration and EMG measures to provide a complete kinematic profile of dart throwing 
under different attentional focus conditions. 
 
In summary, this study succeeded in replicating previous work on the focus of attention and 
accuracy in dart throwing, but extended the literature by showing how the acceleration pattern 
was influenced by the focus of attention. Research on the focus of attention continues to show 
that differences in the wording of instructions can have strong effects on movement accuracy 
and motor control. 
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