Potassium Channels Mediate Hydrogen Sulfide-Induced Cutaneous Vasodilation in Healthy Young Adults Jessica L. Kutz, Jody L. Greaney, and Lacy M. Alexander, FACSM The Pennsylvania State University, University Park, PA **PURPOSE:** Preclinical models of cardiovascular disease suggest that hydrogen sulfide (H₂S), produced endogenously via cystathionine-γ-lyase, is a gasotransmitter capable of modulating vascular function as an EDHF-through potassium (K⁺) channels. We have demonstrated that exogenous H₂S donors elicit cutaneous vasodilation in young adults; however, the specific mechanism(s) underlying exogenous H₂Sinduced cutaneous vasodilation remain unclear. The purpose of this study was to examine the specific K⁺ channel(s) that mediate H₂S-induced vasodilation in the cutaneous circulation of healthy adults. **METHODS:** Five microdialysis fibers were placed in the ventral forearm skin of 5 healthy adults (24 ± 3) years) for the local delivery of Ringers solution (control), 5 mM glybenclamide (GLY: K_{ATP} channel inhibitor), 1 mM senicapoc (SENI: K_{Ca} intermediate channel inhibitor), 50 mM tetraethylammonium (TEA: non-specific K_{Ca} channel inhibitor) and GLY + SENI + TEA. Laser-Doppler flowmetry was used to continuously measure red blood cell flux. After a stable baseline, 5 mM Na₂S was perfused through all fibers to elicit exogenous H₂S-induced vasodilation. All data were expressed as a percentage increase from baseline and normalized to maximal cutaneous vascular conductance (%CVC_{max} = laser-Doppler flux/ mean arterial pressure; 28 mM sodium nitroprusside) RESULTS: Na₂S induced cutaneous vasodilation above baseline (Δ_{base} 28±9 %CVC_{max}; P<0.05). TEA (Δ_{base} 4±3 %CVC_{max}) and GLY + SENI + TEA (Δ_{base} 5±2 %CVC_{max}) blunted Na₂S-induced cutaneous vasodilation (both P<0.05), whereas GLY (Δ base18±8 %CVC_{max}) or SENI alone (Δ _{base} 22±8 %CVC_{max} from baseline) had no effect (both P>0.05). **CONCLUSION:** These preliminary data suggest that exogenous H₂S-induced cutaneous vasodilation is mediated by TEA-sensitive K_{Ca} channels, but not by K_{ATP} or intermediate K_{Ca} channels, in healthy humans.