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This thesis provides a study of various boundary problems for one and two

dimensional random walks. We first consider a one-dimensional random walk

that starts at integer-valued height k ≥ 0, with a lower boundary being the x-axis,

and on each step moving downward with probability q being greater than or

equal to the probability of going upward p. We derive the variance and the

standard deviation of the number of steps T needed for the height to reach 0

from k, by first deriving the moment generating function of T .

We then study two types of two-dimensional random walks with four

boundaries. A Type I walk starts at integer-valued coordinates (h, k), where

0 ≤ h ≤m and 0 ≤ k ≤ n. On each step, the process moves one unit either up,

down, left, or right with positive probabilities pu, pd, pl, pr, respectively, where

pu + pd + pl + pr = 1. The process stops when it hits a boundary. A Type II walk is

similar to a Type I walk except that on each step, the walk moves diagonally,

either left and upward, left and downward, right and downward, or right and

upward with positive probabilities plu, pld, prd, pru, respectively. We mainly

answer two questions on these two types of two-dimensional random walks: (1)

What is the probability of hitting one boundary before the others from an initial
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starting point? (2) What is the average number of steps needed to hit a

boundary? To do so, we introduce a Markov Chains method and a System of

Equations method.

We then apply the obtained results to a boundary problem involving two

independent one-dimensional random walks and answer various questions that

arise.

Finally, we develop a conjecture to calculate the probability of a two-sided

downward-drifting Type II walk with even-valued starting coordinates hitting the

x-axis before the y-axis, and we test the result with Mathematica simulations.
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Chapter 1

Introduction

A random walk is the process by which randomly-moving objects wander

away from the initial starting places. It is a mathematical formalization of a path

that consists of a succession of random steps. As early as in 1905, Karl Pearson [6]

first introduced the term random walk. Since then, random walks have been used

in various fields. For example, modeling a fluctuating stock price in economics,

tracing the path of a particular molecule in physics, or simply playing a card game

are all related to some type of random walk. In this thesis, we will study some

boundary problems for one-dimensional random walks with one or two boundaries

and two types of two-dimensional random walks with two or four boundaries.

We first provide the background on one-dimensional boundary problems. In

Section 2.1, we describe the process of a one-dimensional random walk with two

boundaries, and give the formulas for the probability of either reaching the top

boundary before the bottom boundary or the probability of reaching the bottom

boundary before the top boundary. In Section 2.2, we analyze the single boundary

problem of one-dimensional random walk. Providing that the probability for the

walk moving toward the boundary is greater than the probability of moving toward

the opposite direction, we give the formula for computing the average number of

steps needed to hit the boundary. In Section 2.3, we derive a formula for the

moment generating function (mgf) MT (t), where T ≡ kT0 is the number of steps

for a one-dimensional random walk to reach its single boundary height 0 when

1



starting at height k > 0. In this case, we assume q > p (the probability of moving

downward is greater than the probability of moving upward). Using the properties

of the mgf, we are able to derive a formula for variance and standard deviation of

T .

In Chapter 3, we discuss the four-sided boundary problem for a Type I two-

dimensional random walk that begins at integer-valued coordinates (h, k), with

boundaries x = 0 (the y-axis), y = 0 (the x-axis), x = m, and y = n. On each

step, the random walk moves one unit either up, down, left, or right with positive

probabilities pu, pd, pl, pr, respectively, where pu + pd + pl + pr = 1. The process

stops when it hits a boundary. We show five different examples of various possible

scenarios. For the walks that start at a given point, we elaborate a Markov Chains

method to find the probability of each boundary being hit first, and we then intro-

duce a System of Equations method to find the probability of a single boundary

being hit first from any possible starting point. In the appendix we provide the

Mathematica code to reach the solutions to each example we give in the text. In

Section 3.5, we modify the System of Equations method to find the average number

of steps needed to hit a boundary and provide the solutions to some of the previous

examples. At the end of this chapter, we analyze the number of steps needed for

a Type I walk to hit a boundary from a particular starting point (h, k) . In this

case, the Markov Chains method allows us to obtain a probability mass function

(pmf) value P (sh,k = x), the probability of hitting a boundary after taking exactly
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x steps, by taking the difference of cumulative distribution function (cdf) values:

P (sh,k ≤ x) − P (sh,k ≤ x − 1).

In Chapter 4, we study the Type II two-dimensional random walk. Basically,

based on the Type I random walk with four boundaries described in Chapter 3, we

change the four moving directions from up, down, left, or right to diagonal moving.

The main difference we encounter with this process is that the four corners are

able to be hit from an interior starting point. Similar to Chapter 3, we use the

Markov Chains method to find the probability of each boundary or each corner

being hit before the other three boundaries or corners from a specified starting

point, and with the System of Equations method we can simultaneously obtain the

probabilities of hitting a boundary or a corner from all possible starting points.

But in this case we separate the corner points from the boundaries and manage

each corner individually. In the last section of this chapter, we modify the System

of Equations method to find numerical solution for the average number of steps

needed for a Type II walk to hit a boundary or a corner from a starting point.

In Chapter 5, we consider a problem with two one-dimensional random walks,

Process X and Process Y , starting at different heights with different boundaries,

and we ask some questions that are of interest:

(i) What is the probability that Process X stops before Process Y ?

(ii) What is the probability that they stop at the same time?
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(iii) Given that Process X stops first, what is the probability that X has hit

height m, which is the upper boundary of Process X ?

(iv) Given that they stop at the same time, what is the probability that they

have both hit 0?

(v) What is the average number of steps needed for a process to stop? What

is the average number of steps needed for both processes to stop?

Applying the results we have obtained previously, we are able to solve these

problems by converting two processes of one-dimensional random walks into one

process of a Type II two-dimensional random walk, assuming that the two processes

move simultaneously. Using a particular example, we show step by step how to

solve each question listed above.

In Chapter 6, we describe a boundary problem for two-sided downward-

drifting Type II random walk. In this case, we consider even-valued starting

coordinates and state a conjecture to estimate the probability of hitting the x-

axis before hitting the y-axis. Using simulations, we test the accuracy of this

conjecture with several examples.

We conclude the thesis with descriptions of other related problems that can

be further studied.
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Chapter 2

Boundary Problems for One-Dimensional Random Walk

In this chapter, we will first introduce a one-dimensional random walk having

two boundaries and examine two known formulas. One formula is for the proba-

bility of the process hitting the upper boundary n before the lower boundary 0,

and the other is for the average number of steps needed to hit a boundary. We

will then generalize these results for any lower boundary of m < n. Secondly, we

will extend the problem to a single boundary by letting one end go to infinity and

analyze how we should amend these two formulas. Thirdly, we aim to derive the

variance of the number of steps T needed for the height of a downward-drifting

random walk to reach 0 from starting point k where k ≥ 0. To reach our goal,

we will derive the moment generating function of T , and use it to derive E[T ],

V ar(T ), and σT .

2.1. Background on One-dimensional Random Walk

Back in 1975, Chung [3] discusses the boundary problem for the one-dimensional

random walk that begins at integer height k, where 0 ≤ k ≤ n, and on each indepen-

dent step the process either moves upward one unit, or downward one unit, with

probabilities p and q = 1 − p, respectively, where p ≠ 0. The process stops upon

reaching height 0 or n. Using difference equations, he shows that the random walk

will reach a boundary with probability 1, and that the probability kP n
0 of reaching
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height n before height 0 is

kP
n
0 =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

k/n, if p = q

1 − (q/p)k
1 − (q/p)n , if p ≠ q.

(2.1.1)

In addition, the average number of steps kT n
0 to reach height n or height 0 is

E[kT n
0 ] =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

(n − k)k
2p

, if p = q

n

p − q × (1 − (q/p)k
1 − (q/p)n) −

k

p − q , if p ≠ q.
(2.1.2)

Now suppose a random walk begins at height k and ends at boundaries m or

n, with m ≤ k ≤ n. By vertical translation, we can subtract m from each height and

obtain equivalent results for a random walk that begins at height k −m and stops

at height 0 or n −m. That is, kP n
m = k−mP n−m

0 and E[kT n
m] = E[k−mT n−m

0 ]. For

instance, if k = 3 with m = −5 and n = 12, then by subtracting m = −5 from each

height, we shift the process up five units. This process is equivalent to starting at

height 8 with boundaries of 0 and 17; i.e., 3P 12
−5 = 8P 17

0 . Thus we still get probability

1 of eventually hitting height m or height n. Moreover, simply by replacing k with

k −m and n with n −m in (2.1.1), we obtain the probability kP n
m of reaching the

top boundary n before the bottom boundary m to be

kP
n
m =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

k −m
n −m, if p = q

1 − (q/p)k−m
1 − (q/p)n−m , if p ≠ q.

(2.1.3)
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Then the proability kQn
m of reaching height m before height n is

kQ
n
m = 1 − kP

n
m =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

n − k
n −m, if p = q

(q/p)k−m − (q/p)n−m
1 − (q/p)n−m , if p ≠ q.

(2.1.4)

Replacing k with k −m and n with n −m in (2.1.2), we find the average of the

number of steps kT n
m to reach height n or height m to be

E[kT n
m] =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

(n − k)(k −m)
2p

, if p = q

n −m
p − q × (1 − (q/p)k−m

1 − (q/p)n−m) − k −m
p − q , if p ≠ q.

(2.1.5)

We note that if p = 0, then the process never moves up and will never hit n

starting from k < n; thus, kP n
m = 0 and kQn

m = 1. And if p = 0, the average number

of steps needed to hit a boundary is simply the number of steps from the starting

point k < n to the bottom boundary m; i.e., E[kT n
m] = k −m.

We also note that if the process moves up with probability p > 0, moves down

with probability q ≥ 0, or remains at the same height with probability r = 1− p− q,

then it still reaches height 0 or n with probability 1. Moreover, Equations 2.1.1 to

2.1.5 still hold. In this case, all of Chung's derivations still hold with no changes.

2.2. A Single Boundary Problem

We now assume that a one-dimensional random walk has a fixed bottom

boundary m , with no upper boundary. We first seek to find the probability that

a one-dimensional random walk with single boundary will ever drop to height m

7



when starting at height k. To do so, we let kUn
m denote the set of paths that cause

one-dimensional random walks with two boundaries to reach height n before height

m when starting at height k where m ≤ k ≤ n. These sets form a nested, decreasing

sequence as n increases. Indeed, if a walk reaches height n + 1 before height m,

then it must have reached height n before height m. Since the probability of the

intersection is the limit of the probabilities as n→∞ we have

P (
∞
⋂
i=n

kU
i
m) = lim

n→∞P (kUn
m) = lim

n→∞ kP
n
m

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

lim
n→∞

k −m
n −m, if p = q

lim
n→∞

1 − (q/p)k−m
1 − (q/p)n−m , if p ≠ q

=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0, if p ≤ q

1 − (q/p)k−m, if p > q.

We can interpret this limit as follows: we know that a walk will reach a

boundary of n or m with probability 1. So we may let kW n
m be the set of probability

0 consisting of the paths along which walks do not reach either boundary. Then the

countable union W = ⋃∞
i=n kW i

m still has probability 0. We then exclude these paths

and are left with W ′, those paths that do reach either n or m, where P (W ′) = 1.

Within W ′, paths never drop to height m if and only if they belong to ⋂∞
i=n kU i

m,

which is the intersection of all the paths that hit n first and stop. Then W ∪

(⋂∞
i=n kU i

m) are all paths that never drop to height m. Because P (W ) = 0, then

P (⋂∞
i=n kU i

m) by itself gives the probability that walks will not drop to height m,
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which has the value of the limit we just obtained above. By subtracting this value

from 1, we have the probability kPm that a one-sided one-dimensional random walk

beginning at height k will drop to height m, for m ≤ k, which is given by

kPm =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1, if p ≤ q

(q/p)k−m, if p > q.
(2.2.1)

Secondly, we seek to find the average number of steps needed for a one-

dimensional random walk with single boundary to decrease to height m when

starting at height k. To do so, we again let kT n
m be the number of steps needed for

a two-sided one-dimensional random walk to reach a boundary of height n or m

when starting at height k. Then the times {kT n
m}∞n=k form an increasing sequence

such that kT k
m ≤ kT k+1

m ≤ ⋯ ≤ kT n
m ≤ ⋯. Furthermore, we let kTm be the number of

steps needed for a one-sided one-dimensional random walk to decrease to height

m. We note that if a walk ever hits height m, then kTm is finite and by Equation

2.2.1, P (kTm < ∞) = kPm = 1 for p ≤ q. It is also clear that kT n
m ≤ kTm for all

n ≥ k, for if a walk reaches m before n, then the number of steps are the same

thus the equal sign holds; but if the walk reaches n first, then kT n
m < kTm. Thus,

kTm < ∞ with certainty for p ≤ q, and kT n
m increases to kTm as n → ∞. Applying

the Monotone Convergence Theorem from analysis, we obtain E[kTm], the average

number of steps needed for a one-dimensional random walk with single boundary

9



beginning at height k to decrease to height m, for m < k, which is

E[kTm] = lim
n→∞E[kT n

m]

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

lim
n→∞

(n − k)(k −m)
2p

, if p = q

lim
n→∞ [n −m

p − q × (1 − (q/p)k−m
1 − (q/p)n−m) − k −m

p − q ] , if p ≠ q.
(2.2.2)

=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∞, if p ≥ q

k −m
q − p , if p < q.

2.3. The Stopping Time for the Single Boundary Problem

We now let m = 0 and let T ≡ kT0 be the number of steps needed for the height

to reach 0 from the starting point k. For p < q, by the result in Equation 2.2.2,

the random variable T has finite expectation given by E[T ] = k/(q − p), which

is generally derived by using difference equations and the monotone convergence

theorem as outlined in the previous sections. However this technique is not suitable

for deriving the variance of T . According to Takacs in [5], due to DeMoivre's

original work from 1711, for T = k + 2i, where i is the number of the upward steps,

we know the probability mass function (pmf) of T is given by

P (T = k + 2i) = k

k + 2i
(k + 2i

i
)piqk+i, for i ≥ 0,

Which gives the probability of hitting height 0 for the first time in k + 2i steps.

To compute E[T ] using the pmf, we need to compute the following sum for the
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average of discrete random variables:

E[T ] =
∞
∑
i=0

(k + 2i) ⋅ P (T = k + 2i)

=
∞
∑
i=0
k(k + 2i

i
)piqk+i.

However, in advance, there is no known way to simplify the sum. That is why

the difference equations technique used to derive E[T ] is so ingenious. Therefore

we will use another technique to achieve our goal. We will first derive the moment

generating function (mgf) of T , and then use a property of mgf to re-derive E[T ],

which we expect to have the same result as the one we have in Equation 2.2.2. Also

we can find a formula for E[T 2] by using another property of the mgf. Having

formulas for E[T ] and E[T 2], we then can derive V ar(T ) and σT .

We begin with finding the mgf of T ≡ kT0, the number of steps for a one-sided

one-dimensional random walk to drop to 0 from height k. Then it takes at least k

steps to drop to 0. If the walk goes up one unit, it needs to take another step to

come down. So if we let i be the number of upward steps, then the total number

of steps to drop down to 0 becomes k + 2i for some i ≥ 0. For q > p, the paths drift

downward and drop to height 0 almost surely. Hence the probabilities P (T = k+2i)

will sum to 1 over i ≥ 0. That is,

1 =
∞
∑
i=0

k

k + 2i
(k + 2i

i
)piqk+i. (2.3.1)
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Factoring out qk from the summation and dividing it on both sides, we obtain

1

qk
=

∞
∑
i=0

k

k + 2i
(k + 2i

i
)(pq)i. (2.3.2)

Now we let x = pq = (1−q)q. Because 0 ≤ p < q ≤ 1, we have 0 < x = (−q2+q) <

1/4. We also have q2 − q + x = 0. Using the quadratic formula to solve for q we

obtain q = 1 ±
√

1 − 4x

2
. Considering q to be strictly greater than p, we must have

q = 1 +
√

1 − 4x

2
, (2.3.3)

and

p = 1 − q = 1 − 1 +
√

1 − 4x

2
= 1 −

√
1 − 4x

2
.

Then we can express

q − p = 1 +
√

1 − 4x

2
− 1 −

√
1 − 4x

2
=
√

1 − 4x =
√

1 − 4pq. (2.3.4)

So Equation 2.3.2 can be written in terms of x, using Equation 2.3.3, as follows:

2k

(1 +
√

1 − 4x)k
=

∞
∑
i=0

k

k + 2i
(k + 2i

i
)xi. (2.3.5)

We note that with the replacement of x = pq and combining Equations 2.3.3 &

2.3.5, we obtain another equation, which will be convenient for us to derive the

mgf later:

2k

(1 +
√

1 − 4pq)k
=

∞
∑
i=0

k

k + 2i
(k + 2i

i
)(pq)i = 1

qk
. (2.3.6)
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Also, using x = pqe2t with 0 < pqe2t < 1/4, we have

∞
∑
i=0

k

k + 2i
(k + 2i

i
)(pqe2t)i = 2k

(1 +
√

1 − 4pqe2t)k
. (2.3.7)

When t = 0 in Equation 2.3.7, we get the result in Equation 2.3.6, which is

simply 1/qk. The same technique can be done with the expected value:

k

q − p = E[T ] =
∞
∑
i=0

(k + 2i)P (T = k + 2i) =
∞
∑
i=0
k(k + 2i

i
)(pq)iqk.

Dividing by qk on both sides, we have

k

(q − p)qk =
∞
∑
i=0
k(k + 2i

i
)(pq)i. (2.3.8)

We again let x = pq, then q = 1+√1−4x
2 and q − p =

√
1 − 4x =

√
1 − 4pq. By substitu-

tion, we can rewrite Equation 2.3.8 in terms of x:

k2k

(
√

1 − 4x)(1 +
√

1 − 4x)k
=

∞
∑
i=0
k(k + 2i

i
)xi.

We can also use x = pqe2t for 0 < pqe2t < 1/4 and obtain

k2k

(
√

1 − 4pqe2t)(1 +
√

1 − 4pqe2t)k
=

∞
∑
i=0
k(k + 2i

i
)(pqe2t)i. (2.3.9)

When t = 0 and
√

1 − 4pq = q − p, then Equation 2.3.9 reduces to Equation

2.3.8. We can now derive the mgf of T .

Theorem 2.3.1. Let 0 < p < q < 1. The moment generating function of T , the

number of steps for a one-dimensional random walk to drop to its single boundary

13



0 from height k, is given by

MT (t) =
ektqk2k

(1 +
√

1 − 4pqe2t)k
,

for 0 < pqe2t < 1/4.

Proof. The mgf MT (t) is given by

MT (t) = E[eTt]

=
∞
∑
i=0
e(k+2i)tP (T = k + 2i)

=
∞
∑
i=0
ekte(2t)i ( k

k + 2i
(k + 2i

i
)piqk+i)

= ektqk
∞
∑
i=0

k

k + 2i
(k + 2i

i
)(pqe2t)i.

By the result in Equation 2.3.7, we have, for 0 < pqe2t < 1/4,

MT (t) = ektqk
∞
∑
i=0

k

k + 2i
(k + 2i

i
)(pqe2t)i

= ektqk2k

(1 +
√

1 − 4pqe2t)k
.

�

We also note that when t = 0, by Equation 2.3.1 we have the result

MT (0) = qk
∞
∑
i=0

k

k + 2i
(k + 2i

i
)(pq)i

= qk2k

(1 +
√

1 − 4pq)k
.

= 1.
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Corollary 2.3.1. The first and the second derivatives of MT (t) are:

M ′
T (t) =MT (t) ⋅

k√
1 − 4pqe2t

and

M ′′
T (t) =MT (t) ⋅

k2
√

1 − 4pqe2t + k(4pqe2t)
(1 − 4pqe2t)3/2

respectively.

Proof. Taking the first derivative of MT (t) with respect to t, we have:

M ′
T (t) =

(1 +
√

1 − 4pqe2t)k(ektqk2k)′ − ektqk2k ((1 +
√

1 − 4pqe2t)k)
′

(1 +
√

1 − 4pqe2t)2k

= ektqk2k

(1 +
√

1 − 4pqe2t)k
⋅ k

⎛
⎝

1 + 4pqe2t

(1 +
√

1 − 4pqe2t)
√

1 − 4pqe2t

⎞
⎠

=MT (t) ⋅ k
⎛
⎝

√
1 − 4pqe2t + 1√

1 − 4pqe2t + (1 − 4pqe2t)
⎞
⎠

=MT (t) ⋅ k
⎛
⎝

√
1 − 4pqe2t + 1√

1 − 4pqe2t + (1 − 4pqe2t)
⎞
⎠
⋅
√

1 − 4pqe2t − (1 − 4pqe2t)√
1 − 4pqe2t − (1 − 4pqe2t)

=MT (t) ⋅ k
⎛
⎝

√
1 − 4pqe2t(4pqe2t)

(4pqe2t)(1 − 4pqe2t)
⎞
⎠

=MT (t) ⋅
k√

1 − 4pqe2t
.

So we have the first derivative of MT (t) as

M ′
T (t) =MT (t) ⋅

k√
1 − 4pqe2t

.
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Taking the derivative of M ′
T (t) using the product rule we have:

M ′′
T (t) =M ′

T (t) ⋅
k√

1 − 4pqe2t
+MT (t) ⋅

⎛
⎝

k√
1 − 4pqe2t

⎞
⎠

′

=MT (t) ⋅
k2

1 − 4pqe2t
+MT (t) ⋅

k(4pqe2t)
(1 − 4pqe2t)3/2

=MT (t) ⋅
k2

√
1 − 4pqe2t + k(4pqe2t)
(1 − 4pqe2t)3/2 .

�

Theorem 2.3.2. Let 0 < p < q < 1, the variance of T ≡ kT0, the number of steps

needed for a one-dimensional random walk to drop to its single boundary 0 from

height k is given by

V ar(T ) = 4kpq

(q − p)3 .

Proof. Properties of moment generating functions state that M ′
T (0) = E[T ], and

MT (0) = 1. Now using q − p =
√

1 − 4pq, we re-obtain the formula for E[T ], which

is the same as we have expected:

E[T ] =M ′
T (0)

=MT (0) ⋅
k√

1 − 4pq

= k

q − p.
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Another property of moment generating functions states that M ′′
T (0) = E[T 2].

Again with the fact that MT (0) = 1 and q − p =
√

1 − 4pq, we have

E[T 2] =M ′′
T (0)

=MT (0) ⋅
k2

√
1 − 4pq + k(4pq)
(1 − 4pq)3/2

= k
2(q − p) + 4kqp

(q − p)3 .

Now we derive the formula for V ar(T ) by

V ar(T ) = E[T 2] − (E[T ])2

= k
2(q − p) + 4kpq

(q − p)3 − ( k

q − p)
2

= 4kpq

(q − p)3 .

�

Taking the square root, we have

Corollary 2.3.2. The standard deviation of T ≡ kT0, the number of steps needed

for a one-dimensional random walk drop to its single boundary 0 from height k is

given by

σT = 2

√
kpq

(q − p)3 .
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Chapter 3

Boundary Problems for Type I Two-Dimensional

Random Walk

3.1. Introduction

We now study a two-dimensional random walk that begins at integer-valued

coordinates (h, k), where 0 ≤ h ≤m and 0 ≤ k ≤ n. On each step, the random walk

moves one unit either up, down, left, or right with probabilities pu ≠ 0, pd ≠ 0,

pl ≠ 0, pr ≠ 0, respectively, where pu+pd+pl+pr = 1. We call this process a random

walk of Type I. The four boundaries are the lines x = 0 (the y-axis), y = 0 (the

x-axis), x =m and y = n. The process stops when it hits a boundary.

As an example, we let m = 5, n = 5, (h, k) = (2,3), with pu = 0.30, pd = 0.25,

pl = 0.35 and pr = 0.10. A possible specific path can be: starting at point (2,3),

go down 1 unit, go right 1 unit, go down another 1 unit, go right another 1 unit,

finally go down 1 more unit so that it hits the lower boundary and stops. This

path is shown below.

Figure 3.1. A Type I Path
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The probability of this path is

pd ⋅ pr ⋅ pd ⋅ pr ⋅ pd = 0.25 × 0.10 × 0.25 × 0.10 × 0.25 = 1.5625 × 10−4.

Another possible specific path can be starting at point (2,3), move up 1 unit,

move right 1 unit, move down 2 units, move left 1 unit, move down 1 unit, move

right 2 units, finally move up 4 units so that it hits the upper boundary and stops.

This path is shown in Figure 3.2. The probability of this path is

0.30 × 0.10 × 0.252 × 0.35 × 0.25 × 0.102 × 0.304 = 1.3289 × 10−8.

Figure 3.2. Another Type I Path

We note that unless we start at one of these corners: (0,0), (0, n), (m,n),

and (m,0), it is impossible to hit the four corners since we do not allow diagonal

movements in this type of walk.

In general, there are infinitely many possible paths, and each single path has

a distinct probability. Our goal is to determine the overall probabilities of hitting

each boundary first from the initial starting point. In [2], Neal shows how to use a

matrix method to solve a boundary problem for one-dimensional random walk and
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simulates the results with Mathematica. In [1], Neal discusses a two-sided boundary

problem for Type I two-dimensional random walk in the case where pd > pu and

pl > pr. Furthermore, he derives a lengthy formula to compute the probability of

such Type I two-dimensional random walk hitting the x-axis before hitting the

y-axis. In this chapter, we shall use Neal's technique similar to those in [2] to find

the numerical solution for the probability of a four-sided Type I walk hitting one

boundary before hitting the other three from a given starting point. Also we will

introduce the System of Equations method to find the numerical solution for the

probability of a given boundary being hit first and the average number of steps

needed to hit a boundary from any possible starting point.

3.2. Background on Random Walk

We recall that Chung [3] shows a one-dimensional random walk with two

boundaries 0 and n will reach height 0 or n with probability 1, and that the

probability of reaching height n before height 0 is shown in 2.1.1. If we only

consider the upward and downward movements of a Type I two-dimensional walk,

then a one-dimensional walk begins at the vertical height k and moves up with

probability p = pu, down with probability q = pd, or stays at the same height with

probability r = pl + pr. So there is probability 1 that the Type I two-dimensional

walk hit a lower or upper boundary if we do not stop when hitting either side
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boundary. In this case, the probability of hitting the upper boundary first is

kP
n
0 =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

k/n, if pu = pd

1 − (pd/pu)k
1 − (pd/pu)n

, if pu ≠ pd.

Similarly, if we only stop upon hitting the side boundary, then there is prob-

ability 1 of hitting a side boundary, and the probability of hitting the right side

first is

hP
m
0 =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

h/m, if pr = pl

1 − (pl/pr)h
1 − (pl/pr)m

, if pr ≠ pl.

We note that there are many paths that never hit a boundary. Provided that

1 < k < n − 1 and 1 < h < m − 1, we can always create paths that stay bounded

within h + 1, h − 1, k + 1, and k − 1, and which never hit any boundary. However,

these paths have probability 0 because, as discussed above, there is probability 1

of eventually hitting a boundary.

In fact, the set of paths that never hit a boundary is uncountable. To see

this, we can look at paths that only move up and down (i.e., never sideways) but

stay bounded between k + 1 and k − 1. So they must move up/down, or down/up

on two consecutive steps. A specific possible path can be moving up/down or

down/up continuously. But a slight change will make a different path. For example,

a path that keeps moving down/up except the second step moving up/down is

different from the path that keeps moving down/up except the third step that

moves up/down. If we let up/down be 0 and down/up be 1, then all sequences of
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0's and 1's are created such as

1,1,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1, ...

1,0,0,1,0,1,1,1,0,1,1,0,1,1,0,1,1, ...

The collection of all such sequences of 0's and 1's form the binary version of

the interval [0,1]. Any x ∈ [0,1] can be written as x = a1
21

+ a2
22

+ a3
23

+⋯, where all

ai are 0 or 1. For example,

0 = (0,0,0,0,0,⋯)2

1/2 = (1,0,0,0,0,⋯)2

1 = (1,1,1,1,1,1,⋯)2

⋮

Because the interval [0,1] is uncountable, the collection of these paths that never

move sideways and stay bounded between k + 1 and k − 1 is uncountable. As

we mentioned previously, the collection of paths that will hit a boundary has

probability 1. Thus the set of paths that never hit a boundary is 0. And we

can directly show that the probability of any such path is 0. In particular, the

probability of moving up/down or down/up is

pupd + pdpu = 2pupd.
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Then the probability of this event happening infinitely many times is

∞
∏
i=1

2pupd = 2pupd × 2pupd × 2pupd ×⋯ (3.2.1)

We know that 0 < pu + pd < 1, which implies pu < 1 − pd. Then we have

pupd < (1 − pd) ⋅ pd = pd − p2d,

which has a maximum value of 1/4. Hence, multiplying 2pupd by itself ad infini-

tum in (3.2.1) will yield 0. Similarly, the collection of paths that only move left

and right, but stay bounded between h − 1 and h + 1, are uncountable and have

probability 0.

3.3. The Markov Chains Solution

We want the probability of a Type I two-dimensional random walk hitting

each boundary first from an initial starting point. Some cases are obvious, but

most of them are not. Here are some examples.

Example 3.3.1. If m = 6, n = 6, (h, k) = (3,3), and pl = pr = pu = pd = 0.25, then

by symmetry, there are equal chances of hitting one boundary before the other

three, with each probability being 0.25. However, not each point on one boundary

has the same probability of being hit first. To see this, we can look at the five

points on y-axis: (0,1), (0,2), (0,3), (0,4), (0,5). We would expect that (0,3) is

the most likely to be hit first. And by symmetry, (0,2) and (0,4) should have

equal probabilities of being hit first, so should (0,1) and (0,5).
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Example 3.3.2. With the same boundaries and the same starting point as in

Example 3.3.1, but with pl = 0.4 = pr and pu = 0.10 = pd, then it will be more

likely to hit the side boundaries first than the upper or the lower boundaries.

Also, hitting the left side and the right side first must have equal probabilities by

symmetry, and so must the upper and the lower boundaries. But it is obvious that

not every point on one boundary will have the same probability of being hit first.

Example 3.3.3. If (h, k) = (5,5), with m = 6 = n and equal probabilities of

moving in the four directions, then a path will most likely hit the upper boundary

or the right side first because the starting point is closer to these two boundaries.

Example 3.3.4. With the same boundaries and the same starting point as in

Example 3.3.3, but with pl = 0.45, pr = 0.02, pu = 0.03, pd = 0.50, then we cannot

tell which boundary is most likely to be hit first.

Example 3.3.5. If (h, k) = (2,3), m = 6, n = 8, pl = 0.21, pr = 0.23, pu = 0.29,

pd = 0.27, then there is no symmetry at all to help determine which boundary is

most likely to be hit first.

General cases like in Example 3.3.4 and Example 3.3.5 are not obvious, and

require a method of solution. To solve these boundary problems, we first let

A = (aij,kl), for 0 ≤ i ≤ m, 0 ≤ j ≤ n, 0 ≤ k ≤ m, 0 ≤ l ≤ n be a quadruple-indexed

matrix of transition probabilities having dimension (m+1)(n+1)× (m+1)(n+1).

The term aij,kl gives the probability of a Type I walk moving from coordinates (i, j)

to coordinates (k, l) on each step, where aij,ij = 1 if (i, j) is on a boundary. For

instance, if m = 3 and n = 4, then A = (aij,kl) is a 20 × 20 matrix. If (i, j) = (0,0),
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(0,1), (0,2), (0,3), (0,4), (1,0), (1,4), (2,0), (2,4), (3,0), (3,1), (3,2), (3,3), or

(3,4), which are the points on the four boundaries, then aij,ij = 1; i.e., if the initial

position is on a boundary point, then it stays on that point with probability 1. It

goes nowhere. So the probabilities aij,kl are 0 for other coordinates (k, l). But if

we do not start on a boundary, then we have positive probabilities of moving to

four other points. For example, if (i, j) = (1,1), then the probability of moving to

(0,1) is a11,01 = pl. Likewise a11,10 = pd, a11,12 = pu, and a11,21 = pr. Below is the

complete 20 × 20 transition matrix A for boundaries m = 3 and n = 4.

00 01 02 03 04 10 11 12 13 14 20 21 22 23 24 30 31 32 33 34

00 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

01 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

02 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

03 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

04 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

11 0 pl 0 0 0 pd 0 pu 0 0 0 pr 0 0 0 0 0 0 0 0

12 0 0 pl 0 0 0 pd 0 pu 0 0 0 pr 0 0 0 0 0 0 0

13 0 0 0 pl 0 0 0 pd 0 pu 0 0 0 pr 0 0 0 0 0 0

14 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

20 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

21 0 0 0 0 0 0 pl 0 0 0 pd 0 pu 0 0 0 pr 0 0 0

22 0 0 0 0 0 0 0 pl 0 0 0 pd 0 pu 0 0 0 pr 0 0

23 0 0 0 0 0 0 0 0 pl 0 0 0 pd 0 pu 0 0 0 pr 0

24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

33 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

34 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Table 3.1. 20 × 20 Transition Matrix A for m = 3 and n = 4
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The terms on the top and the left-side are simply place holders that tell the

possible coordinates. The place holders on the left represent the previous state,

and the place holders on the top represent the possible coordinates after another

step is taken.

Secondly, we let B = (b1,ij), for 0 ≤ i ≤ m, 0 ≤ j ≤ n be the 1 × (m + 1)(n + 1)

initial state matrix that designates the initial position of a Type I walk. Then

b1,hk = 1, and b1,ij = 0 when i ≠ h or j ≠ k. In our example with m = 3 and n = 4,

if (h, k) = (2,3), then B = (b1,ij) is a 1 × 20 matrix and b1,ij = 0 for all i, j except

b1,23 = 1. Matrix B is shown below, where the top line are place holders.

00 01 02 03 04 10 11 12 13 14 20 21 22 23 24 30 31 32 33 34

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

Table 3.2. 1 × 20 Initial State Matrix B for m = 3 and n = 4

To find the probabilities of having all possible positions after x steps, we

multiply B×Ax. Letting x be“large” such as x = 600, we obtain the final probability

states. We let Cx = B × Ax = (c1,ij,x), for 0 ≤ i ≤ m, 0 ≤ j ≤ n. Then Cx is a

1 × (m + 1)(n + 1) matrix, where c1,ij,x gives probabilities of being at (i, j) after x

steps.

Definition 3.3.1. Let X be a Type I two-dimensional random walk. The event

of being on the left boundary (i.e., the y-axis) after x steps will be denoted by

Lx. Likewise, the events of being on the bottom boundary (the x-axis), the upper
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boundary (y = n), and the right boundary (x =m) after x steps will be denoted by

Dx, Ux, and Rx, respectively.

Finally, we let P (Lx), P (Dx), P (Ux), and P (Rx) be the probabilities of

hitting the left boundary, the lower boundary, the upper boundary, and the right

boundary after x steps, respectively.

We obtain the probability of a Type I two-dimensional random walk being

at the left boundary after x steps by taking the sum of c1,0j,x, where j is from 0

to n. Here c1,0j,x represents the probabilities of hitting (0, j) first after x steps.

Likewise, taking the sum of c1,i0,x we have the probability of a Type I walk being

at the bottom boundary after x steps, where 1 ≤ i ≤m− 1; the sum of c1,in,x where

1 ≤ i ≤ m − 1 is the probability of being at the upper boundary after x steps; and

the sum of c1,mj,x where 0 ≤ j ≤ n is the probability of being at the right boundary

after x steps. We include (0,0), (0, n) to the left boundary, and (m,n), (m,0) to

the right boundary. Although from an interior starting point, a Type I walk will

never hit the four corners, it is possible to start at the corners. Now we can state

the theorem as follows.

Theorem 3.3.1. The probabilities of a Type I two-dimensional random walk

being at each boundary after x steps are given by

(a) P (Lx) =
n

∑
j=0
c1,0j,x (b) P (Dx) =

m−1
∑
i=1

c1,i0,x

(c) P (Ux) =
m−1
∑
i=1

c1,in,x (d) P (Rx) =
n

∑
j=0
c1,mj,x.
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By taking the limit on the sum of the corresponding c1,ij,x when x → ∞, we

can obtain our desired probabilities of a Type-I walk hitting each boundary first.

Thus, we can state:

Theorem 3.3.2. The probabilities of a Type-I two-dimensional random walk hit-

ting each boundary first are given by

(a) P (L∞) = lim
x→∞

n

∑
j=0
c1,0j,x (b) P (D∞) = lim

x→∞

m−1
∑
i=1

c1,i0,x

(c) P (U∞) = lim
x→∞

m−1
∑
i=1

c1,in,x (d) P (R∞) = lim
x→∞

n

∑
j=0
c1,mj,x.

We call this method we use to achieve the probabilities of each boundary being

hit first from a given starting point a Markov Chains method, for the systems we

describe above follow a chain of linked events where what happens next depends

only on the current state of the system, which is Markov property. Usually, if m, n,

and x are large, we are not able to make the matrices and compute the various

probabilities by hand. But we can use Mathematica for this computation. Now we

can quickly obtain the solutions to the previous examples using Mathematica (see

Appendix A for the code).

Example 3.3.1. The Markov Chains Solution. We have m = n = 6, (h, k) =

(3,3), and pl = pr = pu = pd = 0.25. Using x ≥ 600 steps, we have the results:

(i, j) (0,0) (0,1) (0,2) (0,3) (0,4) (0,5) (0,6) P (Lx)

c1,ij,x 0 0.0288 0.0577 0.0770 0.0577 0.0288 0 0.25

This is what we have expected:
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(i) P (Lx) = 0.25;

(ii) the symmetric points (0,1) & (0,5), (0,2) & (0,4) have the same proba-

bilities of being hit first;

(iii) the corner points (0,0) & (0,6) have probability 0 of being hit first since

the process cannot reach these points from (3,3);

(iv) point (0,3) has the greatest probability of being hit first among the left

boundary points because it has the shortest distance from (3,3).

The results are the same for P (Dx), P (Ux), P (Rx).

Example 3.3.2. The Markov Chains Solution. With m = n = 6 and starting

at (3,3), but with pl = 0.4 = pr, and pu = 0.10 = pd, we have the following results

for hitting the left side first using a maximum of x ≥ 105 steps.

(i, j) (0,0) (0,1) (0,2) (0,3) (0,4) (0,5) (0,6) P (Lx)

c1,ij,x 0 0.0325 0.0922 0.1880 0.0922 0.0325 0 0.4374

Similar to Example 3.3.1, the results in this example show the characteristics

(ii), (iii), and (iv), except that hitting the left side boundary first P (Lx) has a

higher probability than that of hitting the right side P (Rx). Below are the results

for P (Ux), which are the same as for P (Dx):

(i, j) (0,6) (1,6) (2,6) (3,6) (4,6) (5,6) (6,6) P (Ux)

c1,ij,x 0 0.0081 0.0145 0.0174 0.0145 0.0081 0 0.0626
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Example 3.3.3. The Markov Chains Solution. With boundaries m = n = 6

and the probabilities pl = pr = pu = pd = 0.25, but (h, k) = (5,5), we have the

following results for hitting the left side first using a maximum of x ≥ 95 steps.

(i, j) (0,6) (1,6) (2,6) (3,6) (4,6) (5,6) (6,6) P (Lx)

c1,ij,x 0 0.0027 0.0055 0.0079 0.0088 0.0064 0 0.0313

We note that there is no symmetry characteristic on this boundary. Never-

theless, in this example, since the distance from the starting point to the left side

boundary is the same as the distance to the lower boundary, and we have even

probabilities to move toward either direction, we should have P (Lx) = P (Dx).

Likewise, we have P (Ux) = P (Rx), with the results as following:

(i, j) (0,6) (1,6) (2,6) (3,6) (4,6) (5,6) (6,6) P (Ux)

c1,ij,x 0 0.0064 0.0169 0.0402 0.1035 0.3017 0 0.4687

Example 3.3.4. The Markov Chains Solution. With m = 6, n = 6, and

(h, k) = (5,5), but pl = 0.45, pr = 0.02, pu = 0.03, pd = 0.50, the results for hitting

the left, right, upper and lower boundary first respectively are

(i, j) (0,0) (0,1) (0,2) (0,3) (0,4) (0,5) (0,6) P (L∞)

c1,ij,x 0 0.1095 0.1111 0.0929 0.0608 0.0243 0 0.3986

(i, j) (6,0) (6,1) (6,2) (6,3) (6,4) (6,5) (6,6) P (R∞)

c1,ij,x 0 0.0015 0.0029 0.0057 0.0106 0.0205 0 0.0412
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(i, j) (0,6) (1,6) (2,6) (3,6) (4,6) (5,6) (6,6) P (U∞)

c1,ij,x 0 0.0016 0.0033 0.0069 0.0144 0.0308 0 0.0570

(i, j) (0,0) (1,0) (2,0) (3,0) (4,0) (5,0) (6,0) P (D∞)

c1,ij,x 0 0.1216 0.1332 0.1222 0.0878 0.0384 0 0.5032

In this example, though the process starts at a point which is much closer to

the upper boundary than the lower one, and is closer to the right side than the

left side, the greater probability of moving down than moving up causes P (D∞)

to be greater than P (U∞). Likewise, P (L∞) > P (R∞).

Example 3.3.5. The Markov Chains Solution. With (h, k) = (2,3), m = 6,

n = 8, and pl = 0.21, pr = 0.23, pu = 0.29, pd = 0.27, using x ≥ 1000 steps, we have

the following results for hitting the left side boundary first:

(i, j) (0,0) (0,1) (0,2) (0,3) (0,4) (0,5) (0,6) (0,7) (0,8) P (Lx)

c1,ij,x 0 0.0335 0.0764 0.01237 0.0888 0.0546 0.0307 0.0139 0 0.4216

To apply the Markov Chains method, we need to know exactly which coordi-

nate the walk starts, while the other method that we are going to introduce next

does not have this requirement.

3.4. The System of Equations Solution

In [2], Neal uses a system of linear equations to simultaneously solve for the

probabilities of a one-dimensional random walk reaching one boundary before the
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other from all possible starting heights. Using the same technique, we can simulta-

neously obtain the probabilities of a Type I two-dimensional random walk hitting

one boundary before the other three from all possible starting points. We will call

this method a System of Equations method. First, we look at one boundary, say

the left boundary. We are going to solve for the probabilities of hitting the left

boundary first, P (L∞), starting at all possible points within the boundaries by

setting up a system of equations.

We let xi,j be the probability of hitting the left boundary first when starting

at (i, j), for 0 ≤ i ≤ m, 0 ≤ j ≤ n. Then we know that x0,j = 1 for all j (because if

we start at the left boundary then we already have hit the left boundary). Also

xm,j = 0 for all j, and xi,0 = 0 = xi,n for i ≥ 1 (because if we start at the right, the

lower, or the upper boundary then we are not going to move and will never hit the

left boundary.) Otherwise, by the Law of Total Probability, we have

xi,j = pl ⋅ xi−1,j + pd ⋅ xi,j−1 + pu ⋅ xi,j+1 + pr ⋅ xi+1,j,

which can be re-written as

pl ⋅ xi−1,j + pd ⋅ xi,j−1 − xi,j + pu ⋅ xi,j+1 + pr ⋅ xi+1,j = 0.

For instance, if m = 2 and n = 3, then x0,j = 1 and x2,j = 0 for 0 ≤ j ≤ 3, and

xi,0 = 0 = xi,3 for i = 1,2. Otherwise, we have

pl ⋅ x0,1 + pd ⋅ x1,0 − x1,1 + pu ⋅ x1,2 + pr ⋅ x2,1 = 0
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and

pl ⋅ x0,2 + pd ⋅ x1,1 − x1,2 + pu ⋅ x1,3 + pr ⋅ x2,2 = 0.

Then we have a 12 × 12 matrix of coefficients, namely G, a 12 × 1 matrix of

constants, namely H, and a system of equations GX = H. We simply solve for X

by X = G−1H. The augmented matrix of the system of equations is shown below,

where the top row are the indices of the unknowns xi,j:

00 01 02 03 10 11 12 13 20 21 22 23

1 0 0 0 0 0 0 0 0 0 0 0 1

0 1 0 0 0 0 0 0 0 0 0 0 1

0 0 1 0 0 0 0 0 0 0 0 0 1

0 0 0 1 0 0 0 0 0 0 0 0 1

0 0 0 0 1 0 0 0 0 0 0 0 0

0 pl 0 0 pd -1 pu 0 0 pr 0 0 0

0 0 pl 0 0 pd -1 pu 0 0 pr 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0

Table 3.3. Augmented Matrix for Boundaries m = 2 and n = 3

We note that this matrix of coefficients is similar to the matrix of transition

probabilities used in the Markov Chains method, with one difference: the entries

between pd and pu on each row that has them are −1 instead of 0. Applying
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the System of Equations method to solve GX = H, we can obtain the probabili-

ties of hitting one boundary first from all possible starting points simultaneously;

however, we will not obtain the individual probabilities of hitting each specific

boundary point first.

Now we are going to use Mathematica to redo Examples 3.3.1, 3.3.2 and 3.3.5

with the System of Equations method, while considering hitting the left boundary

first from all possible starting points. See Appendix B for the code. In each

example, for all the starting points on the left boundary, xi,j = 1, and for all the

starting points on the lower boundary, upper boundary and the right boundary,

xi,j = 0. Therefore, we are interested in determining xi,j when starting at the

interior points.

Example 3.3.1. The System of Equations Solution. With m = n = 6 and

pl = pr = pu = pd = 0.25, we have the following probabilities of hitting the left

boundary first starting at each interior point (i, j):

x1,1 = 0.4687 x1,2 = 0.6292 x1,3 = 0.6694 x1,4 = 0.6292 x1,5 = 0.4687

x2,1 = 0.2455 x2,2 = 0.3788 x2,3 = 0.4193 x2,4 = 0.3788 x2,5 = 0.2455

x3,1 = 0.1346 x3,2 = 0.2212 x3,3 = 0.2500 x3,4 = 0.2212 x3,5 = 0.1346

x4,1 = 0.0718 x4,2 = 0.1212 x4,3 = 0.1384 x4,4 = 0.1212 x4,5 = 0.0718

x5,1 = 0.0313 x5,2 = 0.0535 x5,3 = 0.0613 x5,4 = 0.0535 x5,5 = 0.0313

We see that x3,3 = 0.25, which is what we expect due to symmetry. Also we

note the equal results for the symmetric starting points, such as x1,2 = x1,4.
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Example 3.3.2. The System of Equations Solution. With m = n = 6, but

with pl = 0.40 = pr and pu = 0.10 = pd, we have the following results for hitting the

left side first starting at each interior point:

x1,1 = 0.6493 x1,2 = 0.7753 x1,3 = 0.7989 x1,4 = 0.7753 x1,5 = 0.6493

x2,1 = 0.4294 x2,2 = 0.5760 x2,3 = 0.6097 x2,4 = 0.5760 x2,5 = 0.4294

x3,1 = 0.2802 x3,2 = 0.4049 x3,3 = 0.4374 x3,4 = 0.4049 x3,5 = 0.2802

x4,1 = 0.1700 x4,2 = 0.2569 x4,3 = 0.2813 x4,4 = 0.2569 x4,5 = 0.1700

x5,1 = 0.0804 x5,2 = 0.1246 x5,3 = 0.1374 x5,4 = 0.1246 x5,5 = 0.0804

These results also have symmetric characteristics. For initial point (i, j) with

a fixed i, the values of xi,j are symmetric; and for a fixed j, xi,j decreases as i

increases.

Example 3.3.5. The System of Equations Solution. With m = 6, n = 8,

pl = 0.21, pr = 0.23, pu = 0.29, and pd = 0.27, we have the following results for

hitting the left boundary first from each interior point:

x1,1 = 0.4363 x1,2 = 0.6035 x1,3 = 0.6675 x1,4 = 0.6814 x1,5 = 0.6579 x1,6 = 0.5851 x1,7 = 0.4145

x2,1 = 0.2232 x2,2 = 0.3569 x2,3 = 0.4215 x2,4 = 0.4365 x2,5 = 0.4095 x2,6 = 0.3360 x2,7 = 0.2023

x3,1 = 0.1120 x3,2 = 0.2075 x3,3 = 0.2536 x3,4 = 0.2647 x3,5 = 0.2437 x3,6 = 0.1909 x3,7 = 0.1068

x4,1 = 0.0648 x4,2 = 0.1132 x4,3 = 0.1407 x4,4 = 0.1473 x4,5 = 0.1341 x4,6 = 0.1026 x4,7 = 0.0555

x5,1 = 0.0279 x5,2 = 0.0491 x5,3 = 0.0615 x5,4 = 0.0645 x5,5 = 0.0584 x5,6 = 0.0441 x5,7 = 0.0236

We find no symmetric feature or predictable results in this example.

35



3.5. The Average Number of Steps to Hit a Boundary

In the previous section, we used the System of Equations method to solve for

the probabilities of hitting one boundary before the other three starting from all

possible starting points. In this section we are going to apply the same method

to solve for the average number of steps needed for a four-sided Type I two-

dimensional random walk to hit a boundary. We let si,j be the number of steps

needed to hit a boundary when starting at (i, j), for 0 ≤ i ≤ m and 0 ≤ j ≤ n, and

let yi,j = E[si,j] be the average number of steps needed to hit a boundary. Then

we know that y0,j = 0 = ym,j for all j, and yi,0 = 0 = yi,n for all i (because if we start

on a boundary then no steps are needed). Otherwise, by the Law of Total Average

yi,j = 1 + pl ⋅ yi−1,j + pr ⋅ yi+1,j + pu ⋅ yi,j+1 + pd ⋅ yi,j−1. (3.5.1)

(Because we must take one step, then start anew from one of the four different

coordinates with the respective probabilities.) Applying the System of Equations

method, first we can rewrite Equation 3.5.1 as

pl ⋅ yi−1,j + pr ⋅ yi+1,j − yi,j + pu ⋅ yi,j+1 + pd ⋅ yi,j−1 = −1.

For instance, if m = 2 and n = 3, because (i, j) = (0, j), (2, j), (i,0), (i,3) are

boundary points for all j and for all i, then y0,j = 0 = y2,j for all j, and yi,0 = 0 = yi,3

for all i. Otherwise, for the only two interior points (i, j) = (1,1) and (1,2) in this
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example, which has small boundaries, we have

pl ⋅ y0,1 + pr ⋅ y2,1 − y1,1 + pu ⋅ y1,2 + pd ⋅ y1,0 = −1

and

pl ⋅ y0,2 + pr ⋅ y2,2 − y1,2 + pu ⋅ y1,3 + pd ⋅ y1,1 = −1.

Then we have a 12 × 12 matrix of coefficients, namely S, a 12 × 1 matrix

of constants, namely T , and a system of equations SY = T . We solve for Y by

Y = S−1T . The augmented matrix of the system is shown below, where the top

row are the indices of the unknowns yi,j:

00 01 02 03 10 11 12 13 20 21 22 23

1 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0

0 pl 0 0 pd -1 pu 0 0 pr 0 0 -1

0 0 pl 0 0 pd -1 pu 0 0 pr 0 -1

0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0

Table 3.4. Augmented Matrix for Boundaries m = 2 and n = 3
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We note that this augmented matrix is very similar to Matrix 3.3, except for

all the entries on the boundaries are 0 and the entries on the right hand side of

each row that has pl, pd, pu and pr are −1 instead of 0. Applying the System

of Equations method to solve the equation SY = T for Y , we obtain the average

number of steps yi,j needed to hit a boundary from all possible starting points

simultaneously.

Now we are going to use Mathematica to solve for the average number of steps

needed to hit a boundary in Examples 3.3.1, 3.3.2 and 3.3.5. Also see Appendix

B for the code. In each example, for all the starting points on the boundaries,

yi,j = 0. Therefore, we are interested in finding yi,j when starting at the interior

points.

Example 3.3.1. The Average Number of Steps to Hit a Boundary Solu-

tion. With m = n = 6, and pl = pr = pu = pd = 0.25, the average number of steps

needed to hit a boundary starting at each interior point is:

y1,1 = 3.8077 y1,2 = 5.6154 y1,3 = 6.1539 y1,4 = 5.6154 y1,5 = 3.8077

y2,1 = 5.6154 y2,2 = 8.5000 y2,3 = 9.3846 y2,4 = 8.5000 y2,5 = 5.6154

y3,1 = 6.1539 y3,2 = 9.3846 y3,3 = 10.3846 y3,4 = 9.3846 y3,5 = 6.1539

y4,1 = 5.6154 y4,2 = 8.5000 y4,3 = 9.3846 y4,4 = 8.5000 y4,5 = 5.6154

y5,1 = 3.8077 y5,2 = 5.6154 y5,3 = 6.1539 y5,4 = 5.6154 y5,5 = 3.8077

The table shows that y1,j = y5,j for all j, and y2,j = y4,j for all j due to

symmetry. We can also see that a walk starting in the middle needs more steps
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on average to hit a boundary since the probabilities are evenly distributed on each

step when moving towards four different directions.

Example 3.3.2. The Average Number of Steps to Hit a Boundary Solu-

tion. With m = n = 6, but with pl = 0.4 = pr, and pu = 0.10 = pd, then we have the

following results for the average number of steps needed to hit a boundary starting

at each interior point.

y1,1 = 4.0233 y1,2 = 5.3439 y1,3 = 5.6620 y1,4 = 5.3439 y1,5 = 4.0233

y2,1 = 6.2223 y2,2 = 8.4384 y2,3 = 8.9831 y2,4 = 8.4384 y2,5 = 6.2223

y3,1 = 6.9229 y3,2 = 9.4506 y3,3 = 10.0766 y3,4 = 9.4506 y3,5 = 6.9229

y4,1 = 6.2223 y4,2 = 8.4384 y4,3 = 8.9831 y4,4 = 8.4384 y4,5 = 6.2223

y5,1 = 4.0233 y5,2 = 5.3439 y5,3 = 5.6620 y5,4 = 5.3439 y5,5 = 4.0233

Comparing these results to those of Example 3.3.1, we can see that the proba-

bilities affect the results significantly since that is the only difference between them.

In particular, for the same starting point (1,1), the average number of steps to hit

a boundary in Example 3.3.1 is 3.8077, while it is 4.0233 in this example. However

the results still show symmetry.

Example 3.3.5. The Average Number of Steps to Hit a Boundary Solu-

tion. With m = 6, n = 8, pl = 0.21, pr = 0.23, pu = 0.29, and pd = 0.27, we have the

following results for the average number of steps needed to hit a boundary starting

at each interior point:
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y1,1 = 4.5350 y1,2 = 6.9650 y1,3 = 8.1271 y1,4 = 8.3966 y1,5 = 7.8993 y1,6 = 6.5736 y1,7 = 4.1485

y2,1 = 6.5876 y2,2 = 10.364 y2,3 = 12.224 y2,4 = 12.6588 y2,5 = 11.8515 y2,6 = 9.7291 y2,7 = 5.9725

y3,1 = 7.0857 y3,2 = 11.2074 y3,3 = 13.2519 y3,4 = 13.7309 y3,5 = 12.8406 y3,6 = 10.5075 y3,7 = 6.4105

y4,1 = 6.3136 y4,2 = 9.8904 y4,3 = 11.6388 y4,4 = 12.0469 y4,5 = 11.2922 y4,6 = 9.2975 y4,7 = 5.7358

y5,1 = 4.1628 y5,2 = 6.3342 y5,3 = 7.3562 y5,4 = 7.5923 y5,5 = 7.1596 y5,6 = 5.9942 y5,7 = 3.8230

Though the given conditions of this example imply unpredictable results, we

still get the greatest average value from the centered starting point (3,4). This is

because we do not specify which boundary has to be hit and the centered point

always has the longest distance to a boundary than any of the other interior points.

We note that the System of Equations method allows us to compute yh,k,

the average number of steps needed to hit a boundary starting at (h, k), without

having the pmf of sh,k. Since a closed-form formula for the pmf of sh,k is unknown,

we cannot compute P (sh,k = x) for a specific number of steps x. But using the

Markov Chains method described in Section 3.3, we will be able to find the pmf

value for sh,k after taking exactly x steps.

In Section 3.3, to find the probabilities of having all possible positions after

x steps, we multiply the matrices B × Ax. And we obtain the final probabilities

when letting x be large such as x = 600. We were interested in the final states

when all the four boundaries have been hit first and their probabilities of being hit

first sum to 1. Now we are interested in the states after x steps have been taken.

So for Cx = B ×Ax = (c1,ij,x), for 0 ≤ i ≤m, 0 ≤ j ≤ n and x ≥ min{h, k,m−h,n− k}
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(because the minimum number of steps to hit a boundary is the shortest distance

to a boundary), we can state

Theorem 3.3.1. Let sh,k be the number of steps needed for a Type I two-

dimensional random walk to hit a boundary from starting point (h, k), where

0 ≤ h ≤m and 0 ≤ k ≤ n. For x > min{h, k,m − h,n − k},

(a) The cdf of sh,k is given by

P (sh,k ≤ x) = P (Rx) + P (Lx) + P (Ux) + P (Dx).

(b) The pmf of sh,k is given by

P (sh,k = x) = P (sh,k ≤ x) − P (sh,k ≤ x − 1)

= [P (Rx) + P (Lx) + P (Ux) + P (Dx)]

− [P (Rx−1) + P (Lx−1) + P (Ux−1) + P (Dx−1)].

Example 3.5.1. Starting at (h, k) = (3,3), with boundaries m = n = 6, and evenly

distributed probabilities pl = pd = pr = pu = 0.25, it requires at least 3 steps to hit a

boundary. When x = 10 steps, using Mathematica (the code in Appendix A), we

obtain the results for P (L10), P (R10), P (U10), and P (D10):

P (L10) P (R10) P (U10) P (D10) Sum

0.157766 0.157766 0.157766 0.157766 0.631055
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When x = 9, we have

P (L9) P (R9) P (U9) P (D9) Sum

0.144634 0.144634 0.144634 0.144634 0.578537

Applying Theorem 3.3.1, we obtain the probability of hitting a boundary in exactly

10 steps as

P (s3,3 = 10) = P (s3,3 ≤ 10) − P (s3,3 ≤ 9)

= 0.631055 − 0.578537

= 0.052518.

In this case, there is 5.2518% chance of hitting a boundary in exactly 10 steps.

With the same process, we find the probability of hitting a boundary in exactly 3

steps to be P (s3,3 = 3) = P (s3,3 ≤ 3) − P (s3,3 ≤ 2) = 0.0625 − 0 = 0.0625.

Example 3.5.2. Starting at (h, k) = (13,14), with m = 19, n = 25, pl = 0.10,

pr = 0.31, pu = 0.17, and pd = 0.42. The minimum number of steps needed to hit

a boundary is 6. When x = 6 steps, the results for P (Lx), P (Rx), P (Ux), and

P (Dx) are

P (L6) P (R6) P (U6) P (D6) Sum

0 0.001 0 0 0.001
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Therefore P (s13,14 = 6) = P (s13,14 ≤ 6) = 0.001. Though the probability of hitting a

boundary is small, there is still 0.1% chance to hit a boundary when x = 6 steps.

Now if we increase to x = 56 steps, we have

P (L56) P (R56) P (U56) P (D56) Sum

0 0.000012 0.8498 0.1307 0.9805

P (L55) P (R55) P (U55) P (D55) Sum

0 0.000012 0.8483 0.1307 0.9782

Then P (s13,14 = 56) = 0.9805 − 0.9782 = 0.0023. Thus for this example, there is

0.23% probability of hitting a boundary in exactly 56 steps.
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Chapter 4

Boundary Problems for Type II Two-Dimensional

Random Walk

4.1. Introduction

A diagonally-moving two-dimensional random walk begins at integer-valued

coordinates (h, k), where 0 ≤ h ≤m and 0 ≤ k ≤ n. On each step, the random walk

moves one unit towards four different directions, either left and downward, left

and upward, right and upward, or right and downward with probabilities pld ≠ 0,

plu ≠ 0, pru ≠ 0, prd ≠ 0, respectively, where pld + plu + pru + prd = 1. The boundaries

are the lines x = 0 (the y-axis), y = 0 (the x-axis), x = m and y = n. The process

stops when it hits a boundary or one of the four corner points (0,0), (0, n), (m,0),

(m,n). This random walk process will be called a Type II two-dimensional random

walk.

As an example, we let m = 5, n = 5, (h, k) = (2,3), with pld = 0.30, plu = 0.25,

pru = 0.35, and prd = 0.10. A possible specific path can be: starting at point (2,3),

go right and downward 1 unit, go right and upward 1 unit, go left and upward

another 1 unit, finally go right and upward 1 more unit, it hits the upper boundary

and stops. The probability of this path is

prd ⋅ pru ⋅ plu ⋅ pru = 0.10 × 0.35 × 0.25 × 0.35 = 0.0030625.

This path is shown as:
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Figure 4.1. A Type II Path

Another possible specific path can be: starting at point (2,3), moving left and

downward 1 unit, moving right and downward 1 unit, moving right and upward

1 unit, and finally moving right and downward twice, so that it hits the bottom

right corner (5,0) and stops. This path is shown as:

Figure 4.2. Another Type II Path

The probability of this path is

pld ⋅ prd ⋅ pru ⋅ prd2 = 0.30 × 0.10 × 0.35 × 0.102 = 0.000105.
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We note that, different from a Type I random walk described in Chapter

3, it is possible for Type II random walk to hit the four corners. However, for

the paths that start at a specific point, not every boundary point or every corner

point will be hit. For instance, (0,2) and (0,4) on the left boundary will never be

hit starting from (2,3). The starting point determines which boundary points or

corner points are never going to be hit. Since at each movement, both coordinates

will increase or decrease by one unit. If the starting point (h, k) has even or odd

numbers at both h and k, then the end points must have either both even or both

odd coordinates. Similarly, if the starting point (h, k) has one even and one odd

at h and k, then the end points must have one even and one odd coordinate. In

this example, if we change the starting point to (2,2), then it will be (0,1) and

(0,3) that will never be hit instead since these two end points have an even x-

coordinate and an odd y-coordinate, while the starting point has even numbers at

both coordinates.

In general, each single path has a distinct probability and there are infinitely

many different paths. Our goal is to determine the overall probabilities of hitting

each boundary or each corner before hitting the others. We have shown in Section

3.2 that the Type I random walk will hit a boundary with probability 1. Using the

same argument, we can show the Type II random walk will hit a boundary or a

corner with probability 1. In Chapter 3, we introduced the Markov Chains method

to solve for the probabilities of each boundary being hit first from a specified

starting point, and the System of Equations method to solve for the probabilities
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of a specified boundary to be hit first from all possible starting points. In this

chapter, we will modify these two methods to solve similar boundary problems for

a Type II two-dimensional random walk.

4.2. The Markov Chains Solution

We want the probabilities of hitting each boundary or each corner first from a

starting point, and we are interested in the cases that require a complex calculation.

We are able to tell some characteristics for symmetric cases, but for the precise

numerical results, we need a method to compute. We shall first look at some

examples.

Example 4.2.1. Let m = 6, n = 6, (h, k) = (3,3), and pld = prd = plu = pru = 0.25.

Then by symmetry, there are equal chances of hitting one boundary or one corner

before the other three. However, we are not able to tell what probability there is

for each boundary or for each corner to be hit first. Also, not every point on one

boundary has the same probability of being hit first. To see this, we can look at the

five points on y-axis: (0,1), (0,2), (0,3), (0,4), (0,5), and the two corners on the

left side: (0,0), (0,6). We would expect (0,2) and (0,4) to have a bigger chance

of being hit first than (0,0) and (0,6). And by symmetry, (0,2) and (0,4) should

be hit first with the same probabilities, as should (0,0) and (0,6). Meanwhile,

no path starting at (3,3) will ever hit (0,1), (0,3) and (0,5). Thus these three

boundary points must have probability 0 of being hit first.

Example 4.2.2. If m = 16, n = 17, (h, k) = (6,8), pld = 0.21, prd = 0.27, plu = 0.23,

and pru = 0.29, then there is no symmetry to help determine which boundary is
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most likely to be hit first, and the boundaries are too big to allow computing by

hand.

General cases like this require a method and a computing device to find

the solutions. We are going to adjust the Markov Chains method introduced in

Section 3.3 and use Mathematica to solve these boundary problems for Type II

two-dimensional random walk.

We first let A = (aij,kl), for 0 ≤ i ≤ m, 0 ≤ j ≤ n, 0 ≤ k ≤ m, 0 ≤ l ≤ n

be a quadruple-indexed matrix of transition probabilities, which has dimension

(m + 1)(n + 1) × (m + 1)(n + 1). The term aij,kl gives the probability of the Type

II walk moving from coordinates (i, j) to coordinates (k, l) on each step, where

aij,ij = 1 if (i, j) is on a boundary or a corner. For example, with m = 3, n = 4,

A = (aij,kl) is a 20 × 20 matrix. If (i, j) = (0,0), (0,1), (0,2), (0,3), (0,4), (1,0),

(1,4), (2,0), (2,4), (3,0), (3,1), (3,2),(3,3), or (3,4), which are the points on the

four boundaries or the four corners, then aij,ij = 1; i.e., if the initial position is on

a boundary or corner point, then it stays on that point with probability 1. It goes

nowhere. Then the probabilities aij,kl = 0 for the other coordinates (k, l). But if we

do not start at a boundary point or a corner, then we have positive probabilities

of moving toward four other coordinates. For example, if (i, j) = (1,1), then the

probability of moving to (0,0) is a11,00 = pld. Likewise, a11,02 = plu, a11,22 = pru, and

a11,20 = prd.
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Below is the complete transition matrix A for our example with m = 3 and

n = 4. The terms on the top and the left side are simply place holders that tell the

possible coordinates. The place holders on the left represent the previous state,

and the place holders on the top represent the possible coordinates after another

step is taken.

00 01 02 03 04 10 11 12 13 14 20 21 22 23 24 30 31 32 33 34

00 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

01 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

02 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

03 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

04 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

11 pld 0 plu 0 0 0 0 0 0 0 prd 0 pru 0 0 0 0 0 0 0

12 0 pld 0 plu 0 0 0 0 0 0 0 prd 0 pru 0 0 0 0 0 0

13 0 0 pld 0 plu 0 0 0 0 0 0 0 prd 0 pru 0 0 0 0 0

14 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

20 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

21 0 0 0 0 0 pld 0 plu 0 0 0 0 0 0 0 prd 0 pru 0 0

22 0 0 0 0 0 0 pld 0 plu 0 0 0 0 0 0 0 prd 0 pru 0

23 0 0 0 0 0 0 0 pld 0 plu 0 0 0 0 0 0 0 prd 0 pru

24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

33 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

34 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Table 4.1. 20 × 20 Transition Matrix A for m = 3 and n = 4

Secondly, we let B = (b1,ij), for 0 ≤ i ≤m , 0 ≤ j ≤ n be the 1 × (m + 1)(n + 1)

initial state matrix that designates the initial position of the Type II walk. Then
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we know b1,hk = 1, and b1,ij = 0 when i ≠ h or j ≠ k. In our example with m = 3 and

n = 4, if (h, k) = (2,3), then the initial state matrix B = (b1,ij) is a 1 × 20 matrix

and b1,ij = 0 for all i, j except b1,23 = 1. Matrix B is shown below, where the terms

on the top line are place holders.

00 01 02 03 04 10 11 12 13 14 20 21 22 23 24 30 31 32 33 34

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

Table 4.2. 1 × 20 Initial State Matrix B for m = 3 and n = 4

To find the probabilities of having all possible positions after x steps, we

multiply B × Ax . Letting x be large enough so that the probabilities of each

boundary or each corner to be hit first sum to 1, then we obtain the final states of

each boundary or each corner being hit first. Otherwise, we obtain the cdf value

for each boundary or each corner being hit first when up to x steps are taken.

We then can compute the pmf value for a boundary or a corner being hit first in

exactly x steps without knowing a closed-form formula for the pmf.

We let Cx = B × Ax = (c1,ij,x), for 0 ≤ i ≤ m,, 0 ≤ j ≤ n. Here Cx is a

1 × (m + 1)(n + 1) matrix, where c1,ij,x gives probabilities of being at (i, j) after x

steps. We let P (Lx), P (Dx), P (Ux), and P (Rx) be the probabilities of hitting the

left boundary, the lower boundary, the upper boundary, and the right boundary

in x steps, respectively. Thus, we can state:
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Theorem 4.2.1. The probabilities of a four-sided Type II two-dimensional ran-

dom walk being at each boundary, excluding corner points, after x steps are given

by

(a) P (Lx) =
n−1
∑
j=1

c1,0j,x (b) P (Dx) =
m−1
∑
i=1

c1,i0,x

(c) P (Ux) =
m−1
∑
i=1

c1,in,x (d) P (Rx) =
n−1
∑
j=1

c1,mj,x.

By taking the limit when x→∞ we reach the final states. Hence, we have

Theorem 4.2.2. Excluding corner points, the probabilities of a four-sided Type II

two-dimensional random walk hitting each boundary first from its initial starting

point are given by

(a) P (L∞) = lim
x→∞

n−1
∑
j=1

c1,0j,x (b) P (D∞) = lim
x→∞

m−1
∑
i=1

c1,i0,x

(c) P (U∞) = lim
x→∞

m−1
∑
i=1

c1,in,x (d) P (R∞) = lim
x→∞

n−1
∑
j=1

c1,mj,x.

We let P (BL
x ), P (TL

x ), P (TR
x ), and P (BR

x ) be the probabilities of hitting the

bottom left corner, the top left corner, the top right corner, and the bottom right

corner first after x steps, respectively. We then have:

Theorem 4.2.3. The probabilities of a four-sided Type II two-dimensional ran-

dom walk being at each corner point after x steps are given by

(a) P (BL
x ) = c1,00,x (b) P (TL

x ) = c1,0n,x

(c) P (TR
x ) = c1,mn,x (d) P (BR

x ) = c1,m0,x.
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Taking the limit as x→∞, we obtain

Theorem 4.2.4. The probabilities of a four-sided Type II two-dimensional ran-

dom walk hitting each corner point first from its initial starting point are given

by

(a) P (BL
∞) = lim

x→∞ c1,00,x (b) P (TL
∞) = lim

x→∞ c1,0n,x

(c) P (TR
∞) = lim

x→∞ c1,mn,x (d) P (BR
∞) = lim

x→∞ c1,m0,x.

We shall use Mathematica for these computations. See Appendix C for the

code. Doing so, we can quickly obtain the solutions to Examples 4.2.1 and 4.2.2.

Example 4.2.1. The Markov Chains Solution. For m = 6, n = 6, (h, k) =

(3,3), and pld = prd = plu = pru = 0.25. When taking x = 10 steps, the probabilities

of being on each left boundary point are:

(i, j) (0,1) (0,2) (0,3) (0,4) (0,5) P (L10)

c1,ij,10 0 0.0964 0 0.0964 0 0.1928

These results for the other three boundaries are similar. The probability of each

corner point being hit first is approximately 0.0321. In summary, we have

P (L10) P (U10) P (R10) P (D10) P (BL
10) P (TL

10) P (TR
10) P (BR

10) Sum

0.1928 0.1928 0.1928 0.1928 0.0321 0.0321 0.0321 0.0321 0.8999

The total sum of the probabilities that boundaries or corners being hit has

not yet reached 1 after taking 10 steps. Now we increase the number of steps to

500, and we obtain the following final probabilities:
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P (L500) P (U500) P (R500) P (D500) P (BL
500) P (TL

500) P (TR
500) P (BR

500) Sum

0.2143 0.2143 0.2143 0.2143 0.0357 0.0357 0.0357 0.0357 1

Specifically, the values c1,0j,500 for each left boundary point including the two corner

points on the left side (round to the fourth decimal place) are

(i, j) (0,0) (0,1) (0,2) (0,3) (0,4) (0,5) (0,6)

c1,ij,500 0.0357 0 0.1071 0 0.1071 0 0.0357

The results are as we have expected:

(i) Points on the boundaries that are symmetric about the initial point have

the same probabilities of being hit first;

(ii) the boundary points (0,2) and (0,4) have greater probabilities of being

hit first than the corner points (0,0) and (0,6).

(iii) (0,1), (0,3) and (0,5) are never hit thus have probability 0.

Example 4.2.2. The Markov Chains Solution. With (h, k) = (6,8), m = 16,

n = 17, pld = 0.21, plu = 0.23, pru = 0.29, and prd = 0.27, the transition matrix A has

dimensions (16+1)(17+1)×(16+1)(17+1) = 306×306, and matrix B has dimensions

1 × 306. It is almost impossible to compute this problem by hand. Thankfully, we

can obtain the solutions quickly and accurately using Mathematica. The final state

for the probability of hitting each boundary or each corner is obtained when x ≥ 342

steps. The minimum number of steps to obtain the final state is done by test and
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trial on the Mathematica code with different inputs on MaximumNumberOfSteps.

The results are as follows:

P (Lx) P (Ux) P (Rx) P (Dx) P (BL
x ) P (TL

10) P (TR
x ) P (BR

x ) Sum

0.1547 0.2574 0.4212 0.1600 0.0015 0 0 0.0052 1

We notice that the top left corner (0,17) and the top right corner (16,17)

both have probability 0 of being hit first. No path will reach them starting at

(6,8) since both coordinates of the starting point are even numbers while these

two corner points have one even coordinate and one odd.

4.3. The System of Equations Solution

We now know the Markov Chains method can give us simultaneously the

probabilities of the four boundaries or the four corners being hit first if we know

where the walk starts. But what if a Type II walk can possibly start at any point

within the boundaries, and we want the probability of a certain boundary or a

certain corner being hit first? We use the System of Equations method to fulfill

this goal for the Type I random walk. We now will amend this method to achieve

our goal for the Type II walk.

We let xi,j be the probability of hitting the left boundary first when starting

at (i, j), for 0 ≤ i ≤ m, 0 ≤ j ≤ n. Then we know that x0,j = 1 for all 1 ≤ j ≤ n − 1

(because if we start at left boundary then we stay there and already hit the left

boundary). Also xm,j = 0 for all j, and xi,0 = 0 = xi,n for all i (because if we start at

the corners, the right boundary, the lower boundary, or the upper boundary, then

we are not going to move and will never hit the left boundary). Otherwise, by the
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Law of Total Probability,

xi,j = pld ⋅ xi−1,j−1 + plu ⋅ xi−1,j+1 + pru ⋅ xi+1,j+1 + prd ⋅ xi+1,j−1,

which can be re-written as

pld ⋅ xi−1,j−1 + plu ⋅ xi−1,j+1 − xi,j + pru ⋅ xi+1,j+1 + prd ⋅ xi+1,j−1 = 0.

Similarly, we let ci,j be the probability of hitting the bottom left corner (0,0)

first when starting at (i, j), for 0 ≤ i ≤ m, 0 ≤ j ≤ n. Then we know c0,0 = 1. Also,

c0,j = 0 for j > 0, ci,0 = 0 for i > 0, ci,n = 0 for all i, and cm,j = 0 for all j (because

if we start at the other three corners or any boundary then we will not move and

will never hit the bottom left corner). Otherwise,

ci,j = pld ⋅ ci−1,j−1 + plu ⋅ ci−1,j+1 + pru ⋅ ci+1,j+1 + prd ⋅ ci+1,j−1,

which can be re-written as

pld ⋅ ci−1,j−1 + plu ⋅ ci−1,j+1 − ci,j + pru ⋅ ci+1,j+1 + prd ⋅ ci+1,j−1 = 0.

For instance, if m = 2 and n = 3, then x0,j = 1, c0,0 = 1 and x2,j = 0, c2,j = 0 for

j = 0, 1, 2, 3, and xi,0 = 0 = xi,3 for i = 0, 1, 2. c0,j = 0 for j = 1, 2, 3, ci,0 = 0 for

i = 1, 2 and ci,3 for i = 0, 1, 2. Otherwise, for starting at (1,1), we have

pld ⋅ x0,0 + plu ⋅ x0,2 − x1,1 + pru ⋅ x2,2 + prd ⋅ x2,0 = 0.

pld ⋅ c0,0 + plu ⋅ c0,2 − c1,1 + pru ⋅ c2,2 + prd ⋅ c2,0 = 0.
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and for starting at (1,2), we have

pld ⋅ x0,1 + plu ⋅ x0,3 − x1,2 + pru ⋅ x2,3 + prd ⋅ x2,1 = 0.

pld ⋅ c0,1 + plu ⋅ c0,3 − c1,2 + pru ⋅ c2,3 + prd ⋅ c2,1 = 0.

Then we have a 12 × 12 matrix of coefficients, namely G, a 12 × 1 matrix of

constants, namely H, and a system of equations GX = H. We solve for X by

X = G−1H. The augmented matrix shown below is for the system GX =H, where

the top row are the indices of the unknowns xi,j:

00 01 02 03 10 11 12 13 20 21 22 23

1 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 1

0 0 1 0 0 0 0 0 0 0 0 0 1

0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0

pld 0 plu 0 0 -1 0 0 prd 0 pru 0 0

0 pld 0 plu 0 0 -1 0 0 prd 0 pru 0

0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0

Table 4.3. Augmented Matrix for Boundaries m = 2 and n = 3
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The following augmented matrix is for the system GC = H, where the top

row are the indices of the unknowns ci,j:

00 01 02 03 10 11 12 13 20 21 22 23

1 0 0 0 0 0 0 0 0 0 0 0 1

0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0

pld 0 plu 0 0 -1 0 0 prd 0 pru 0 0

0 pld 0 plu 0 0 -1 0 0 prd 0 pru 0

0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0

Table 4.4. Augmented Matrix for Boundaries m = 2 and n = 3

We now use Mathematica to redo Examples 4.2.1 and 4.2.2, only considering

hitting the left boundary first from all possible starting points. See Appendix D

for the code. In each example, for all the starting points on the left boundary,

xi,j = 1, and for all the starting points at the corners or on the lower boundary,

upper boundary and the right boundary, xi,j = 0. Therefore, we are interested in

showing xi,j when starting at the interior points.
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Example 4.2.1. The System of Equations Solution. With m = n = 6 and

pl = pr = pu = pd = 0.25, the probabilities (i, j) of hitting the left boundary first

starting at all interior points are given by:

x1,1 = 0.3324 x1,2 = 0.6648 x1,3 = 0.6648 x1,4 = 0.6648 x1,5 = 0.2198
x2,1 = 0.2198 x2,2 = 0.3297 x2,3 = 0.4396 x2,4 = 0.3297 x2,5 = 0.2198
x3,1 = 0.1071 x3,2 = 0.2143 x3,3 = 0.2143 x3,4 = 0.2143 x3,5 = 0.1071
x4,1 = 0.0695 x4,2 = 0.0989 x4,3 = 0.1319 x4,4 = 0.0989 x4,5 = 0.0659
x5,1 = 0.0247 x5,2 = 0.0495 x5,3 = 0.0495 x5,4 = 0.0495 x5,5 = 0.0247

We note that when the process starts at the center (3,3), then x3,3 = 0.2143.

This is the same result as we obtained using the Markov Chains method. The

symmetric starting points such as (1,1) and (1,5) yield the same value for xi,j.

Starting at (1,2), (1,3) and (1,4) give an equal chance to hit the left boundary

first, but they yield a greater chance than starting at (1,1) and (1,5) since we don't

include the two corner points on the boundary, and that reduces the probability

of hitting the left boundary from (1,1) and (1,5).

Example 4.2.2. The System of Equations Solution. With m = 16, n = 17,

pld = 0.21, plu = 0.23, pru = 0.29, and prd = 0.27, when the starting point is at

(6,8), we have x6,8 = 0.1547. This is the value we obtained when using the Markov

Chains method for the final state of P (Lx). Within the boundaries m = 16, n = 17,

there are (16 − 2) × (17 − 2) = 210 interior points. We are not going to list all the

solutions at the other interior starting points in this paper.

Remark. With some minor alterations to the code, finding the solutions to ci,j,

the probabilities of hitting a certain corner first from all possible interior points,

can also be done through Mathematica.
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4.4. The Average Number of Steps To Hit a Boundary or a Corner

We again let si,j be the number of steps needed to hit a boundary (including

the corner points) when a Type II two-dimensional random walk starts at (i, j),

for 0 ≤ i ≤m and 0 ≤ j ≤ n. And we let ei,j = E[si,j] be the average number of steps

needed for a Type II random walk to hit a boundary starting from (i, j). Then we

know that e0,j = 0 = em,j for all 0 ≤ j ≤ n, and ei,0 = 0 = ei,n for all 0 ≤ i ≤m (because

if we start on a boundary or a corner then no steps are needed). Otherwise, by

the Law of Total Average,

ei,j = 1 + pld ⋅ ei−1,j−1 + plu ⋅ ei−1,j+1 + pru ⋅ ei+1,j+1 + prd ⋅ ei+1,j−1 (4.4.1)

Because we must take one step, then start anew from one of the four different

coordinates with the respective probabilities. To apply the System of Equations

method, first we rewrite Equation 4.4.1 as

pld ⋅ ei−1,j−1 + plu ⋅ ei−1,j+1 − ei,j + pru ⋅ ei+1,j+1 + prd ⋅ ei+1,j−1 = −1.

For instance, if m = 2 and n = 3, then e0,j = 0 = e2,j for 0 ≤ j ≤ 3, and

e1,0 = 0 = e1,3. Otherwise, from the interior starting points (1,1) and (1,2), we

have the equations

pld ⋅ e0,0 + plu ⋅ e0,2 − e1,1 + pru ⋅ e2,2 + prd ⋅ e2,0 = −1.

and

pld ⋅ e0,1 + plu ⋅ e0,3 − e1,2 + pru ⋅ e2,3 + prd ⋅ e2,1 = −1.
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Then we have a 12 × 12 matrix of coefficients, namely P , a 12 × 1 matrix of

constants, namely Q, and a system of equations PE = Q. We solve for the system

by E = P −1Q. The augmented matrix shown below is for the system of equations

PE = Q, where the top row are the indices of the unknowns ei,j:

00 01 02 03 10 11 12 13 20 21 22 23

1 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0

pld 0 plu 0 0 -1 0 0 prd 0 pru 0 -1

0 pld 0 plu 0 0 -1 0 0 prd 0 pru -1

0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0

Table 4.5. Augmented Matrix for Boundaries m = 2 and n = 3

We note that this matrix is similar to Table 4.3 except the constant terms on

the right side.
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Now we are going to use Mathematica to solve for the average number of steps

needed to hit a boundary in Example 4.2.1. Also see Appendix D for the code. In

this example, for all the starting points on the boundaries, ei,j = 0. Therefore, we

are interested in showing ei,j when starting at the interior points.

Example 4.4.1. The Average Number of Steps to Hit a Boundary or a

corner Solution. With m = n = 6 and pld = prd = plu = pru = 0.25, the average

number of steps needed to hit a boundary starting at each interior point is:

e1,1 = 2.1429 e1,2 = 3.0 e1,3 = 3.2857 e1,4 = 3.0 e1,5 = 2.1429
e2,1 = 3.0 e2,2 = 4.5714 e2,3 = 5.0 e2,4 = 4.5714 e2,5 = 3.0

e3,1 = 3.2857 e3,2 = 5.0 e3,3 = 5.5714 e3,4 = 5.0 e3,5 = 3.2857
e4,1 = 3.0 e4,2 = 4.5714 e4,3 = 5.0 e4,4 = 4.5714 e4,5 = 3.0

e5,1 = 2.1429 e5,2 = 3.0 e5,3 = 3.2857 e5,4 = 3.0 e5,5 = 2.1429

We note that the boundaries form a 6×6 square, and the walk starting at the

center needs the most steps on average to hit a boundary since the probabilities

are evenly distributed and the center has the longest distance to the boundaries.

The symmetric points, such as (1,2) and (1,4), have the same distance to the left

or the right boundary, and the distance from (1,2) to the upper boundary is the

same as the distance from (1,4) to the lower boundary, etc. Thus the results show

the first row and the fifth row are the same, so are the second row and the fourth

row.
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Chapter 5

Applications to Two One-Dimensional Random Walks

In this chapter, we will apply the results we obtained from Chapter 4 to

various boundary problems for two processes of one-dimensional random walks.

The initial problem is to analyze two one-dimensional random walks as follows:

(1) Process X begins at positive integer height h and on each step moves

either upward or downward one unit at a time with probabilities px and

qx = 1 − px, respectively. This process stops upon reaching boundaries of

0 or m;

(2) Process Y begins at positive integer height k and on each step moves

either upward or downward one unit at a time with probabilities py and

qy = 1−py, respectively. This process stops upon reaching boundaries of 0

or n;

We want to answer the following questions:

(i) What is the probability that Process X stops before Process Y ? And the

probability that Process Y stops before Process X?

(ii) What is the probability that they stop at the same time?

(iii) Given that Process X stops first, what is the probability that X has hit

height m?
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(iv) Given that they stop at the same time, what is the probability that they

have both hit 0?

(v) What is the average number of steps needed for a process to stop? What

is the average number of steps needed for both processes to stop?

For instance, suppose Process X starts at positive integer height h = 6, with

px = 0.60 and qx = 1−px = 0.40. This process stops upon reaching boundaries of 0 or

m = 10. There are uncountably many different paths. One example of Process X

is demonstrated in Figure 5.1 (the horizontal axis represents the number of steps

that are taken).

0 5 10 15 20 25 30 35

2

4

6

8

10

Figure 5.1. An example of Process X

Process Y begins at positive integer height k = 10, with py = 0.20 and qy =

1 − py = 0.80. This process stops upon reaching boundaries of 0 or n = 14. An

example of Process Y is demonstrated in Figure 5.2:
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Figure 5.2. An example of Process Y

In these figures, we can see Process X never stops within 36 steps, and on the

36th step Process Y hits 0 and stops. So for this specific path, we can say Y stops

before X. Then one of the questions we are interested in is the overall probability

of Y stopping before X.

Although we may not be able to find closed-form solutions, we can use the

techniques of a Type II two-dimensional random walk to find numerical solutions.

By converting two one-dimensional random walks to one Type II two-dimensional

random walk, we are able to apply the results of Chapter 4 to determine the

probabilities of various boundaries being hit first from the initial starting point,

and the average number of steps needed to hit a boundary.

We begin with converting the example above to a Type II two-dimensional

random walk with m = 10, n = 14, starting at (h, k) = (6,10). Hence, Y represents

the vertical movements between 0 and 14, and X represents the horizontal move-

ments between 0 and 10. Now on each step, the Type II two-dimensional random
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walk either moves left and downward with probability pld = qx⋅qy = 0.40×0.80 = 0.32,

or moves left and upward with probability plu = qx ⋅py = 0.40×0.20 = 0.08, or moves

right and upward with probability pru = px ⋅ py = 0.60 × 0.20 = 0.12, or moves right

and downward with probability prd = px ⋅qy = 0.60×0.80 = 0.48. Now for Process X

to stop upon reaching boundaries of 0 or m is to say the Type II random walk hits

the left or the right boundaries; for Process Y to stop upon reaching boundaries of

0 or n is to say the Type II random walk hits the upper or the lower boundaries.

Hitting the corners is when the two processes stop at the same time. Applying the

results from Chapter 4, we are able to answer the previous questions.

Question(i). What is the probability that Process X stops before Process

Y ? And the probability that Process Y stops before Process X?

Solution. We want the probability that Process X stops at 0 or m = 10

before Process Y reaches 0 or n = 14. We can interpret this question as asking

for the total probability of a Type II random walk hitting the points of (0, j) or

(10, j) first, where 0 < j < 14; i.e., the probability of hitting the left or the right

boundaries before hitting the upper or the lower boundaries from the starting

point (h, k) = (6,10). Using Mathematica (changing the parameters in Appendix

C, we can easily obtain the Markov Chains solutions of the final state for each

boundary and each corner being hit first. By trial and error, when x ≥ 58, the

total probability of each boundary and each corner being hit first sums to 1, and

the results are:
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P (Lx) P (Ux) P (Rx) P (Dx) Sum

0.0283 0.0028 0.5613 0.3500 0.9424

Because the events of the left boundary being hit first and the right boundary

being hit first are mutually exclusive, the probability of hitting the left or the right

boundaries before hitting the upper or the lower boundaries from the starting

point (h, k) = (6,10) is simply the sum of P (Lx)+P (Rx) = 0.5896. This implies the

probability that Process X stops before Process Y is 0.5896 (or 58.96%). Similarly,

we can obtain the probability of Process Y stopping before Process X as the sum

of P (Ux) + P (Dx) = 0.3528 (or 35.28%).

Question(ii). What is the probability that they stop at the same time?

Solution. To find the probability that Process X stops at 0 or m = 10 and

Process Y stops at 0 or n = 14 at the same time, we only need to find the total

probability of a Type II two-dimensional random walk hitting the four corners first,

because there are only four combinations for the two processes to stop at the same

time; they are either (0,0), (0,14), (10,14) or (10,0). With the same procedure

using Mathematica, we have the following results:

P (BL
x ) P (TL

x ) P (TR
x ) P (BR

x ) Sum
0.0051 0.00001 0.0004 0.0521 0.0576

Thus, the probability of Process X and Process Y stopping at the same time

is the total probability of the four corners being hit first, which is 0.0576 (or 5.76%).
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Remark. The event of Process X and Process Y stopping at the same time is

the complement of the event of either Process X stopping before Process Y or

Process Y stopping before Process X. Thus we can also obtain the solution to this

question by 1 − (0.9424) = 0.0576.

Question(iii). Given that Process X stops first, what is the probability that

X has hit height 10?

Solution. We simply apply the rule for conditional probability and obtain

P (X has hit height 10 ∣ X stops first) = P (X has hit height 10 and stops first)
P (X stops first)

= P (Rx)
P (Lx) + P (Rx)

= 0.5613

0.5896
= 0.9520.

Thus, the probability that X has hit height 10 given that Process X stops

first is 0.9520 (or 95.20%).

Question(iv). Given that X and Y stop at the same time, what is the

probability that they have both hit 0?

Solution. The probability of X and Y stop at the same time is the total

probability when the four-sided Type II walk hitting the four corners first. Then

by the rule of conditional probability again, we have
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P (X & Y have hit 0 ∣ X & Y stop at the same time)

= P (X & Y have hit 0 and X & Y stop at the same time)
P (X and Y stop at the same time)

= P (BL
x )

P (BL
x ) + P (TL

x ) + P (BR
x ) + P (TR

x )

= 0.0051

0.0576
= 0.0885.

Given that X and Y stop at the same time, the probability that they have

both hit 0 is 0.0885 (or 8.85%).

Question(v). What is the average number of steps needed for a process to

stop? What is the average number of steps needed for both processes to stop?

Solution. The average number of steps for ProcessX to stop from its starting

point 6 is the average number of steps needed for a Type II two-dimensional random

walk to hit the left boundary or the right boundary from a starting point (6,10).

Likewise, the average number of steps for Process Y to stop from a starting point

10 is the average number of steps that a Type II two-dimensional random walk

needs to hit the upper boundary or the lower boundary from (6,10). Thus the

average number of steps needed for a process (either X or Y ) to stop from their

initial starting points can be understood as the average number of steps for a Type

II two-dimensional random walk needed to hit any boundary from (6,10), which

is e6,10 in Section 4.4. Thus we can use the System of Equations method to find

our desired solution. Entering the value of each corresponding probability and the
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boundaries m = 10 and n = 14 into Mathematica code (Appendix D, the output

shows e6,10 = 11.1526, which is the average number of steps needed for a process

(either X or Y ) to stop from its starting point, where Process X starts at 6 and

Process Y starts at 10.

To solve for the average number of steps needed for both processes to stop from

their starting points, we first let sX be the number of steps needed for Process X

to stop from its starting point 6, and sY be the number of steps needed for Process

Y to stop from 10. Then max{sX , sY } is the number of steps which guarantees

that both processes have hit a boundary and have stopped. Thus, we want the

solution to E[max{sX , sY }]. We note that

sX + sY = min{sX , sY } +max{sX , sY }.

By taking the average on both sides, and using the fact that the average of a sum

is the sum of the averages, we have

E[sX] +E[sY ] = E[min{sX , sY }] +E[max{sX , sY }].

From Section 2.1, both E[sX] and E[sY ] are known by Equation 2.1.2. And

we have min{sX , sY } = s6,10, which is the number of step needed for a Type II

two-dimensional random walk to hit a boundary; thus,

E[min{sX , sY }] = E[s6,10] = e6,10.
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We now can obtain our desired solution by

E[max{sX , sY }] = E[sX] +E[sY ] − e6,10

= E[6T 10
0 ] +E[10T 14

0 ] − 11.1526

= [ 10

0.6 − 0.4
× ( 1 − (0.4/0.6)6

1 − (0.4/0.6)10) −
6

0.6 − 0.4
]

+ [ 14

0.2 − 0.8
× (1 − (0.8/0.2)10

1 − (0.8/0.2)14) −
10

0.2 − 0.8
] − 11.1526

= 21.9383

Hence, the average number of steps needed for both processes to stop from

their starting points is 21.9383.
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Chapter 6

Downward-drifting Type II Walk

From Chapters 3 and 4, we can find the numerical solutions for four-sided

boundary problems of Type I and Type II two-dimensional random walks. Also

for downward-drifting Type I two-dimensional random walk, with the x-axis and

the y-axis as the two boundaries, Neal [1] derived a lengthy formula for the prob-

ability of hitting one axis before the other. In this chapter, we aimed to adopt

Neal's technique to derive a closed-form formula for the same question applying to

two-sided downward-drifting Type II walk. However, we encountered unexpected

difficulties in this case, so we will develop a conjecture for a special case when

both coordinates of a starting point are even, then perform a statistical hypothesis

test on the conjecture using Mathematica simulation data. Eventually, we wish to

prove this conjecture and adjust it to apply for the cases when both coordinates

are odd or one is odd and one is even.

6.1. Introduction

A two-sided Type II two-dimensional random walk starts at coordinates (h, k)

in the first quadrant, with the x-axis and the y-axis as the two boundaries, and

moves diagonally on each independent step one unit at a time in one of four di-

rections with probabilities pld, plu, prd, and pru, respectively, shown as the figure

below:
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Figure 6.1. A Two-Sided Type II Walk

If we consider just the upward and downward movements, a one-dimensional

random walk Y is created that begins at height k and moves upward or downward

one unit at a time with probabilities py = plu + pru and qy = pld + prd, respectively.

In order to drop to the x-axis with probability 1, we need qy ≥ py, and in order

to do so with a finite expected number of steps, we need qy > py. Thus we shall

assume that pld + prd > plu + pru, so that the Type II two-dimensional random walk

will almost surely reach the x-axis with a finite expected number of steps.

Likewise, if we consider just the leftward and rightward movements, a one-

dimensional walk X is created that begins at height h and gains one unit or loses

one unit at a time with probabilities px = prd + pru and qx = pld + plu, respectively.

In order to drop to height 0 with probability 1 and with a finite expected number
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of steps, we need qx > px. Thus we shall assume that pld + plu > prd + pru, so that

the Type II two-dimensional random walk will almost surely reach the y-axis with

a finite expected number of steps.

6.2. A Conjecture on Downward-Drifting Type II Walk

We are going to develop a conjecture for the probability of a certain downward-

drifting Type II walk hitting the x-axis before ever hitting the y-axis. To do

so, we will assume that both h and k are even. In this case, the only coordi-

nates that can be hit on the x-axis, without hitting the y-axis are the points

(2,0), (4,0), (6,0),⋯. So we want to determine, or at least estimate, the proba-

bility of hitting any of these points before ever touching the y-axis.

For Y to hit the x-axis for the first time in exactly k+2i steps, there must be

i upward movements and k+i downward movements for some i ≥ 0. The coefficient

kCi = k
k+2i(

k+2i
i
) gives the number of ways for Y to move upward and downward

k + 2i times while hitting the x-axis for the first time on the (k + 2i)th step. So as

stated in Section 2.3, the pmf for the number of steps TY needed for Y to drop to

the x-axis is

P (TY = k + 2i) = k

k + 2i
(k + 2i

i
)(plu + pru)i(pld + prd)k+i (6.2.1)

= kCi(py)i(qy)k+i,
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for i ≥ 0. We note that ∑∞
i=0P (TY = k + 2i) = 1. Thus for large N we have

∑N
i=0P (TY = k+2i) ≈ 1. Using trial and error technique, we can find how large this

N must be using Mathematica.

For each path that drops to the x-axis, we now consider the possible horizontal

movements described by the process X. Using the Reflection Principle described

by Feller [5], the number of ways for X to move from value h to value 2z in exactly

k + 2i steps without ever reaching value 0 is given by

D(h, k, i, z) = ( k + 2i
k+2i−h

2 + z) − ( k + 2i
k+2i+h

2 + z),

for 1 ≤ z ≤ (h+k+2i)/2. In this case, a two-sided Type II two-dimensional random

walk will end at coordinates (2z,0), without ever touching the y-axis, and there

must be (k + 2i + h)/2 − z leftward movements and (k + 2i − h)/2 + z rightward

movements.

Thus, considering just the horizontal movements, the probability of the x-

coordinate ending at value 2z in exactly k + 2i steps without ever touching the

y-axis is

(( k + 2i
k+2i−h

2 + z) − ( k + 2i
k+2i+h

2 + z)) (pld + plu)
k+2i+h

2
−z(prd + pru)

k+2i−h
2

+z

=D(h, k, i, z)(qx)
k+2i+h

2
−z(px)

k+2i−h
2

+z, (6.2.2)

for 1 ≤ z ≤ (h + k + 2i)/2.
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As an example, we consider the easiest case with h = k = 2. To do so, we

consider the following chart that lists the numbers of possible paths:

i 2 + i 2Ci 1 ≤ z ≤ 2+2i+2
2 D(2,2, i, z) 2+2i+2

2 − z

(U) (D) (L)

0 2 1 1 ≤ z ≤ 2 2,1 1,0

1 3 2 1 ≤ z ≤ 3 5,4,1 2,1,0

2 4 5 1 ≤ z ≤ 4 14,14,6,1 3,2,1,0

3 5 14 1 ≤ z ≤ 5 42,48,27,8,1 4,3,2,1,0

4 6 42 1 ≤ z ≤ 6 132,165,110,44,10,1 5,4,3,2,1,0

We now shall analyze the third row when i = 2: Starting at (h, k) = (2,2), the

walk hits the x-axis in exactly k + 2i = 6 steps with 2 upward movements and 4

downward movements. There are 2C2 = 5 ways for this to happen:

U,U,D,D,D,D U,D,U,D,D,D U,D,D,U,D,D

D,U,U,D,D,D D,U,D,U,D,D

It takes a few thoughts to list all the possible ways. First, the last two steps must

be downward. Second, the first two steps cannot be both downward, otherwise the

walk already reaches x-axis and no upward step is needed.

Now since 1 ≤ z ≤ 4 and we want the path to end at some coordinate

(2z,0) without hitting the y-axis, the path must end at one of the coordinates

(2,0), (4,0), (6,0), or (8,0) in exactly 6 steps. Considering just the horizontal

movements, there are 14 ways to end at (2,0) and there must be 3 left movements

and 3 right movements. There are 14 ways to end at (4,0) and there must be 2 left
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movements and 4 right movements. There are 6 ways to end at (6,0) and there

must be 1 left movement and 5 right movements. There is 1 way to end at (8,0)

and there must be 0 left movements and 6 right movements.

Let us now consider the 14 ways to end at (2,0):

L, R, L, R, L, R L, R, R, L, R, L L, R, R, R, L, L L, R, R, L, L, R

L, R, L, R, R, L R, L, R, L, R, L R, L, L, R, L, R R, L, R, R, L, L

R, L, R, L, L, R R, L, L, R, R, L R, R, R, L, L, L R, R, L, L, R, L

R, R, L, L, L, R R, R, L, R, L, L.

Any of these 14 L/R permutations can be matched with any of the 5 possible U/D

permutations giving a total of 70 ways for a Type-II random walk to move from

initial coordinates (2,2) to final coordinates (2,0) in exactly 6 steps without ever

hitting the y-axis. Matching the first two permutations of each, we have LU, RU,

LD, RD, LD, RD, which makes the process moves from (2,2) to (1,3) to (2,4) to

(1,3) to (2,2) to (1,1) and to (2,0). This particular path occurs with probability

plu ⋅ pru ⋅ p2ld ⋅ p2rd. This path is shown as in Figure 6.2:

Figure 6.2. A Path From (2,2) to (2,0)
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We note that not all of these 70 matchings are equally likely because we do

not always have the same number of RU steps. For instance, the matching of L,

R, L, R, L, R with D, U, D, U, D, D gives LD, RU, LD, RU, LD, RD which occurs

with probability p3ld ⋅ p2ru ⋅ prd.

To obtain the exact probability of hitting the x-axis first, we would have

to enumerate further among the number of kCi ⋅D(h, k, i, z) paths for i ≥ 0 and

1 ≤ z ≤ (h + k + 2i)/2, to determine how many different ways there are to have

various amounts of RU paths while still ending at (2z,0), without hitting the y-

axis, in exactly k + 2i steps. Instead, we estimate this desired probability with a

formula which combines Equations 6.2.1 and 6.2.2.

Conjecture 6.2.1. Assume h and k are both even, with h > 0 and k > 0, and

assume that pld + prd > plu + pru and pld + plu > prd + pru. The probability of a

two-sided Type II random walk hitting the x-axis before hitting the y-axis can be

estimated by the formula

∞
∑
i=0

⎛
⎜
⎝

h+k+2i
2

∑
z=1

D(h, k, i, z)(qx)
k+2i+h

2
−z(px)

k+2i−h
2

+z
⎞
⎟
⎠
P (TY = k + 2i)

=
∞
∑
i=0

⎛
⎜
⎝

h+k+2i
2

∑
z=1

D(h, k, i, z)(qx)
k+2i+h

2
−z(px)

k+2i−h
2

+z
⎞
⎟
⎠

kCi(py)i(qy)k+i,

Where px = prd + pru, qx = pld + plu, py = plu + pru, and qy = pld + prd.

6.3. Testing the Conjecture

At this point, rather than giving a formal proof of this conjecture, we aim

to test its accuracy by using simulations and an appropriate hypothesis test for
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proportions. We are looking for the probability of a downward-drifting Type II

walk starting at even-valued coordinates hitting the x-axis before ever hitting the

y-axis. This event includes hitting any of the coordinates (2,0), (4,0), etc. We

include (0,0) on the y-axis. This formula appears to be verified with Mathematica

simulations. However, even if it is true, when computing numerically, the initial

infinite sum on i must be limited to a finite number, for instance, i from 0 to

100. Therefore, if we wish to have a numerical approximation of this probability,

it is much easier to run a simulation. For even with several thousand trials, the

simulation concludes quickly and still gives a close approximation of the desired

probability. We now perform the statistical hypothesis test through some examples.

Example 6.3.1. Let h = 4, k = 10, pld = 0.35, prd = 0.40, plu = 0.20, and pru = 0.05,

where the downward-drifting condition pld + prd > plu + pru is satisfied. Now using

trial and error, with N ≥ 50 trials for the first summation in Mathematica (see

Appendix E), the output for∑N
i=0P (TY = k+2i) reaches 1, implying the distribution

of Y completes. For the particular i = 4, the number of ways for Y to move upward

and downward k + 2i = 18 times while hitting the x-axis for the first time on the

18th step is 10C4 = 1700. The coordinates on the x-axis that are possible to be hit

are (2,0), (4,0), ⋯, (22,0). The number of ways D(h, k, i, z) for X to move from

value h = 4 to value 2z where 1 ≤ z ≤ 11 in exactly 18 steps without ever reaching

value 0 are given by:

{2,25194},{4,40052},{6,40698},{8,31008},{10,18411},
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{12,8550},{14,3059},{16,816},{18,153},{20,18},{22,1}.

For example, there are 25194 possible ways for the horizontal movements X to

move from h = 4 to coordinate (2,0) in exactly 18 steps without ever reaching

value x = 0, and there is only 1 way to reach (22,0) in such manner.

Below we show two example paths simulated by Mathematica. One path hits

the y-axis first and stops, while the other hits the x-axis first and stops.

Figure 6.3. Example 6.3.1 Hitting the y-axis first From (4,10)

Figure 6.4. Example 6.3.1 Hitting the x-axis first From (4,10)
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We cannot tell by looking at the graph how many steps it actually takes to

move from one coordinate to the other because there may be some overlapping

steps in between.

The result given by the conjecture for the probability of hitting the x-axis

first is Conj = 0.479502. Using 9200 trials to run the simulation several times,

we will have different outputs for the probability of hitting the x-axis first. We

randomly pick one sample which has output Sim = 0.480217 for our test. Now we

claim that for this example the probability of hitting the x-axis before hitting the

y-axis is P (Ax,y) = 0.479502. So we set up the hypothesis as follows:

Null hypothesis H0 ∶ P (Ax,y) = 0.479502;

Alternative hypothesis Ha ∶ P (Ax,y) ≠ 0.479502.

We choose the general-purpose significance level α = 0.05 to test the accuracy

of our conjecture. Since we use large enough random samples, n = 9200 trials, we

can conduct two-tailed Z-test. The test statistic is computed as

z0 =
Sim −Conj√

Conj ⋅ (1 −Conj)
n

= 0.137383.

As we use a two-tailed test, we have

P-Value = 2 × P (z > 0.137383) = 0.890728.
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Since P-Value > 0.05, there is insignificant evidence to show that the alter-

native hypothesis is true, thus we fail to reject the null hypothesis. However, we

cannot state that the conjecture is proved to be correct, only that it gives a good

approximation in this example. To see whether our conjecture works for other

cases, we are going to test two more examples with different entries.

Example 6.3.2. Let h = 6, k = 4, pld = 0.35, prd = 0.28, plu = 0.32, and pru = 0.05.

Again the downward-drifting condition is satisfied. Using N ≥ 150 for the first

summation in Mathematica code (see Appendix F), we note that the distribution

of Y completes as the output for ∑N
i=0P (TY = k + 2i) reaches 1. For the particular

i = 5, we have 4C5 = 572 possible ways for the vertical movements Y to move

k + 2i = 14 times while hitting the x-axis for the first time on the 14th step. As

1 ≤ z ≤ 10, only the following coordinates on the x-axis can be hit in exactly 14

steps: (2,0), (4,0), (6,0), (8,0), (10,0), (12,0), (14,0), (16,0), (18,0), (20,0).

The number of ways D(h, k, i, z) for the horizontal movements X to move from

value h = 6 to value 2z in exactly 14 steps without ever reaching value 0 are given

by:

{2,1638},{4,2912},{6,3418},{8,3002},{10,2002},

{12,1001},{14,364},{16,91},{18,14},{20,1}.

From the data above, we notice that from h = 6 to coordinate (6,0), there

are the most ways for the possible horizontal movements X to move in exactly

14 steps without ever reaching value 0. Using n = 10000 trials, the probability of
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hitting the x-axis first given by running the simulation, choosing a random sample

Sim, comparing to the result given by the conjecture, Conj, are as follows:

Conj ∶ 0.588113

Sim ∶ 0.5906.

We claim that for this example the probability of hitting the x-axis before

ever hitting the y-axis is P (Ax,y) = 0.588113. Now we set up the hypothesis to test

the accuracy of the conjecture:

Null hypothesis H0 ∶ P (Ax,y) = 0.588113;

Alternative hypothesis Ha ∶ P (Ax,y) ≠ 0.588113.

Again we use the significance level α = 0.05. For random samples n = 10000 trials,

the test statistics is computed by

z0 =
Sim −Conj√
Conj⋅(1−Conj)

n

= 0.505394.

For a two-tailed test, we have

P-Value = 2 × P (z > 0.505394) = 0.613282.

The P-Value is again larger than the significance level α = 0.05, we fail to reject

the null hypothesis, although the conjecture seems to be a little less accurate than
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the previous example; thus, the conjecture is still good. Let us look at one more

example with the starting point much further away from the origin.

Example 6.3.3. Let h = 18, k = 16, pld = 0.45, prd = 0.30, plu = 0.15, and

pru = 0.10. In this case ∑N
i=0P (TY = k + 2i) reaches 1 when N ≥ 60 (see Appendix

G for the code). For i = 6, we have 16C6 = 215280 ways for the vertical movements

Y to move k + 2i = 28 times while hitting the x-axis for the first time on the 28th

step. As 1 ≤ z ≤ 23, there are 23 coordinates on the x-axis that can be hit: (2,0),

(4,0),⋯, (46,0). The number of ways D(h, k, i, z) for the horizontal movements

X to move from value h = 18 to value 2z in exactly 28 steps without ever reaching

value 0 are given by:

{2,356265}, {4,1180764}, {6,3107727}, {8,6906872}, {10,13123109},

{12,21474180}, {14,30421755}, {16,37442160}, {18,40116600}, {20,37442160},

{22,30421755}, {24,21474180}, {26,13123110}, {28,6906900}, {30,3108105},

{32,1184040}, {34,376740}, {36,98280}, {38,20475}, {40,3276}, {42,378},

{44,28}, {46,1}.

We notice that there is a symmetric feature between coordinates (16,0) and (20,0),

(14,0) and (20,0), etc. Also, there is only one way for the possible horizontal

movements X to move from h = 18 to the furthest coordinate (46,0) that is possible

to reach in exactly 28 steps without ever reaching value 0.

Using n = 12000 trials, we ran two sets of trial simultaneously, each stopped

when an axis was hit. The two sets of output for the probability of hitting the
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x-axis first are:

Conj ∶ 0.952916 Conj ∶ 0.952916

Sim ∶ 0.95325; Sim ∶ 0.953083

The result on the right set shows that the conjecture is more accurate com-

paring to the result given by the simulation. We are going to test the conjecture

using the left set. So we claim that for this example the probability of hitting the

x-axis before ever hitting the y-axis is P (Ax,y) = 0.952916. Then the hypotheses

are:

Null hypothesis H0 ∶ P (Ax,y) = 0.952916;

Alternative hypothesis Ha ∶ P (Ax,y) ≠ 0.952916.

Again we use the significance level α = 0.05. For random sample n = 12000 trials,

the test statistics is 0.172857, and the P-Value is 0.862764, which is much greater

than the significance level. We again fail to reject the null hypothesis in this case.

We have applied a hypothesis test on three examples, respectively. On each

example we failed to reject the null hypothesis with a significance level α = 0.05.

This does not prove our conjecture, yet it does show our conjecture gives a nice

approximation to our desired probability. For the next step as future work, we can

seek a more rigorous proof for our conjecture and eventually find a closed-form

formula to apply any case of starting coordinates.
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Chapter 7

Conclusion and Future Work

We have been working on the boundary problems of one-dimensional and two-

dimensional random walks in this thesis. In the case of single boundary problems

for a one-dimensional random walk, we derived the moment generating function of

the stopping time and the formulas for its variance and standard deviation. For

four-sided boundary problems of a two-dimensional random walk, either the Type

I walk or the Type II walk, we found the numerical solutions of one boundary

being hit before the other three, and the average number of steps needed for the

walk to hit one boundary from the initial starting point. With the results we found

in Type II random walk, we were able to apply them to answer various boundary

problems for two one-dimensional random walks. At the end of this thesis, we

deveopped a conjecture to approximate the probability of a two-sided downward-

drifting Type II random walk starting at even-valued coordinate hitting one axis

before the other, and used the simulations to test its accuracy.

In the future, besides giving an elegant proof of the conjecture that we stated

in Chapter 6, there are at least three different directions that we are interested

in. Firstly, we can combine Type I and Type II two-dimensional random walks

together; that is, a walk starts at an initial point, and on each step, the process

moves independently toward eight different directions one unit at a time. Can we

still answer the similar problems for this type of random walk with the Markov

Chains method and the System of Equations method?
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Secondly, suppose the process of a four-sided two-dimensional random walk,

either Type I or Type II, does not stop when it hits the boundaries. What is the

probability for the walk to ever come back to its initial starting point, and what

is the average number of steps for that goal to fulfill? Thirdly, we may consider a

random walk with a fixed initial starting point and a fixed number of steps to the

boundaries, but varying probabilities of moving toward a direction on each step.

So far we have been working on the random walks with a fixed probability toward

the same direction on each step, various initial points, and various number of steps

to the boundaries.

As a motivating example, a game is played where two players bet on one

end of a number line, which has zero in the middle, and five steps to each end.

The game starts by drawing a card randomly from a deck, with replacement, and

placing it at zero. Now a player draws one card randomly. If the number on the

card is greater than the previous card, the card is replaced and is moved one step

toward the side this player bets on. On the other hand, if the number is smaller,

then the card is replaced and is moved one step toward the opposite side, and the

previous card remains when the new drawn card has the same value. The game

ends when one end is reached. The player wins when the end he or she bets on is

reached first. This is an example of a symmetric two-sided one-dimensional random

walk with different probabilities on each step, because on each step the probability

of moving towards one end or the other, or remaining at the same place, depends

on the previous card. However, the starting point is fixed, and the steps to each
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end are symmetric and fixed. The common questions on the boundary problems

of two-dimensional random walks can also be asked in this case. What will the

probability of one end being reached before the other be? What is the average

number of steps to reach one end? This problem may be studied in the future.
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Appendix A

The Markov Chains Solution for Type I Walk
(Applied to Example 3.3.1; change parameters to use for other examples)

Enter Probabilities and Right Boundary m and Upper Boundary n:

pl = 0.25; pr = 0.25; pd = 0.25; pu = 0.25;pl = 0.25; pr = 0.25; pd = 0.25; pu = 0.25;pl = 0.25; pr = 0.25; pd = 0.25; pu = 0.25;

m = 6;n = 6;m = 6;n = 6;m = 6;n = 6;

Enter Initial Position and Create Initial State Matrix:

h = 3;k = 3;h = 3;k = 3;h = 3;k = 3;

Do[b[i, j] = 0,{i,1,1},{j,1, (m + 1)(n + 1)}]; b[1, h(n + 1) + k + 1] = 1;Do[b[i, j] = 0,{i,1,1},{j,1, (m + 1)(n + 1)}]; b[1, h(n + 1) + k + 1] = 1;Do[b[i, j] = 0,{i,1,1},{j,1, (m + 1)(n + 1)}]; b[1, h(n + 1) + k + 1] = 1;

Do[d[i, j] = 0,{i,1,2},{j,1, (m + 1)(n + 1)}];Do[d[i, j] = 0,{i,1,2},{j,1, (m + 1)(n + 1)}];Do[d[i, j] = 0,{i,1,2},{j,1, (m + 1)(n + 1)}];

Do[Do[d[1, i(n + 1) + j + 1] = {i, j},{j,0, n}],{i,0,m}]Do[Do[d[1, i(n + 1) + j + 1] = {i, j},{j,0, n}],{i,0,m}]Do[Do[d[1, i(n + 1) + j + 1] = {i, j},{j,0, n}],{i,0,m}]

d[2, h(n + 1) + k + 1] = 1;d[2, h(n + 1) + k + 1] = 1;d[2, h(n + 1) + k + 1] = 1;

MatrixForm[Table[d[i, j],{i,1,2},{j,1, (m + 1)(n + 1)}]]MatrixForm[Table[d[i, j],{i,1,2},{j,1, (m + 1)(n + 1)}]]MatrixForm[Table[d[i, j],{i,1,2},{j,1, (m + 1)(n + 1)}]]

Create Transition Matrix:

Do[a[i, j] = 0,{i,0, (m + 1)(n + 1)},{j,0, (m + 1)(n + 1)}];Do[a[i, j] = 0,{i,0, (m + 1)(n + 1)},{j,0, (m + 1)(n + 1)}];Do[a[i, j] = 0,{i,0, (m + 1)(n + 1)},{j,0, (m + 1)(n + 1)}];

Do[a[i, i] = 1,{i,1, n + 1}];Do[a[i, i] = 1,{i,1, n + 1}];Do[a[i, i] = 1,{i,1, n + 1}];

Do[a[i, i] = 1,{i,m(n + 1) + 1, (m + 1)(n + 1)}];Do[a[i, i] = 1,{i,m(n + 1) + 1, (m + 1)(n + 1)}];Do[a[i, i] = 1,{i,m(n + 1) + 1, (m + 1)(n + 1)}];

Do[a[k ∗ (n + 1) + 1, k ∗ (n + 1) + 1] = 1,{k,1,m − 1}];Do[a[k ∗ (n + 1) + 1, k ∗ (n + 1) + 1] = 1,{k,1,m − 1}];Do[a[k ∗ (n + 1) + 1, k ∗ (n + 1) + 1] = 1,{k,1,m − 1}];

Do[a[k ∗ (n + 1), k ∗ (n + 1)] = 1,{k,2,m}];Do[a[k ∗ (n + 1), k ∗ (n + 1)] = 1,{k,2,m}];Do[a[k ∗ (n + 1), k ∗ (n + 1)] = 1,{k,2,m}];

Do[a[k ∗ (n + 1) + 1 + j, k ∗ (n + 1) + j] = pd,{k,1,m − 1},{j,1, n − 1}];Do[a[k ∗ (n + 1) + 1 + j, k ∗ (n + 1) + j] = pd,{k,1,m − 1},{j,1, n − 1}];Do[a[k ∗ (n + 1) + 1 + j, k ∗ (n + 1) + j] = pd,{k,1,m − 1},{j,1, n − 1}];

Do[a[k ∗ (n + 1) + 1 + j, k ∗ (n + 1) + 2 + j] = pu,{k,1,m − 1},{j,1, n − 1}];Do[a[k ∗ (n + 1) + 1 + j, k ∗ (n + 1) + 2 + j] = pu,{k,1,m − 1},{j,1, n − 1}];Do[a[k ∗ (n + 1) + 1 + j, k ∗ (n + 1) + 2 + j] = pu,{k,1,m − 1},{j,1, n − 1}];

Do[a[k ∗ (n + 1) + 1 + j, k ∗ (n + 1) + j − n] = pl,{k,1,m − 1},{j,1, n − 1}];Do[a[k ∗ (n + 1) + 1 + j, k ∗ (n + 1) + j − n] = pl,{k,1,m − 1},{j,1, n − 1}];Do[a[k ∗ (n + 1) + 1 + j, k ∗ (n + 1) + j − n] = pl,{k,1,m − 1},{j,1, n − 1}];

Do[a[k ∗ (n + 1) + 1 + j, k ∗ (n + 1) + j + n + 2] = pr,{k,1,m − 1},{j,1, n − 1}];Do[a[k ∗ (n + 1) + 1 + j, k ∗ (n + 1) + j + n + 2] = pr,{k,1,m − 1},{j,1, n − 1}];Do[a[k ∗ (n + 1) + 1 + j, k ∗ (n + 1) + j + n + 2] = pr,{k,1,m − 1},{j,1, n − 1}];

MatrixForm[Table[a[i, j],{i,1, (m + 1)(n + 1)},{j,1, (m + 1)(n + 1)}]]MatrixForm[Table[a[i, j],{i,1, (m + 1)(n + 1)},{j,1, (m + 1)(n + 1)}]]MatrixForm[Table[a[i, j],{i,1, (m + 1)(n + 1)},{j,1, (m + 1)(n + 1)}]]
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Enter Maximum Number of Steps.
Output Gives Final State After the Maximum Number of Steps:

MaximumNumberOfSteps = max = 600;MaximumNumberOfSteps = max = 600;MaximumNumberOfSteps = max = 600;

A = Table[a[i, j],{i,1, (m + 1)(n + 1)},{j,1, (m + 1)(n + 1)}];A = Table[a[i, j],{i,1, (m + 1)(n + 1)},{j,1, (m + 1)(n + 1)}];A = Table[a[i, j],{i,1, (m + 1)(n + 1)},{j,1, (m + 1)(n + 1)}];

B = Table[b[i, j],{i,1,1},{j,1, (m + 1)(n + 1)}];B = Table[b[i, j],{i,1,1},{j,1, (m + 1)(n + 1)}];B = Table[b[i, j],{i,1,1},{j,1, (m + 1)(n + 1)}];

Z = B.MatrixPower[A,max];Z = B.MatrixPower[A,max];Z = B.MatrixPower[A,max];

Do[e[i, j] = 0,{i,1,2},{j,1, (m + 1)(n + 1)}];Do[e[i, j] = 0,{i,1,2},{j,1, (m + 1)(n + 1)}];Do[e[i, j] = 0,{i,1,2},{j,1, (m + 1)(n + 1)}];

Do[Do[e[1, i(n + 1) + j + 1] = {i, j},{j,0, n}],{i,0,m}]Do[Do[e[1, i(n + 1) + j + 1] = {i, j},{j,0, n}],{i,0,m}]Do[Do[e[1, i(n + 1) + j + 1] = {i, j},{j,0, n}],{i,0,m}]

Do[e[2, i] = Z[[1]][[i]],{i,1, (m + 1)(n + 1)}];Do[e[2, i] = Z[[1]][[i]],{i,1, (m + 1)(n + 1)}];Do[e[2, i] = Z[[1]][[i]],{i,1, (m + 1)(n + 1)}];

MatrixForm[Table[e[i, j],{i,1,2},{j,1, (m + 1)(n + 1)}]]MatrixForm[Table[e[i, j],{i,1,2},{j,1, (m + 1)(n + 1)}]]MatrixForm[Table[e[i, j],{i,1,2},{j,1, (m + 1)(n + 1)}]]

Probability of Hitting Boundaries:

Lft = Sum[Z[[1]][[i]],{i,1, (n + 1)}];Lft = Sum[Z[[1]][[i]],{i,1, (n + 1)}];Lft = Sum[Z[[1]][[i]],{i,1, (n + 1)}];

Rght = Sum[Z[[1]][[i]],{i,m(n + 1) + 1, (m + 1)(n + 1)}];Rght = Sum[Z[[1]][[i]],{i,m(n + 1) + 1, (m + 1)(n + 1)}];Rght = Sum[Z[[1]][[i]],{i,m(n + 1) + 1, (m + 1)(n + 1)}];

Lower = Sum[Z[[1]][[i(n + 1) + 1]],{i,1,m − 1}];Lower = Sum[Z[[1]][[i(n + 1) + 1]],{i,1,m − 1}];Lower = Sum[Z[[1]][[i(n + 1) + 1]],{i,1,m − 1}];

Upper = Sum[Z[[1]][[i(n + 1) + n + 1]],{i,1,m − 1}];Upper = Sum[Z[[1]][[i(n + 1) + n + 1]],{i,1,m − 1}];Upper = Sum[Z[[1]][[i(n + 1) + n + 1]],{i,1,m − 1}];

S = Lft +Rght +Upper + Lower;S = Lft +Rght +Upper + Lower;S = Lft +Rght +Upper + Lower;

MatrixForm[{{“Left”,“Upper”,“Right”,“Lower”,“Sum”},MatrixForm[{{“Left”,“Upper”,“Right”,“Lower”,“Sum”},MatrixForm[{{“Left”,“Upper”,“Right”,“Lower”,“Sum”},

{Lft,Upper,Rght,Lower, S}}]{Lft,Upper,Rght,Lower, S}}]{Lft,Upper,Rght,Lower, S}}]

Simulation

NumberOfIterations = num = 5000;NumberOfIterations = num = 5000;NumberOfIterations = num = 5000;

Do[x[s,0] = h,{s,1,num}]; Do[y[s,0] = k,{s,1,num}];Do[x[s,0] = h,{s,1,num}]; Do[y[s,0] = k,{s,1,num}];Do[x[s,0] = h,{s,1,num}]; Do[y[s,0] = k,{s,1,num}];

p[1] = pl;p[2] = pr;p[3] = pd;p[4] = pu;p[1] = pl;p[2] = pr;p[3] = pd;p[4] = pu;p[1] = pl;p[2] = pr;p[3] = pd;p[4] = pu;

t[0] = 0; Do[t[i] = t[i − 1] + p[i],{i,1,4}];t[0] = 0; Do[t[i] = t[i − 1] + p[i],{i,1,4}];t[0] = 0; Do[t[i] = t[i − 1] + p[i],{i,1,4}];

Stop When Hit Boundary or Make the Maximum Number of Steps
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Do[i = 1;Do[i = 1;Do[i = 1;

While[(0 < x[s, i − 1] <m)&&(0 < y[s, i − 1] < n)&&i ≤ max, z = Random[];While[(0 < x[s, i − 1] <m)&&(0 < y[s, i − 1] < n)&&i ≤ max, z = Random[];While[(0 < x[s, i − 1] <m)&&(0 < y[s, i − 1] < n)&&i ≤ max, z = Random[];

x[s, i] = If[z ≤ t[1], x[s, i − 1] − 1, If[z ≤ t[2], x[s, i − 1] + 1, x[s, i − 1]]];x[s, i] = If[z ≤ t[1], x[s, i − 1] − 1, If[z ≤ t[2], x[s, i − 1] + 1, x[s, i − 1]]];x[s, i] = If[z ≤ t[1], x[s, i − 1] − 1, If[z ≤ t[2], x[s, i − 1] + 1, x[s, i − 1]]];

y[s, i] = If[z > t[3], y[s, i − 1] + 1, If[z > t[2], y[s, i − 1] − 1, y[s, i − 1]]];y[s, i] = If[z > t[3], y[s, i − 1] + 1, If[z > t[2], y[s, i − 1] − 1, y[s, i − 1]]];y[s, i] = If[z > t[3], y[s, i − 1] + 1, If[z > t[2], y[s, i − 1] − 1, y[s, i − 1]]];

r[s] = i; i = i + 1],{s,1,num}]r[s] = i; i = i + 1],{s,1,num}]r[s] = i; i = i + 1],{s,1,num}]

For[s = 1, s ≤ 10, s++,Print[ListLinePlot[Table[{x[s, j], y[s, j]},For[s = 1, s ≤ 10, s++,Print[ListLinePlot[Table[{x[s, j], y[s, j]},For[s = 1, s ≤ 10, s++,Print[ListLinePlot[Table[{x[s, j], y[s, j]},

{j,0, r[s]}],AxesOrigin→ {0,0}]]]{j,0, r[s]}],AxesOrigin→ {0,0}]]]{j,0, r[s]}],AxesOrigin→ {0,0}]]]

Sample Average Number of Steps Needed to Hit a Boundary:

N[Mean[Table[r[s],{s,1,num}]]]N[Mean[Table[r[s],{s,1,num}]]]N[Mean[Table[r[s],{s,1,num}]]]

Compare Simulation with Theoretical:

Do[w[s] = If[x[s, r[s]] == 0,1,0],{s,1,num}];Do[w[s] = If[x[s, r[s]] == 0,1,0],{s,1,num}];Do[w[s] = If[x[s, r[s]] == 0,1,0],{s,1,num}];

We = N[Sum[w[s],{s,1,num}]/num];We = N[Sum[w[s],{s,1,num}]/num];We = N[Sum[w[s],{s,1,num}]/num];

Do[b[s] = If[y[s, r[s]] == 0,1,0],{s,1,num}];Do[b[s] = If[y[s, r[s]] == 0,1,0],{s,1,num}];Do[b[s] = If[y[s, r[s]] == 0,1,0],{s,1,num}];

So = N[Sum[b[s],{s,1,num}]/num];So = N[Sum[b[s],{s,1,num}]/num];So = N[Sum[b[s],{s,1,num}]/num];

Do[e[s] = If[x[s, r[s]] ==m,1,0],{s,1,num}];Do[e[s] = If[x[s, r[s]] ==m,1,0],{s,1,num}];Do[e[s] = If[x[s, r[s]] ==m,1,0],{s,1,num}];

Ea = N[Sum[e[s],{s,1,num}]/num];Ea = N[Sum[e[s],{s,1,num}]/num];Ea = N[Sum[e[s],{s,1,num}]/num];

Do[t[s] = If[y[s, r[s]] == n,1,0],{s,1,num}];Do[t[s] = If[y[s, r[s]] == n,1,0],{s,1,num}];Do[t[s] = If[y[s, r[s]] == n,1,0],{s,1,num}];

No = N[Sum[t[s],{s,1,num}]/num];No = N[Sum[t[s],{s,1,num}]/num];No = N[Sum[t[s],{s,1,num}]/num];

Si = We +No +Ea + So;Si = We +No +Ea + So;Si = We +No +Ea + So;

MatrixForm[{{“ ”,“Left”,“Upper”,“Right”,“Lower”,“Sum”},MatrixForm[{{“ ”,“Left”,“Upper”,“Right”,“Lower”,“Sum”},MatrixForm[{{“ ”,“Left”,“Upper”,“Right”,“Lower”,“Sum”},

{“Theory”,Lft,Upper,Rght,Lower, S},{“Sim”,We,No,Ea,So,Si}}]{“Theory”,Lft,Upper,Rght,Lower, S},{“Sim”,We,No,Ea,So,Si}}]{“Theory”,Lft,Upper,Rght,Lower, S},{“Sim”,We,No,Ea,So,Si}}]
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Appendix B

The System of Equations Solution for Type I Walk
(Applied to Example 3.3.1; change parameters to use for other examples)

To derive the Probabilities of Hitting the Left Boundary First:
Enter Probabilities and Right Boundary m and Upper Boundary n:

pl = 0.25; pr = 0.25; pd = 0.25; pu = 0.25;m = 6;n = 6;pl = 0.25; pr = 0.25; pd = 0.25; pu = 0.25;m = 6;n = 6;pl = 0.25; pr = 0.25; pd = 0.25; pu = 0.25;m = 6;n = 6;

Create Matrix of Coefficients:

Do[a[i, j] = 0,{i,0, (m + 1)(n + 1)},{j,0, (m + 1)(n + 1)}];Do[a[i, j] = 0,{i,0, (m + 1)(n + 1)},{j,0, (m + 1)(n + 1)}];Do[a[i, j] = 0,{i,0, (m + 1)(n + 1)},{j,0, (m + 1)(n + 1)}];

Do[a[i, i] = 1,{i,1, n + 1}];Do[a[i, i] = 1,{i,1, n + 1}];Do[a[i, i] = 1,{i,1, n + 1}];

Do[a[i, i] = 1,{i,m(n + 1) + 1, (m + 1)(n + 1)}];Do[a[i, i] = 1,{i,m(n + 1) + 1, (m + 1)(n + 1)}];Do[a[i, i] = 1,{i,m(n + 1) + 1, (m + 1)(n + 1)}];

Do[a[k ∗ (n + 1) + 1, k ∗ (n + 1) + 1] = 1,{k,1,m − 1}];Do[a[k ∗ (n + 1) + 1, k ∗ (n + 1) + 1] = 1,{k,1,m − 1}];Do[a[k ∗ (n + 1) + 1, k ∗ (n + 1) + 1] = 1,{k,1,m − 1}];

Do[a[k ∗ (n + 1), k ∗ (n + 1)] = 1,{k,2,m}];Do[a[k ∗ (n + 1), k ∗ (n + 1)] = 1,{k,2,m}];Do[a[k ∗ (n + 1), k ∗ (n + 1)] = 1,{k,2,m}];

Do[a[k ∗ (n + 1) + 1 + j, k ∗ (n + 1) + j] = pd,{k,1,m − 1},{j,1, n − 1}];Do[a[k ∗ (n + 1) + 1 + j, k ∗ (n + 1) + j] = pd,{k,1,m − 1},{j,1, n − 1}];Do[a[k ∗ (n + 1) + 1 + j, k ∗ (n + 1) + j] = pd,{k,1,m − 1},{j,1, n − 1}];

Do[a[k ∗ (n + 1) + 1 + j, k ∗ (n + 1) + 2 + j] = pu,{k,1,m − 1},{j,1, n − 1}];Do[a[k ∗ (n + 1) + 1 + j, k ∗ (n + 1) + 2 + j] = pu,{k,1,m − 1},{j,1, n − 1}];Do[a[k ∗ (n + 1) + 1 + j, k ∗ (n + 1) + 2 + j] = pu,{k,1,m − 1},{j,1, n − 1}];

Do[a[k ∗ (n + 1) + 1 + j, k ∗ (n + 1) + 1 + j] = −1,{k,1,m − 1},{j,1, n − 1}];Do[a[k ∗ (n + 1) + 1 + j, k ∗ (n + 1) + 1 + j] = −1,{k,1,m − 1},{j,1, n − 1}];Do[a[k ∗ (n + 1) + 1 + j, k ∗ (n + 1) + 1 + j] = −1,{k,1,m − 1},{j,1, n − 1}];

Do[a[k ∗ (n + 1) + 1 + j, k ∗ (n + 1) + j − n] = pl,{k,1,m − 1},{j,1, n − 1}];Do[a[k ∗ (n + 1) + 1 + j, k ∗ (n + 1) + j − n] = pl,{k,1,m − 1},{j,1, n − 1}];Do[a[k ∗ (n + 1) + 1 + j, k ∗ (n + 1) + j − n] = pl,{k,1,m − 1},{j,1, n − 1}];

Do[a[k ∗ (n + 1) + 1 + j, k ∗ (n + 1) + j + n + 2] = pr,{k,1,m − 1},{j,1, n − 1}];Do[a[k ∗ (n + 1) + 1 + j, k ∗ (n + 1) + j + n + 2] = pr,{k,1,m − 1},{j,1, n − 1}];Do[a[k ∗ (n + 1) + 1 + j, k ∗ (n + 1) + j + n + 2] = pr,{k,1,m − 1},{j,1, n − 1}];

A = Table[a[i, j],{i,1, (m + 1)(n + 1)},{j,1, (m + 1)(n + 1)}];A = Table[a[i, j],{i,1, (m + 1)(n + 1)},{j,1, (m + 1)(n + 1)}];A = Table[a[i, j],{i,1, (m + 1)(n + 1)},{j,1, (m + 1)(n + 1)}];

MatrixForm[A]MatrixForm[A]MatrixForm[A]

Create Matrix of Constants:

Do[f[i, j] = 0,{i,1, (m + 1)(n + 1)},{j,1,1}];Do[f[i, j] = 0,{i,1, (m + 1)(n + 1)},{j,1,1}];Do[f[i, j] = 0,{i,1, (m + 1)(n + 1)},{j,1,1}];

Do[f[i, j] = 1,{i,1, (n + 1)},{j,1,1}];Do[f[i, j] = 1,{i,1, (n + 1)},{j,1,1}];Do[f[i, j] = 1,{i,1, (n + 1)},{j,1,1}];

F = Table[f[i, j],{i,1, (m + 1)(n + 1)},{j,1,1}];F = Table[f[i, j],{i,1, (m + 1)(n + 1)},{j,1,1}];F = Table[f[i, j],{i,1, (m + 1)(n + 1)},{j,1,1}];

Solve the System:
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Z = Inverse[A].F ;Z = Inverse[A].F ;Z = Inverse[A].F ;

Do[e[i, j] = 0,{i,1,2},{j,1, (m + 1)(n + 1)}];Do[e[i, j] = 0,{i,1,2},{j,1, (m + 1)(n + 1)}];Do[e[i, j] = 0,{i,1,2},{j,1, (m + 1)(n + 1)}];

Do[Do[e[1, i(n + 1) + j + 1] = {i, j},{j,0, n}],{i,0,m}]Do[Do[e[1, i(n + 1) + j + 1] = {i, j},{j,0, n}],{i,0,m}]Do[Do[e[1, i(n + 1) + j + 1] = {i, j},{j,0, n}],{i,0,m}]

Do[e[2, i] = Z[[i]][[1]],{i,1, (m + 1)(n + 1)}];Do[e[2, i] = Z[[i]][[1]],{i,1, (m + 1)(n + 1)}];Do[e[2, i] = Z[[i]][[1]],{i,1, (m + 1)(n + 1)}];

MatrixForm[Table[e[i, j],{i,1,2},{j,1, (m + 1)(n + 1)}]]MatrixForm[Table[e[i, j],{i,1,2},{j,1, (m + 1)(n + 1)}]]MatrixForm[Table[e[i, j],{i,1,2},{j,1, (m + 1)(n + 1)}]]

Find the Average Time to Hit a Boundary.
Create the Augmented Column:

Do[f[i, j] = 0,{i,1, (m + 1)(n + 1)},{j,1,1}];Do[f[i, j] = 0,{i,1, (m + 1)(n + 1)},{j,1,1}];Do[f[i, j] = 0,{i,1, (m + 1)(n + 1)},{j,1,1}];

Do[Do[f[k ∗ (n + 1) + 1 + j,1] = −1,{k,1,m − 1}],{j,1, n − 1}];Do[Do[f[k ∗ (n + 1) + 1 + j,1] = −1,{k,1,m − 1}],{j,1, n − 1}];Do[Do[f[k ∗ (n + 1) + 1 + j,1] = −1,{k,1,m − 1}],{j,1, n − 1}];

F = Table[f[i, j],{i,1, (m + 1)(n + 1)},{j,1,1}]F = Table[f[i, j],{i,1, (m + 1)(n + 1)},{j,1,1}]F = Table[f[i, j],{i,1, (m + 1)(n + 1)},{j,1,1}]

Z = Inverse[A].F ;Z = Inverse[A].F ;Z = Inverse[A].F ;

Do[e[i, j] = 0,{i,1,2},{j,1, (m + 1)(n + 1)}];Do[e[i, j] = 0,{i,1,2},{j,1, (m + 1)(n + 1)}];Do[e[i, j] = 0,{i,1,2},{j,1, (m + 1)(n + 1)}];

Do[Do[e[1, i(n + 1) + j + 1] = {i, j},{j,0, n}],{i,0,m}]Do[Do[e[1, i(n + 1) + j + 1] = {i, j},{j,0, n}],{i,0,m}]Do[Do[e[1, i(n + 1) + j + 1] = {i, j},{j,0, n}],{i,0,m}]

Do[e[2, i] = Z[[i]][[1]],{i,1, (m + 1)(n + 1)}];Do[e[2, i] = Z[[i]][[1]],{i,1, (m + 1)(n + 1)}];Do[e[2, i] = Z[[i]][[1]],{i,1, (m + 1)(n + 1)}];

MatrixForm[Table[e[i, j],{i,1,2},{j,1, (m + 1)(n + 1)}]]MatrixForm[Table[e[i, j],{i,1,2},{j,1, (m + 1)(n + 1)}]]MatrixForm[Table[e[i, j],{i,1,2},{j,1, (m + 1)(n + 1)}]]
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Appendix C

The Markov Chains Solution for Type II Walk
(Applied to Example 4.2.1; change parameters to use for other examples)

Enter Probabilities and Right Boundary m and Upper Boundary n:

pld = 0.25; plu = 0.25; pru = 0.25; prd = 0.25;pld = 0.25; plu = 0.25; pru = 0.25; prd = 0.25;pld = 0.25; plu = 0.25; pru = 0.25; prd = 0.25;

m = 6;n = 6;m = 6;n = 6;m = 6;n = 6;

Enter Initial Position and Create Initial State Matrix:

h = 3;k = 3;h = 3;k = 3;h = 3;k = 3;

Do[b[i, j] = 0,{i,1,1},{j,1, (m + 1)(n + 1)}];Do[b[i, j] = 0,{i,1,1},{j,1, (m + 1)(n + 1)}];Do[b[i, j] = 0,{i,1,1},{j,1, (m + 1)(n + 1)}];

b[1, h(n + 1) + k + 1] = 1;b[1, h(n + 1) + k + 1] = 1;b[1, h(n + 1) + k + 1] = 1;

Do[d[i, j] = 0,{i,1,2},{j,1, (m + 1)(n + 1)}];Do[d[i, j] = 0,{i,1,2},{j,1, (m + 1)(n + 1)}];Do[d[i, j] = 0,{i,1,2},{j,1, (m + 1)(n + 1)}];

Do[Do[d[1, i(n + 1) + j + 1] = {i, j},{j,0, n}],{i,0,m}]Do[Do[d[1, i(n + 1) + j + 1] = {i, j},{j,0, n}],{i,0,m}]Do[Do[d[1, i(n + 1) + j + 1] = {i, j},{j,0, n}],{i,0,m}]

d[2, h(n + 1) + k + 1] = 1;d[2, h(n + 1) + k + 1] = 1;d[2, h(n + 1) + k + 1] = 1;

MatrixForm[Table[d[i, j],{i,1,2},{j,1, (m + 1)(n + 1)}]]MatrixForm[Table[d[i, j],{i,1,2},{j,1, (m + 1)(n + 1)}]]MatrixForm[Table[d[i, j],{i,1,2},{j,1, (m + 1)(n + 1)}]]

Create Transition Matrix:

Do[a[i, j] = 0,{i,0, (m + 1)(n + 1)},{j,0, (m + 1)(n + 1)}];Do[a[i, j] = 0,{i,0, (m + 1)(n + 1)},{j,0, (m + 1)(n + 1)}];Do[a[i, j] = 0,{i,0, (m + 1)(n + 1)},{j,0, (m + 1)(n + 1)}];

Do[a[i, i] = 1,{i,1, n + 1}];Do[a[i, i] = 1,{i,1, n + 1}];Do[a[i, i] = 1,{i,1, n + 1}];

Do[a[i, i] = 1,{i,m(n + 1) + 1, (m + 1)(n + 1)}];Do[a[i, i] = 1,{i,m(n + 1) + 1, (m + 1)(n + 1)}];Do[a[i, i] = 1,{i,m(n + 1) + 1, (m + 1)(n + 1)}];

Do[a[k ∗ (n + 1) + 1, k ∗ (n + 1) + 1] = 1,{k,1,m − 1}];Do[a[k ∗ (n + 1) + 1, k ∗ (n + 1) + 1] = 1,{k,1,m − 1}];Do[a[k ∗ (n + 1) + 1, k ∗ (n + 1) + 1] = 1,{k,1,m − 1}];

Do[a[k ∗ (n + 1), k ∗ (n + 1)] = 1,{k,2,m}];Do[a[k ∗ (n + 1), k ∗ (n + 1)] = 1,{k,2,m}];Do[a[k ∗ (n + 1), k ∗ (n + 1)] = 1,{k,2,m}];

Do[a[k ∗ (n + 1) + 1 + j, k ∗ (n + 1) + j − n − 1] = pld,{k,1,m − 1},{j,1, n − 1}];Do[a[k ∗ (n + 1) + 1 + j, k ∗ (n + 1) + j − n − 1] = pld,{k,1,m − 1},{j,1, n − 1}];Do[a[k ∗ (n + 1) + 1 + j, k ∗ (n + 1) + j − n − 1] = pld,{k,1,m − 1},{j,1, n − 1}];

Do[a[k ∗ (n + 1) + 1 + j, k ∗ (n + 1) + j + n + 1] = prd,{k,1,m − 1},{j,1, n − 1}];Do[a[k ∗ (n + 1) + 1 + j, k ∗ (n + 1) + j + n + 1] = prd,{k,1,m − 1},{j,1, n − 1}];Do[a[k ∗ (n + 1) + 1 + j, k ∗ (n + 1) + j + n + 1] = prd,{k,1,m − 1},{j,1, n − 1}];

Do[a[k ∗ (n + 1) + 1 + j, k ∗ (n + 1) + j − n + 1] = plu,{k,1,m − 1},{j,1, n − 1}];Do[a[k ∗ (n + 1) + 1 + j, k ∗ (n + 1) + j − n + 1] = plu,{k,1,m − 1},{j,1, n − 1}];Do[a[k ∗ (n + 1) + 1 + j, k ∗ (n + 1) + j − n + 1] = plu,{k,1,m − 1},{j,1, n − 1}];

Do[a[k ∗ (n + 1) + 1 + j, k ∗ (n + 1) + j + n + 3] = pru,{k,1,m − 1},{j,1, n − 1}];Do[a[k ∗ (n + 1) + 1 + j, k ∗ (n + 1) + j + n + 3] = pru,{k,1,m − 1},{j,1, n − 1}];Do[a[k ∗ (n + 1) + 1 + j, k ∗ (n + 1) + j + n + 3] = pru,{k,1,m − 1},{j,1, n − 1}];

MatrixForm[Table[a[i, j],{i,1, (m + 1)(n + 1)},{j,1, (m + 1)(n + 1)}]];MatrixForm[Table[a[i, j],{i,1, (m + 1)(n + 1)},{j,1, (m + 1)(n + 1)}]];MatrixForm[Table[a[i, j],{i,1, (m + 1)(n + 1)},{j,1, (m + 1)(n + 1)}]];
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Enter Maximum Number of Steps.
Output Gives Final State After the Maximum Number of Steps:

MaximumNumberOfSteps = max = 10;MaximumNumberOfSteps = max = 10;MaximumNumberOfSteps = max = 10;

A = Table[a[i, j],{i,1, (m + 1)(n + 1)},{j,1, (m + 1)(n + 1)}];A = Table[a[i, j],{i,1, (m + 1)(n + 1)},{j,1, (m + 1)(n + 1)}];A = Table[a[i, j],{i,1, (m + 1)(n + 1)},{j,1, (m + 1)(n + 1)}];

B = Table[b[i, j],{i,1,1},{j,1, (m + 1)(n + 1)}];B = Table[b[i, j],{i,1,1},{j,1, (m + 1)(n + 1)}];B = Table[b[i, j],{i,1,1},{j,1, (m + 1)(n + 1)}];

Z = B.MatrixPower[A,max];Z = B.MatrixPower[A,max];Z = B.MatrixPower[A,max];

Do[e[i, j] = 0,{i,1,2},{j,1, (m + 1)(n + 1)}];Do[e[i, j] = 0,{i,1,2},{j,1, (m + 1)(n + 1)}];Do[e[i, j] = 0,{i,1,2},{j,1, (m + 1)(n + 1)}];

Do[Do[e[1, i(n + 1) + j + 1] = {i, j},{j,0, n}],{i,0,m}]Do[Do[e[1, i(n + 1) + j + 1] = {i, j},{j,0, n}],{i,0,m}]Do[Do[e[1, i(n + 1) + j + 1] = {i, j},{j,0, n}],{i,0,m}]

Do[e[2, i] = Z[[1]][[i]],{i,1, (m + 1)(n + 1)}];Do[e[2, i] = Z[[1]][[i]],{i,1, (m + 1)(n + 1)}];Do[e[2, i] = Z[[1]][[i]],{i,1, (m + 1)(n + 1)}];

MatrixForm[Table[e[i, j],{i,1,2},{j,1, (m + 1)(n + 1)}]]MatrixForm[Table[e[i, j],{i,1,2},{j,1, (m + 1)(n + 1)}]]MatrixForm[Table[e[i, j],{i,1,2},{j,1, (m + 1)(n + 1)}]]

Probability of Hitting Boundaries:

Lft = Sum[Z[[1]][[i]],{i,2, n}];Lft = Sum[Z[[1]][[i]],{i,2, n}];Lft = Sum[Z[[1]][[i]],{i,2, n}];

Rght = Sum[Z[[1]][[i]],{i,m(n + 1) + 2, (m + 1)(n + 1) − 1}];Rght = Sum[Z[[1]][[i]],{i,m(n + 1) + 2, (m + 1)(n + 1) − 1}];Rght = Sum[Z[[1]][[i]],{i,m(n + 1) + 2, (m + 1)(n + 1) − 1}];

Lower = Sum[Z[[1]][[i(n + 1) + 1]],{i,1,m − 1}];Lower = Sum[Z[[1]][[i(n + 1) + 1]],{i,1,m − 1}];Lower = Sum[Z[[1]][[i(n + 1) + 1]],{i,1,m − 1}];

Upper = Sum[Z[[1]][[i(n + 1) + n + 1]],{i,1,m − 1}];Upper = Sum[Z[[1]][[i(n + 1) + n + 1]],{i,1,m − 1}];Upper = Sum[Z[[1]][[i(n + 1) + n + 1]],{i,1,m − 1}];

OO = Z[[1]][[1]]; ON = Z[[1]][[n + 1]];OO = Z[[1]][[1]]; ON = Z[[1]][[n + 1]];OO = Z[[1]][[1]]; ON = Z[[1]][[n + 1]];

mn = Z[[1]][[(m + 1)(n + 1)]]; mO = Z[[1]][[m(n + 1) + 1]];mn = Z[[1]][[(m + 1)(n + 1)]]; mO = Z[[1]][[m(n + 1) + 1]];mn = Z[[1]][[(m + 1)(n + 1)]]; mO = Z[[1]][[m(n + 1) + 1]];

S = Lft +Rght +Upper + Lower +OO +ON +mn +mO;S = Lft +Rght +Upper + Lower +OO +ON +mn +mO;S = Lft +Rght +Upper + Lower +OO +ON +mn +mO;

MatrixForm[{{“Left”,“Upper”,“Right”,“Lower”,MatrixForm[{{“Left”,“Upper”,“Right”,“Lower”,MatrixForm[{{“Left”,“Upper”,“Right”,“Lower”,

“00”,“0n”,“mn”,“m0”,“Sum”},“00”,“0n”,“mn”,“m0”,“Sum”},“00”,“0n”,“mn”,“m0”,“Sum”},

{Lft,Upper,Rght,Lower,OO,ON,mn,mO, S}}]{Lft,Upper,Rght,Lower,OO,ON,mn,mO, S}}]{Lft,Upper,Rght,Lower,OO,ON,mn,mO, S}}]

Simulation

NumberOfIterations = num = 5000;NumberOfIterations = num = 5000;NumberOfIterations = num = 5000;

Do[x[s,0] = h,{s,1,num}]; Do[y[s,0] = k,{s,1,num}];Do[x[s,0] = h,{s,1,num}]; Do[y[s,0] = k,{s,1,num}];Do[x[s,0] = h,{s,1,num}]; Do[y[s,0] = k,{s,1,num}];

p[1] = pld;p[2] = plu;p[3] = pru;p[4] = prd;p[1] = pld;p[2] = plu;p[3] = pru;p[4] = prd;p[1] = pld;p[2] = plu;p[3] = pru;p[4] = prd;

t[0] = 0; Do[t[i] = t[i − 1] + p[i],{i,1,4}];t[0] = 0; Do[t[i] = t[i − 1] + p[i],{i,1,4}];t[0] = 0; Do[t[i] = t[i − 1] + p[i],{i,1,4}];
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Stop When Hit Boundary or Make the Maximum Number of Steps

Do[i = 1; While[(0 < x[s, i − 1] <m)Do[i = 1; While[(0 < x[s, i − 1] <m)Do[i = 1; While[(0 < x[s, i − 1] <m)

&&(0 < y[s, i − 1] < n)&&i ≤ max,&&(0 < y[s, i − 1] < n)&&i ≤ max,&&(0 < y[s, i − 1] < n)&&i ≤ max,

z = Random[];x[s, i] = If[z ≤ t[2], x[s, i − 1] − 1, x[s, i − 1] + 1];z = Random[];x[s, i] = If[z ≤ t[2], x[s, i − 1] − 1, x[s, i − 1] + 1];z = Random[];x[s, i] = If[z ≤ t[2], x[s, i − 1] − 1, x[s, i − 1] + 1];

y[s, i] = If[t[1] ≤ z < t[3], y[s, i − 1] + 1, y[s, i − 1] − 1];y[s, i] = If[t[1] ≤ z < t[3], y[s, i − 1] + 1, y[s, i − 1] − 1];y[s, i] = If[t[1] ≤ z < t[3], y[s, i − 1] + 1, y[s, i − 1] − 1];

r[s] = i; i = i + 1],{s,1,num}]r[s] = i; i = i + 1],{s,1,num}]r[s] = i; i = i + 1],{s,1,num}]

For[s = 1, s ≤ 10, s++,For[s = 1, s ≤ 10, s++,For[s = 1, s ≤ 10, s++,

Print[ListLinePlot[Table[{x[s, j], y[s, j]},{j,0, r[s]}],Print[ListLinePlot[Table[{x[s, j], y[s, j]},{j,0, r[s]}],Print[ListLinePlot[Table[{x[s, j], y[s, j]},{j,0, r[s]}],

AxesOrigin→ {0,0}]]]AxesOrigin→ {0,0}]]]AxesOrigin→ {0,0}]]]

Sample Average Number of Steps Needed to Hit a Boundary:

N[Mean[Table[r[s],{s,1,num}]]]N[Mean[Table[r[s],{s,1,num}]]]N[Mean[Table[r[s],{s,1,num}]]]

Compare Simulation with Theoretical:

Do[w[s] = If[x[s, r[s]] == 0&&0 < y[s, r[s]] < n,1,0],{s,1,num}];Do[w[s] = If[x[s, r[s]] == 0&&0 < y[s, r[s]] < n,1,0],{s,1,num}];Do[w[s] = If[x[s, r[s]] == 0&&0 < y[s, r[s]] < n,1,0],{s,1,num}];

We = N[Sum[w[s],{s,1,num}]/num];We = N[Sum[w[s],{s,1,num}]/num];We = N[Sum[w[s],{s,1,num}]/num];

Do[b[s] = If[y[s, r[s]] == 0&&0 < x[s, r[s]] <m,1,0],{s,1,num}];Do[b[s] = If[y[s, r[s]] == 0&&0 < x[s, r[s]] <m,1,0],{s,1,num}];Do[b[s] = If[y[s, r[s]] == 0&&0 < x[s, r[s]] <m,1,0],{s,1,num}];

So = N[Sum[b[s],{s,1,num}]/num];So = N[Sum[b[s],{s,1,num}]/num];So = N[Sum[b[s],{s,1,num}]/num];

Do[e[s] = If[x[s, r[s]] ==m&&0 < y[s, r[s]] < n,1,0],{s,1,num}];Do[e[s] = If[x[s, r[s]] ==m&&0 < y[s, r[s]] < n,1,0],{s,1,num}];Do[e[s] = If[x[s, r[s]] ==m&&0 < y[s, r[s]] < n,1,0],{s,1,num}];

Ea = N[Sum[e[s],{s,1,num}]/num];Ea = N[Sum[e[s],{s,1,num}]/num];Ea = N[Sum[e[s],{s,1,num}]/num];

Do[t[s] = If[y[s, r[s]] == n&&0 < x[s, r[s]] <m,1,0],{s,1,num}];Do[t[s] = If[y[s, r[s]] == n&&0 < x[s, r[s]] <m,1,0],{s,1,num}];Do[t[s] = If[y[s, r[s]] == n&&0 < x[s, r[s]] <m,1,0],{s,1,num}];

No = N[Sum[t[s],{s,1,num}]/num];No = N[Sum[t[s],{s,1,num}]/num];No = N[Sum[t[s],{s,1,num}]/num];

Do[w[s] = If[x[s, r[s]] == 0&&y[s, r[s]]==0,1,0],{s,1,num}];Do[w[s] = If[x[s, r[s]] == 0&&y[s, r[s]]==0,1,0],{s,1,num}];Do[w[s] = If[x[s, r[s]] == 0&&y[s, r[s]]==0,1,0],{s,1,num}];

dd = N[Sum[w[s],{s,1,num}]/num];dd = N[Sum[w[s],{s,1,num}]/num];dd = N[Sum[w[s],{s,1,num}]/num];

Do[b[s] = If[x[s, r[s]] == 0&&y[s, r[s]]==n,1,0],{s,1,num}];Do[b[s] = If[x[s, r[s]] == 0&&y[s, r[s]]==n,1,0],{s,1,num}];Do[b[s] = If[x[s, r[s]] == 0&&y[s, r[s]]==n,1,0],{s,1,num}];

du = N[Sum[b[s],{s,1,num}]/num];du = N[Sum[b[s],{s,1,num}]/num];du = N[Sum[b[s],{s,1,num}]/num];

Do[e[s] = If[x[s, r[s]] ==m&&y[s, r[s]]==n,1,0],{s,1,num}];Do[e[s] = If[x[s, r[s]] ==m&&y[s, r[s]]==n,1,0],{s,1,num}];Do[e[s] = If[x[s, r[s]] ==m&&y[s, r[s]]==n,1,0],{s,1,num}];

95



uu = N[Sum[e[s],{s,1,num}]/num];uu = N[Sum[e[s],{s,1,num}]/num];uu = N[Sum[e[s],{s,1,num}]/num];

Do[t[s] = If[x[s, r[s]] ==m&&y[s, r[s]]==0,1,0],{s,1,num}];Do[t[s] = If[x[s, r[s]] ==m&&y[s, r[s]]==0,1,0],{s,1,num}];Do[t[s] = If[x[s, r[s]] ==m&&y[s, r[s]]==0,1,0],{s,1,num}];

ud = N[Sum[t[s],{s,1,num}]/num];ud = N[Sum[t[s],{s,1,num}]/num];ud = N[Sum[t[s],{s,1,num}]/num];

Si = We +No +Ea + So + dd + du + uu + ud;Si = We +No +Ea + So + dd + du + uu + ud;Si = We +No +Ea + So + dd + du + uu + ud;

MatrixForm[{{“ ”,“Left”,“Upper”,“Right”,“Lower”,MatrixForm[{{“ ”,“Left”,“Upper”,“Right”,“Lower”,MatrixForm[{{“ ”,“Left”,“Upper”,“Right”,“Lower”,

“00”,“0n”,“mn”,“m0”,“Sum”},“00”,“0n”,“mn”,“m0”,“Sum”},“00”,“0n”,“mn”,“m0”,“Sum”},

{“Theory”,Lft,Upper,Rght,Lower,OO,ON,mn,mO, S},{“Theory”,Lft,Upper,Rght,Lower,OO,ON,mn,mO, S},{“Theory”,Lft,Upper,Rght,Lower,OO,ON,mn,mO, S},

{“Sim”,We,No,Ea,So,dd,du,uu,ud,Si}}]{“Sim”,We,No,Ea,So,dd,du,uu,ud,Si}}]{“Sim”,We,No,Ea,So,dd,du,uu,ud,Si}}]
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Appendix D

The System of Equations Solution for Type II Walk
(Applied to Example 4.2.1; change parameters to use for other examples)

To derive the Probabilities of Hitting the Left Boundary First
Enter Probabilities and Right Boundary m and Upper Boundary n:

pld = 0.25; plu = 0.25; pru = 0.25; prd = 0.25;pld = 0.25; plu = 0.25; pru = 0.25; prd = 0.25;pld = 0.25; plu = 0.25; pru = 0.25; prd = 0.25;

m = 6;n = 6;m = 6;n = 6;m = 6;n = 6;

Create Matrix of Coefficients:

Do[a[i, j] = 0,{i,0, (m + 1)(n + 1)},{j,0, (m + 1)(n + 1)}];Do[a[i, j] = 0,{i,0, (m + 1)(n + 1)},{j,0, (m + 1)(n + 1)}];Do[a[i, j] = 0,{i,0, (m + 1)(n + 1)},{j,0, (m + 1)(n + 1)}];

Do[a[i, i] = 1,{i,1, n + 1}];Do[a[i, i] = 1,{i,1, n + 1}];Do[a[i, i] = 1,{i,1, n + 1}];

Do[a[i, i] = 1,{i,m(n + 1) + 1, (m + 1)(n + 1)}];Do[a[i, i] = 1,{i,m(n + 1) + 1, (m + 1)(n + 1)}];Do[a[i, i] = 1,{i,m(n + 1) + 1, (m + 1)(n + 1)}];

Do[a[k ∗ (n + 1) + 1, k ∗ (n + 1) + 1] = 1,{k,1,m − 1}];Do[a[k ∗ (n + 1) + 1, k ∗ (n + 1) + 1] = 1,{k,1,m − 1}];Do[a[k ∗ (n + 1) + 1, k ∗ (n + 1) + 1] = 1,{k,1,m − 1}];

Do[a[k ∗ (n + 1), k ∗ (n + 1)] = 1,{k,2,m}];Do[a[k ∗ (n + 1), k ∗ (n + 1)] = 1,{k,2,m}];Do[a[k ∗ (n + 1), k ∗ (n + 1)] = 1,{k,2,m}];

Do[a[k ∗ (n + 1) + 1 + j, k ∗ (n + 1) + j − n − 1] = pld,{k,1,m − 1},{j,1, n − 1}];Do[a[k ∗ (n + 1) + 1 + j, k ∗ (n + 1) + j − n − 1] = pld,{k,1,m − 1},{j,1, n − 1}];Do[a[k ∗ (n + 1) + 1 + j, k ∗ (n + 1) + j − n − 1] = pld,{k,1,m − 1},{j,1, n − 1}];

Do[a[k ∗ (n + 1) + 1 + j, k ∗ (n + 1) + j + n + 1] = prd,{k,1,m − 1},{j,1, n − 1}];Do[a[k ∗ (n + 1) + 1 + j, k ∗ (n + 1) + j + n + 1] = prd,{k,1,m − 1},{j,1, n − 1}];Do[a[k ∗ (n + 1) + 1 + j, k ∗ (n + 1) + j + n + 1] = prd,{k,1,m − 1},{j,1, n − 1}];

Do[a[k ∗ (n + 1) + 1 + j, k ∗ (n + 1) + j − n + 1] = plu,{k,1,m − 1},{j,1, n − 1}];Do[a[k ∗ (n + 1) + 1 + j, k ∗ (n + 1) + j − n + 1] = plu,{k,1,m − 1},{j,1, n − 1}];Do[a[k ∗ (n + 1) + 1 + j, k ∗ (n + 1) + j − n + 1] = plu,{k,1,m − 1},{j,1, n − 1}];

Do[a[k ∗ (n + 1) + 1 + j, k ∗ (n + 1) + j + n + 3] = pru,{k,1,m − 1},{j,1, n − 1}];Do[a[k ∗ (n + 1) + 1 + j, k ∗ (n + 1) + j + n + 3] = pru,{k,1,m − 1},{j,1, n − 1}];Do[a[k ∗ (n + 1) + 1 + j, k ∗ (n + 1) + j + n + 3] = pru,{k,1,m − 1},{j,1, n − 1}];

Do[a[k ∗ (n + 1) + 1 + j, k ∗ (n + 1) + 1 + j] = −1,{k,1,m − 1},{j,1, n − 1}];Do[a[k ∗ (n + 1) + 1 + j, k ∗ (n + 1) + 1 + j] = −1,{k,1,m − 1},{j,1, n − 1}];Do[a[k ∗ (n + 1) + 1 + j, k ∗ (n + 1) + 1 + j] = −1,{k,1,m − 1},{j,1, n − 1}];

A = Table[a[i, j],{i,1, (m + 1)(n + 1)},{j,1, (m + 1)(n + 1)}];A = Table[a[i, j],{i,1, (m + 1)(n + 1)},{j,1, (m + 1)(n + 1)}];A = Table[a[i, j],{i,1, (m + 1)(n + 1)},{j,1, (m + 1)(n + 1)}];

MatrixForm[A]MatrixForm[A]MatrixForm[A]

Create Matrix of Constants:

Do[f[i, j] = 0,{i,1, (m + 1)(n + 1)},{j,1,1}]; Do[f[i, j] = 1,{i,2, n},{j,1,1}];Do[f[i, j] = 0,{i,1, (m + 1)(n + 1)},{j,1,1}]; Do[f[i, j] = 1,{i,2, n},{j,1,1}];Do[f[i, j] = 0,{i,1, (m + 1)(n + 1)},{j,1,1}]; Do[f[i, j] = 1,{i,2, n},{j,1,1}];

F = Table[f[i, j],{i,1, (m + 1)(n + 1)},{j,1,1}]F = Table[f[i, j],{i,1, (m + 1)(n + 1)},{j,1,1}]F = Table[f[i, j],{i,1, (m + 1)(n + 1)},{j,1,1}]

Solve the System:
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Z = Inverse[A].F ;Z = Inverse[A].F ;Z = Inverse[A].F ;

Do[e[i, j] = 0,{i,1,2},{j,1, (m + 1)(n + 1)}];Do[e[i, j] = 0,{i,1,2},{j,1, (m + 1)(n + 1)}];Do[e[i, j] = 0,{i,1,2},{j,1, (m + 1)(n + 1)}];

Do[Do[e[1, i(n + 1) + j + 1] = {i, j},{j,0, n}],{i,0,m}]Do[Do[e[1, i(n + 1) + j + 1] = {i, j},{j,0, n}],{i,0,m}]Do[Do[e[1, i(n + 1) + j + 1] = {i, j},{j,0, n}],{i,0,m}]

Do[e[2, i] = Z[[i]][[1]],{i,1, (m + 1)(n + 1)}];Do[e[2, i] = Z[[i]][[1]],{i,1, (m + 1)(n + 1)}];Do[e[2, i] = Z[[i]][[1]],{i,1, (m + 1)(n + 1)}];

MatrixForm[Table[e[i, j],{i,1,2},{j,1, (m + 1)(n + 1)}]]MatrixForm[Table[e[i, j],{i,1,2},{j,1, (m + 1)(n + 1)}]]MatrixForm[Table[e[i, j],{i,1,2},{j,1, (m + 1)(n + 1)}]]

Find the Average Time to Hit a Boundary

Do[f[i, j] = 0,{i,1, (m + 1)(n + 1)},{j,1,1}];Do[f[i, j] = 0,{i,1, (m + 1)(n + 1)},{j,1,1}];Do[f[i, j] = 0,{i,1, (m + 1)(n + 1)},{j,1,1}];

Do[Do[f[k ∗ (n + 1) + 1 + j,1] = −1,{k,1,m − 1}],{j,1, n − 1}];Do[Do[f[k ∗ (n + 1) + 1 + j,1] = −1,{k,1,m − 1}],{j,1, n − 1}];Do[Do[f[k ∗ (n + 1) + 1 + j,1] = −1,{k,1,m − 1}],{j,1, n − 1}];

F = Table[f[i, j],{i,1, (m + 1)(n + 1)},{j,1,1}];F = Table[f[i, j],{i,1, (m + 1)(n + 1)},{j,1,1}];F = Table[f[i, j],{i,1, (m + 1)(n + 1)},{j,1,1}];

Z = Inverse[A].F ;Z = Inverse[A].F ;Z = Inverse[A].F ;

Do[e[i, j] = 0,{i,1,2},{j,1, (m + 1)(n + 1)}];Do[e[i, j] = 0,{i,1,2},{j,1, (m + 1)(n + 1)}];Do[e[i, j] = 0,{i,1,2},{j,1, (m + 1)(n + 1)}];

Do[Do[e[1, i(n + 1) + j + 1] = {i, j},{j,0, n}],{i,0,m}]Do[Do[e[1, i(n + 1) + j + 1] = {i, j},{j,0, n}],{i,0,m}]Do[Do[e[1, i(n + 1) + j + 1] = {i, j},{j,0, n}],{i,0,m}]

Do[e[2, i] = Z[[i]][[1]],{i,1, (m + 1)(n + 1)}];Do[e[2, i] = Z[[i]][[1]],{i,1, (m + 1)(n + 1)}];Do[e[2, i] = Z[[i]][[1]],{i,1, (m + 1)(n + 1)}];

MatrixForm[Table[e[i, j],{i,1,2},{j,1, (m + 1)(n + 1)}]]MatrixForm[Table[e[i, j],{i,1,2},{j,1, (m + 1)(n + 1)}]]MatrixForm[Table[e[i, j],{i,1,2},{j,1, (m + 1)(n + 1)}]]
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Appendix E

Testing the Conjecture in Example 6.3.1
(Applied to Example 6.3.1; change parameters to use for other examples)

Enter Parameters:

h = 4;k = 10;h = 4;k = 10;h = 4;k = 10;

pld = .35; prd = 0.40; plu = 0.20; pru = 0.05;pld = .35; prd = 0.40; plu = 0.20; pru = 0.05;pld = .35; prd = 0.40; plu = 0.20; pru = 0.05;

Use Trial and Error to Determine
when the distribution of Y is essentially complete:

k ∗∑50
i=0 Binomial[k + 2i, i]/(k + 2i) ∗ (prd + pld)k+i ∗ (plu + pru)ik ∗∑50
i=0 Binomial[k + 2i, i]/(k + 2i) ∗ (prd + pld)k+i ∗ (plu + pru)ik ∗∑50
i=0 Binomial[k + 2i, i]/(k + 2i) ∗ (prd + pld)k+i ∗ (plu + pru)i

For a particular i, display kCi and all D(h, k, i, z):

i = 4;i = 4;i = 4;

k ∗Binomial[k + 2i, i]/(k + 2i)k ∗Binomial[k + 2i, i]/(k + 2i)k ∗Binomial[k + 2i, i]/(k + 2i)

Table[{h + (k + 2i − h)/2 + z − ((k + 2i + h)/2 − z),Table[{h + (k + 2i − h)/2 + z − ((k + 2i + h)/2 − z),Table[{h + (k + 2i − h)/2 + z − ((k + 2i + h)/2 − z),

Binomial[k + 2i, (k + 2i − h)/2 + z] −Binomial[k + 2i, (k + 2i + h)/2 + z]},Binomial[k + 2i, (k + 2i − h)/2 + z] −Binomial[k + 2i, (k + 2i + h)/2 + z]},Binomial[k + 2i, (k + 2i − h)/2 + z] −Binomial[k + 2i, (k + 2i + h)/2 + z]},

{z,1, (h + k + 2i)/2}]{z,1, (h + k + 2i)/2}]{z,1, (h + k + 2i)/2}]

Conj =Conj =Conj =

k∗k∗k∗

∑50
i=0 Binomial[k + 2i, i]/(k + 2i) ∗ (prd + pld)k+i ∗ (plu + pru)i∑50
i=0 Binomial[k + 2i, i]/(k + 2i) ∗ (prd + pld)k+i ∗ (plu + pru)i∑50
i=0 Binomial[k + 2i, i]/(k + 2i) ∗ (prd + pld)k+i ∗ (plu + pru)i

∗∑
k+2i+h

2
z=1 (Binomial[k + 2i, (k + 2i − h)/2 + z] −Binomial[k + 2i, (k + 2i + h)/2 + z])∗∑
k+2i+h

2
z=1 (Binomial[k + 2i, (k + 2i − h)/2 + z] −Binomial[k + 2i, (k + 2i + h)/2 + z])∗∑
k+2i+h

2
z=1 (Binomial[k + 2i, (k + 2i − h)/2 + z] −Binomial[k + 2i, (k + 2i + h)/2 + z])

∗(plu + pld)(k+2i+h)/2−z ∗ (pru + prd)(k+2i−h)/2+z∗(plu + pld)(k+2i+h)/2−z ∗ (pru + prd)(k+2i−h)/2+z∗(plu + pld)(k+2i+h)/2−z ∗ (pru + prd)(k+2i−h)/2+z

Enter Number of Trials for the Simulation:

NumberOfTrials = num = 9200;NumberOfTrials = num = 9200;NumberOfTrials = num = 9200;

Do[x[s,0] = h,{s,1,num}]; Do[y[s,0] = k,{s,1,num}];Do[x[s,0] = h,{s,1,num}]; Do[y[s,0] = k,{s,1,num}];Do[x[s,0] = h,{s,1,num}]; Do[y[s,0] = k,{s,1,num}];
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Do[x1[s,0] = h,{s,1,num}]; Do[y1[s,0] = k,{s,1,num}];Do[x1[s,0] = h,{s,1,num}]; Do[y1[s,0] = k,{s,1,num}];Do[x1[s,0] = h,{s,1,num}]; Do[y1[s,0] = k,{s,1,num}];

p[1] = pld;p[2] = prd;p[3] = plu;p[4] = pru;p[1] = pld;p[2] = prd;p[3] = plu;p[4] = pru;p[1] = pld;p[2] = prd;p[3] = plu;p[4] = pru;

t[0] = 0;t[0] = 0;t[0] = 0;

Do[t[i] = t[i − 1] + p[i],{i,1,4}]Do[t[i] = t[i − 1] + p[i],{i,1,4}]Do[t[i] = t[i − 1] + p[i],{i,1,4}]

Run Two Sets of Trials Simultaneously. Each Stops When Hit an Axis

Do[i = 1; While[(0 < x[s, i − 1])&&(0 < y[s, i − 1]), z = Random[];Do[i = 1; While[(0 < x[s, i − 1])&&(0 < y[s, i − 1]), z = Random[];Do[i = 1; While[(0 < x[s, i − 1])&&(0 < y[s, i − 1]), z = Random[];

x[s, i] = If[z ≤ t[1]∥t[2] ≤ z < t[3], x[s, i − 1] − 1, x[s, i − 1] + 1];x[s, i] = If[z ≤ t[1]∥t[2] ≤ z < t[3], x[s, i − 1] − 1, x[s, i − 1] + 1];x[s, i] = If[z ≤ t[1]∥t[2] ≤ z < t[3], x[s, i − 1] − 1, x[s, i − 1] + 1];

y[s, i] = If[t[2] ≤ z, y[s, i − 1] + 1, y[s, i − 1] − 1];y[s, i] = If[t[2] ≤ z, y[s, i − 1] + 1, y[s, i − 1] − 1];y[s, i] = If[t[2] ≤ z, y[s, i − 1] + 1, y[s, i − 1] − 1];

r[s] = i; i = i + 1]; j = 1;r[s] = i; i = i + 1]; j = 1;r[s] = i; i = i + 1]; j = 1;

While[(0 < x1[s, j − 1])&&(0 < y1[s, j − 1]), z1 = Random[];While[(0 < x1[s, j − 1])&&(0 < y1[s, j − 1]), z1 = Random[];While[(0 < x1[s, j − 1])&&(0 < y1[s, j − 1]), z1 = Random[];

x1[s, j] = If[z1 ≤ t[1]∥t[2] ≤ z1 < t[3],x1[s, j − 1] − 1,x1[s, j − 1] + 1];x1[s, j] = If[z1 ≤ t[1]∥t[2] ≤ z1 < t[3],x1[s, j − 1] − 1,x1[s, j − 1] + 1];x1[s, j] = If[z1 ≤ t[1]∥t[2] ≤ z1 < t[3],x1[s, j − 1] − 1,x1[s, j − 1] + 1];

y1[s, j] = If[t[2] ≤ z1,y1[s, j − 1] + 1,y1[s, j − 1] − 1];y1[s, j] = If[t[2] ≤ z1,y1[s, j − 1] + 1,y1[s, j − 1] − 1];y1[s, j] = If[t[2] ≤ z1,y1[s, j − 1] + 1,y1[s, j − 1] − 1];

r1[s] = j; j = j + 1],{s,1,num}]r1[s] = j; j = j + 1],{s,1,num}]r1[s] = j; j = j + 1],{s,1,num}]

Display Results of Simulations:

Do[b[s] = If[y[s, r[s]] == 0&&0 < x[s, r[s]],1,0],{s,1,num}];Do[b[s] = If[y[s, r[s]] == 0&&0 < x[s, r[s]],1,0],{s,1,num}];Do[b[s] = If[y[s, r[s]] == 0&&0 < x[s, r[s]],1,0],{s,1,num}];

sim = N[Sum[b[s],{s,1,num}]/num];sim = N[Sum[b[s],{s,1,num}]/num];sim = N[Sum[b[s],{s,1,num}]/num];

Do[b[s] = If[y1[s, r1[s]] == 0&&0 < x1[s, r1[s]],1,0],{s,1,num}];Do[b[s] = If[y1[s, r1[s]] == 0&&0 < x1[s, r1[s]],1,0],{s,1,num}];Do[b[s] = If[y1[s, r1[s]] == 0&&0 < x1[s, r1[s]],1,0],{s,1,num}];

sim1 = N[Sum[b[s],{s,1,num}]/num];sim1 = N[Sum[b[s],{s,1,num}]/num];sim1 = N[Sum[b[s],{s,1,num}]/num];

MatrixForm[{{“ ”,“Bottom”},{“Conj”,Conj},{“Sim”, sim}}]MatrixForm[{{“ ”,“Bottom”},{“Conj”,Conj},{“Sim”, sim}}]MatrixForm[{{“ ”,“Bottom”},{“Conj”,Conj},{“Sim”, sim}}]

MatrixForm[{{“ ”,“Bottom”},{“Conj”,Conj},{“Sim1”, sim1}}]MatrixForm[{{“ ”,“Bottom”},{“Conj”,Conj},{“Sim1”, sim1}}]MatrixForm[{{“ ”,“Bottom”},{“Conj”,Conj},{“Sim1”, sim1}}]

Hypothesis Test:

p0 = Conj;Z = NormalDistribution[0,1];F [x ] = CDF[Z,x];p0 = Conj;Z = NormalDistribution[0,1];F [x ] = CDF[Z,x];p0 = Conj;Z = NormalDistribution[0,1];F [x ] = CDF[Z,x];

TestStat = z0 = (sim−p0)√
p0∗(1−p0)

num

TestStat = z0 = (sim−p0)√
p0∗(1−p0)

num

TestStat = z0 = (sim−p0)√
p0∗(1−p0)

num
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P-Value for Two-Sided Alternative:

1 −Abs[F [z0] − F [−z0]]1 −Abs[F [z0] − F [−z0]]1 −Abs[F [z0] − F [−z0]]

Display Some Graphs:

For[s = 1, s ≤ 5, s++,For[s = 1, s ≤ 5, s++,For[s = 1, s ≤ 5, s++,

Print[ListLinePlot[Table[{x[s, j], y[s, j]},{j,0, r[s]}],Print[ListLinePlot[Table[{x[s, j], y[s, j]},{j,0, r[s]}],Print[ListLinePlot[Table[{x[s, j], y[s, j]},{j,0, r[s]}],

AxesOrigin→ {0,0}]]];AxesOrigin→ {0,0}]]];AxesOrigin→ {0,0}]]];
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Appendix F

Testing the Conjecture in Example 6.3.2
(Applied to Example 6.3.2; change parameters to use for other examples)

Enter Parameters:

h = 6;k = 4;h = 6;k = 4;h = 6;k = 4;

pld = .35; prd = 0.28; plu = 0.32; pru = 0.05;pld = .35; prd = 0.28; plu = 0.32; pru = 0.05;pld = .35; prd = 0.28; plu = 0.32; pru = 0.05;

Use Trial and Error to Determine
when the distribution of Y is essentially complete:

k ∗∑150
i=0 Binomial[k + 2i, i]/(k + 2i) ∗ (prd + pld)k+i ∗ (plu + pru)ik ∗∑150
i=0 Binomial[k + 2i, i]/(k + 2i) ∗ (prd + pld)k+i ∗ (plu + pru)ik ∗∑150
i=0 Binomial[k + 2i, i]/(k + 2i) ∗ (prd + pld)k+i ∗ (plu + pru)i

For a particular i, display kCi and all D(h, k, i, z):

i = 5;i = 5;i = 5;

k ∗Binomial[k + 2i, i]/(k + 2i)k ∗Binomial[k + 2i, i]/(k + 2i)k ∗Binomial[k + 2i, i]/(k + 2i)

Table[{h + (k + 2i − h)/2 + z − ((k + 2i + h)/2 − z),Table[{h + (k + 2i − h)/2 + z − ((k + 2i + h)/2 − z),Table[{h + (k + 2i − h)/2 + z − ((k + 2i + h)/2 − z),

Binomial[k + 2i, (k + 2i − h)/2 + z] −Binomial[k + 2i, (k + 2i + h)/2 + z]},Binomial[k + 2i, (k + 2i − h)/2 + z] −Binomial[k + 2i, (k + 2i + h)/2 + z]},Binomial[k + 2i, (k + 2i − h)/2 + z] −Binomial[k + 2i, (k + 2i + h)/2 + z]},

{z,1, (h + k + 2i)/2}]{z,1, (h + k + 2i)/2}]{z,1, (h + k + 2i)/2}]

Conj =Conj =Conj =

k∗k∗k∗

∑150
i=0 Binomial[k + 2i, i]/(k + 2i) ∗ (prd + pld)k+i ∗ (plu + pru)i∑150
i=0 Binomial[k + 2i, i]/(k + 2i) ∗ (prd + pld)k+i ∗ (plu + pru)i∑150
i=0 Binomial[k + 2i, i]/(k + 2i) ∗ (prd + pld)k+i ∗ (plu + pru)i

∗∑
k+2i+h

2
z=1 (Binomial[k + 2i, (k + 2i − h)/2 + z] −Binomial[k + 2i, (k + 2i + h)/2 + z])∗∑
k+2i+h

2
z=1 (Binomial[k + 2i, (k + 2i − h)/2 + z] −Binomial[k + 2i, (k + 2i + h)/2 + z])∗∑
k+2i+h

2
z=1 (Binomial[k + 2i, (k + 2i − h)/2 + z] −Binomial[k + 2i, (k + 2i + h)/2 + z])

∗(plu + pld)(k+2i+h)/2−z ∗ (pru + prd)(k+2i−h)/2+z∗(plu + pld)(k+2i+h)/2−z ∗ (pru + prd)(k+2i−h)/2+z∗(plu + pld)(k+2i+h)/2−z ∗ (pru + prd)(k+2i−h)/2+z

Enter Number of Trials for the Simulation:

NumberOfTrials = num = 10000;NumberOfTrials = num = 10000;NumberOfTrials = num = 10000;

Do[x[s,0] = h,{s,1,num}]; Do[y[s,0] = k,{s,1,num}];Do[x[s,0] = h,{s,1,num}]; Do[y[s,0] = k,{s,1,num}];Do[x[s,0] = h,{s,1,num}]; Do[y[s,0] = k,{s,1,num}];
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Do[x1[s,0] = h,{s,1,num}]; Do[y1[s,0] = k,{s,1,num}];Do[x1[s,0] = h,{s,1,num}]; Do[y1[s,0] = k,{s,1,num}];Do[x1[s,0] = h,{s,1,num}]; Do[y1[s,0] = k,{s,1,num}];

p[1] = pld;p[2] = prd;p[3] = plu;p[4] = pru;p[1] = pld;p[2] = prd;p[3] = plu;p[4] = pru;p[1] = pld;p[2] = prd;p[3] = plu;p[4] = pru;

t[0] = 0;t[0] = 0;t[0] = 0;

Do[t[i] = t[i − 1] + p[i],{i,1,4}]Do[t[i] = t[i − 1] + p[i],{i,1,4}]Do[t[i] = t[i − 1] + p[i],{i,1,4}]

Run Two Sets of Trials Simultaneously. Each Stops When Hit an Axis

Do[i = 1; While[(0 < x[s, i − 1])&&(0 < y[s, i − 1]), z = Random[];Do[i = 1; While[(0 < x[s, i − 1])&&(0 < y[s, i − 1]), z = Random[];Do[i = 1; While[(0 < x[s, i − 1])&&(0 < y[s, i − 1]), z = Random[];

x[s, i] = If[z ≤ t[1]∥t[2] ≤ z < t[3], x[s, i − 1] − 1, x[s, i − 1] + 1];x[s, i] = If[z ≤ t[1]∥t[2] ≤ z < t[3], x[s, i − 1] − 1, x[s, i − 1] + 1];x[s, i] = If[z ≤ t[1]∥t[2] ≤ z < t[3], x[s, i − 1] − 1, x[s, i − 1] + 1];

y[s, i] = If[t[2] ≤ z, y[s, i − 1] + 1, y[s, i − 1] − 1];y[s, i] = If[t[2] ≤ z, y[s, i − 1] + 1, y[s, i − 1] − 1];y[s, i] = If[t[2] ≤ z, y[s, i − 1] + 1, y[s, i − 1] − 1];

r[s] = i; i = i + 1]; j = 1;r[s] = i; i = i + 1]; j = 1;r[s] = i; i = i + 1]; j = 1;

While[(0 < x1[s, j − 1])&&(0 < y1[s, j − 1]), z1 = Random[];While[(0 < x1[s, j − 1])&&(0 < y1[s, j − 1]), z1 = Random[];While[(0 < x1[s, j − 1])&&(0 < y1[s, j − 1]), z1 = Random[];

x1[s, j] = If[z1 ≤ t[1]∥t[2] ≤ z1 < t[3],x1[s, j − 1] − 1,x1[s, j − 1] + 1];x1[s, j] = If[z1 ≤ t[1]∥t[2] ≤ z1 < t[3],x1[s, j − 1] − 1,x1[s, j − 1] + 1];x1[s, j] = If[z1 ≤ t[1]∥t[2] ≤ z1 < t[3],x1[s, j − 1] − 1,x1[s, j − 1] + 1];

y1[s, j] = If[t[2] ≤ z1,y1[s, j − 1] + 1,y1[s, j − 1] − 1];y1[s, j] = If[t[2] ≤ z1,y1[s, j − 1] + 1,y1[s, j − 1] − 1];y1[s, j] = If[t[2] ≤ z1,y1[s, j − 1] + 1,y1[s, j − 1] − 1];

r1[s] = j; j = j + 1],{s,1,num}]r1[s] = j; j = j + 1],{s,1,num}]r1[s] = j; j = j + 1],{s,1,num}]

Display Results of Simulations:

Do[b[s] = If[y[s, r[s]] == 0&&0 < x[s, r[s]],1,0],{s,1,num}];Do[b[s] = If[y[s, r[s]] == 0&&0 < x[s, r[s]],1,0],{s,1,num}];Do[b[s] = If[y[s, r[s]] == 0&&0 < x[s, r[s]],1,0],{s,1,num}];

sim = N[Sum[b[s],{s,1,num}]/num];sim = N[Sum[b[s],{s,1,num}]/num];sim = N[Sum[b[s],{s,1,num}]/num];

Do[b[s] = If[y1[s, r1[s]] == 0&&0 < x1[s, r1[s]],1,0],{s,1,num}];Do[b[s] = If[y1[s, r1[s]] == 0&&0 < x1[s, r1[s]],1,0],{s,1,num}];Do[b[s] = If[y1[s, r1[s]] == 0&&0 < x1[s, r1[s]],1,0],{s,1,num}];

sim1 = N[Sum[b[s],{s,1,num}]/num];sim1 = N[Sum[b[s],{s,1,num}]/num];sim1 = N[Sum[b[s],{s,1,num}]/num];

MatrixForm[{{“ ”,“Bottom”},{“Conj”,Conj},{“Sim”, sim}}]MatrixForm[{{“ ”,“Bottom”},{“Conj”,Conj},{“Sim”, sim}}]MatrixForm[{{“ ”,“Bottom”},{“Conj”,Conj},{“Sim”, sim}}]

MatrixForm[{{“ ”,“Bottom”},{“Conj”,Conj},{“Sim1”, sim1}}]MatrixForm[{{“ ”,“Bottom”},{“Conj”,Conj},{“Sim1”, sim1}}]MatrixForm[{{“ ”,“Bottom”},{“Conj”,Conj},{“Sim1”, sim1}}]

Hypothesis Test:

p0 = Conj;Z = NormalDistribution[0,1];F [x ] = CDF[Z,x];p0 = Conj;Z = NormalDistribution[0,1];F [x ] = CDF[Z,x];p0 = Conj;Z = NormalDistribution[0,1];F [x ] = CDF[Z,x];

TestStat = z0 = (sim−p0)√
p0∗(1−p0)

num

TestStat = z0 = (sim−p0)√
p0∗(1−p0)

num

TestStat = z0 = (sim−p0)√
p0∗(1−p0)

num
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P-Value for Two-Sided Alternative:

1 −Abs[F [z0] − F [−z0]]1 −Abs[F [z0] − F [−z0]]1 −Abs[F [z0] − F [−z0]]

Display Some Graphs:

For[s = 1, s ≤ 5, s++,For[s = 1, s ≤ 5, s++,For[s = 1, s ≤ 5, s++,

Print[ListLinePlot[Table[{x[s, j], y[s, j]},{j,0, r[s]}],Print[ListLinePlot[Table[{x[s, j], y[s, j]},{j,0, r[s]}],Print[ListLinePlot[Table[{x[s, j], y[s, j]},{j,0, r[s]}],

AxesOrigin→ {0,0}]]];AxesOrigin→ {0,0}]]];AxesOrigin→ {0,0}]]];
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Appendix G

Testing the Conjecture in Example 6.3.3
(Applied to Example 6.3.3; change parameters to use for other examples)

Enter Parameters:

h = 18;k = 16;h = 18;k = 16;h = 18;k = 16;

pld = .45; prd = 0.30; plu = 0.15; pru = 0.10;pld = .45; prd = 0.30; plu = 0.15; pru = 0.10;pld = .45; prd = 0.30; plu = 0.15; pru = 0.10;

Use Trial and Error to Determine
when the distribution of Y is essentially complete:

k ∗∑60
i=0 Binomial[k + 2i, i]/(k + 2i) ∗ (prd + pld)k+i ∗ (plu + pru)ik ∗∑60
i=0 Binomial[k + 2i, i]/(k + 2i) ∗ (prd + pld)k+i ∗ (plu + pru)ik ∗∑60
i=0 Binomial[k + 2i, i]/(k + 2i) ∗ (prd + pld)k+i ∗ (plu + pru)i

For a particular i, display kCi and all D(h, k, i, z):

i = 6;i = 6;i = 6;

k ∗Binomial[k + 2i, i]/(k + 2i)k ∗Binomial[k + 2i, i]/(k + 2i)k ∗Binomial[k + 2i, i]/(k + 2i)

Table[{h + (k + 2i − h)/2 + z − ((k + 2i + h)/2 − z),Table[{h + (k + 2i − h)/2 + z − ((k + 2i + h)/2 − z),Table[{h + (k + 2i − h)/2 + z − ((k + 2i + h)/2 − z),

Binomial[k + 2i, (k + 2i − h)/2 + z] −Binomial[k + 2i, (k + 2i + h)/2 + z]},Binomial[k + 2i, (k + 2i − h)/2 + z] −Binomial[k + 2i, (k + 2i + h)/2 + z]},Binomial[k + 2i, (k + 2i − h)/2 + z] −Binomial[k + 2i, (k + 2i + h)/2 + z]},

{z,1, (h + k + 2i)/2}]{z,1, (h + k + 2i)/2}]{z,1, (h + k + 2i)/2}]

Conj =Conj =Conj =

k∗k∗k∗

∑60
i=0 Binomial[k + 2i, i]/(k + 2i) ∗ (prd + pld)k+i ∗ (plu + pru)i∑60
i=0 Binomial[k + 2i, i]/(k + 2i) ∗ (prd + pld)k+i ∗ (plu + pru)i∑60
i=0 Binomial[k + 2i, i]/(k + 2i) ∗ (prd + pld)k+i ∗ (plu + pru)i

∗∑
k+2i+h

2
z=1 (Binomial[k + 2i, (k + 2i − h)/2 + z] −Binomial[k + 2i, (k + 2i + h)/2 + z])∗∑
k+2i+h

2
z=1 (Binomial[k + 2i, (k + 2i − h)/2 + z] −Binomial[k + 2i, (k + 2i + h)/2 + z])∗∑
k+2i+h

2
z=1 (Binomial[k + 2i, (k + 2i − h)/2 + z] −Binomial[k + 2i, (k + 2i + h)/2 + z])

∗(plu + pld)(k+2i+h)/2−z ∗ (pru + prd)(k+2i−h)/2+z∗(plu + pld)(k+2i+h)/2−z ∗ (pru + prd)(k+2i−h)/2+z∗(plu + pld)(k+2i+h)/2−z ∗ (pru + prd)(k+2i−h)/2+z

Enter Number of Trials for the Simulation:

NumberOfTrials = num = 12000;NumberOfTrials = num = 12000;NumberOfTrials = num = 12000;

Do[x[s,0] = h,{s,1,num}]; Do[y[s,0] = k,{s,1,num}];Do[x[s,0] = h,{s,1,num}]; Do[y[s,0] = k,{s,1,num}];Do[x[s,0] = h,{s,1,num}]; Do[y[s,0] = k,{s,1,num}];
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Do[x1[s,0] = h,{s,1,num}]; Do[y1[s,0] = k,{s,1,num}];Do[x1[s,0] = h,{s,1,num}]; Do[y1[s,0] = k,{s,1,num}];Do[x1[s,0] = h,{s,1,num}]; Do[y1[s,0] = k,{s,1,num}];

p[1] = pld;p[2] = prd;p[3] = plu;p[4] = pru;p[1] = pld;p[2] = prd;p[3] = plu;p[4] = pru;p[1] = pld;p[2] = prd;p[3] = plu;p[4] = pru;

t[0] = 0;t[0] = 0;t[0] = 0;

Do[t[i] = t[i − 1] + p[i],{i,1,4}]Do[t[i] = t[i − 1] + p[i],{i,1,4}]Do[t[i] = t[i − 1] + p[i],{i,1,4}]

Run Two Sets of Trials Simultaneously. Each Stops When Hit an Axis

Do[i = 1; While[(0 < x[s, i − 1])&&(0 < y[s, i − 1]), z = Random[];Do[i = 1; While[(0 < x[s, i − 1])&&(0 < y[s, i − 1]), z = Random[];Do[i = 1; While[(0 < x[s, i − 1])&&(0 < y[s, i − 1]), z = Random[];

x[s, i] = If[z ≤ t[1]∥t[2] ≤ z < t[3], x[s, i − 1] − 1, x[s, i − 1] + 1];x[s, i] = If[z ≤ t[1]∥t[2] ≤ z < t[3], x[s, i − 1] − 1, x[s, i − 1] + 1];x[s, i] = If[z ≤ t[1]∥t[2] ≤ z < t[3], x[s, i − 1] − 1, x[s, i − 1] + 1];

y[s, i] = If[t[2] ≤ z, y[s, i − 1] + 1, y[s, i − 1] − 1];y[s, i] = If[t[2] ≤ z, y[s, i − 1] + 1, y[s, i − 1] − 1];y[s, i] = If[t[2] ≤ z, y[s, i − 1] + 1, y[s, i − 1] − 1];

r[s] = i; i = i + 1]; j = 1;r[s] = i; i = i + 1]; j = 1;r[s] = i; i = i + 1]; j = 1;

While[(0 < x1[s, j − 1])&&(0 < y1[s, j − 1]), z1 = Random[];While[(0 < x1[s, j − 1])&&(0 < y1[s, j − 1]), z1 = Random[];While[(0 < x1[s, j − 1])&&(0 < y1[s, j − 1]), z1 = Random[];

x1[s, j] = If[z1 ≤ t[1]∥t[2] ≤ z1 < t[3],x1[s, j − 1] − 1,x1[s, j − 1] + 1];x1[s, j] = If[z1 ≤ t[1]∥t[2] ≤ z1 < t[3],x1[s, j − 1] − 1,x1[s, j − 1] + 1];x1[s, j] = If[z1 ≤ t[1]∥t[2] ≤ z1 < t[3],x1[s, j − 1] − 1,x1[s, j − 1] + 1];

y1[s, j] = If[t[2] ≤ z1,y1[s, j − 1] + 1,y1[s, j − 1] − 1];y1[s, j] = If[t[2] ≤ z1,y1[s, j − 1] + 1,y1[s, j − 1] − 1];y1[s, j] = If[t[2] ≤ z1,y1[s, j − 1] + 1,y1[s, j − 1] − 1];

r1[s] = j; j = j + 1],{s,1,num}]r1[s] = j; j = j + 1],{s,1,num}]r1[s] = j; j = j + 1],{s,1,num}]

Display Results of Simulations:

Do[b[s] = If[y[s, r[s]] == 0&&0 < x[s, r[s]],1,0],{s,1,num}];Do[b[s] = If[y[s, r[s]] == 0&&0 < x[s, r[s]],1,0],{s,1,num}];Do[b[s] = If[y[s, r[s]] == 0&&0 < x[s, r[s]],1,0],{s,1,num}];

sim = N[Sum[b[s],{s,1,num}]/num];sim = N[Sum[b[s],{s,1,num}]/num];sim = N[Sum[b[s],{s,1,num}]/num];

Do[b[s] = If[y1[s, r1[s]] == 0&&0 < x1[s, r1[s]],1,0],{s,1,num}];Do[b[s] = If[y1[s, r1[s]] == 0&&0 < x1[s, r1[s]],1,0],{s,1,num}];Do[b[s] = If[y1[s, r1[s]] == 0&&0 < x1[s, r1[s]],1,0],{s,1,num}];

sim1 = N[Sum[b[s],{s,1,num}]/num];sim1 = N[Sum[b[s],{s,1,num}]/num];sim1 = N[Sum[b[s],{s,1,num}]/num];

MatrixForm[{{“ ”,“Bottom”},{“Conj”,Conj},{“Sim”, sim}}]MatrixForm[{{“ ”,“Bottom”},{“Conj”,Conj},{“Sim”, sim}}]MatrixForm[{{“ ”,“Bottom”},{“Conj”,Conj},{“Sim”, sim}}]

MatrixForm[{{“ ”,“Bottom”},{“Conj”,Conj},{“Sim1”, sim1}}]MatrixForm[{{“ ”,“Bottom”},{“Conj”,Conj},{“Sim1”, sim1}}]MatrixForm[{{“ ”,“Bottom”},{“Conj”,Conj},{“Sim1”, sim1}}]

Hypothesis Test:

p0 = Conj;Z = NormalDistribution[0,1];F [x ] = CDF[Z,x];p0 = Conj;Z = NormalDistribution[0,1];F [x ] = CDF[Z,x];p0 = Conj;Z = NormalDistribution[0,1];F [x ] = CDF[Z,x];

TestStat = z0 = (sim−p0)√
p0∗(1−p0)

num

TestStat = z0 = (sim−p0)√
p0∗(1−p0)

num

TestStat = z0 = (sim−p0)√
p0∗(1−p0)

num
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P-Value for Two-Sided Alternative:

1 −Abs[F [z0] − F [−z0]]1 −Abs[F [z0] − F [−z0]]1 −Abs[F [z0] − F [−z0]]

Display Some Graphs:

For[s = 1, s ≤ 5, s++,For[s = 1, s ≤ 5, s++,For[s = 1, s ≤ 5, s++,

Print[ListLinePlot[Table[{x[s, j], y[s, j]},{j,0, r[s]}],Print[ListLinePlot[Table[{x[s, j], y[s, j]},{j,0, r[s]}],Print[ListLinePlot[Table[{x[s, j], y[s, j]},{j,0, r[s]}],

AxesOrigin→ {0,0}]]];AxesOrigin→ {0,0}]]];AxesOrigin→ {0,0}]]];
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