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ABSTRACT 
International Journal of Exercise Science 14(7): 338-357, 2021. Improvements in accelerometer 
technology has led to new types of data on which more powerful predictive models can be built to assess physical 
activity. This paper explains and implements ordinal random forest and partial proportional odds models which 
both take into account the ordinality of responses given explanatory accelerometer data. The data analyzed comes 
from 28 adults performing activities of daily living in two visits while wearing accelerometers on the ankle, hip, 
right and left wrist. The first visit provided training data and the second testing data so that an independent sample, 
cross-validation approach could be used. We found that ordinal random forest produces similar accuracy rates and 
better linearly weighted kappa values than random forest. On the testing set, the ankle produced the best accuracy 
rates (33.3%), followed by the left wrist (34.7%), hip (36.9%) and then the right wrist (37.3%) using the best 
performing decision model for a four-activity level response. Linearly weighted kappa values indicated substantial 
agreement. For a two-activity level response, the error rates on the ankle, hip, left wrist and right wrist were 15.5%, 
15.9%, 16.5% and 18.8%, respectively. The partial proportional odds model had significant goodness of fit (p < 
0.0001) and provided interpretable coefficients (at p = 0.05), but there was significant variability in accuracy. These 
models can be used on accelerometer data collected during exercise studies and levels of activity can be assessed 
without direct observation. This work also can lead to theoretical improvements of current modeling techniques 
that are used for this purpose.  
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INTRODUCTION 
 
A key component of physiology is being able to objectively measure the level of physical activity 
of individuals engaged in ordinary tasks and exercise (42). Accelerometers, devices that measure 
acceleration forces in different directions, have been used for this purpose since the 1980s when 
the first accelerometer-based physical activity monitor was developed. Initially, manufacturer 
specific activity “counts” were used to estimate physical activity through “cut points” which are 
counts per minute thresholds. Unfortunately, studies have found that this approach is overly 
specific to population, activity, and brand of accelerometer (44).  
 
Since then the technology of these accelerometer-based physical activity monitors 
(accelerometers) have improved considerably in storage, battery capacity, size, and sensitivity 
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(44). Along with this, researchers have been able to access and utilize raw acceleration signal 
data for making estimation of physical activity responses rather than relying on count thresholds 
(7). This raw data is vast as it comprises acceleration signals along x, y, and z axes at 30-60 
samples per second. Thus, significant computational challenges exist in efficiently and 
effectively extracting physical activity information from raw acceleration signal data. 
 
An approach that has been taken is to summarize raw acceleration data at every 30-second 
epochs (29). These summaries, which comprise the new explanatory data, consist of summaries 
for each axis (mean, variance, minimum, maximum, and upper percentiles) and summaries of 
pair-wise correlations between these axes. This new data, along with ordinal activity level 
responses, can be used to build statistical or decision models. These models can then be used to 
make a prediction of the type of activity an accelerometer wearer is engaged in at any particular 
epoch. Types of models that have been used for this purpose include decision trees or ensembles 
of decision trees, such as random forest, boosting and bagging (16), and parametric linear and 
nonlinear models, among others (27). The predictive power of these models is tested either using 
data set aside from the training set or by using a testing set. The training set is the data used to 
build the predictive model. Using data set aside from the training set naturally leads to inflated 
accuracies despite efforts to counteract this effect through methods such as leave-one out, k-fold 
cross-validation, or out-of-bag validation (48). A testing set is data on the same response and 
explanatory variables as the training set but it is collected separately  and “out of sample” and 
can give a better idea of the true or “real world” accuracy and quality of a predictive model. 
 
The response variable with respect to explanatory accelerometer data is typically created by 
measurement by a separate device or observation in order to match data from the accelerometer 
with activity intensity as an ordinal variable. Data is collected from the accelerometer and 
matched with observations of activity intensity and the levels of the response in order are 
sedentary, light, moderate and vigorous (SED, LPA, MPA, VPA, respectively). In this paper, 
activity intensities were set in four categories as: ≤ 1.5 METs as sedentary (SED), 1.6-2.9 METs 
as light (LPA), 3.0-5.9 METs as moderate (MPA), and ≥6 as vigorous (VPA), where METs are 
metabolic equivalents as provided by the 2011 Compendium of Physical Activities (1). If a 
response variable is categorical, but of ordinal nature, then it is important to take this into 
account when building a model (36). For example, if a researcher makes errors in classifying a 
sedentary activity (SED) as moderate (MPA) as opposed to classifying a sedentary activity (SED) 
as light (LPA) then the researcher may be more likely to associate particular health outcomes 
with activity that is significantly more vigorous than the actual activity level a subject is engaged 
in. This, in turn, can lead to more mistaken conclusions and recommendations based on data 
analysis. Other examples, and a discussion of the importance of taking into account the 
ordinality of responses is given by Janitza, et al. (14). This paper makes a unique contribution to 
the literature in explaining, building and testing two types of models that take into account 
ordinal responses given explanatory accelerometer data. These two models are ordinal random 
forest, which is a non-parametric decision model, and partial proportional odds, which is a 
parametric generalized linear model. 
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The unique approach in this paper can be used as a basis for further development and 
improvement of models that make predictions about activity levels from accelerometer data but 
that don’t account for ordinality of responses (16, 20, 27). While both models developed and 
applied here take into account the ordinal nature of responses, the partial proportional odds 
model provides interpretability of the effect of changes in explanatory variables. For example, 
we estimate the change in odds that a participant will be at most at any activity level per unit 
change in BMI and age and in change in sex. Establishing relationships between demographic 
and other explanatory variables and activity levels in this manner is of interest to physiologists 
and exercise scientists as physical activity levels are important determinants of health (47). 
 
METHODS 
 
Participants 
The study which produced the accelerometer data that we analyzed in this paper had 30 
participants. Each of these participants made two separate visits to the Ball State Clinical 
Exercise Physiology Laboratory. These visits were designed to produce training and testing sets, 
respectively, for model building and testing. 
 
All of the 30 participants had no orthopedic limitations. Ten adults (n = 5 female) were chosen 
from each of the three age categories 18-39, 40-59 and 60-79 years. There is well-established 
variability in activity levels among these age groups and this distribution of participants allows 
models to be built for the general adult population (6, 39). Accordingly, in our training data, the 
distribution of the 1408 observations in the SED class was 27.8% in 18-39, 34.9% in 40-59 and 
37.3% in 60-79, the distribution of the 1369 observations in the LPA class was 36.5% in 18-39, 
31.1% in 40-59 and 32.4% in 60-79,  the distribution of the 1080 observations in the LPA class was 
31.1% in 18-39, 30.8% in 40-59 and 38.1% in 60-79 and the distribution of the 298 observations in 
the VPA class was 50% in 18-39, 37.6% in 40-59 and 12.4% in 60-79. Overall, by a chi-squared 
test, in the training data the relationship between age group and activity level was significant 
with a p	≈ 0. Also, after accounting for covariates, all of our partial proportional odds model 
show increases in odds that a participant will be below an activity level with increases in age 
(Tables 5 and 6). Including this range of age groups allows our trained model to take this into 
account so that it can be applied without regard to age.  
 
Table 1. Demographic information of the participants given as mean ± standard deviation. 

 Total Sample Male (n = 14) Female (n = 14) 
Age (yrs) 48 ± 19.6 48.5 ± 19.83 47.6 ± 20.15 
Weight (lbs.) 176 ± 34.72 194.96 ± 27.53 157.3 ± 31.32 
Height (in.) 68.5 ± 3.52 71 ± 2.62 65.9 ± 2.3 
BMI 26.4 ±  4.16 27.03 ± 3.07 25.8 ± 5.07 

 
During data collection, two participants had invalid data, which resulted in the dataset of 28 
individuals (n = 14 female) for our study. Table 1 shows demographic information of the 
participants. 
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Protocol 
Accelerometer data was collected in two exercise laboratory visits. Visit 1 produced the training 
data for building our models and Visit 2 produced the test data for assessment. Visit 1 was 
highly supervised by research staff and designed so that an array of activities with varying 
intensities and speed would be available and the model would be fully trained.  Participants 
performed eleven activities starting with lying on a padded table for ten minutes. Then, ten 
activities were assigned from Table 2 below. For each participant, two were chosen from the 
sedentary category, four were chosen from the lifestyle/chore activity category and four from 
the ambulatory/exercise category. These activities were chosen at random and in a manner such 
that all the activities within each of the categories were performed by about the same number of 
participants. Each activity was done for five minutes, with the order of the activities progressing 
from sedentary to lifestyle/chore to ambulatory/exercise. There was 1-2 minutes rest between 
activities. Participants were requested to perform the sedentary and the lifestyle/chore activities 
as they would in their day-to-day lives. For the ambulatory/exercise activities they were 
required to maintain a consistent speed and intensity. 
 
In Visit 2, less structure was provided by research staff with participants engaging in activities 
in the way they would in their day-to-day lives. This approach has been previously used for 
creating testing data to evaluate the generalizability of models to free-living settings (40, 28). 
Participants engaged in sixteen activities, each done for two to fifteen minutes. The participants 
were told to choose four activities from the sedentary category, four from the lifestyle/chore 
category and four from the ambulatory/exercise category. As previous research shows that 
adults engage mostly in sedentary activity, participants were asked to engage in activities from 
the sedentary category for at least 40 minutes (26, 45). Unlike visit 1, participants in visit 2 were 
allowed, within a framework, to choose the time they spent doing activities, the activities to 
perform and the order in which to perform them. 
 
Table 2. List of physical activities. 

Sedentary  Lifestyle/Chore Ambulatory/Exercise 

Reading, using a computer, 
watching television, writing, 
playing cards. 

Standing, dusting, making a 
bed, folding laundry, 

sweeping, vacuuming, 
simulated gardening, picking 

up items from the floor. 

Slow/fast overground walking, treadmill 
walking, overground jogging, treadmill 
jogging, stationary cycling, ascending 

stairs, descending stairs. 

 
During both visits, each participant wore four ActiGraph GT9X Link accelerometers, on the left 
and right wrists, over the right hip, and on the right ankle. The traditional placement, with 
count-based measurement of activity level, was on the hip but different placements including 
the ankle and the wrist have recently been more commonly used (30, 34, 41). These additional 
locations are chosen for better compliance, particularly when worn on the wrist, and for 
improved ability to measure certain activity metrics, including steps, when worn on the ankle 
(43, 44). Models built using data from accelerometers placed on the thigh have shown higher 
accuracy than hip- or wrist-worn accelerometers, however, less comfort and lower compliance 
with the thigh accelerometer placement has also been reported (20, 30). The accelerometers were 
initialized to capture acceleration data along x, y, and z axes at a rate of 60 samples per second. 
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Data was summarized in 30-second non-overlapping epochs with features such as the mean, 
variance, minimum, maximum and the 70th, 80th, and 90th percentile, and pair-wise correlations 
of axes over each epoch. Also, the demographic variables sex, age, height and weight of each 
participant were recorded in the data.  
 
The 2011 Compendium of Physical Activities provided MET values for each activity. Activity 
intensities were set in four categories as: ≤ 1.5 METs as sedentary (SED), 1.6-2.9 METs as light 
(LPA), 3.0-5.9 METs as moderate (MPA), and ≥ 6 as vigorous (VPA) (1). We also did a sub-
analysis in two categories with < 3.0 METs as SLPA and ≥ 3.0 METs as MVPA. In both visits, at 
the end of each activity, participants took one to two minutes of rest before starting the next 
activity. Two researcher staff members carefully noted activity start/stop and intensity of 
activities and came to agreement upon transitions between activities. These observed activities 
and their intensities according to the MET scale served as the ground truth for development of 
prediction models using accelerometer data. Once ground truth data were coded according to 
activity intensity, this data was integrated into the data set into correct 30-second epochs. All 
participants signed informed consent prior to participating and all study procedures were 
approved by the Ball State University Institutional Review Board. This research was carried out 
fully in accordance to the ethical standards of the International Journal of Exercise Science (33).  
 
Statistical Analysis  
The statistical analysis in this paper is of training and testing data which includes an ordinal 
response of physical intensity levels (categorized as SED, LPA, MPA and VPA) and a set of 
summary statistics of acceleration measures and demographical variables as input features. We 
had a total sample size in both the training and test data sets of n = 4313 observations. For each 
subject we had approximately 4313/28 ≈	154 observations. Each observation was a summary of 
the 30 second epoch of accelerometer data with each subject observed for approximately 154 × 
30 = 4260 seconds = 77 minutes. The n = 4313 observations provide a rich amount of variability 
in activity intensities with a varied population in terms of gender, age, height, and weight 
performing a range of activities as described in the Protocol section above.  
 
Two of the three models used in this analysis take into account the ordinal nature of these 
responses which is novel for the analysis of accelerometer data in the literature. The models we 
consider are: random forest, ordinal forest (with two different “performance functions”, equal 
and proportional) and partial proportional odds. These models are explained in the remainder 
of the Methods section below and are applied in the Results section. We first present decision 
trees which is a basic decision model often used as a building block in so-called ensemble 
decision models. Then we discuss random forest and modifications of random forest that 
account for ordinality, in particular, ordinal forest. We then present a parametric model, that is, 
a model that assumes some distribution of the response variable of interest up to some unknown 
parameters to be estimated. The model that we explain and then apply is the partial proportional 
odds model.  
 
Non-Parametric Classification Trees: Decision trees and classification models built on decision 
trees are popular classification tools. Among the reasons for their popularity is that they don’t 
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assume an underlying distribution (non-parametric) and that they can be readily trained and 
improved on new data. From a root node, decision trees sequentially create branches which split 
features (or explanatory variables) until terminal nodes are reached. The feature to split on at 
each step is determined by a weighted measure of impurity of the resulting nodes. A number of 
impurity measures of a node 𝑡 exist but in R the default impurity measure is the Gini criterion 
 

𝐺! =**𝑝"𝑝#
"$#"

 

 
where 𝑝% is the proportion of responses in node 𝑡 of class 𝑖 = 1,…	, 𝑐	where 𝑐 is the number of 
classes. Splitting typically stops before nodes are pure to avoid models that are overspecific or 
“overfit”. A decision about an observation can then be made by following the branches by the 
splits to a terminal node. 
 
Random Forest: Classification trees render marked interpretability as one can follow the path of 
any observation to a terminal node. However, they can have considerable variability on different 
partitions of the training set and produce suboptimal accuracy rates. In order to counteract this, 
many ensemble methods build and utilize many different trees from the data to create a decision 
model. Specifically, random forests take a large number of bootstrap samples (samples drawn 
with replacement of size equal to the data set) and build decision trees on each of the bootstrap 
samples. As the trees of the forest are being built on bootstrap samples, it is nearly guaranteed 
that they will all contain different data and thus “look” at the full data set from different 
perspectives. To increase differences among the trees further, for each tree and at each node, the 
data is split on a random set of size 1𝑝 of all the input variables where 𝑝 is the total number of 
input variables in the data set. Finally, a decision about any observation is made by majority 
vote of the created decision trees in the random forest. Also, instead of setting aside part of the 
training data for assessing model quality, the data left out in each of the bootstrap samples can 
be used for this purpose and an average error rate can be computed on these samples. This is 
known as the out-of-bag error. 
 
Ordinal Random Forest: Random forests have been used successfully for classification of  
activity level responses given explanatory accelerometer data accelerometer data as processed 
in the Protocol section (31). However, random forests do not account for the ordinality of the 
response variable (in this case, in order, SED, LPA, MPA and LPA). Modifications of the splitting 
criteria, exist, however, that do account for ordinality of responses, and have not heretofore been 
used for accelerometer data. One such modification uses the Generalized Gini criterion given as 
 
 

𝐺𝐺! =**𝑊"#𝑝"𝑝#
"$#"

 

 
as an alternative impurity measure of a node 𝑡 (5). 𝑊"# are weights that increase with the distance 
of 𝑘 to 𝑙, and thus, for any two given classes and their proportions in a particular node, the 
impurity of the node increases with the distance of 𝑘 to 𝑙.  
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In this paper, we use a recent classification method known as ordinal forest that takes advantage 
of regression forests (12). Regression forests are a regression technique for the prediction of 
continuous, quantitative responses that uses the structure of random forests (4). Quantitative 
responses have a higher level of measurement than ordinal responses and thus are implicitly 
ordinal. One could treat the ordinal classifications numerically (in our case, SED, LPA, MPA and 
VPA as 1, 2, 3 and 4, for example) and appeal to a regression forest but such classifications are 
arbitrary and this approach is shown to not influence the quality of predictions (12). Instead, 
ordinal forest proceeds as follows: 
 

1. Choose a large number of random, heterogeneous partitions of [0, 1] by J intervals where 
J is the number of classes in the response. 

2. Represent classes by the midpoints of respective, ordered intervals in the partition.  
3. Build regression forests on these sets of midpoints for each partition.  
4. The partitions with the smallest out-of-bag errors are summarized and the regression 

forest built on that summary is the resulting model from ordinal forest.  
 
In computing out-of-bag errors in step 4 above, different performance functions can be chosen, 
each of which emphasize different objectives of the model.  
 

1. The “equal” performance function treats each class the same regardless of class size.  
2. The “proportional” performance function attempts to lower error rates from the larger 

classes at the expense of smaller ones and thus attempts to lower the overall error rate. 
3. Classes of interest can be emphasized though custom weighting at the expense of 

accuracy on other classes.  
 
Principal Components for Partial Proportional Odds Model: Principal component directions are 
an orthogonal coordinate system fit to the feature space with each coordinate successively 
accounting for the greatest possible share of the remaining variability in the features (15). For 
our partial proportion odds model we fit 17 principal component directions to our 24 summary 
statistics of acceleration data. We call the 24 variables in these PCA directions PCA1 – PCA17. 
Each of these 17 variables is a linear combination of the original 24. In this case, these directions 
account for over 99% of the variability of the original 24 variables. Also, adding directions one 
at a time, we noted that out-of-bag error rates on the training set did not decrease at the point 
we reached 17 directions. We also expressed height and weight as BMI. We did this for the 
following reasons: 
 

1. There is a significant amount of collinearity in the 24 summary statistics and rank 
deficiency prevents a linear model from being created on the full set of explanatory 
variables. In order to separate out the variability of the data along non-correlated 
directions, we represented the data in principal component directions. This is a common 
approach for dealing with a collinearity problem (11, 18, 32). There is also collinearity 
between height and weight and we express them together as BMI. 
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2. The principal components provide parsimony in constructing our parametric generalized 
linear model with less parameters to estimate by likelihood estimation. You lose 
interpretability of coefficients in the fitted model in this way, but the variables before 
being expressed in terms of PCA directions are summary statistics, anyway. Expressing 
variables height and weight as BMI also provides more parsimony. 

 
When computing measures of model performance, our testing set was expressed in the same 
principal component coordinate system fit to the training data.  
 
Partial Proportional Odds Model: The response variable in our data set has four ordinal 
categories which were obtained through discretizing a continuous variable at pre-specified 
cutoff values as given in the Protocol section. The response categories in our dataset are SED, 
LPA, MPA and VPA. The ordinal nature of the response justifies the application of a 
proportional odds cumulative logit model to create a more parsimonious and powerful 
parametric model (36). The proportional odds model links the odds of being below a particular 
ordinal category to the odds of being above a particular ordinal category to a linear function of 
the explanatory variables (linear in the parameters) through a logit transformation. That is, 
assuming we have c levels, the proportional odds model assumes,  
 

𝑙𝑜𝑔𝑖𝑡(𝑃(𝑌	 ≤ 𝑘|𝑥)) = log @
𝑃(𝑌	 ≤ 𝑘|𝑥)
𝑃(𝑌	 > 𝑘|𝑥)B = 𝛼" + 𝑥&𝛽, 𝑘 = 	1,2,3, … , 𝑐 − 1 

 
for explanatory variables 𝑥 = I𝑥', … , 𝑥(J ∈ 𝑅()', parameters 𝛽 = (𝛽', … , β*) ∈ 𝑅()' and where 𝑌 
is the ordinal response. The aim is then to estimate the parameters through observation and 
mathematical optimization. From the above equation, we see that for each unit increase in 𝑥% we 
have a change in the log-odds of being below category 𝑘 of 𝛽% for 𝑖 = 1,… , 𝑝.	Solving for 
cumulative probabilities in the equation above leads to  
 

𝜋" = 	𝑃(𝑌 ≤ 𝑘|𝑥) =
exp(𝛼" + 𝑥&𝛽)

1	 + exp(𝛼" + 𝑥&𝛽)
, 𝑘 = 1,2,3, … , 𝑐 − 1. 

 
After parameters are estimated as 𝛽S = (𝛽S', … , 𝛽S() we can make a prediction about the ordinal 
category to which an observation of 𝑥 belongs. To do so we choose the 𝑘 that maximizes the 
estimated probability that an observation belongs to a category, i.e., we maximize  
 

𝑃(𝑌 = 𝑘|𝑥)) = *
	𝜋- ! , 𝑘 = 1

	𝜋-! − 	𝜋-!"#, 𝑘 = 2,… , 𝑐 − 1	
1 − 	𝜋- !"#, 𝑘 = 𝑐.

 

where  

𝜋T" 	=
expI𝛼T" + 𝑥&𝛽SJ

1	 + expI𝛼T" + 𝑥&𝛽SJ
, 𝑘 = 1,2,3, … , 𝑐 − 1. 

 



Int J Exerc Sci 14(7): 338-357, 2021 

International Journal of Exercise Science                                                          http://www.intjexersci.com 
346 

We see that 𝛽S% is the estimated change in the log-odds that 𝑌	will be in class 𝑘 or below for a unit 
change in 𝑥. This estimation holds for all 𝑘 = 1, 2, 3, … , 𝑐 − 1 (the probability that Y will be at 
most in class 𝑐 is 1, so the odds are “infinite”). We also see that the logits are parallel, i.e., they 
have same slopes given by the values in 𝛽	but the intercepts given by the 𝛼"′𝑠 can vary. This is 
the parallel assumption of the proportional odds model and with this assumption a more 
parsimonious model can be built to avoid overfitting and to make estimation more reliable. We 
also might relax the parallel assumption by replacing some of the 𝛽%&𝑠 with 𝛽%"′𝑠 which allows 
the effects of the covariates on log-odds to vary for different classes. This is known as the partial 
proportional odds model and this is the model we use for all placement locations (hip, ankle, 
right wrist and left wrist) for our data sets.  
 
Measures of Performance: The measures of model performance we look at in this paper are the 
error rate, the out-of-bag error rate, the kappa value and the linearly weighted kappa value. The 
error rate is simply the proportion of observations that are misclassified by the model. We report 
the error rates on testing sets. An out-of-bag error is the average of error rates of observations 
left out of bootstrap samples in the random forest model where the classification of each of these 
observations is determined by trees built on the sets they were left out of. Kappa values compare 
observed versus expected accuracies to account for classification by chance (19). We look at 
kappa values for two classifications and linearly weighted kappa values for four class 
classifications. Weighted kappa values treat misclassifications further away from true 
classifications as more significant than misclassifications closer to true classifications (8). For 
example, we want to penalize a misclassification of sedentary as light as less significant than a 
misclassification of sedentary as moderate or vigorous. We use a linearly weighted kappa 
measure to do so, with movement from the true classification from one class to another 
penalized equally. A scale often used to interpret kappa values is given in Table 3 (19).    
 
Table 3. Interpreting Kappa. 

 
In Figure 1, we present a schematic that summarizes the process from the collection of data on 
the 30 subjects through to the testing of model performance after our models are built and is as 
follows: 

A. Same 30 participants in 2 visits, 28 with valid data. 
B. Explanatory data are summaries of acceleration data along x,y,z axes of 30-second epochs 

plus demographic variables.  
C. Build partial proportional odds model. Built on PCA directions plus demographic 

variables.  
D. Build decision models: random and ordinal forest.  
E. Apply decision models to testing data.  
F. Apply partial proportional odds model to testing data (expressed in terms of PCA 

directions).  
G. Model performance measures (error rates, kappa statistics) from applying models to 

testing data.  

Agreement Slight Fair Good Substantial Almost Perfect 
Kappa Value 0.01-0.20 0.21-0.40 0.41-0.60 0.61-0.80 0.81-0.99 
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Figure 1. Schematic of collecting data through to testing model performance. 

 
Ordinal forest models and random forests models were created using the R packages ordinal 
forest (13) and random forest (37), respectively. Partial proportional odds models were created 
in SAS 9.4 using proc logistic. Data from four participants in the study and all code used to create 
models, tables and figures in this paper is available at the following hyperlink, 
https://github.com/DrewLazar/Ord_Accelerometer. 
 
RESULTS 
 
We found that ordinal forest produces similar error rates but slightly better linearly weighted 
kappa values (a measure that takes into account both ordinality of responses and correct 
decisions by chance) than random forest overall. We also found that the ankle produces the best 
accuracy rates in our decision models and in our partial proportional odds model, but there was 
considerable variability in error rates across placements (ankle, hip, left and right wrist) in the 
partial proportional odds model. We summarize our analysis of our data sets using the decision 
models random forest and ordinal forest (with two different performance functions, equal and 
proportional). We then summarize our results using the partial proportional odds model and 
include tables of parameter estimates for the placements, the ankle and the hip, with the lowest 
error rates on the testing set.  
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As shown in Table 4, for all decision models, the ankle provides the lowest error rate on the 
testing set. It has a slightly higher out-of-bag error than the hip for random forest. The ankle also 
has the highest linearly weighted kappa for all decision models.  
 
Table 4. Decision model performance for four classes. 

Placement LW RW HIP ANK 
 LWK/ER/*OBE LWK/ER/OBE LWK/ER/OBE LWK/ER/OBE 
Random Forest 0.6108/0.349/0.240 0.5702/0.376/0.233 0.608/0.367/0.195 0.652/0.333/0.208 
Equal Ordinal 
Forest 0.6169/0.347 0.5723 /0.373 0.607/0.369 0.654/0.333 

Proportional  
Ordinal Forest  0.6143/0.349 0.5738/0.372 0.609/0.367 0.652/0.333 

LW=Left Wrist, RW=Right Wrist, ANK=Ankle, LWK=Linear Weighted Kappa, ER=Error Rate, 
OBE = Out-of-Bag Error, *OBE for Random forest only, Lowest error rates and highest linearly weight kappa 
values in bold. 
 
The ordinal forest models provide higher linearly weighted kappas than random forest for the 
left wrist and right wrist and linearly weighted kappas are nearly the same for the hip and the 
ankle. The results from proportional and equal ordinal forest are very similar on the testing set 
despite different weighting schemes according to class size used in training. 

Figure 2 presents an agreement chart on the test set for the ankle accelerometer placement and 
using the proportional ordinal forest model (3). For each activity level, the width and height of 
the outer rectangle gives the marginal number of classifications of the activity level by the true 
classification and the classification algorithm, respectively. These widths and heights, in terms 
of number of classifications, are given along the top and right edge of the agreement plot. The 
width of the black inner square is the number of agreements for a particular class. The difference 
of the heights of the outer rectangle to the black inner square is the number of misclassifications 
of that particular class and the difference in the widths is the number of misclassifications of 
other classes as that particular class. The gray shading represents misclassifications of adjacent 
classes. We can see in these plots that misclassifications outside of adjacent classes are relatively 
few. Other agreement plots for different placements look similar. This explains that the linearly 
weighted kappa values indicate substantial agreement as the linearly weighted kappa values 
account for ordinality of responses and the distance of classifications by the model to true 
classifications. 
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Figure 2. Agreement plot: Proportional ordinal forest for ankle. 
 
With most misclassifications in adjacent classes, we collapsed our four category response into 
two classes, sedentary to light (SLPA), which includes SED and LPA and moderate to vigorous 
(MVPA) which include MPA and VPA and created random forest models from each of the 
accelerometer placements.  

Table 5. Decision model performance for two classes. 
Placement LW RW HIP ANK 
 Kappa/ER/OBE Kappa/ER/OBE Kappa/ER/OBE Kappa/ER/OBE 
Random Forest 0.6165/0.165/0.128 0.5523/0.188/0.124 0.630/0.159/0.100 0.742/0.115/0.040 

Lowest error rates and highest linearly weight kappa values in bold. 
 
Accordingly, as shown in Table 5, we observed significantly lower error rates and out-of-bag 
error rates for our two-class model. Kappa values all indicate substantial agreement with the 
ankle providing the best summary statistics overall. Note that there must be more than two 
categories for the ordinality of responses to be meaningful and thus we do not use ordinal forest 
or the partial proportional hazards model when we collapse our four response classes (SED, 
LPA, MPA and VPA) into two classes (SLPA and MVPA). 

Results for Partial Proportional Odds Model: We fit four partial proportional odds models for 
accelerometer placements on the left wrist, the right wrist, hip and the ankle. The results for the 
linearly weighted kappas and error rates are in Table 6. For each model we allowed parallel 
slopes for 17 principal component directions (PCA 1 – PCA 17) for parsimony and to ensure 
convergence in SAS. 
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Table 6. Partial Proportional log odds performance for four classes. 
Placement  LW RW HIP ANK 
 LWK/ER LWK/ER LWK/ER LWK/ER 
Proportional log 
odds  0.5435/0.403 0.4854/0.446 0.6596/0.329 0.6714/0.318 

Lowest error rates and highest linearly weight kappa values in bold. 
 
Every final model showed goodness of fit according to the likelihood ratio test (with the full 
model compared to the model fitted with just main effects) with p-values ≈ 0. For each 
placement we allowed slopes to vary for sex, age and BMI and we computed the AIC and BIC 
criteria and the error rate on the testing set. The AIC and BIC criteria are computed as AIC= 
−2 ln 𝐿 + 2𝑝 and BIC=−2 ln 𝐿 + ln(𝑛)𝑝 where 𝑛 is the sample size and 𝐿 is the likelihood of the 
model. As decreasing functions of 𝐿, and increasing functions of 𝑝, a smaller AIC or BIC is 
preferable (a smaller 𝑝 means more parsimony).   
 
For each placement, the model with the smallest BIC and the smallest error rate on the testing 
set agreed. The estimates for the models with the two lowest error rates, the ankle and the hip, 
are presented in Tables 7, 8a, and 8b, respectively. For the left wrist, right wrist, and ankle, where 
only age parameters varied by response level k = 1, 2, 3 the parameter estimates were very 
similar. Generally, the log-odds of being in a class or below increased with sex, age and BMI for 
these three models. For example, we can interpret 𝛽S+, as the change in log-odds that a participant 
will be less than the moderate activity level for every unit increase in age given the other effects 
in the model. For the ankle, this is 𝛽S+,=0.039 so that the change in odds that a participant will be 
at most at the moderate activity level increases by a factor of exp (0.039) ≈ 1.04 or 4% for every 
unit increase in age. Thus, with all the age coefficients positive, probabilities that they will be 
below a particular activity level rise with age and older participants tends to be less active. A 
similar (but overall) effect for BMI, a 1 – exp (0.06) ≈ 6% increase in odds to be at most at any 
level below the vigorous category with unit increase in BMI, is observed. A positive overall effect 
for sex was also observed but it is not significant at the p = 0.05 significance level (but is 
significant for the left and right wrist models). 
 
For the hip model, where sex is allowed to vary over the factor levels, the effects of the covariates 
are positive except for 𝛽S++ which is not significant at the 𝑝 = 0.05 significance level. Nearly all 
the parameters, in all the models, by the Wald test, are significant with p < 0.05. 

As shown in Table 6, the error rates vary significantly among the models from 0.446 on the right 
wrist to 0.318 on the ankle which suggests the models could be more reliable, especially since 
our non-parametric decision models give similar error rates for different placements. The 
highest kappa values are for the ankle and in Figure 3 we present an agreement chart which 
shows, like for our decision models, that most classification errors are in adjacent classes. 
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Table 7. Ankle: Partial proportional log odds estimates. 
Covariate Intercept Intercept Intercept Sex Age Age Age BMI 

k 1 2 3 1,2,3 1 2 3 1,2,3 

Parameter 
Estimate 

𝛼"!
= −5.563 

𝛼""
=	−2.255 

𝛼"#
= 0.753 

𝛽.!
= 0.110 

𝛽."!
= 0.014 

𝛽.""
= 0.006 

𝛽."#
= 0.039 𝛽.# = 0.060 

Standard 
Error 0.335 0.324 0.370 0.072 0.002 0.003 0.005 0.009 

p-value < 0.0001 < 0.0001 0.0418 0. 1272 < 0.0001 0.028 < 0.0001 < 0.0001 

 
 
Table 8a. Hip: Partial proportional log odds estimates. 
Covariate Intercept Intercept Intercept Sex Sex 

k 1 2 3 1 2 

Parameter Estimate 𝛼"! = −5.655 𝛼"" =	−2.05 𝛼"# = 0.693 𝛽.!! = 0.045 𝛽.!" = 0.218 

Standard Error 0.301 0.291 0.358 0.093 0.097 

p < 0.0001 < 0.0001 0.0525 0.591 0.0242 

 

Table 8b. Hip: Partial proportional log odds estimates. 
Covariate Sex Age Age Age BMI 

k 3 1 2 3 1,2,3 

Parameter Estimate 𝛽T13 = 0.058 𝛽T21 = 0.014 𝛽T22 = 0.003 𝛽T23 = 0.017 𝛽T3 = 0.008 

Standard Error 0.176 0.002 0.002 0.005 0.009 

p 0.0009 < .0001 0.2811 0.0003 < .0001 

 

DISCUSSION 

In this paper, we explored decision and statistical models of data with explanatory 
accelerometer variables and an ordinal response variable that measured activity level (SED, 
LPA, MPA, VPA). Ordinal forest models provided similar error rates as random forest but 
somewhat better linearly weighted kappa values than random forest on two of four 
accelerometer placements. Partial proportional odds models gave results which varied 
considerably among the placements but produced a lower error rate and higher linearly 
weighted kappa value than any of the decision models on the ankle.  
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Figure 3. Agreement plot: Proportional log odds model for ankle. 
 
Linearly weighted kappa values all indicated substantial agreement for all models except for the 
left wrist and right wrist in partial proportional odds which also had the highest error rates. 
Agreement plots for models with substantial agreement accordingly showed most 
misclassifications in adjacent classes. Also, for the random forest model, we collapsed four of 
our classes into two (SED and LPA to SLPA) and (MPA and VPA to MVPA) and found 
substantially lower error rates.  
 
That the ankle provided the lowest error rates for the decision and partial proportional odds 
models agrees with other recent work that indicates that activity monitors worn somewhere on 
the lower limb provides better assessment of physical activity than devices worn on other body 
locations (9, 24). Other studies have shown that multiple accelerometer placements and sensors 
such as heart rate sensors or a gyroscope in addition to the accelerometer can increase accuracy 
in predicting physical activity intensity (10, 20, 23, 35).  
 
Additional partial proportional odds models can be considered based on researcher interest and 
variable selection criteria. Generalized linear models can be challenging to fit, however, and 
with the large number of covariates present in the accelerometer data, additional dimension 
reduction techniques such as LASSO or feature selections and different ways to process the raw 
data in the initial step besides summary statistics can be explored. 
 
Error rates on the testing set for four class prediction and using ordinal forest decision models, 
varied from 33.3% for the ankle placement to 37.6% for the left wrist placement. These are similar 
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to error rates found in other studies, some of which, however, use different activities, protocols, 
and model assessment. For example, our error rates are slightly better than those found by 
Sasaki et. al which uses a five-class prediction with a random forest model but worse than those 
found in Lazar et. al which compares combinations of multiple accelerometers placement as 
features in the model (20, 40). The use of linearly weighted kappa values, which not only takes 
into account correct assignment by chance but also penalizes misclassification according to the 
order of responses, isn’t as common in these type of studies. Also, even though random forest 
methods naturally provide validation data when sampling from the training data, we did not 
find out-of-bag errors used in similar studies. Montoye et. al, however, used leave-one-out cross 
validation in random forest and found similar validation error rates (21.6% - 23.3%) that we 
found in our study (16).  
 
Practically, accelerometers can be used to provide immediate, objective feedback to wearers 
about their level of physical activity in free living settings. This can be used to encourage 
increased physical activity which, in turn, is a crucial aspect of managing and improving health 
(46). Exercise scientists can use developed models to objectively classify levels of physical 
activity, to establish relationships between levels of physical activity and health indicators, and 
to develop guidelines for minimal or optimal levels of physical activity (17, 21, 38). However, 
Sasaki et. al notes overall error rates of classification algorithms of free-living physical activity 
from explanatory accelerometer data above the rate of  20% which they consider “acceptable” 
(40). This study provides an approach that can be extended and built upon to not only address 
these error rates but also take into the ordinality of responses in classification and 
misclassification. Accordingly, in addition to ordinal forest considered here, the weighted Gini 
index, 𝐺𝐺!, as an impurity measure or the twoing method in random forest,  for example, can 
be coded in R (2). Similar to our results here, recent research on methods that account for 
ordinality of responses, however, note slightly better or similar error rates as ordinary decision 
models (e.g. random forest) (12, 14). In our activity level response, however, prior ordinal states 
inform later states, and with consideration of the ordinal nature of response, time series 
approaches can be used to build classification models on the training data and prior predictions 
can be used in testing and application of the models.  
 
Our study has several notable strengths. Data derived from diverse, adult participants allowed 
the development of models that achieved substantial agreement with criterion responses. This 
is according to a linear weighted kappa statistic that takes into account the “distance” a 
misclassification is from the true classification by the order of the data. Our agreement plots, in 
Figures 2 and 3, reflect this substantial agreement provided by our models. Thus, our models 
and modeling methods can be applied to a general population with confidence that if there is 
misclassification then it is taking place mostly in adjacent classes. Both the assessment of our 
models, and, importantly, the development and application of ordinal forest and partial 
proportional odds models take this into account. Our results and this approach can be used as 
a basis for future model development that takes into the ordinality of responses. Also, the use 
of an independent sample for testing gives insight into the expected accuracy of these models in 
a new population, as opposed to validation methods which may overestimate accuracy of 
developed models when applied in a new setting (31). 
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Our study also had several limitations. The study that produced the data used direct observation 
to establish a criterion, which assumes that all activities of a certain type, as given by the 2011 
Compendium of Physical Activities, result in the same activity level. A method such as indirect 
calorimetry would instead permit physiologic assessment of effort and activity levels. However, 
the number of “non-steady state movements” would make such assessment difficult (20). 
Regardless, similar direct observation systems have been used and validated by other 
researchers in the laboratory and in the field (22, 25). Also, while the study from which we 
analyzed our data tried to simulate a range of typical free-living daily activities in testing, there 
was not labeling of the data by specific activity which would allow stratification, model building 
and comparisons of accuracy rates for different placements according to different type of 
activity. This should be a subject of future research to allow exercise scientists and physiologists 
a choice of models and placements if they intend to assess physical activity levels from a specific 
type of prescribed activity. Also, other characteristics that might be useful, such as dominant 
hand of each participant, were not available but might be useful for analysis (although there was 
not a great difference in results for right and left wrists).  
 
In addition, even though our parametric, partial proportional odds model produced the lowest 
error rates and highest linearly weighted kappa values for the ankle placement (0.318 and 0.6714, 
respectively), the error rates were significantly higher and linearly weighted kappa values were 
significantly lower on the left wrist (0.5435 and 0.403, respectively) and the right wrist (0.4854 
and 0.446, respectively) for the same model. Parametric models are less robust then classification 
models built on decision trees, and thus these results for our partial proportional odds model 
could be specific to this data set with less generalizability than our random forest and ordinal 
forest decision models. This as well should be a subject of future research and labeling of specific 
activities in the data set might help discern why our partial proportional odds model produced 
the lowest error rates on the ankle in testing. Ordinality of response variables is an important 
consideration in classification problems. In addition to the methods used in this paper, there is 
room for different approaches and procedures which take advantage of this essential property 
of responses for better prediction and classification of physical activity levels from explanatory 
accelerometer data. 
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