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Aykut Arslan May 2017 40 Pages
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Department of Mathematics Western Kentucky University

This thesis is comprised of three main parts: The Hermite-Hadamard inequality

on discrete time scales, the fractional Hermite-Hadamard inequality, and Karush-Kuhn-

Tucker conditions on higher dimensional discrete domains. In the first part of the thesis,

Chapters 2 & 3, we define a convex function on a special time scale T where all the time

points are not uniformly distributed on a time line. With the use of the substitution rules

of integration we prove the Hermite-Hadamard inequality for convex functions defined

on T. In the fourth chapter, we introduce fractional order Hermite-Hadamard inequality

and characterize convexity in terms of this inequality. In the fifth chapter, we discuss

convexity on n–dimensional discrete time scales T = T1 × T2 × ⋅ ⋅ ⋅ × Tn where Ti ⊂ R ,

i = 1,2, ..., n are discrete time scales which are not necessarily periodic. We introduce

the discrete analogues of the fundamental concepts of real convex optimization such as

convexity of a function, subgradients, and the Karush–Kuhn–Tucker conditions.

We close this thesis by two remarks for the future direction of the research in this

area.
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Chapter 1

INTRODUCTION

The Hermite-Hadamard inequality [15, 16] states that if f ∶ I → R is a convex

function, then the following inequality is satisfied:

f (a + b
2

) ≤ 1

b − a (∫
b

a
f(t)dt) ≤ f (a) + f (b)

2
,

where a, b ∈ I and I is an interval in R.

In the theory of convex functions, the Hermite-Hadamard inequality plays an im-

portant role. It has been used as a tool to obtain many results in integral inequalities,

approximation theory, optimization theory and numerical analysis. It has been de-

veloped for different classes of convexity, such as quasi-convex functions, log-convex,

r -convex functions, p-functions [13], and recently for discrete functions [4]. For the his-

tory of its developments in many directions, we refer the reader to a paper by Mitrinović

and Lacković [25]. For the generalizations and applications in probability, we refer the

reader to a paper by Merkle [22].

In this thesis, we introduce convexity by means of a midpoint condition of a function

defined on a time scale which has all the points as isolated. We state and prove the

Hermite-Hadamard inequality for such a class of functions. We call this new inequality

the discrete Hermite-Hadamard inequality.

Fractional calculus on time scales is an ongoing research topic where mathemati-

cians are trying to unify time scale calculus and fractional calculus. As an application

of this elegant theory we construct a fractional type Hermite-Hadamard inequality and
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show that it completely characterizes the convexity of functions defined on isolated time

scales.

Convex optimization, a branch of mathematical optimization theory, has been de-

veloped in two directions: the real convex optimization and the discrete (or combi-

natorial) convex optimization. Recent developments such as interior point methods,

semidefinite programming and robust optimization in convex optimization theory have

stimulated new interest by mathematicians and other scientists. It is applied in areas

such as automatic control systems, mathematical economics, electronic circuit design,

medical imaging, etc. [9], [29], [5]. Other applications can be found in combinatorial op-

timization and global optimization where it has been used to find bounds on the optimal

value or to find approximate solutions [11].

On the other hand, the discrete convex optimization combines ideas from real

convex optimization and combinatorial optimization to provide optimization techniques

for discrete functions with the convexity property. It was first developed for integer

valued functions defined on integer lattice points. In [27] and [23] the discrete convexity

concepts are introduced for real-valued functions defined on Zn. More recently, Mozyrska

and Torres introduced the convexity of a function defined on a time scale (a nonempty

closed subset of R) in their paper [26]. This short paper can be considered as the

establishment of the foundation of convex functions on time scales. Their definition is

as follows.

Definition 1.1. [26] Let I be an interval in R such that the set IT ∶= I ∩ T is a

nonempty subset of T. A function f defined and continuous on IT is called convex on IT

if for any t1, t2 ∈ IT

(t2 − t)f(t1) + (t1 − t2)f(t) + (t − t1)f(t2) ≥ 0, t ∈ IT.

More recently, Adivar and Fang defined convexity on the product of time scales

[1, 2]. Motivated by these pioneers’ work, we give a different definition of discrete
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convex functions on domains which are in the product form T = T1 ×T2 × ⋅ ⋅ ⋅ ×Tn, where

Ti ⊂ R , i = 1,2, ..., n are discrete time scales which are not necessarily periodic (i.e. the

jump operator may not be constant).

There are some advantages of using discrete convexity. One of the advantage occurs

when the objective function and constraint functions are discrete convex but not real

convex. In this case one cannot apply real convex optimization methods, however it is

possible to apply discrete convex optimization methods.
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Chapter 2

PRELIMINARIES

Let T = {0 = t0, t1, t2, t3, ...} be a set of nonnegative real numbers such that

ti < tj for i < j. We assume that ∣T∣ = ℵ0, where ℵ0 denotes the cardinality of natural

numbers. We then define the operators σ(ti) = ti+1, µ(ti) = σ(ti) − ti, ρ(ti) = ti−1, and

ν(ti) = ti−ρ(ti) for ti ∈ T, which are known as the forward jump, the forward graininess,

the backward jump, and the backward graininess operators respectively. The time scale

T can be considered as a discrete time scale. If T is the set of integers (i.e. T = Z), then

σ(t) = t + 1, µ(t) = 1, ρ(t) = t − 1 and ν(t) = 1, for all t ∈ T.

Definition 2.1. Let f be a real-valued function defined on T. Then the ∆-

derivative and the ∇-derivative of f are defined, respectively, as

f∆(t) = f(σ(t)) − f(t)
µ(t) , f∇(t) = f(t) − f(ρ(t))

ν(t) ,

where t ∈ T. We define a second order derivative as f∆2 ∶= f∆∆ = (f∆)∆. The ∆-integral

and the ∇-integral of f are defined as

∫
b

a
f(τ)∆τ = ∑

s∈[a,b)∩T
f(s)µ(s), ∫

b

a
f(τ)∇τ = ∑

s∈(a,b]∩T
f(s)ν(s),

respectively, where a, b ∈ T.

We also use the notation Tκ which is defined as

Tκ =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

T/(ρ(supT), supT], supT < ∞

T, supT = ∞.

For further reading on time scales, we refer the reader to an excellent book on the

analysis of time scales [7].
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Throughout this study, we focus on the discrete time scales. Let T be any discrete

time scale and a, b ∈ T with a < b. [a, b]T means [a, b] ∩T. We define

T[a,b] = {t ∣ t = b − u
b − a for u ∈ [a, b]T} .

Note that T[a,b] ⊂ [0,1]. We also want to point out that there is a bijective (one-to-one

and onto) map between [a, b]T and T[a,b].

Definition 2.2. f ∶ T → R is called convex on T if for every x, y ∈ T with x < y,

the following inequality

f(λx + (1 − λ)y) ≤ λf(x) + (1 − λ)f(y),

is satisfied for all λ ∈ T[x,y].

Definition 2.3. We define the midpoint of a and b as the nth element in a finite

time scale [a, b]T with cardinality 2n − 1.

For the notation, we denote the midpoint of a and b by m[a,b] in [a, b]T, and the corre-

sponding midpoint of 0 and 1 by m[0,1] in T[a,b]. If T = Z, then Definition 2.3 reduces to

the standard definition of midpoint on Z, namely m[a,b] = a+b
2 and m[0,1] = 1

2 .

Definition 2.4. f ∶ T→ R satisfies the midpoint condition if

f(m[a,b]) ≤m[0,1]f(a) + (1 −m[0,1])f(b), (2.1)

for every a, b ∈ T with the cardinality of [a, b]T an odd number.

Remark 2.5. If we want to be more precise for the number m[0,1] in (2.1), then

we can write it as m[0,1] =
b−m

[a,b]

b−a . Note that if T = Z, then the inequality (2.1) becomes

f (a+b
2
) ≤ f(a)+f(b)

2 , as it is stated in the paper [4].
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The following two theorems are crucial in the proof of the next theorem about some

equivalent criteria for convexity of real-valued functions defined on T.

Theorem 2.6. (Taylor’s Theorem [7]) Let n ∈ N. Suppose f is n-times differen-

tiable on Tκn−1. Let α ∈ Tκn−1, t ∈ T, and define the functions hk by

h0(r, s) ≡ 1 and hk+1(r, s) = ∫
r

s
hk(τ, s)∆τ for k ∈ N0.

Then we have

f(t) =
n−1

∑
k=0

hk(t, α)f∆k(α) + ∫
ρn−1(t)

α
hn−1(t, σ(τ))f∆n(τ)∆τ.

Theorem 2.7. (Mean Value Theorem [8]) Let f be a continuous function on [a, b]T
that is differentiable on [a, b)T. Then there exists ξ, τ ∈ [a, b)T such that

f∆(τ) ≤ f(b) − f(a)
b − a ≤ f∆(ξ).

Theorem 2.8. Let f ∶ T→ R be given. The following are equivalent:

(i) f is convex on T.

(ii) f satisfies the midpoint condition (2.1).

(iii) f∆2(t) ≥ 0 for all t ∈ T.

(iv) f(x) ≥ f(y) + (x − y)f∆(y) for all x, y ∈ T with x > y,

(or f(x) ≥ f(y) + (x − y)f∇(y) for all x < y ).

Proof. We prove that (i) ⇒ (ii) ⇒ (iii) ⇒ (i) ⇒ (iv) ⇒ (iii).

(i) ⇒ (ii) ∶ Let a, b ∈ T with a < b and [a, b]T have odd number of time points. This

implies that [a, b]T has a midpoint m[a,b]. Since f is convex, by choosing λ = b−m
[a,b]

b−a , we

obtain
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f(m[a,b]) ≤ (
b −m[a,b]

b − a ) f(a) + (
m[a,b] − a
b − a ) f(b).

Then the midpoint condition (2.1) follows.

Next, we prove that (ii) implies (iii). Let t ∈ T. Then σ(t) ∈ T. Applying the midpoint

condition at σ(t), we have

f(σ(t)) ≤ σ
2(t) − σ(t)
σ2(t) − t f(t) + σ(t) − t

σ2(t) − tf(σ
2(t)).

Simple algebra implies that f∆2(t) ≥ 0.

Next, we prove that (iii) ⇒ (i). Let x, y ∈ T with x < y. Fix λ ∈ T[x,y].

Define x0 = λx + (1 − λ)y. Using Taylor’s theorem (Theorem 2.6) at x0 we have

f(y) =
1

∑
i=0

hi(y, x0)f∆i(x0) +
ρ2(y)

∑
τ=x0

h1(y, σ(τ))f∆2(τ)(σ(τ) − τ).

Since f∆2(τ) ≥ 0 on T and h1(y, σ(τ)) = y − σ(τ) ≥ 0 on T, we have

f(y) ≥ f(x0) + (y − x0)f∆(x0). (2.2)

Using the Mean Value Theorem (Theorem 2.7) for f on [x,x0]T, there exists τ ∈ [x,x0)T
such that

f(x0) − f(x)
x0 − x

≤ f∆(τ).

Since f∆2(t) ≥ 0 on T, we have f∆(τ) ≤ f∆(x0). Therefore we obtain

f(x) ≥ f(x0) + (x − x0)f∆(x0). (2.3)

7



If we multiply the inequality (2.2) by 1 − λ and the inequality (2.3) by λ and add them

side by side, we obtain

f(λx + (1 − λ)y) ≤ λf(x) + (1 − λ)f(y)

for all λ ∈ T[x,y].

Now we prove (i) ⇒ (iv). Given any x, y ∈ T such that y < x, by convexity of f on [y, x],

we have

f(σ(y)) ≤ σ(y) − y
x − y f(x) + x − σ(y)

x − y f(y).

After rearranging the terms we have

f∆(y) ≤ f(x) − f(y)
x − y .

This simplifies to f(x) ≥ f(y) + (x− y)f∆(y) for all x > y. The same argument works to

show that

f(x) ≥ f(y) + (x − y)f∇(y) for all x < y.

Finally we prove (iv) ⇒ (iii). Given f(x) ≥ f(y) + (x − y)f∆(y) for all x > y. By

choosing x = σ2(y), we obtain f∆2(y) ≥ 0. Since y is arbitrary, (iii) follows.

This completes the proof. �
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Chapter 3

HERMITE-HADAMARD INEQUALITY ON DISCRETE

TIME SCALES

In this chapter we prove the discrete Hermite-Hadamard inequality for convex func-

tions defined on a discrete time scale T.

Theorem 3.1. (Substitution rule on time scales) [12] Assume ν ∶ T→ R is strictly

increasing and T̃ ∶= ν(T) is a time scale. If f ∶ T → R is a an rd-continuous function

and ν is differentiable with rd-continuous derivative, then if a, b ∈ T,

∫
b

a
f(t)ν∆(t)∆t = ∫

ν(b)

ν(a)
(f ○ ν−1)(s)∆̃s

or

∫
b

a
f(t)ν∇(t)∇t = ∫

ν(b)

ν(a)
(f ○ ν−1)(s)∇̃s.

Definition 3.2. (Dual Time Scales)[10] Given a time scale T we define the dual

time scale T = {s ∈ R∣ − s ∈ T}.

Next, we state and prove the substitution rule for a strictly decreasing function ν ∶ T→ R,

where T can be any time scale whether isolated or not.

Theorem 3.3. Assume ν ∶ T → R is strictly decreasing and T̃ ∶= ν (T) is a time

scale. If f ∶ T → R is a continuous function and ν is differentiable with rd-continuous

derivative, then for a, b ∈ T,

∫
b

a
f(t)(−ν∆) (t)∆t = ∫

ν(a)

ν(b)
(f ○ ν−1) (s) ∇̃s

and

∫
b

a
f(t)(−ν∇) (t)∇t = ∫

ν(a)

ν(b)
(f ○ ν−1) (s) ∆̃s.
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Proof. We prove the second equality. In the proof we use the basics of the dual time

scales introduced in [10](see definition 3.2) and the substitution method for a strictly

increasing function (Theorem 3.1). We start on the right side of the equality:

∫
ν(a)

ν(b)
(f ○ ν−1) (s) ∆̃s = ∫

−ν(b)

−ν(a)
(f ○ ν−1)∗(s)∇s

= ∫
−ν(b)=(u−1○ν)(a)

−ν(a)=(u−1○ν)(a)
f(u−1 ○ ν)−1(s)∇s

= ∫
b

a
f(t)(u−1 ○ ν)∇(t)∇t

= ∫
b

a
f(t)(−ν)∇∇t,

where T represents the dual time scale, u(s) ∶= −s and

f(ν−1)∗(s) = f(ν−1(−s)) = f((ν−1 ○ u)(s)) = f((u−1 ○ ν)−1(s)). �

Remark 3.4. We note that the statement of Theorem 2.3 (ii) in the paper [12] is

not correct since T̃ was defined as −ν (T) for a strictly decreasing function ν.

We use the following notation in the proof of the next theorem: Let a, b ∈ T, a < b,

where the cardinality of [a, b]T is an odd number, say k + 1. Let t ∈ T[a,b]. Then there

exists an n ∈ N ∪ {0} such that t = σn(0). We denote t̂ by σk−n(0). Similarly, let

u ∈ [a, b]T. Then there exists a l ∈ N ∪ {0} such that u = σl(a). We denote û by σk−l(a).

We also note that ˆ̂u = u and ˆ̂t = t.

Next we illustrate this new notation with an example.

Example 3.5. Let [a, b]T = {x0 = a, x1, x2, x3, x4, x5, x6 = b}, where xi < xi+1 for

0 ≤ i ≤ 5. Then we have x̂i = σ6−i(a) = x6−i for 0 ≤ i ≤ 6. It follows that

T[a,b] = {t0 = 0, t1 =
b − x5

b − a , t2 =
b − x4

b − a , t3 =
b − x3

b − a , t4 =
b − x2

b − a , t5 =
b − x1

b − a , t6 = 1}.
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Hence we have t̂i = σ6−i(0) = t6−i for 0 ≤ i ≤ 6.

This implies that t̂i =
b − xi
b − a . One simple algebra step implies that

xi = at̂i + (1 − t̂i)b.

On the other hand, x̂i = x6−i = ati + (1 − ti)b.

Now, we prove the main theorem of this chapter. We construct the Hermite Hadamard

inequality on T, where time points are not uniformly distributed.

Theorem 3.6. Suppose f ∶ T→ R is a convex function on [a, b]T. Then

f(m[a,b]) ≤
1

b − a ∫[a,b]T
k(t)f(t)∇(t)− 1

b − a ∫[a,b]T
g∆(t)k(t)f(t)∆t ≤m[0,1]f(a)+(1−m[0,1])f(b),

where g ∶ [a, b]T → [a, b]T is defined by g(u) = û and k ∶ [a, b]T → R+ is defined by

k(x) ∶=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

g(x) −m[a,b]

g(x) − x , x ≠m[a,b]

1/2, x =m[a,b].

(3.1)

Proof. Fix t ∈ T[a,b]. Then there exists x ∈ [a, b]T such that x = ta + (1 − t)b. As we

pointed out in Example 3.5, x̂ = t̂a + (1 − t̂)b. Denote this x̂ by y, i.e. y = t̂a + (1 − t̂)b.

Note that m[a,b] =m[x,y] using the definition of the hat operator given in page 11.

Let ξ ∶ [a, b]T → T[a,b] be an affine map defined as ξ(u) = b − u
b − a . Hence we have ξ(x) = t

and ξ(y) = t̂. If x ≠m[a,b], then by convexity of f we have

f(m[a,b]) ≤
y −m[a,b]

y − x f(x) +
m[a,b] − x
y − x f(y). (3.2)

If x =m[a,b], then it reduces to x = y =m[a,b]. Clearly we have

11



f(m[a,b]) =
1

2
f(x) + 1

2
f(y). (3.3)

We combine (4.3) and (4.4) using the function k

f(m[a,b]) ≤ k(x)f(x) + k(y)f(y).

Next, we integrate each side of the above inequality from 0 to 1 on T[a,b] and we obtain

f(m[a,b])∫
T
[a,b]

∆̃t ≤ ∫
T
[a,b]

k(x)f(x)∆̃t + ∫
T
[a,b]

k(y)f(y)∆̃t

= ∫
T
[a,b]

k(ξ−1(t))f(ξ−1(t))∆̃t + ∫
T
[a,b]

k(ξ−1(t̂))f(ξ−1(t̂))∆̃t.

Here we first claim that

∫
T
[a,b]

k(ξ−1(t))f(ξ−1(t))∆̃t = 1

b − a ∫[a,b]T
k(t)f(t)∇t. (3.4)

Let us define F ∶= k ⋅ f . Then we have F (ξ−1(t)) = k(ξ−1(t))f(ξ−1(t)).

Next, we apply the substitution rule (Theorem 3.3) to the integral on the left side

of the equality in (3.4).

∫
T
[a,b]

k(ξ−1(t))f(ξ−1(t))∆̃t = ∫
T
[a,b]

F (ξ−1(t))∆̃t

= ∫
b

a
F (t) 1

b − a∇t.

This finishes the proof of our first claim.

Next, we claim that

12



∫
T
[a,b]

k(ξ−1(t̂))f(ξ−1(t̂))∆̃t = − 1

b − a ∫[a,b]T
g∆(t)k(t)f(t)∆t. (3.5)

Before we start to prove the equality (3.5), we want to point out that the function g

is a bijection and g ≡ g−1 since g2 is an identity function. As a result of this, we have

g(t̂a+ (1− t̂)b) = ta+ (1− t)b. This observation will help us to complete the proof of the

claim.

By applying the substitution w(u) = ξ̂(u) to the integral on the left side of the equality

(3.5), we have

∫
T
[a,b]

k(ξ−1(t̂))f(ξ−1(t̂))∆̃t = ∫
T
[a,b]

F (ξ−1(t̂))∆̃t

= ∫
1

0
(F ○w−1)(t)∆̃t

= − 1

b − a ∫[a,b]T
g∆(t)F (t)∆t,

where

w∆(u) = w(σ(u)) −w(u)
σ(u) − u

=
̂ξ(σ(u)) − ξ̂(u)
σ(u) − u

=
b−σ̂(u)
b−a − b−û

b−a

σ(u) − u

= 1

(a − b)
(σ̂(u) − û)
σ(u) − u

= g
∆(u)
a − b ≥ 0,

since σ̂(u) < û.

This completes the proof of our second claim.

13



To prove the right side of the inequality, we construct the following inequalities using

the convexity of f .

f(x) ≤ b − x
b − af(a) +

x − a
b − a f(b),

f(y) ≤ b − y
b − af(a) +

y − a
b − af(b).

Next, we multiply both inequality by k(x) and k(y) respectively. We obtain

k(x)f(x) ≤ b − x
b − ak(x)f(a) +

x − a
b − a k(x)f(b),

k(y)f(y) ≤ b − y
b − ak(y)f(a) +

y − a
b − ak(y)f(b).

Simple algebra implies the following identities.

b − x
b − ak(x) +

b − y
b − ak(y) =

b −m[a,b]

b − a ,

x − a
b − a k(x) +

y − a
b − ak(y) =

m[a,b] − a
b − a .

Recall that x and y both depend on t. We let t vary over T[a,b] and integrate each side

of the last two inequalities on T[a,b] and we add them side by side, we obtain

∫
T
[a,b]

k(ν−1(t))f(ν−1(t))∆̃t + ∫
T
[a,b]

k(ν−1(t̂))f(ν−1(t̂))∆̃t

≤
b −m[a,b]

b − a f(a) +
m[a,b] − a
b − a f(b) =m[0,1]f(a) + (1 −m[0,1])f(b)

14



.

where the last equality is being achieved by means of Remark 2.5. �

Corollary 3.7. Suppose f ∶ hZ→ R is a convex function with h > 0, a, b ∈ hZ, a <

b. Then

f (a + b
2

) ≤ 1

2(b − a) [∫
[a,b]hZ

f(t)∆t + ∫
[a,b]hZ

f(t)∇t] ≤ f (a) + f (b)
2

. (3.6)

Proof. Here g and k simplify into g(x) = a + b − x and k(x) = 1/2 and g∆(x) = −1.

Hence we have the desired inequality. �

When h = 1, we obtain the Hermite-Hadamard inequality on Z.

Corollary 3.8. [4] Suppose f ∶ Z→ R is a convex function on [a, b]Z with a, b ∈ Z,

a < b, and a + b an even number. Then

f (a + b
2

) ≤ 1

2(b − a) [∫
b

a
f(t)∆t + ∫

b

a
f(t)∇t] ≤ f (a) + f (b)

2
. (3.7)

Next, we give an alternate proof of the Hermite-Hadamard inequality on R (called

as continuous Hermite-Hadamard inequality) by using the main result of this chapter.

For this purpose, we first state the following lemma without giving its proof.

Lemma 3.9. Let f ∶ R → R be a convex function on R. Then for any h > 0, its

restriction to hZ is also a convex function.

Corollary 3.10. Let f be a real convex function on the finite interval [a, b] ⊂ R.

Then f satisfies the continuous Hermite-Hadamard inequality

f (a + b
2

) ≤ 1

(b − a) (∫
b

a
f(t)dt) ≤ f (a) + f (b)

2
.

15



Proof. By restricting f to hZ we obtain the inequality (3.6). Since f is convex on

[a, b], it is continuous on (a, b), hence integrable on [a, b]. When h tends to zero, the

∆−integral and ∇−integral converge to the Riemann integral of f on [a, b]. In other

words,

limh→0 ∑
t∈[a,b)hZ

f(t)h = ∫
b

a
f(t)dt and lim

h→0
∑

t∈(a,b]hZ

f(t)h = ∫
b

a
f(t)dt.

Hence the result follows. �

3.1. Applications

(i). Let f(t) = (1+h) t
h be a function on hZ for some positive real number h. Since

f∆2(t) = f(t) ≥ 0, f satisfies the Hermite-Hadamard inequality on the interval [a, b]hZ,

where a, b ∈ hZ.

f (a + b
2

) ≤ 1

2(b − a) [∫
[a,b]hZ

f(t)∆t + ∫
[a,b]hZ

f(t)∇t] ≤ f (a) + f (b)
2

, (3.8)

where

∫
[a,b]hZ

f(t)∆t = ∑
t∈[a,b)hZ

(1 + h) t
hh = (1 + h) b

h − (1 + h) a
h ,

∫
[a,b]hZ

f(t)∇t = ∑
t∈(a,b]hZ

(1 + h) t
hh = (1 + h)1+ b

h − (1 + h)1+ a
h .

Hence it follows that

(1 + h)a+b
2h ≤ 1

2(b−a)([(1 + h)
b
h − (1 + h) a

h ] + [(1 + h)1+ b
h − (a + h)1+ a

h ])

≤ (1 + h) a
h + (1 + h) b

h

2
.

Now, if x = f(a) and y = f(b), then the above inequality (3.8) simplifies into

16



√
xy ≤ 2 + h

h
[ y − x
f−1(y) − f−1(x)] ≤

x + y
2

, (3.9)

for all x, y ∈ f(hZ).

Note that inequality (3.9) holds for all x, y ∈ f(hZ) for a given h > 0. Now we let h

vary and take the limit as h goes to zero. Then f(t) = (1 + h) t
h converges to et and the

inequality turns into the well-known geometric-logarithmic-arithmetic mean inequality:

√
xy ≤ y − x

ln y − lnx
≤ x + y

2
,

for all x, y positive real numbers.

(ii). Let f ∶ hN → R be defined as f(t) = 1
t for some positive real number h. Since

f∆2(t) = 2
t(t+h)(t+2h) ≥ 0, f is convex on hN. Hence the Hermite-Hadamard inequality

holds and we obtain

2

a + b ≤
H(b, a)
b − a − h

2ab
≤

1
a + 1

b

2
,

where a, b ∈ hN and H(b, a) = ∫
[a,b]hZ

1

t
∆t.

We take the limit as h goes to 0. Then we have

2

a + b ≤
ln(b) − ln(a)

b − a ≤
1
a + 1

b

2
,

for all a, b positive real numbers.

Theorem 3.11. Let T be a discrete time scale and f be function on T, not neces-

sarily convex, satisfying α ≤ f∆2(t) ≤ β. Then we get
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αU ≤ ( 1

b − a ∫[a,b]T
k(t)f(t)∇t − 1

b − a ∫[a,b]T
g∆(t)k(t)f(t)∆t) − f(m[a,b]) ≤ βU

and

αV ≤m[0,1]f(a)+(1−m[0,1])f(b)−(
1

b − a ∫[a,b]T
k(t)f(t)∇t− 1

b − a ∫[a,b]T
g∆(t)k(t)f(t)∆t) ≤ βV,

where U = 1

(b − a)[∫[a,b]T
k(t)h2(t)∇t − ∫

[a,b]T
k(t)g∆(t)h2(t)∆t] − h2(m[a,b]) and

V =m[0,1]h2(a)+(1−m[0,1])h2(b)−
1

(b − a)[∫[a,b]T
k(t)h2(t)∇t−∫

[a,b]T
k(t)g∆(t)h2(t)∆t].

Proof. Let h2(t) be the Taylor monomial with s = 0. In other words it is a function

on T whose second ∆−derivative is 1. We define Taylor monomials in Definition 4.1. Let

F (t) ∶= f(t)−αh2(t) and G(t) ∶= βh2(t)− f(t). Since α ≤ f∆2(t) ≤ β we have F∆2(t) ≥ 0

and G∆2(t) ≥ 0. Therefore F and G are convex. If we apply the Hermite-Hadamard

inequality for both F and G, then we derive the desired inequalities. �

Corollary 3.12. If T = Z, then U = (b − a)2 + 2

24
and V = (b − a)2 − 1

12
.

Corollary 3.13. If T = qN, then

U = 1

q(1 + q)2(b − a)[q
2
√
ab(b2 − a2) + 2n(q2 − 1)(ab)3/2 − 2(q2 + q)ab(b − a)] and

V = 1

q(1 + q)2(b − a)[q
√
ab(b2 − a2) − 2n(q2 − 1)(ab)3/2].
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Chapter 4

FRACTIONAL HERMITE-HADAMARD INEQUALITY

In this chapter, we define nabla time scale monomials and time scale power func-

tions. Then, we define Riemann-Liouville fractional integrals, and we state substitution

rules in time scales calculus. Next, we prove the fractional Hermite-Hadamard inequality

in Theorem 4.6.

Definition 4.1. (Nabla time scale monomials) Suppose f is n-times differentiable

on Tκn−1. Let α ∈ Tκn−1, t ∈ T, and define the functions ĥk by

ĥ0(t, s) ≡ 1 and ĥk+1(t, s) = ∫
t

s
ĥk(τ, s)∇τ for k ∈ N0.

Definition 4.2. Let T be a time scale. A collection of functions {ĥα(⋅, ⋅) ∶ T̃× T̃→

R} for −1 < α < ∞ are called time scale power functions if they satisfy

(i) For all α > −1, ĥα(t, s) is a positive ld-continuous function in both variables when

t > s and ĥα(t, s) ≡ 0 whenever t ≤ s.

(ii) Whenever α ∈ N0 and t ≥ s, ĥα(t, s) corresponds with the nabla time scale monomials.

(iii) For all α,β > −1 one has

∫
t

s
ĥα(t, ρ(τ))ĥβ(τ, s)∇(τ) = ĥα+β+1(t, s),

for t, s ∈ T̃ and s < t.

Remark 4.3. If we pick T = Z, then we have ĥα−1(t, s) =
(t − s)α−1

Γ(α) .
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For example, if α = 3/2 and s = 0, then ĥα−1(t, s) =
t1/2√
π
.

Definition 4.4. The time scale Riemann-Liouville fractional integral operator of

order α ≥ 0 with lower limit a is defined by

Jαa f(t) = ∫
t

a
ĥα−1(t, ρ(s))f(s)∇(s), (4.1)

where ĥα−1(t, s) is a time scale power function.

Remark 4.5. In Definition 4.4 we used Jαa f(t) notation instead of (a∇−α
t f)(t) to

emphasize that we are working on a time scale.

Now, we prove the main theorem of this chapter. We construct a fractional order

Hermite-Hadamard inequality on a special time scale T, where not all of its points are

uniformly distributed.

Theorem 4.6. Suppose f ∶ T→ R is a convex function on [a, b]T where a, b ∈ T, a <

b, and [a, b]T has odd cardinality. Then

f(m[a,b]) ≤
1

β(b − a)J
α
a [(kf)(t) + (kf)(t̂)]∣

t=b
≤m[0,1]f(a) + (1 −m[0,1])f(b), (4.2)

where β = ĥα(b, a)
b − a , and α is a positive number.

Proof. Fix t ∈ T[a,b]. Then there exists x ∈ [a, b]T such that x = ta + (1 − t)b. As we

pointed out above, we have x̂ = t̂a + (1 − t̂)b. Denote this x̂ by y, i.e. y = t̂a + (1 − t̂)b.

Note that m[a,b] =m[x,y] using the definition of the hat operator.
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Let ξ ∶ [a, b]T → T[a,b] be an affine map defined as ξ(u) = b − u
b − a . Hence we have ξ(x) = t

and ξ(x̂) = ξ(y) = t̂. If x ≠m[a,b], then by convexity of f we have

f(m[a,b]) ≤
y −m[a,b]

y − x f(x) +
m[a,b] − x
y − x f(y). (4.3)

If x =m[a,b], then it reduces to x = y =m[a,b]. Clearly we have

f(m[a,b]) =
1

2
f(x) + 1

2
f(y). (4.4)

We combine (4.3) and (4.4) using the function k

f(m[a,b]) ≤ k(x)f(x) + k(y)f(y).

Next we multiply both sides by P (t) = ĥα−1(b, ρ(ξ−1(t))). Note that since ξ(x) = t

we have ĥα−1(b, ρ(ξ−1(t))) = ĥα−1(b, ρ(x)). We integrate each side of the above inequality

from 0 to 1 on T[a,b] and we obtain

f(m[a,b])∫
T
[a,b]

P (t)∆̃t ≤ ∫
T
[a,b]

P (t)k(x)f(x)∆̃t + ∫
T
[a,b]

P (t)k(y)f(y)∆̃t

= ∫
T
[a,b]

ĥα−1(b, ρ(ξ−1(t))) ⋅ k(ξ−1(t)) ⋅ f(ξ−1(t))∆̃t

+ ∫
T
[a,b]

ĥα−1(b, ρ(ξ−1(t))) ⋅ k(ξ−1(t̂)) ⋅ f(ξ−1(t̂))∆̃t.

Here we first claim that

∫
T
[a,b]

ĥα−1(b, ρ(ξ−1(t))) ⋅ k(ξ−1(t)) ⋅ f(ξ−1(t))∆̃t

= 1

b − a ∫[a,b]T
ĥα−1(b, ρ(t))k(t)f(t)∇t =

1

b − aJ
α
a (kf)(t)∣

t=b

(4.5)
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If we define F (t) as ĥα−1(b, ρ(t)) ⋅ k(t) ⋅ f(t), then we have

F (ξ−1(t)) = ĥα−1(b, ρ(ξ−1(t)))k(ξ−1(t))f(ξ−1(t)).

Next, we apply substitution rule to the integral on the left side of the equality in

(4.5).

∫
T
[a,b]

ĥα−1(ρ(ξ−1(t)))k(ξ−1(t))f(ξ−1(t))∆̃t = ∫
T
[a,b]

F (ξ−1(t))∆̃t

= ∫
b

a
F (t) 1

b − a∇t

= 1

b − aJ
α
a (kf)(t)∣

t=b

This finishes the proof of our first claim.

Now, we claim that

∫
T
[a,b]

ĥα−1(b, ρ(ξ−1(t))) ⋅ k(ξ−1(t̂)) ⋅ f(ξ−1(t̂))∆̃t

= 1

b − a ∫[a,b]T
ĥα−1(b, ρ(t))k(t̂)f(t̂)∇t

= 1

b − aJ
α
a (kf)(t̂)∣

t=b

(4.6)

Let us define G(t) ∶= ĥα−1(b, ρ(t)) ⋅ k(t̂) ⋅ f(t̂). Now we will apply substitution to the

integral on the left side of the equality (4.6).

∫
T
[a,b]

ĥα−1(b, ρ(ξ−1(t))) ⋅ k(ξ−1(t̂)) ⋅ f(ξ−1(t̂))∆̃t = ∫
T
[a,b]

G(ξ−1(t))∆̃t

= 1

b − a ∫[a,b]T
G(t)∇t = 1

b − a ∫[a,b]T
ĥα−1(b, ρ(t))k(t̂)f(t̂)∇t

= 1

b − aJ
α
a (kf)(t̂)∣

t=b
.
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This completes the proof of our second claim.

If we combine these two integrals and we get the left side of the fractional Hermite-

Hadamard inequality

f(m[a,b])β ≤ 1

(b − a)(J
α
a (kf)(t)∣

t=b
+ Jαa (kf)(t̂)∣

t=b
). (4.7)

To prove the right side of the inequality, we construct the following inequalities using

convexity of f .

f(x) ≤ b − x
b − af(a) +

x − a
b − a f(b),

f(y) ≤ b − y
b − af(a) +

y − a
b − af(b).

Next, we multiply both inequality by P (t)k(x) and P (t)k(y) respectively. We obtain

P (t)k(x)f(x) ≤ b − x
b − aP (t)k(x)f(a) + x − a

b − aP (t)k(x)f(b),

P (t)k(y)f(y) ≤ b − y
b − aP (t)k(y)f(a) + y − a

b − aP (t)k(y)f(b).

Simple algebra implies the following identities

b − x
b − ak(x) +

b − y
b − ak(y) =

b −m[a,b]

b − a ,

x − a
b − a k(x) +

y − a
b − ak(y) =

m[a,b] − a
b − a .
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Recall that x and y both depend on t. We let t vary over T[a,b] and integrate each side

of the last two inequalities on T[a,b] and we add them side by side, we obtain

1

b − a ∫[a,b]T
F (t)∇t − 1

b − a ∫[a,b]T
G(t)∆t

≤
⎛
⎝
b −m[a,b]

b − a f(a) +
m[a,b] − a
b − a f(b)

⎞
⎠∫T[a,b]

P (t)∆̃t =
⎛
⎝
m[0,1]f(a) + (1 −m[0,1])f(b)

⎞
⎠
β.

Next, we divide both sides by β and write the integrals in fractional form and we get

the desired fractional inequality.

f(m[a,b]) ≤
1

β(b − a)(J
α
a (kf)(t)∣

t=b
+ Jαa (kf)(t̂)∣

t=b
) ≤m[0,1]f(a) + (1 −m[0,1])f(b).

Lastly, we calculate β.

β = ∫T
[a,b]

P (t)∆̃t = ∫
T
[a,b]

ĥα−1(b, ρ(ξ−1(t)))∆̃t

= 1

b − a ∫[a,b]T ĥα−1(b, ρ(t))∇t =
1

b − aĥα(b, a).

The last equality is proved in [14] ,Theorem 3.57. �

Corollary 4.7. [4] Suppose f ∶ Z → R is a convex function on [a, b]Z, where

a, b ∈ Z, a < b, and a + b an even number. Then

f(a + b
2

) ≤ Γ(α)
2β(b − a)[b−1

∆−α(f)(t)∣
t=a−α

+∇−α
a+1(f)(t)∣

t=b
] ≤ f(a) + f(b)

2
(4.8)

where β = ∫
T
[a,b]

((b − a)t + (α − 1))α−1∆̃t and α is a positive real number.
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Proof. In Theorem 4.6 we proved (i) ⇒ (ii) and (i) ⇒ (iii).

(ii) ⇒ (i) ∶

Let us pick a = ρ(m) and b = σ(m). Then lfhhi (4.11) implies

f(m) ĥα(b, a)
b − a ≤ 2f(m)k(m)ĥα−1(b, a)

m − a
b − a + ĥα−1(b,m)b −m

b − a [k(a)f(a) + k(b)f(b)],

f(m)[ ĥα(b, a)
b − a − ĥα−1(b, a)

m − a
b − a ] ≤ ĥα−1(b,m)b −m

b − a [k(a)f(a) + k(b)f(b)].

Since ĥα(b, a) = ĥα−1(b, a)(m − a) + ĥα−1(b,m)(b −m) we get

f(m) ≤ k(a)f(a) + k(b)f(b).

Therefore f∆(m) ≥ 0 for all m.

(iii) ⇒ (i) ∶

Let a = ρ(m) and b = σ(m). Then rfhhi (4.12) will give us

2k(m)f(m)ĥα−1(b, a)
m − a
b − a + ĥα−1(b,m)b −m

b − a [k(a)f(a) + k(b)f(b)]

≤ ĥα(b, a)(b − a) [k(a)f(a) + k(b)f(b)].
(4.9)

This simplifies to

f(m)ĥα−1(b, a)
m − a
b − a ≤ ( ĥα(b, a)(b − a) − ĥα−1(b,m)b −m

b − a )[k(a)f(a) + k(b)f(b)]. (4.10)
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Since ĥα(b, a) = ĥα−1(b, a)(m − a) + ĥα−1(b,m)(b −m) we get

f(m) ≤ k(a)f(a) + k(b)f(b).

Therefore f is convex on T.

�

4.1. Characterization of Convexity via the Fractional Hermite-Hadamard

Inequality

In this chapter we define left and right fractional Hermite-Hadamard inequalities.

Then we show that each of these inequalities characterizes convexity.

Definition 4.8. We define left fractional Hermite-Hadamard inequality ( lfhhi)

and right fractional Hermite-Hadamard inequality (rfhhi) as the first and second in-

equality in (4.2).

f(m[a,b]) ≤
1

β(b − a)J
α
a [(kf)(t) + (kf)(t̂)]∣

t=b
, (4.11)

1

β(b − a)J
α
a [(kf)(t) + (kf)(t̂)]∣

t=b
≤m[0,1]f(a) + (1 −m[0,1])f(b), (4.12)

where β = ĥα(b, a)
b − a .

Theorem 4.9. Let T be a discrete time scale and let f ∶ T → R be a function on

[a, b]T. Then the following are equivalent:

(i) f is a convex function.

(ii) The left fractional Hermite-Hadamard inequality, lfhhi, holds.

(iii) The right fractional Hermite-Hadamard inequality, rfhhi, holds.
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Proof. In Theorem 4.6 we proved (i) ⇒ (ii) and (i) ⇒ (iii).

(ii) ⇒ (i) ∶

Let us pick a = ρ(m) and b = σ(m). Then lfhhi (4.11) will give us

f(m) ĥα(b, a)
b − a ≤ 2f(m)k(m)gα−1(b, a)

m − a
b − a + gα−1(b,m)b −m

b − a [k(a)f(a) + k(b)f(b)],

f(m)[ ĥα(b, a)
b − a − gα−1(b, a)

m − a
b − a ] ≤ gα−1(b,m)b −m

b − a [k(a)f(a) + k(b)f(b)].

Since ĥα(b, a) = gα−1(b, a)(m − a) + gα−1(b,m)(b −m) we get

f(m) ≤ k(a)f(a) + k(b)f(b).

Therefore f∆(m) ≥ 0 for all m.

(iii) ⇒ (i) ∶

Let a = ρ(m) and b = σ(m). Then rfhhi (4.12) will give us

2k(m)f(m)gα−1(b, a)
m − a
b − a + gα−1(b,m)b −m

b − a [k(a)f(a) + k(b)f(b)]

≤ gα(b, a)(b − a) [k(a)f(a) + k(b)f(b)].
(4.13)

This simplifies to

f(m)gα−1(b, a)
m − a
b − a ≤ (gα(b, a)(b − a) − gα−1(b,m)b −m

b − a )[k(a)f(a) + k(b)f(b)]. (4.14)
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Since ĥα(b, a) = gα−1(b, a)(m − a) + gα−1(b,m)(b −m) we get

f(m) ≤ k(a)f(a) + k(b)f(b).

Therefore f is convex on T. �
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Chapter 5

CONVEX OPTIMIZATION ON DISCRETE TIME SCALES

In this chapter, we discuss convexity on n–dimensional discrete time scales T =

T1 × T2 × ⋅ ⋅ ⋅ × Tn where Ti ⊂ R , i = 1,2, ..., n are discrete time scales which are not

necessarily periodic. We introduce the discrete analogues of the fundamental concepts of

real convex optimization such as convexity of a function, subgradients, and the Karush–

Kuhn–Tucker conditions. In the last section we illustrate our result in an example.

An optimization problem, or mathematical programming problem, is minimizing

the objective function under the given constraints.

minimize f(x) subject to gi(x) ≤ 0, x ∈X for i = 1,2, ...,m. (5.1)

Here X could be any of the following sets; X = Rn, X = {x ∈ Rn∣x ≥ 0}, X = Zn, or

X = T1×T2× ⋅ ⋅ ⋅×Tn, where Ti ⊂ R , i = 1,2, ..., n are discrete time scales, not necessarily

periodic.

Definition 5.1. An optimization problem (5.2) is called a convex optimization

problem or a convex programming problem if f and gi are real convex functions for

i = 1,2, ...,m and X = Rn.

minimize f(x) subject to gi(x) ≤ 0, x ∈X for i = 1,2, ...,m. (5.2)

The Lagrangian function corresponding to the objective function f(x) is defined

as follows.

L(x,u) = f(x) + uTg(x)

where x ∈ Rn, u ∈ Rm and g(x) = (g1(x), g2(x), . . . , gm(x)).

Definition 5.2. h is called a subgradient for f at x0 ∈ Rn if it satisfies the following

inequality
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f(x) ≥ f(x0) + ⟨x − x0, h⟩ for all x ∈ Domain(f).

where ⟨⋅, ⋅⟩ is the dot product.

A function defined on Rn is called a real convex function if it has a subgradient

at each point of its domain. We define discrete convexity in the next section using an

analogue of the subgradient property of real convex functions and some techniques from

time scales calculus such as partial delta and partial nabla derivatives. Partial delta and

partial nabla derivatives are introduced in [6]. For further reading on time scales, we

refer the reader to an excellent book on the analysis of time scales [7]. Let µi, and νi

be the graininess functions on Ti and ei be the ith basis element of the n–dimensional

Euclidean space. The partial delta and nabla derivatives are defined as follows.

∆if(x0) ∶= f(x
0 + eiµi(x0)) − f(x0)

µi(x0) , ∇if(x0) ∶= f(x
0) − f(x0 − eiνi(x0))

νi(x0) .

5.1. Discrete Convex Functions

Definition 5.3. Let T = T1 × T2 × ⋅ ⋅ ⋅ × Tn, where Ti ⊂ R is a discrete time scale.

A function f ∶ T → R is called discrete convex if given any point a = (a1, a2, ..., an) ∈ T,

we have

f(x) ≥ f(a) + ⟨x − a,∇Df(x, a)⟩ for all x ∈ T,

∇Df(x, a) ∶= (fx1(x, a), fx2(x, a), ..., fxn(x, a)),

fxi(x, a) ∶=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∆if(a), if xi ≥ ai

∇if(a), if xi ≤ ai.

Note that the discrete gradient vector of a function, (∇Df)(x, y), is a function of

two vectors, x and y. The definition depends on the difference of the components of

these two vectors.

Theorem 5.4. Any finite sum of discrete convex function is also discrete convex.
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Remark 5.5. Note that discrete convexity is not necessarily a weaker structure

than real convexity. In other words real convexity does not imply discrete convexity. For

instance, f(x, y) = 25(2y − x)2 + 1/4(2 − x)2 is real convex however one can show that it

does not satisfy the discrete convexity condition.

Remark 5.6. On the other hand, there is a discrete convex function which is not

real convex. To construct such a function we assume that the domain of the function is

bounded by an interval of length M > 0. From the definition of discrete and real convexity

one can obtain

f(x, y) = (x + y)2 − kx2 is discrete convex if and only if k ≤ M2+M+1
M(M−1) ,

f(x, y) = (x + y)2 − kx2 is real convex if and only if k ≤ (M+1)2

M2 .

Therefore, for values of k ∈ (M2+M+1
M(M−1) ,

(M+1)2

M2 ), f(x, y) is a discrete convex function,

but not real convex.

Remark 5.7. Adivar and Fang [1, 2] defined the discrete convex function on T =

T1 × T2 × ⋅ ⋅ ⋅ × Tn, where Ti ⊂ R , i = 1,2, ..., n are time scales, as a function whose

epigraph is convex. Therefore the discrete restriction f ∣Zn of a convex function f on the

real domain is convex on Zn. Conversely, every convex function on a discrete domain

can be extended to a convex function on the real domain. However, the discrete convexity

in the sense of this paper is not weaker than convexity on the real domain as pointed out

in the two abovementioned remarks. Nonetheless, these two definitions match in T ⊂ R,

a special time scale where the time points are not necessarily uniformly distributed on a

time line.
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5.2. Karush–Kuhn–Tucker Conditions on Discrete Time Scales

Definition 5.8. A discrete convex programming problem is an optimization prob-

lem with f and gi are discrete convex functions for i = 1,2, ...,m and T = T1×T2×⋅ ⋅ ⋅×Tn.

minimize f(x) subject to gi(x) ≤ 0, x ∈ T for i = 1,2, . . . ,m. (5.3)

The set S = {x ∈ T∣gi(x) ≤ 0 for i = 1,2, . . . ,m} is called the feasible set. The

Lagrangian associated with this programming problem is a function L ∶ T × Rm → R

defined as

L(x,u) = f(x) + u1g1(x) + ⋅ ⋅ ⋅ + umgm(x). (5.4)

Definition 5.9. A point (x0, u0) ∈ T ×Rm is called a saddle point of L if

x0 ≥ 0, u0 ≥ 0 and L(x0, u) ≤ L(x0, u0) ≤ L(x,u0) for all x ≥ 0, u ≥ 0 and x ∈ T.

Theorem 5.10. Let (x0, u0) be a saddle point of the Lagrangian function L. Then

x0 is a solution to the convex programming problem and f(x0) = L(x0, u0).

Proof. The condition L(x0, u) ≤ L(x0, u0) yields

u1g1(x0) + ... + umgm(x0) ≤ u0
1g1(x0) + ... + u0

mgm(x0).

By keeping u2, ..., um fixed and taking the limit u1 → ∞, we infer that g1(x0) ≤ 0.

Similarly, one gets g2(x0) ≤ 0, ..., gm(x0) ≤ 0. Thus x0 belongs to the feasible set S. From

L(x0,0) ≤ L(x0, u0) and the definition of S we infer 0 ≤ u0
1g1(x0) + ... + u0

mgm(x0) ≤ 0,

hence u0
1g1(x0) + ... + u0

mgm(x0) = 0 and f(x0) = L(x0, u0). Since L(x0, u0) ≤ L(x,u0)

for all x ≥ 0 this implies f(x0) ≤ f(x) + u0
1g1(x) + ... + u0

mgm(x). We also have f(x) +

u0
1g1(x) + ... + u0

mgm(x) ≤ f(x) for all x ∈ S.

If we combine the last two inequalities we get f(x0) ≤ f(x) for all x in the feasible

set S. Therefore x0 is a solution to the convex programming problem (5.3). �
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Theorem 5.11. Suppose f, g1, . . . , gm−1, and gm are discrete convex functions on

T = T1 ×T2 × ⋅ ⋅ ⋅ ×Tn. Then (x0, u0) is a saddle point of the Lagrangian L if and only if

x0 ≥ 0

∆xiL(x0, u0) ≥ 0 if x0
i = 0

∆xiL(x0, u0) ≥ 0, ∇xiL(x0, u0) ≤ 0 if x0
i > 0

u0 ≥ 0

∂L

∂uj
(x0, u0) = gj(x0) ≤ 0 if u0

j = 0

∂L

∂uj
(x0, u0) = gj(x0) = 0 whenever u0

j > 0.

Proof. If (x0, u0) is a saddle point of L, then clearly we have x0, u0 ≥ 0.

If x0
i = 0, then ∆xiL(x0, u0) = L(x

0 + eiµi(x0), u0) −L(x0, u0)
µi(x0) ≥ 0 since (x0, u0) is saddle

point.

If x0 > 0, then ∆xiL(x0, u0) ≥ 0 and ∇xiL(x0, u0) ≤ 0 since L(x0, u0) ≤ L(x,u0) for all x.

If u0
j = 0, then L(x0, u0 + tej) ≤ L(x0, u0) for all t ≥ −u0

j .

Therefore,
∂L

∂uj
(x0, u0) = limx→0+

L(x0, u0 + tej) −L(x0, u0)
t

≤ 0

If u0
j > 0, then

∂L

∂uj
(x0, u0) = 0 since (x0, u0) is a saddle point.

Suppose the conditions in the theorem are satisfied. Since f and gi are discrete convex

functions on T, for a fixed u0, L(x,u0) is a discrete convex function too. By convexity

of L(x,u0) we have

L(x,u0) ≥ L(x0, u0) + ⟨(x − x0), (∇DL)(x,x0, u0)⟩.

By the conditions on x and using the definition of discrete gradient we obtain

⟨(x − x0), (∇DL)(x,x0, u0)⟩ ≥ 0 .

Therefore, we have L(x,u0) ≥ L(x0, u0) for all x.

To show the other side of the inequality, we consider L(x0, u) as a linear function in Rm

on variables u1, ..., um. Since it is a linear function on u–coordinates, we have
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L(x0, u) = L(x0, u0)+∑mj=1(uj−u0
j) ∂L∂uj (x

0, u0) ≤ L(x0, u0)+∑mj=1 uj
∂L
∂uj

(x0, u0) ≤ L(x0, u0).

Hence we have L(x0, u) ≤ L(x0, u0) ≤ L(x,u0) for all x,u ≥ 0. This concludes that

(x0, u0) is a saddle point. �

5.3. An Example

In this section we demonstrate our theory on a nonlinear programming problem.

Consider

z∗ =min
x,y

f(x1, x2) = 6(x1 − 10)2 + 4(x2 − 12.5)2

subject to x2
1 + (x2 − 5)2 ≤ 50

x2
1 + 3x2

2 ≤ 200

(x1 − 6)2 + x2
2 ≤ 37

xi ∈ Z≥0 for i = 1,2.

Since both 6(x1 − 10)2 and 4(x2 − 12.5)2 are discrete convex, f(x, y) is discrete

convex too. For this problem, the Lagrangian is

L(x1, x2, u1, u2) = 6(x1 − 10)2 + 4(x2 − 12.5)2 + u1(x2
1 + (x2 − 5)2 − 50) + u2(x2

1 + 3x2
2 −

200) + u3((x1 − 6)2 + x2
2 − 37).

By the Karush-Kuhn-Tucker conditions we have u1(x2
1 + (x2 − 5)2 − 50) = 0

u2(x2
1 + 3x2

2 − 200) = 0 and u3((x1 − 6)2 + x2
2 − 37) = 0

Clearly, we have x1 ≥ 0 and x2 ≥ 0 . From Theorem 5.11, we deduce ∆xiL ≥ 0

and ∇xiL ≤ 0 for i = 1,2. If we combine all these conditions one can reach the optimal

solution (x∗1, x∗2) = (7,6). Note that here (u1, u2, u3) are not necessarily unique since
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the Karush-Kuhn-Tucker conditions in Theorem 5.11 involves inequalities. Yet, one can

choose u2 = 0 and u1 = 2, u3 = 14 values to justify the above inequalities.
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Chapter 6

CONCLUSION AND FUTURE WORK

In the theory of convex functions, the Hermite-Hadamard inequality plays an im-

portant role. It has been used as a tool to obtain many results in integral inequalities,

approximation theory, optimization theory and numerical analysis [13], [4], [25],[22].

In this study, we presented fundamental definitions and formulas in discrete fractional

calculus for the convenience of the reader. In the third chapter, we defined a convex real-

valued function on a discrete time scale T where not all the time points are uniformly

distributed on a time line. We stated the midpoint condition for a function defined on

T. We then proved four equivalent statements for convex functions on T. Then with

the use of the substitution rules of fractional calculus we proved the Hermite-Hadamard

inequality for convex functions defined on T. As a corollary, we gave an alternate proof

to the Hermite-Hadamard inequality for functions defined on the set of real numbers

R. The last section of this chapter was devoted to some interesting examples of the

Hermite-Hadamard inequality. In the fourth chapter, we carried the previous results to

the fractional case. We started by giving a brief introduction to fractional order inte-

gration, and then we constructed the discrete fractional Hermite-Hadamard inequality

and proved that this inequality completely characterizes discrete convexity.

The following two remarks will state some open problems for the researchers who

are interested in working in this area.

Remark 6.1. The midpoint condition plays an important role to prove the main

result of Chapter 3, Theorem 3.5. Even though, the convexity of the function on any

time scale has been defined in [4, 26], it is still an open problem to define the midpoint

condition for such a function.
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Remark 6.2. As a further research topic one can define a higher dimensional

version of the fractional Hermite-Hadamard inequality on domains which are products

of isolated time scales.
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Birkhäuser, Boston, (2003).

[9] S. Boyd, C. Crusius and A. Hansson, Control applications of nonlinear convex
programming, Journal of Process Control, 8(5–6):313–324 (1998)

[10] M. C. Caputo, Time scales∶ from nabla calculus to delta calculus and vice versa via
duality, Int. J. Difference Equ., 5 (1) (2010), 25–40.

[11] J. Cochrane and J. Saa–Requejo, Beyond Arbitrage: Good–Deal Asset Price Bounds
in Incomplete Markets, Journal of Political Economy, 108, no. 1 79–119 (2000)

[12] P. W. Eloe, Q. Sheng, J. Henderson, Notes on crossed symmetry solutions of the
two-point boundary value problems on time scales, J. Difference Equ. Appl., 9 (1)
(2003), 29–48.

[13] S. S. Dragomir, C.E.M. Pearce, Selected Topics on Hermite-Hadamard Inequalities
and Applications, RGMIA Monographs, Victoria University, 2000.

[14] C. Goodrich and A. Peterson, Discrete Fractional Calculus, Springer, Cham,
(2016).

38



[15] J. Hadamard, Étude sur les propriétés des fonctions entières et en particulier d’une
fonction considérée par Riemann, J. Math. Pures Appl., 58 (1893), 171–215.

[16] C. Hermite, Sur deux limites dune intégrale définie. Mathesis, 3 (1883), 82.

[17] S. Hilger, Ein Masskettenkalkul mit Anwendung auf Zentrumsmannigfaltigkeiten,
Ph.D. thesis, Universitat Wurzburg, (1988)

[18] S. Hilger, Analysis on measure chains-a unified approach to continuous and discrete
calculus, Results Math. 18 (1990), no. 1-2, 18–56.

[19] S. Hilger, Differential and difference calculus-unified!, Nonlinear Anal. 30 (1997),
no. 5, 2683–2694.

[20] R. Hilfer (Ed.): Applications of fractional calculus in physics, World Scientific
Publishing Co., Inc., River Edge, NJ, (2000)

[21] A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and applications of
fractional differential equations, Elsevier, Amsterdam, (2006).

[22] M. Merkle, Remarks on Ostrowski’s and Hadamard’s Inequality, Univ. Beograd.
Publ. Elektrotehn. Fak. Ser. Mat., 10 (1999), 113–117.

[23] B. L. Miller, On minimizing nonseparable functions defined on the integers with an
inventory application, SIAM J. Appl. Math. 21, 166–185 (1971)

[24] K. S. Miller and B. Ross, An introduction to the fractional calculus and fractional
differential equations, A Wiley-Interscience Publication, Wiley, New York, (1993).
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