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Hadwiger’s conjecture is one of the deepest open questions in graph theory,
and Cayley graphs are an applicable and useful subtopic of algebra.

Chapter 1 will introduce Hadwiger’s conjecture and Cayley graphs, providing
a summary of background information on those topics, and continuing by introducing
our problem. Chapter 2 will provide necessary definitions. Chapter 3 will give a
brief survey of background information and of the existing literature on Hadwiger’s
conjecture, Hamiltonicity, and the isoperimetric number; in this chapter we will
explore what cases are already shown and what the most recent results are. Chapter
4 will give our decomposition theorem about PSLy(R). Chapter 5 will continue
with corollaries of the decomposition theorem, including showing that Hadwiger’s
conjecture holds for our Cayley graphs. Chapter 6 will finish with some interesting

examples.
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CHAPTER 1
INTRODUCTION

A longstanding conjecture in graph theory is Hadwiger’s conjecture, which
states that for every integer n > 0, if a graph has no K,,.; minor then the graph is
n-colorable. This is perhaps the most difficult and celebrated open problem (it has
only been proven for n < 6) in graph theory.

We investigate a special class of Cayley graphs and establish several interest-
ing properties of these graphs. We chose to examine Cayley graphs because Cayley
graphs form nice models for networks; they are highly symmetric, sparse, and yet
well-connected. Examining this class of graphs also helps us to break down important
conjectures like Hadwiger’s.

A Cayley graph is one constructed from a group and a symmetric generating
subset. A Cayley graph illustrates the group to which it is attached. Because they
are highly symmetrical graphs, it is believed that this structure extends to certain
graphical properties such as Hamiltonicity. Consequently, it has been conjectured

that all Cayley graphs are Hamiltonian.

Example 1.1: The Cayley graph G(Cy, {a,a™! | a* = 1})




For R a finite commutative ring let
SLy(R)={(2%) | a,b,c,d € R, ad — bc =1}

and let PSLy(R) = SLa(R)/{(£I), where I = (}9) . We study Cayley graphs of
PSLy(R) with respect to certain generating sets.

By studying the structure of such graphs, we hope to establish various prop-
erties for them. For example, we want to find an appropriate K, minor of these
graphs and establish Hadwiger’s conjecture for these graphs. Further, we will study
other properties of these graphs such as their connectedness. In particular, we will
investigate the isoperimetric number of these graphs [18], following the methods of
[14] and [15].

A Hamilton path in a graph is a path that contains every vertex of the graph
exactly once. A Hamilton cycle is a cycle that contains every vertex only once in
the cycle. The Hamiltonicity of various classes of graphs is a long standing problem
and it was conjectured in [16] that every Cayley graph has a Hamilton cycle [6], [§],
[11], [19], [21], [24]. Such graphs are called Hamiltonian. We will also investigate the

Hamiltonicity of these classes of Cayley graphs.



CHAPTER 2
COLORINGS, MINORS, AND CAYLEY GRAPHS

In this chapter we will define relevant terms such as a k—coloring of a graph,

a Cayley graph, a graph minor, etc., primarily using the definitions from [23].
2.1 - Definitions from Graph Theory

Definition 2.1.1. A graph G is a set of elements V(G), called the vertices and a set

of unordered pairs of those elements, referred to as edges.

We typically represent the elements as nodes, and we typically represent the
edges by putting line segments between the nodes. If there is at most one edge
between any two vertices, we call the graph a simple graph. If we allow multiple
edges between any two vertices, the graph is called a multigraph.

We begin by discussing graph colorings. We notice that the vertices of a graph
G can be partitioned into independent sets, that is, sets of vertices where no two
vertices in the same set are adjacent. If the vertices of a graph can be partitioned
into k independent sets, we say that the graph is k-colorable. If all the vertices in
any given set were assigned the same color, then no two vertices of the same color

would be adjacent.

Definition 2.1.2. A proper k—coloring of a graph G is a partition of V(G) into k

independent sets.

A proper vertex coloring of a graph G is a labeling of the vertices of G with

colors such that no two vertices sharing the same edge have the same color.

Definition 2.1.3. A graph is k—colorable if it has a proper coloring with at most k

colors.



Definition 2.1.4. The chromatic number x(G) of a graph G is the smallest number
of colors needed to color the vertices of GG so that no two adjacent vertices share the

same color.

We now consider some useful operations on graphs. In order to study Had-
wiger’s conjecture, we must manipulate graphs by deleting and contracting edges.
To contract an edge is to bring its two endpoints together and make them one point,
and then remove the edge that connected the two vertices. Doing so creates a graph

G - e with one fewer edge and one fewer vertex than the original graph G.

Definition 2.1.5. In a graph G, a contraction of an edge e with endpoints u, v is
the replacement of v and v with a single vertex whose incident edges are the edges

other than e that were incident to u or to v.

Example 2.1: Contraction of edge uv

/\

Yy u y uv

/

\%
w X W X

By contracting and deleting edges and/or deleting vertices, we can create

what is known as a graph minor. We define a graph minor following [22].

Definition 2.1.6. A graph H is a minor of a graph G if a copy of H can be obtained
from G by a series of operations of either deleting vertices, deleting or contracting

edges, or both.

In a sense, we think of G as “containing” a copy of H when H is a graph

minor of G.



Example 2.2: Making a graph minor by contracting edge uv and deleting vertex x

/\

y u Yy uv

Hadwiger’s conjecture requires there to be no minor of an n-colorable graph G
that is a complete graph on n + 1 vertices. The complete graph is formed by making

every pair of vertices adjacent. It is therefore the most connected that a graph can

be.

Definition 2.1.7. The complete graph, denoted K, is the graph on n vertices where

every pair of vertices is adjacent.
We now have all the necessary terminology to present Hadwiger’s conjecture.

2.1.1 Hadwiger’s conjecture (Hadwiger). For every integer n, if a graph G has

no K, 1 minor, then G is n-colorable.

Note that K, is not n-colorable, but it is n + 1 colorable.

Let G be a graph.

Definition 2.1.8. The Hadwiger number n(G) is the largest natural number n for

which the complete graph K, is a minor of G.

The second property which we will show for our Cayley graphs is Hamiltonic-

ity.

Definition 2.1.9. A Hamilton path in a graph G is a path that contains every vertex

of G exactly once.



Definition 2.1.10. A Hamilton cycle in a graph G is a cycle containing every vertex

of G exactly once.

Definition 2.1.11. A graph G is Hamilton connected if for any pair of vertices

u,v € G, there exists a Hamilton path from u to v.

The third property which we will try to find for our Cayley graphs is their
isoperimetric number. The isoperimetric number of a graph is a measure of its
connectedness. For all the small subsets A of vertices of a graph G, consider the
minimum ratio between the size of the edge boundary of A (the set of edges going
from a vertex of A to a vertex not in A) and the number of vertices in A — this

gives the isoperimetric number of G.

Definition 2.1.12. The isoperimetric number, or Cheeger constant, denoted h(G),
is defined by

hG) = min{% cACV(G),0< A < %|V(G)\},

where 0A denotes the edge boundary of A, that is, the set of edges between A and
V(G) — A.

The isoperimetric number measures the ease with which a graph can be dis-
connected. Also, if we interpret the graph as a network, the isoperimetric number
measures the size of bottlenecks in the network. A small isoperimetric number means

that there are bottlenecks, making the network less reliable.

Definition 2.1.13. A graph G is a wheel graph if it can be created by connecting a

vertex w to each of the vertices ¢y, ..., ¢, of a cycle.

Definition 2.1.14. An m X n grid graph has vertex set (z,y) for z,y € N with

l1<z<mand1l<y<n. Wesay (r1,y1) is adjacent to (x2,y2) when x; = x5 and
6



ly1 — y2| = 1, or when y; = yo and |27 — 29| = 1. The graph looks like a rectangular

grid.

The grid graphs we will study will be square n x n grids with integers modulo

n, so that the ends are adjacent to each other, which is essentially a grid on a torus.
2.2 - Definitions from Algebra

Definition 2.2.1. A group (I',-) is a set ' together with an operation - such that
the operation combines any two elements a and b of I" to form a third element of T'.
A group also has associativity, a unique identity, and inverses [9]. If for all a,b € T,

a-b=">b-a, wecall I' Abelian.

Definition 2.2.2. A subset S C I' is a generating set for the group I' if every
element of I" can be expressed as the combination (under the group operation) of
finitely many elements s € S and their inverses. If for all s € S, we have s7! € S,

then S is a symmetric generating set for T

Definition 2.2.3. A ring R is a set with two binary operations, addition and multi-
plication, such that for all a, b, ¢ € R, we have: a+b=b+a,a+ (b+c¢) = (a+b)+c,
there is an additive identity O such that a + 0 = a for all a € R, there is an ele-
ment —a € R such that a + (—a) = 0, (ab)c = a(bc), and a(b+ ¢) = ab + ac, and

(b+ c)a = ba + ca. [9]

We will primarily be studying finite commutative rings — that is, finite Abelian
groups under addition, with associative and commutative multiplication that is left
and right distributive over addition. Even more specifically, we will be studying a
certain type of finite commutative ring called a local ring — a ring of the form R/n
where n is an ideal of the ring R. Finite commutative rings are always direct sums

of local rings.



Definition 2.2.4. An ideal I of a ring R is a subset of R that forms an additive group

and has the property that, whenever r € R and n € I, then rn € [ and nr € I.

Definition 2.2.5. An element r» € R is a wunit if r has a multiplicative inverse in R.

The set of units is called R*.

Definition 2.2.6. A non-zero element 7 is a zero divisor of a ring R if there exists
a non-zero element x € R such that rz = 0 or zr = 0. We denote the set of zero

divisors of a ring R as Z(R).

Lemma 2.2.7. In a finite commutative ring with unity, every mon-zero element is

either a unit or a zero divisor.

Proof. Let r € R,r # 0,7 ¢ Z(R). Let a,b € R so that ra = rb. Then r(a — b) = 0.
Since r ¢ Z(R) and r # 0, we must have a —b = 0. This implies a = b. Consider the
set {r"|n € Z}. As R is finite, r’ = r7 for some i # j, and without loss of generality
we may assume that ¢ > j. Thus, since r* = 77 it follows that r/r®~7 = 7. Since
we can cancel the r’s from the argument above, we have r*7 = 1. Now, i — j > 0,
soifi—j=1,then 1 =77 =r andsor =1 and r is a unit. If i —j > 1, then

71—

1 =79 = rr®~J=! and r has a multiplicative inverse, so r is a unit. O]

Note that this is not necessarily true for infinite rings; for example, consider
R = Z, an infinite ring. Then R* = {—1,1} and Z(R) = 0, leaving all other elements
of Z as neither units nor zero divisors. In this paper we will call the subset of a ring

that is the collection of non-zero elements which are neither zero divisors nor units

R.
Note that a group has closure if performing the group operation on elements

of the group yields an element of the group.

Lemma 2.2.8. Let R be a ring and Z(R) be the semigroup (has closures but might

not have inverses or identity) of zero divisors. We assume that R = R*UZ(R). Let
8



o, € R such that Bz € Z(R) with za = z3 = 0. (ie, a and S can not have the same

zero dwisor). Then 3x,y € R such that xa — yf = 1.

Proof. If B — a € R*, then take v = y = (8 — a)™'. Then za — yB = (8 —
) 1B-—B-a)ta=(B-a)(B—-a)=1.If 8 —«a ¢ R*, then by Lemma 2.2.7,
(8 —a) € Z(R). Then 3z; € Z(R) such that z;(8 — a) = 0 and so zja = z5.
As z1 € Z(R),3z € Z(R) such that z92; = 0. Then 29218 = 23270 = 0, and as
2921 € Z(R), the assumption is contradicted. Thus, § — o € R* and the result

follows. O]

One example of a finite ring is Z mod n, the integers modulo an ideal (n). ZX
is the set of congruence classes (mod n) represented by integers coprime to n. Z(Z,)
is the set of congruence classes (mod n) of elements which are not coprime to n. For
a specific example, consider Z,: Z; = {[1],[3]|} and Z(Z4) = {[2]} since 1 x 1 =1
(mod 4),3x3=9=1 (mod4) and 2 x 2=4=0 (mod 4). The projective special
linear group for this example is PSLy(Z,) = {(2}4) ’ a,b,c,d € Zy, ad —bc=1} /£
(I).

Cayley graphs are constructed from groups. Let I' = {¢1,...,¢g,} be a finite
group and let S C I' be a symmetric generating set for I'. The Cayley graph G =
G(I,5) is defined by V(G) = {g1,...,9,} and g¢;,g; € V(G) are adjacent if there
exists s € S so that sg; = g;. Cayley graphs are amenable to study using group
theory.

As an example, we give the Cayley graph for Dy, the dihedral group of the

square.



Example 2.3: The Cayley graph G(Dy, {a,b,a™! | a* = b* = 1,ab = ba®})

A generating set for PSLy(Z mod n) is {(94),(31),(53')}. This is a nice
generating set because the Cayley graph it generates is Hamiltonian if n is prime
[11]; usually Hamiltonian graphs are highly connected, but this graph is only cubic
(every vertex has degree 3). This leads us to ask: what do such graphs look like for

other generating sets?
2.3 - Quotients of Cayley Graphs and Platonic Graphs

A quotient graph Qg of a graph G is a graph whose vertices are blocks of
a partition of V(G), where blocks B; and By are adjacent vertices in Q¢ if some
vertex in B; is adjacent to some vertex in By in GG. These blocks are the cosets of a

subgroup N.
Lemma 2.3.1. A quotient of a Cayley graph is a minor of a Cayley graph.

Proof. Let G = G(T',S) be a Cayley graph of a group I'. The quotient graph G/N
has vertices associated to the cosets gN of I'/N. Two vertices of G, g1, g2, are in the
same coset if and only if g; = gon for some n € N. Thus the vertices of G/N are

obtained by contracting the edges between g and gn for n € N. Since minors are

10



obtained by contracting edges and deleting vertices and /or edges, G/N is a minor of

G. ]

A Platonic graph is a graph corresponding to the skeleton of a regular, convex
polyhedron (the skeleton of a polyhedron is the graph created when the faces of a
polyhedron are removed, leaving only its edges and vertices.) There are five Platonic
solids and hence five Platonic graphs (the tetrahedral graph, cubic graph, octahedral
graph, dodecahedral graph, and icosahedral graph). All of these are regular (every
vertex has the same degree), planar, Hamiltonian graphs. Example 2.4 shows the

tetrahedral graph.
Example 2.4: The tetrahedral graph

.

25—l

s

Platonic graphs, like quotient graphs of Cayley graphs, are minors of Cayley
graphs.

In [14], it was found that for a prime p, the Platonic graph m, can be parti-
tioned into ’%1 isomorphic copies of W11, the wheel on p+ 1 vertices, with 2p edges
joining every pair of wheels. That is, m, is the complete multigraph K ?%1, in which

each vertex should be viewed as a wheel.

11



CHAPTER 3
A BRIEF SURVEY OF THE EXISTING LITERATURE

In this chapter we will survey the existing literature on Hadwiger’s conjecture,

Hamiltonicity, and the isoperimetric number.

3.1 - Hadwiger’s conjecture

In 1943, Hadwiger presented his conjecture, “For every n € Zx(, every graph
with no K, minor is n-colorable” along with the proof for n < 3 [12]. It had
already been shown by Klaus Wagner that when n = 4, the conjecture is equivalent
to the famous Four Color Theorem. Before it was proved in 1976 by Appel and
Haken (with substantial and nontrivial use of computer calculations) in [2] and [3],
the Four Color Conjecture, as it was then known, was the most celebrated conjecture
in graph theory. Hadwiger’s conjecture has since been shown for the case n = 5 by
Robertson, Seymour, and Thomas in [20], using the Four Color Theorem in their
proof.

The cases for n > 6 are all open, although some specific results have been
found when restrictions are put upon the graphs. Some weaker results have also been
found. For example, Albar and Gongalves proved in 2013 that every K7-minor free
graph is 8-colorable and every Kg-minor free graph is 10-colorable, improving the
previously known bounds by one [1]. This is still slightly weaker than Hadwiger’s
conjecture, which says that every K7;-minor free graph is 6-colorable and every Kg-
minor free graph is 7-colorable. It can also be shown (by applying a theorem in
[4] and a theorem in [10]) that almost every graph G either has a K, ;-minor or
is n-colorable. This is a weakening of Hadwiger’s conjecture, which says that every

graph G either has a K, ;-minor or is n-colorable. By “almost every”, we mean

12



that the proportion of graphs that satisfy Hadwiger’s conjecture tends to 1 as the

number of vertices increases.

3.2 - Hamiltonicity

The question of whether or not all Cayley graphs are Hamiltonian was first
raised as a weaker version of the 1969 Lovész conjecture [16], which says that every
finite, connected, vertex-transitive graph is Hamiltonian (a graph is vertex-transitive
if no vertex can be distinguished from any other vertex by the edges and vertices
surrounding it.) The advantage of studying the weaker version of the Lovész con-
jecture is that Cayley graphs are connected to a finite group and a generating set,
so it is possible to show that the conjecture holds for particular kinds of groups and
generating sets, rather than attempting to prove the conjecture in full generality.

Many particular Cayley graphs have been shown to be Hamiltonian, but the
arguments are ad hoc and not easily genearlized. It was shown in 1983 by Marusic
that Cayley graphs of finite Abelian groups are guarunteed to have a Hamilton cycle
[17] . In 1986, D. Witte proved that the Cayley graphs of p-groups (a group I' such
that all the elements of " have a power of p as their order, for some prime p) are

Hamiltonian [24].

3.3 - Isoperimetric number

The isoperimetric number has many applications in combinatorics, such as
finding bounds on graph eigenvalues (the eigenvalues of the adjacency matrix of
a graph), or on measuring the connectedness of a graph to find good expanders.
However, though useful, h(G) is difficult to calculate exactly. An oft-used alternative
is to find bounds for h(G) based on other properties of the particular graph in

question. We present some of the bounds that have been found recently.

13



In 1993, Brooks, Perry, and Petersen [5] found the following bounds for the
isoperimetric number of certain Platonic graphs: for p a prime such that p = 1 (mod

2—2p+5 (p—1)
D pmy < Mm) < e

In 2009, Huang, Jin, and Liang found the following bound for the isoperimetric
number of a k-degree Cayley graph (an undirected graph with n(k — 1)™ vertices for
any n > 2,k > 3): h(G,) < -2 [13].

One of the more recent results for Z, was found two years later; Lanphier
and Rosenhouse [15] used combinatorics to find upper and lower bounds for the
isoperimetric number of regular graphs with high degree, and they gave the specific
application of the Platonic graphs over the rings Z,. For my , the isoperimetric

number is bounded above and below as follows, where [ [ represents the product over
pln

those primes p which divide n: %(1 — \/1 —2]1 (1 — %) + 11 (1 — 1%)) < h(mz,) <
pln

pln

no_
2

14



CHAPTER 4
THE DECOMPOSITION THEOREM

In this chapter, we seek to find a decomposition for the quotient graphs of
the Cayley graphs of PSL(2) over finite commutative rings. By discovering the
structure of the quotient graphs, we are able to study the structure and properties
of the Cayley graphs.

First we will define the Cayley graphs we study, as well as their quotient
graphs. We will show that the quotient group is isomorphic to 2-tuples, which are
easier to study than the original matrices, and then we will examine the adjacencies
that exist in the quotient graph. In particular, we will show that for finite rings
without zero divisors, the quotient graph looks like a complete multigraph of wheels.
Each vertex in a wheel sends two edges to every other wheel.

We now define our Cayley graphs. Let R be a finite commutative ring, with
n = |R|. Then

SLy(R) ={(%%) | a,b,c,d € R,ad — bc =1}

and

T = PSLy(R) = SLy(R)/{I}.

For a € R*,let I, € Tg be I, = (_21%). Let tg be a symmetric generating
set for R*, where R™ is the ring as a group under addition. This means that R™
has generators as a group under addition. Some examples are: Z* has generators

{1,—1}, Z; has generator {1}, and Z} has generators {1, —1,7, —i}. Let

T ={(6 DIt € tr},

Tp =1 DIt € tr},

15



and let Tp = TH or Ty. Let Sk be a symmetric generating set for I'g so that
I,UTgr C Sk for some a € R*. Let Ggr = G(I'g, Sg) be the Cayley graph of ' with
respect to Sg. Note that Gy is |Sg|-regular. For example, for R = Z,, the ring of
integers modulo n, then 1 € Z* and {—1,1} is a symmetric generating set for Z,.
Thus we can take Sp = {( % §), (¢ %)} In this case, Gg is a cubic graph.

Our first major mathematical step will be to examine quotient graphs of
Cayley graphs of PSLy(R). If we let Ng be the subgroup of PSLy(R) that is the

set of matrices

Nr={(§.l1)|r€R,ae R —{0}},

then the quotient PSLy(R)/Ng ~ {(cd) | ¢,d € R,cd # 0}.
We will study graphs related to these objects as a prelude to generalizing our
findings to Cayley graphs.
Let G'; denote the quotient graph G'r/Npg, which is to say G, = G ,. That is,
'» 1s the multigraph whose vertices are given by the cosets of I, where I', = G/N.
Then distinct cosets of Ngvy; and Ngvy, are joined by as many edges as there are
in G of the form (vq,v9) where v; € Nrvy; and vy € Ngvye. Note that I, is not a
group, so G’ is not a Cayley graph. However, G'; is induced from the Cayley graph

Gr, and is therefore useful to study in order to glean information about the Gp.

Lemma 4.1.1. G is a minor of Gg.
/

Proof. Recall that by Lemma 2.3.1, quotient graphs are minors. G is a quotient

graph of Gg, hence G’ is a minor of Gg. ]

Note that the Cayley graph of Ng is a grid. G’ is obtained by taking a copy

of G and contracting each little copy of Ny within G to a single point. Then G’
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contains K|zx| as a minor. As G is a minor of Gg, it follows that G’z also contains

K|gx| as a minor.

Example 4.1: Gg
?\M
Example 4.2: G’;: the two copies of N contracted to single points

This allows us to prove the following proposition, where the isomorphism is

an isomorphism of sets.
Proposition 4.1.2. T, = {£1}\{(e 8)|a, 5 € R, (za, 28) # (0,0) for z € Z(R)}.

Proof. Let

S ={F1\{(e8)|e, B € R, (20, 25) # (0,0), 2 € Z(R)}.

Let (5 7] denote an element in T, where (5 )] denotes the equivalence class in I',
of (5 %) € Tg. Let [(+ )] denote an element in S. Define ¢ : T — S as the mapping
given by ¢([(27)]) = [(+4)]. Suppose that A = (27) € PSLy(R), A’ = (%) €

’Y’ 6/

PSLy(R), are such that ¢(A) = ¢(A’). Then [(v5)] = [(+ ¢ )], s0 (v6) = £(+ ¢).

/

Recall that PSLy(R) = SLy(R)(mod+1). Therefore (% 4) = (%, £,). Now if we

,y/ 6/ :l:’}’/ :ta/
mod both sides of the equality by +1, we see that (:: 7y = (jfff/ 7). Since (5 %) =

(% 55/) € PSLy(R), both have determinant 1. So, ad — 5 = 1 and /6 —yp' = 1,
and thus o/ad — o/yf = o' and ad/d — ayf’ = «, and so y(f'a — d/F) = o — «a.

17



Similarly, we get af3'd — 55’y = 8 and /36 — BB’y = 8, so §(af — &'B) = ' — B.
Setting a = aff/ — o/ € R, we get vya = o — «a and da = ' — 3, s0o &/ = a+ ~vya and
f' = 3+ da. Therefore

/ ! 6
(55) =70 =D 5)

and so

making ¢ one-to-one. Now to show ¢ is onto, let [(v¢)] € S. By Lemma 2.2.8, there
exists z,y € R such that 6 — yy = 1. Then det(75) =1 and so (3 §) € PSLy(R).

Therefore ¢[(%%)] = [(+#)], making ¢ onto. 0

We now loosely define the three main subgraphs that partition a Cayley graph.
The subgraph induced by the units we will call C'g; the subgraph induced by the zero
divisors we will call Og, and the subgraph induced by the elements that are neither
units nor zero divisors we will call Tr. Note that Tk does not exist if R is finite, by
Lemma 2.2.7. Cg looks like a complete multigraph of wheels (see Example 4.3), and

Op seems to orbit it. These subgraphs are defined more rigorously in section 4.2.

Example 4.3: A complete multigraph on two copies of Wy

N

VA

Note that if our ring R = Z,, for a prime p, then Oz, = © and so Oz

= 0.
|Cz,|

When n is not prime we have that Oz is nonempty. In that case, we have the
18



following result, which shows that Oz, can be arbitrarily large or small in comparison

to Czn .

Proposition 4.1.3. Let € > 0 be arbitrarily small and M > O be arbitrarily large.

There exists an n € N such that 0 < \22": < € and there exists another n € N such
|0z,
that ] > M.

Proof. From [14], we have

pstaz)| - 5 1 (1- )

and so

, n? 1
el =T (1-55)

pln

From the decomposition of Cz, we have

Co =" O (1= )

p
pln

Thus

|0z, = |Gz, | = |Cg,|

-2

pln p|n
n 1 1
:En(l_i) I (14)) et
pln pln
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Thus

05| _%gl—?{( —%> (n}l—?[z(l—i—%)—n—l)

el ()

pln
- TI (1 R
T n+1 P '
pln
The Riemann zeta function ((s) = > n~°, for s € C and Re(s) > 1, has the Euler
n=1
product expansion ((s) = —— , and it is well known that [((s)] — oo as

bS]
)

prime
k

p
s — 1. Then let P, = [](1 — pi]) be the product over the first k primes. Since

j=1
k
((s) — oo as s — 1, we have that as k increases [](1 — &)~! — oo. It follows that
j=1 7
k
Py — 0 as k increases. Let Qr = [] (1 + pi) be the product over the first k primes.
j=1 !
Then
1 : 1
- (10 ) (0+2)
j=1 P; j=1 P;
: 1
= H 1- =
j=1 Pj
As
2
T
9) =
(2)="%
1\ !
S
p prime p]

then P,Qy — % as k increases. Thus if we take ny = p; ... pg, a product of the first
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k primes, then as k increases, we see that

= 1+-)—1

grows arbitrarily large.

Now take n = p”. Then

|OZ| n 1
n— 1+-) -1
C ~ il
" 1
S <1+—)—1
pr+1 j%
_pr‘fl_l
- T

Ifp>1 thene>%andp’”~% < e +e+ 1. Thus, p ' —1 < ¢p” +1) and

02, _ pr='-1

G o) < €. ]

4.2 - The structure of quotient graphs

The following lemma helps us start to understand the structure of the quotient
graphs. The brackets around [(«, 8)] and [(7, )] indicate that («, ) and (v,6) are

up to *+ equivalence classes.

Lemma 4.2.1. Let [(a, B)] and [(7,9)] be vertices in G'y. Then [(c, B)] and [(~, )]

are adjacent in G, if and only if det( 5y =+at.

Proof. Let Wr : I'g — 'y denote the quotient map, which is Ur(g) = Ngg, and let ¢ :
[z — 5 denote the isomorphism of sets from Proposition 4.1.3. For (] %) € Gg, let
a(S 7y = S(r(5 %)) =1[(~4)], and so U : Gr — G% is a graph homomorphism.
Note that if g; € U;'(g}) and go € W5'(g5 ") so that gy = (_ 21 &)ga, then g; and

g2 are adjacent in Gg. It follows that ¢} and ¢} are adjacent in G%. Let [(a 8)]
21



and [(v4)] be vertices in G’ so that det(] %) = 447", Then () and (7%)

ol a B
are in ['g, and (", o) (% @Y = (‘g‘?) Since T'g is defined modulo {+I}, we
have [( 3" *g‘s ) =1("" f‘;)] in I'g. Thus (% Y and (" 755) are adjacent in Gg,

joined by an edge that corresponds to the involution ( )" —55) in Sg. From the first
paragraph of the proof, we have that [(« 8)] and [(v¢)] are adjacent in G.

Now let U : Gr — G'; be the graph homomorphism induced by the quotient
map. Let g7 € [(o,B)] € V(G%) and ¢4 € [(7,6)] € V(G%) be adjacent in G%. It
follows that there exist g, € U!(g]) and go € U~!(g}) so that g; is adjacent to gs
in Gg. The quotient map ¥ takes (2%) € Gg to [(zw)] € G s0o g1 = (4 4) and
g2 = (5 5) where det(g2) = +1. Since ¢ and g, are adjacent in Gg, it follows that
g2 = (§%)g1or g2 = (21 8)g1. In the former case, we would have gy = ¥(gy) =
U(g1) = ¢}, which contradicts G, being a simple graph. So we must have the latter
case. Thus, (23) = go = (%1 g1 = (L (2 0) = (oo, 2

ety 7a,1y) and so w = a«a
and z = af. Thus

det(* %) = a " det( %)

=a tdet(¥})

= +q %

This leads us to

V(GR) = V(Cr) UV (Og)

where Cg has a distinct structure. Let a € R*, and define V(a)) C V(G%) by

V(a) ={(0,0),(a "o, B)|8 € R}.
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Let H(a) = G[V ()] be the subgraph of G, induced by V(«). Note that |H(«)| =
n + 1. Further note that |[Ng| = n, implying that |V (G%)| = W We also have
that G is |Sg|—regular.
Let H(a) # H(</) with o,/ € R*.

Lemma 4.2.2. («8) € H(«) is adjacent to two elements in H(a/).

Proof. Let (e8) € H(a) and (o ) € H(c/). Then by Lemma 4.2.1, (a8) is
adjacent to (o’ 8') if and only if det( [, g, ) = +a~ !, that is, if and only if a8’ — /3 =
+a™'. So (e 8) is adjacent to (o ) if and only if 3’ = a™*(«/8 £ a™'). There are
two elements ] and S5 € R that satisfy this, which means there are two elements

(o 8) and (o 85) € H(a') adjacent to (a 8). O

This means that each vertex in a wheel is adjacent to two vertices within
any other wheel. We now examine the structure of H(«). Recall that H(a) =

{(0a),(a"ta*8) | 8 € R}. Note that if (o= 8) is adjacent to (a='a=! g') then

+a ! = det(o‘ilai1 )

a71a71 B/

=a la (B - B)

and so (8’ — ) = ta, making 5/ = § + «. Thus, if there is some n € N so that

n =0 in R, then H(«) contains a cycle
(a‘la‘l Jé] )7 (a‘la_l B+a )7 (a‘la‘l B+2a ), ceey (a_la_l B+(n—1)a )

Depending on the structure of R, there can be several such cycles in H(«).
Lemma 4.2.3. Let o,§ € R*. If § # *a, then H(6) N H(a) = ().

Proof. As G is modulo %1, then so is G’ and therefore H(+a) = H(a). Suppose

§ # +a, then (0,0) # (0,«), and if (a716,8) = (ata, f') for some 3,3 € R, then
23



a ' = a~'a. Thus a = ¢, which gives a contradiction. Therefore, we must have

H(a) N H(5) = 0. O

Let Cg be the subgraph of G’ induced by the H(«)’s. That is, V(Cg) =
UV (H («)) where the union is over the distinct H(«)’s (by Lemma 4.2.3, the wheels
do not overlap.)

Now let

Or ={(7,0) € GRl(7,6) & Cr}.
Lemma 4.2.4. O = {(7,9) € G|y € Z(R)}.

Proof. Let
Sr={(7,6) € Grly € Z(R)}.

For (v,d) € Sg,(v,d) € G% and v € Z(R), so v # 0. Since v € Z(R), by Lemma
2.3.7v ¢ R*. Thus v # a '« for any a € R*, implying that (v,d) ¢ Cr. Therefore,
(7,0) € Og, and Sg C Og. Now let (v,0) € Og. If v = 0, then (0,6) € G, and
since G is connected, there must be some (a, 3) € G such that det(27) € R*.
This implies that § € R*. Then (0,d) € H(J) and so (0,6) ¢ Og, and it follows that
v #0. If v € R*, then 7 = a '« for some a € R*, and so (7,d) = (a ', ) € H(a).
Therefore v ¢ R*. By the previous lemma, this implies that v € Z(R) and so

(7,6) € Sg. Thus Or C Sk and the result follows. O

Note that above we are looking only at the subset of zero divisors and units

in R, because we are concerned only with the finite case.
This gives us G, = Cr+ Opg, where CRNOg = . Note that if y € Z(R),0 ¢
Z(R), then (v,6) € Og.

Corollary 4.2.5. If |[R| < oo and Z(R) = 0, then G’y = Ckg.
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This guides us to examine the structure of Or more closely, as having zero

divisors adds complications to the structure of G.
4.3 - The Decomposition

As we have already discussed, a ring R can be partitioned into three disjoint
subsets (the units, the zero divisors, and for infinite rings, a third subset of elements
which are neither units nor zero divisors); in general, R = R* U Z(R) U R.

For a € E, let

J(a) ={(=8) |5 € R}.

Note that if a # £/ with o, & € R, then J(a)NJ(a') = @. Further, it is clear that

J(a)ﬂOR:@and J(OZ)QCRZQ.

Lemma 4.3.1. For any o ¢ R* U Z(R), J(«) is an independent set of G'y indezed
by R.

Proof. Let v,v" € J(a). Then v = (a8) and v/ = (o« ) for some 3,3 € R. We

have

det(3 5) = aff = af

— (8 - B).

Since o ¢ R*, we see that (S’ — ) cannot be a unit in R. Thus (a 8) and (o 8')
cannot be adjacent in G, so the vertices in J(«) are independent. Clearly the

vertices in J(«a) are indexed by R. O

Therefore, if there exists some @ € R — (R* U Z(R)), then G, contains an
independent set of size |R|. Furthermore, the edges in T are those that connect

different J(«)s.
25



Let TR = |J J(«). This leads us to the general decomposition of the associ-
a€R
ated Cayley graph, G'%.

We have now proved the main result of this paper: the decomposition of
the graph G’ and the corresponding decomposition of Gr. The point is that the
subgraph Cg has an organized, connected, and studiable structure, whereas O and
T have much less structure. However, T = () for finite rings, and Og depends upon

the zero divisors of R. In particular, Or = ) if R has no zero divisors.

Theorem 4.3.2. The graph G', has the following decomposition:
V(GR) =V(Cr) U V(Or) U V(Tk)
where

V(cr) = |J VH(),

a€RX [{+1}
H(a) ={(a8) |5 € R}.
If H(«) # H(d') then the number of edges between H(a) and H (') is

e(H(a), H(d/)) = 2|R],

V(Or) ={(7,9) € GR | v € Z(R)},

and

Tr = | J(a),

a€ER

where J(a) = {(a8) € G | B € R}.
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If R is finite and C% denotes the multigraph obtained from Cr by contracting
cach H(«) to a single vertex, then C7, contains a spanning subgraph isomorphic to
Lt

K28 the complete multigraph on R

X)) 15— vertices with 2|R| edges joining each pair of
o

vertices.

Note that if |R| < oo then Tg = (), and if Z(R) = () then O = 0.
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CHAPTER 5
CONSEQUENCES OF THE DECOMPOSITION THEOREM

In this chapter, we wish to prove Hadwiger’s conjecture and Hamiltonicity
for the graphs we have been studying, and to find a bound on their isoperimetric

number.
5.1 - Hadwiger’s conjecture

Let R be finite and Gr = G(I'g, Sg). Recall that Hadwiger’s conjecture would imply
that n(G) > x(G).

|R*|
5

Corollary 5.1.1. For R and Gr as above, we have n(Gg) >

2[R
|RX|

2

Proof. Gr contains C'g, which contains K as a minor. n

The proof that Hadwiger’s conjecture holds for the Cayley graphs requires

the use of Brooks’ theorem.

5.1.1 Brooks’ theorem (Brooks). For any connected undirected graph G with maz-
imum degree A(G),
X(G) < A(G),

unless G is a complete graph or an odd cycle, in which case x(G) = A(G) + 1.

We are now able to show that Hadwiger’s conjecture holds for our Cayley

graphs.

Theorem 5.1.2. For R finite, if @J > |Sg| then Hadwiger’s conjecture holds for

Gr=G(Tg, Sg).
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Proof. From Corollary 5.1.1 and the hypothesis, we have

| R~
2

n(Gr) > > | Skl

Now, Gg is |Sg|—regular so we have A(Gg) = |Sg| and n(Ggr) > A(Gg). By Brooks’
theorem, since G is connected, non-complete, and non-cyclic, n(Ggr) > A(Gg) >

Note that Gg is non-cyclic because |S| > 3. In a cyclic Cayley graph, for
example the Cayley graph of a cyclic group, we are only able to have one generator a
and also its inverse a!. But the graph G has the involution as a generator (21 &)
and also ((l)tf) where tp generates the additive group R*. Thus, there are at least
2 elements that we need for tg, so G has at least 3 generators and so is at least a
cubic graph. Therefore it is not cyclic.

We have established that n(Gr) > @ for all Gr with generating sets Sp
that satisfy I, U Tr C Sg. By Brooks’ Theorem, A(Gr) > x(Ggr) as G is non-
complete and is not an odd cycle. Since Gy is regular of degree |Sg|, it follows that

|Sr| > x(GR). Therefore, if @ > |Sr|, then Hadwiger’s conjecture holds for Gg.
5.2 - Hamiltonicity

Recall that a wheel graph is a graph created by connecting a vertex w to each

of the vertices ¢y, ..., ¢, of a cycle.
Lemma 5.2.1. Wheel graphs are Hamilton connected.

Proof. We can prove this by construction. Let W be a wheel graph, and call its
vertex that is adjacent to every other vertex w. For any two vertices ¢;, ¢, € W, we
can create a Hamilton path from ¢; to ¢,. We begin at ¢; and go clockwise around the

cycle until we reach the vertex c;_1, the vertex in the cycle adjacent to ¢; on its left.
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From the definition of a wheel graph, ¢;_; is also adjacent to w, the center vertex, so
we go from ¢;_1 to w, which is also adjacent to ¢;_;. We then go from w to ¢;_; and
from there go counterclockwise until we get to c;. This gives a Hamilton path. If
either of our desired endpoints is the center vertex, the construction is even simpler;
in this case we begin with the center vertex and go to cxy1, the vertex adjacent to

the other endpoint. Then we go around the cycle until we get back to cy. O

Below is an example illustrating how we would construct a Hamilton path
from ¢; to ¢7 in a wheel with nine vertices. On the left we illustrate what that wheel

looks like, on the right we show the construction.

Example 5.1: Constructing a Hamilton path from ¢; to ¢;

.ﬁ
A
@
‘—‘ ‘/*"

Proposition 5.2.2. Let R be a finite commutative ring so that Z(R) = (). Then G

1s Hamiltonian.

Proof. From the Decomposition Theorem, G, has the structure of a complete multi-

2|R|
L

graph K with @ vertices, and so that there is a wheel graph at each vertex.

Let wq,ws, ... w rx; denote the distinct wheels so that
=
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[RX|

Then there is a set of edges {e;},2, so that

€1 €2 T2
Wy, — W2 — W3... W rXx| w1 .
2

IR
Further, as there are 2|R| edges in G’; between any pair of wheels, we can find distinct
vertices uy j,us; € V(w;) so that e; has endpoints ug; and uy j41. If j = ‘R—;| then
ejrx) has endpoints u, jzx) and uy;. From Lemma 5.2.1, there is a Hamilton path
e e

P; in W from u, ; to us j, for any j. Thus we have

ClrRx| €IrRX|
e1 e - 2
'LL171P1U271 — 'LLLQPQ'LLQ’Q — ... — u ‘RX|P|R><‘U/

which gives a Hamilton cycle in G. O

/

Lemma 5.2.3. If (o, 4) is adjacent to (% §) in Gg, and (“Cf%/) is adjacent to (ﬂ’jf i)
with v # 7/, then (4 ) # (’gyﬁ') in Gg.

Proof. 1If ( ) is adjacent to (% §), then

S0 (o f) = (agaﬁ‘s) Similarly, if (g%) is adjacent to (g’f %), then (g%{) = (agl agl),

and as v # 7/, then a7y # a7/, the result follows. ]
Let v € V(G%) and let G(v) denote the | R| vertices in V(G) equivalent to v
under the action of Ng. For convenience, we also refer to the subgraph induced by

these Ng vertices as G(v).

Lemma 5.2.4. Let R be a finite commutative ring with |R| odd. If |tg| > 4 then the

graphs G(v) are Hamilton connected.
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so ¢ is a homomorphism. It is clear that ¢ is onto, and if ¢(x) = ¢(y) then (%) =
(4¥), so x =y. Thus ¢ is also an isomorphism.

For t € tg, the symmetric generating set for R*, then ¢(t) = ({!) € Tk, the
symmetric generating set for Ng. It follows that ¢ induces an isomorphism between
the Cayley graphs G(R™,tgr) and G(Ng, Tkr).

Because Tr C S, where S is the generating set for GGg, then by construction
G(v) is isomorphic to G(Ng, Tg). Therefore G(v) is isomorphic to G(R™,tg).

Since |tg| > 4, G(R™,tg) is a Cayley graph of an Abelian group with at least
4 generators, so it contains a spanning subgraph isomorphic to a grid. Thus G(v)
contains a spanning subgraph isomorphic to a grid. By Theorem 4 of [6], grid graphs
are Hamilton connected if and only if they are neither cyclic nor bipartite. Because
the grid graph in G(v) is |tg|-regular, and |tg| > 4, the graph is not cyclic. Since
|R| is odd, the cycle generated by (§1) € G(v) has odd length. It is well-known
(see [23]) that bipartite graphs do not contain cycles of odd length. Thus the grid
graph in G(v) is not bipartite and so it is Hamilton connected. It follows that G(v)

is Hamilton connected. O

Lemma 5.2.5. Let [(aB)] € V(GY%) be adjacent to distinct vertices [(a B0)] and
[(a81)] in G%. Then there exist distinct vertices (o %) and (* yﬁ/) such that (o 4) is

adjacent to a vertez (' 4 ) in Gr and (“Z yﬁ/) is adjacent to a vertex (%, 4,) in Gp.

Proof. Let ¢ : Gr — G'5 be the mapping on the graphs induced by the quotient map
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on the respective groups. Then ¢(;, 3) = [(a 8)]. As [(« 8)] is adjacent to [(« )] in
G', then there are vertices in the respective preimages of ¢, (4, ) and (7 4 ), that

are adjacent in G. Therefore, there is some s € S, the symmetric generating set of

Lg, sothat s(45) = ("o 4 ). If s € Tk, then s = ({ {) and

_ (ac—;toc y—l[—gtﬁ )
But since 8 # (3, this cannot be equal to (%, 4 ).

Thus

s(af) =g o )ah)
_ ( —ax y+faﬁo)’

—a 1z —a_ly

which gives (% %g) =(_* —ap ). Thus (, %) = (" _%ﬂo ). Similarly, if (”Z yﬂ/) is

—a "1z —a_ly o

adjacent to (‘q 5 ) then (7, %) = (72" *%51). Bo # B, 50 (a) # (5 %) and these
vertices are adjacent to the appropriate vertices in the statement of the lemma.

Note that the same argument deals with the center vertex so it does not need to be

addressed separately. O

As a direct result of the decomposition and the lemmas above, we have the

following corollary. Note that Gy is 1 + |tg|-regular (and G, is |R|-regular).

Corollary 5.2.6. For R a finite commutative ring such that |R| is odd, Z(R) = 0,

and |tr+| > 4, Gg is Hamiltonian.

Proof. Let k = |GRg|. Since G’ is Hamiltonian, there is a Hamilton cycle vy, ..., vy in
G’;. Let e; be the edge joining v; to v;1; for 1 <i < k — 1 and let e, be the edge

joining vy, to vy. Let {G(v;)}%_, denote the |R| vertices in G that give rise to the
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vertex v; € V(GY%). In other words, for ¢ : Ggp — G’ the usual mapping induced by
the quotient map, we have ¢(v) = v; for any v € G(v);.

For every e; as above, there is a pair of vertices wy;, w11 € V(Gg) that
are the endpoints of e;, where wy; € G(v); and wy ;11 € G(v)i11. Note that it is
understood that if i = k then wy 4 is wy; and G(v);11 is G(v)1. Therefore, for
each ¢ there are vertices wy;, wy; € G(v); so that wy,; is adjacent to wo ;1 and wsy;
is adjacent to wy ;1.

Now ¢(wy ;) = ¢(wa,;) = v;, and v; is adjacent to v;_; and v;4;. By the previ-
ous lemmas, there exist distinct vertices, which we label w, ;, ws ;, in the preimage of
v; so that w, ; is adjacent to some wsy;_1 in the preimage of v;_;, and w,; is adjacent
to some wj ;41 in the preimage of v;;;. Therefore we can assume that w;; and w,;
are distinct.

Since G(v); is Hamilton connected, there is a Hamilton path P; from w, ; to

wsy; in G(v);. Thus we have a Hamilton cycle

el (D) €r—1 €L
w1,1P1w2,1 - w1,2P2w2,2 e wl,kpsz,k — Wi,1

in GR. 0

5.3 - Isoperimetric number

Note that if |R| < oo and Z(R) = (), then V(G%) = V(Cg).
If |IR*| = 0 mod 4, then Cr can be decomposed into two sets S and S’, each

with ‘R% copies of H(«).

2|R|| R
4

As there are 2| R| edges between any two distinct H («)s, then there are
edges from one H(«) in S and all the other H(«a)s in S’. Thus there are 2|R|(@)2

edges between S and S’. There are |R| + 1 vertices in each H(«), so there are
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‘RTX|(!R| + 1) vertices in S. So we have

ES

H

2| R|(L)?

BRI +1)

_ |RI(R7
2(|R[+ 1)’

hGg)

IN

As |Ng| = |R|, there are |R| vertices in Gy for each vertex in G', so we get

| R~
h(Gr) < m

If |[R*| = 2 (mod 4), then Cg can be decomposed into two sets S and 5,

\Rxl_l [R¥| 1 . ’
= =~ — 5 copies of H(a) and S’ has

where S has —5— 1

R*|

IR
2 4 2
copies of H(«). Thus S has
R 1
1 _ -
(1R + (-2
vertices. As argued above, there are
e Ve [B*]o 1
2 - = -)=2 — ) ==
RICED - DA ) =g - )
edges between S and S’. Thus
|05]

h(Gr) < ﬁ
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_ 2RI - D)
(IR + 1)L -1
_|RI(R"] +2)
2(|R|+ 1)

|R*|+2
and so h(GR) S m

Corollary 5.3.1. Let |R| < oo and Z(R) = 0. Then

MG < —2(|‘§‘+|1) |IR*| =0 (mod 4)
R) <
2|52R\|il2) |IR*| =2 (mod 4).

Note that this only holds in general for rings without zero divisors; rings

where Z(R) # O have to be examined on a case-by-case basis.
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CHAPTER 6
INTERESTING EXAMPLES

One ring we might want to study is the ring of integers modulo an odd prime
p - a ring without zero divisors. Let R = Z,, for odd prime p. By Corollary 5.3.1,

the isoperimetric number is bounded as follows:

Il
—_

WG < )0 P modd
R) >

1 _
2(1:;1) p=3 (mod 4).

In cither case, h(Gg) < 3.

We are also able to show Hamiltonicity for thisring. Let Sz = {( % §), (§51), (5 )},
a generating set for PSL(2,Z,). We have the Cayley graph G(PSLsy(Z,),Sg) is
Hamiltonian by Corollary 5.2.6.

As an example of a ring for which we can show Hadwiger’s conjecture, let
R = Z, and let Sp = {(%0), ({5, ({52}, a generating set for PSL(2,Z,).
When

|Zy| = 2| Sk

= 10,

son]] (1 — 113) > 10, then Hadwiger’s conjecture holds for G(PSL(2,Z,),Sgr) by
pln

Theorem 5.1.2.
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