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Hadwiger’s conjecture is one of the deepest open questions in graph theory,

and Cayley graphs are an applicable and useful subtopic of algebra.

Chapter 1 will introduce Hadwiger’s conjecture and Cayley graphs, providing

a summary of background information on those topics, and continuing by introducing

our problem. Chapter 2 will provide necessary definitions. Chapter 3 will give a

brief survey of background information and of the existing literature on Hadwiger’s

conjecture, Hamiltonicity, and the isoperimetric number; in this chapter we will

explore what cases are already shown and what the most recent results are. Chapter

4 will give our decomposition theorem about PSL2(R). Chapter 5 will continue

with corollaries of the decomposition theorem, including showing that Hadwiger’s

conjecture holds for our Cayley graphs. Chapter 6 will finish with some interesting

examples.
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CHAPTER 1

INTRODUCTION

A longstanding conjecture in graph theory is Hadwiger’s conjecture, which

states that for every integer n ≥ 0, if a graph has no Kn+1 minor then the graph is

n-colorable. This is perhaps the most difficult and celebrated open problem (it has

only been proven for n < 6) in graph theory.

We investigate a special class of Cayley graphs and establish several interest-

ing properties of these graphs. We chose to examine Cayley graphs because Cayley

graphs form nice models for networks; they are highly symmetric, sparse, and yet

well-connected. Examining this class of graphs also helps us to break down important

conjectures like Hadwiger’s.

A Cayley graph is one constructed from a group and a symmetric generating

subset. A Cayley graph illustrates the group to which it is attached. Because they

are highly symmetrical graphs, it is believed that this structure extends to certain

graphical properties such as Hamiltonicity. Consequently, it has been conjectured

that all Cayley graphs are Hamiltonian.

Example 1.1: The Cayley graph G(C4, {a, a−1 | a4 = 1})

1 a

a3 a2
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For R a finite commutative ring let

SL2(R) =
{

( a bc d )
∣∣ a, b, c, d ∈ R, ad− bc = 1

}
and let PSL2(R) = SL2(R)/〈±I〉, where I = ( 1 0

0 1 ) . We study Cayley graphs of

PSL2(R) with respect to certain generating sets.

By studying the structure of such graphs, we hope to establish various prop-

erties for them. For example, we want to find an appropriate Kn minor of these

graphs and establish Hadwiger’s conjecture for these graphs. Further, we will study

other properties of these graphs such as their connectedness. In particular, we will

investigate the isoperimetric number of these graphs [18], following the methods of

[14] and [15].

A Hamilton path in a graph is a path that contains every vertex of the graph

exactly once. A Hamilton cycle is a cycle that contains every vertex only once in

the cycle. The Hamiltonicity of various classes of graphs is a long standing problem

and it was conjectured in [16] that every Cayley graph has a Hamilton cycle [6], [8],

[11], [19], [21], [24]. Such graphs are called Hamiltonian. We will also investigate the

Hamiltonicity of these classes of Cayley graphs.
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CHAPTER 2

COLORINGS, MINORS, AND CAYLEY GRAPHS

In this chapter we will define relevant terms such as a k−coloring of a graph,

a Cayley graph, a graph minor, etc., primarily using the definitions from [23].

2.1 - Definitions from Graph Theory

Definition 2.1.1. A graph G is a set of elements V (G), called the vertices and a set

of unordered pairs of those elements, referred to as edges.

We typically represent the elements as nodes, and we typically represent the

edges by putting line segments between the nodes. If there is at most one edge

between any two vertices, we call the graph a simple graph. If we allow multiple

edges between any two vertices, the graph is called a multigraph.

We begin by discussing graph colorings. We notice that the vertices of a graph

G can be partitioned into independent sets, that is, sets of vertices where no two

vertices in the same set are adjacent. If the vertices of a graph can be partitioned

into k independent sets, we say that the graph is k-colorable. If all the vertices in

any given set were assigned the same color, then no two vertices of the same color

would be adjacent.

Definition 2.1.2. A proper k−coloring of a graph G is a partition of V (G) into k

independent sets.

A proper vertex coloring of a graph G is a labeling of the vertices of G with

colors such that no two vertices sharing the same edge have the same color.

Definition 2.1.3. A graph is k−colorable if it has a proper coloring with at most k

colors.
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Definition 2.1.4. The chromatic number χ(G) of a graph G is the smallest number

of colors needed to color the vertices of G so that no two adjacent vertices share the

same color.

We now consider some useful operations on graphs. In order to study Had-

wiger’s conjecture, we must manipulate graphs by deleting and contracting edges.

To contract an edge is to bring its two endpoints together and make them one point,

and then remove the edge that connected the two vertices. Doing so creates a graph

G · e with one fewer edge and one fewer vertex than the original graph G.

Definition 2.1.5. In a graph G, a contraction of an edge e with endpoints u, v is

the replacement of u and v with a single vertex whose incident edges are the edges

other than e that were incident to u or to v.

Example 2.1: Contraction of edge uv

y

v

w x

u y uv

w x

By contracting and deleting edges and/or deleting vertices, we can create

what is known as a graph minor. We define a graph minor following [22].

Definition 2.1.6. A graph H is a minor of a graph G if a copy of H can be obtained

from G by a series of operations of either deleting vertices, deleting or contracting

edges, or both.

In a sense, we think of G as “containing” a copy of H when H is a graph

minor of G.
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Example 2.2: Making a graph minor by contracting edge uv and deleting vertex x

y

v

w x

u y uv

w

Hadwiger’s conjecture requires there to be no minor of an n-colorable graph G

that is a complete graph on n+ 1 vertices. The complete graph is formed by making

every pair of vertices adjacent. It is therefore the most connected that a graph can

be.

Definition 2.1.7. The complete graph, denoted Kn, is the graph on n vertices where

every pair of vertices is adjacent.

We now have all the necessary terminology to present Hadwiger’s conjecture.

2.1.1 Hadwiger’s conjecture (Hadwiger). For every integer n, if a graph G has

no Kn+1 minor, then G is n-colorable.

Note that Kn+1 is not n-colorable, but it is n+ 1 colorable.

Let G be a graph.

Definition 2.1.8. The Hadwiger number η(G) is the largest natural number n for

which the complete graph Kn is a minor of G.

The second property which we will show for our Cayley graphs is Hamiltonic-

ity.

Definition 2.1.9. A Hamilton path in a graph G is a path that contains every vertex

of G exactly once.

5



Definition 2.1.10. A Hamilton cycle in a graph G is a cycle containing every vertex

of G exactly once.

Definition 2.1.11. A graph G is Hamilton connected if for any pair of vertices

u, v ∈ G, there exists a Hamilton path from u to v.

The third property which we will try to find for our Cayley graphs is their

isoperimetric number. The isoperimetric number of a graph is a measure of its

connectedness. For all the small subsets A of vertices of a graph G, consider the

minimum ratio between the size of the edge boundary of A (the set of edges going

from a vertex of A to a vertex not in A) and the number of vertices in A — this

gives the isoperimetric number of G.

Definition 2.1.12. The isoperimetric number, or Cheeger constant, denoted h(G),

is defined by

h(G) = min

{
|∂A|
|A|

: A ⊂ V (G), 0 < |A| ≤ 1

2
|V (G)|

}
,

where ∂A denotes the edge boundary of A, that is, the set of edges between A and

V (G)− A.

The isoperimetric number measures the ease with which a graph can be dis-

connected. Also, if we interpret the graph as a network, the isoperimetric number

measures the size of bottlenecks in the network. A small isoperimetric number means

that there are bottlenecks, making the network less reliable.

Definition 2.1.13. A graph G is a wheel graph if it can be created by connecting a

vertex w to each of the vertices c1, ..., cn of a cycle.

Definition 2.1.14. An m × n grid graph has vertex set (x, y) for x, y ∈ N with

1 ≤ x ≤ m and 1 ≤ y ≤ n. We say (x1, y1) is adjacent to (x2, y2) when x1 = x2 and

6



|y1 − y2| = 1, or when y1 = y2 and |x1 − x2| = 1. The graph looks like a rectangular

grid.

The grid graphs we will study will be square n×n grids with integers modulo

n, so that the ends are adjacent to each other, which is essentially a grid on a torus.

2.2 - Definitions from Algebra

Definition 2.2.1. A group (Γ, ·) is a set Γ together with an operation · such that

the operation combines any two elements a and b of Γ to form a third element of Γ.

A group also has associativity, a unique identity, and inverses [9]. If for all a, b ∈ Γ,

a · b = b · a, we call Γ Abelian.

Definition 2.2.2. A subset S ⊂ Γ is a generating set for the group Γ if every

element of Γ can be expressed as the combination (under the group operation) of

finitely many elements s ∈ S and their inverses. If for all s ∈ S, we have s−1 ∈ S,

then S is a symmetric generating set for Γ.

Definition 2.2.3. A ring R is a set with two binary operations, addition and multi-

plication, such that for all a, b, c ∈ R, we have: a+b = b+a, a+(b+c) = (a+b)+c,

there is an additive identity 0 such that a + 0 = a for all a ∈ R, there is an ele-

ment −a ∈ R such that a + (−a) = 0, (ab)c = a(bc), and a(b + c) = ab + ac, and

(b+ c)a = ba+ ca. [9]

We will primarily be studying finite commutative rings – that is, finite Abelian

groups under addition, with associative and commutative multiplication that is left

and right distributive over addition. Even more specifically, we will be studying a

certain type of finite commutative ring called a local ring – a ring of the form R/n

where n is an ideal of the ring R. Finite commutative rings are always direct sums

of local rings.

7



Definition 2.2.4. An ideal I of a ring R is a subset of R that forms an additive group

and has the property that, whenever r ∈ R and n ∈ I, then rn ∈ I and nr ∈ I.

Definition 2.2.5. An element r ∈ R is a unit if r has a multiplicative inverse in R.

The set of units is called R×.

Definition 2.2.6. A non-zero element r is a zero divisor of a ring R if there exists

a non-zero element x ∈ R such that rx = 0 or xr = 0. We denote the set of zero

divisors of a ring R as Z(R).

Lemma 2.2.7. In a finite commutative ring with unity, every non-zero element is

either a unit or a zero divisor.

Proof. Let r ∈ R, r 6= 0, r /∈ Z(R). Let a, b ∈ R so that ra = rb. Then r(a− b) = 0.

Since r /∈ Z(R) and r 6= 0, we must have a− b = 0. This implies a = b. Consider the

set {rn|n ∈ Z}. As R is finite, ri = rj for some i 6= j, and without loss of generality

we may assume that i > j. Thus, since ri = rj it follows that rjri−j = rj. Since

we can cancel the r’s from the argument above, we have ri−j = 1. Now, i − j > 0,

so if i − j = 1, then 1 = ri−j = r and so r = 1 and r is a unit. If i − j > 1, then

1 = ri−j = rri−j−1 and r has a multiplicative inverse, so r is a unit.

Note that this is not necessarily true for infinite rings; for example, consider

R = Z, an infinite ring. Then R× = {−1, 1} and Z(R) = ∅, leaving all other elements

of Z as neither units nor zero divisors. In this paper we will call the subset of a ring

that is the collection of non-zero elements which are neither zero divisors nor units

R̃.

Note that a group has closure if performing the group operation on elements

of the group yields an element of the group.

Lemma 2.2.8. Let R be a ring and Z(R) be the semigroup (has closures but might

not have inverses or identity) of zero divisors. We assume that R = R×∪Z(R). Let

8



α, β ∈ R such that @z ∈ Z(R) with zα = zβ = 0. (ie, α and β can not have the same

zero divisor). Then ∃x, y ∈ R such that xα− yβ = 1.

Proof. If β − α ∈ R×, then take x = y = (β − α)−1. Then xα − yβ = (β −

α)−1β − (β − α)−1α = (β − α)−1(β − α) = 1. If β − α /∈ R×, then by Lemma 2.2.7,

(β − α) ∈ Z(R). Then ∃z1 ∈ Z(R) such that z1(β − α) = 0 and so z1α = z1β.

As z1 ∈ Z(R),∃z2 ∈ Z(R) such that z2z1 = 0. Then z2z1β = z2z1α = 0, and as

z2z1 ∈ Z(R), the assumption is contradicted. Thus, β − α ∈ R× and the result

follows.

One example of a finite ring is Z mod n, the integers modulo an ideal (n). Z×n

is the set of congruence classes (mod n) represented by integers coprime to n. Z(Zn)

is the set of congruence classes (mod n) of elements which are not coprime to n. For

a specific example, consider Z4: Z×4 = {[1], [3]} and Z(Z4) = {[2]} since 1 × 1 ≡ 1

(mod 4), 3× 3 = 9 ≡ 1 (mod 4) and 2× 2 = 4 ≡ 0 (mod 4). The projective special

linear group for this example is PSL2(Zn) =
{

( a bc d )
∣∣ a, b, c, d ∈ Zn, ad− bc = 1

}
/±

〈I〉.

Cayley graphs are constructed from groups. Let Γ = {g1, . . . , gn} be a finite

group and let S ⊂ Γ be a symmetric generating set for Γ. The Cayley graph G =

G(Γ, S) is defined by V (G) = {g1, . . . , gn} and gi, gj ∈ V (G) are adjacent if there

exists s ∈ S so that sgi = gj. Cayley graphs are amenable to study using group

theory.

As an example, we give the Cayley graph for D4, the dihedral group of the

square.

9



Example 2.3: The Cayley graph G(D4, {a, b, a−1 | a4 = b2 = 1, ab = ba3})

ab a2b

b a3b

1

a a2

a3

A generating set for PSL2(Z mod n) is {( 0 1
1 0 ), ( 1 1

0 1 ), ( 1 −1
0 1 )}. This is a nice

generating set because the Cayley graph it generates is Hamiltonian if n is prime

[11]; usually Hamiltonian graphs are highly connected, but this graph is only cubic

(every vertex has degree 3). This leads us to ask: what do such graphs look like for

other generating sets?

2.3 - Quotients of Cayley Graphs and Platonic Graphs

A quotient graph QG of a graph G is a graph whose vertices are blocks of

a partition of V (G), where blocks B1 and B2 are adjacent vertices in QG if some

vertex in B1 is adjacent to some vertex in B2 in G. These blocks are the cosets of a

subgroup N .

Lemma 2.3.1. A quotient of a Cayley graph is a minor of a Cayley graph.

Proof. Let G = G(Γ, S) be a Cayley graph of a group Γ. The quotient graph G/N

has vertices associated to the cosets gN of Γ/N . Two vertices of G, g1, g2, are in the

same coset if and only if g1 = g2n for some n ∈ N . Thus the vertices of G/N are

obtained by contracting the edges between g and gn for n ∈ N . Since minors are

10



obtained by contracting edges and deleting vertices and/or edges, G/N is a minor of

G.

A Platonic graph is a graph corresponding to the skeleton of a regular, convex

polyhedron (the skeleton of a polyhedron is the graph created when the faces of a

polyhedron are removed, leaving only its edges and vertices.) There are five Platonic

solids and hence five Platonic graphs (the tetrahedral graph, cubic graph, octahedral

graph, dodecahedral graph, and icosahedral graph). All of these are regular (every

vertex has the same degree), planar, Hamiltonian graphs. Example 2.4 shows the

tetrahedral graph.

Example 2.4: The tetrahedral graph

4

12

3

Platonic graphs, like quotient graphs of Cayley graphs, are minors of Cayley

graphs.

In [14], it was found that for a prime p, the Platonic graph πp can be parti-

tioned into p−1
2

isomorphic copies of Wp+1, the wheel on p+ 1 vertices, with 2p edges

joining every pair of wheels. That is, πp is the complete multigraph K2p
p−1
2

, in which

each vertex should be viewed as a wheel.

11



CHAPTER 3

A BRIEF SURVEY OF THE EXISTING LITERATURE

In this chapter we will survey the existing literature on Hadwiger’s conjecture,

Hamiltonicity, and the isoperimetric number.

3.1 - Hadwiger’s conjecture

In 1943, Hadwiger presented his conjecture, “For every n ∈ Z≥0, every graph

with no Kn+1 minor is n-colorable” along with the proof for n ≤ 3 [12]. It had

already been shown by Klaus Wagner that when n = 4, the conjecture is equivalent

to the famous Four Color Theorem. Before it was proved in 1976 by Appel and

Haken (with substantial and nontrivial use of computer calculations) in [2] and [3],

the Four Color Conjecture, as it was then known, was the most celebrated conjecture

in graph theory. Hadwiger’s conjecture has since been shown for the case n = 5 by

Robertson, Seymour, and Thomas in [20], using the Four Color Theorem in their

proof.

The cases for n ≥ 6 are all open, although some specific results have been

found when restrictions are put upon the graphs. Some weaker results have also been

found. For example, Albar and Gonçalves proved in 2013 that every K7-minor free

graph is 8-colorable and every K8-minor free graph is 10-colorable, improving the

previously known bounds by one [1]. This is still slightly weaker than Hadwiger’s

conjecture, which says that every K7-minor free graph is 6-colorable and every K8-

minor free graph is 7-colorable. It can also be shown (by applying a theorem in

[4] and a theorem in [10]) that almost every graph G either has a Kn+1-minor or

is n-colorable. This is a weakening of Hadwiger’s conjecture, which says that every

graph G either has a Kn+1-minor or is n-colorable. By “almost every”, we mean

12



that the proportion of graphs that satisfy Hadwiger’s conjecture tends to 1 as the

number of vertices increases.

3.2 - Hamiltonicity

The question of whether or not all Cayley graphs are Hamiltonian was first

raised as a weaker version of the 1969 Lovász conjecture [16], which says that every

finite, connected, vertex-transitive graph is Hamiltonian (a graph is vertex-transitive

if no vertex can be distinguished from any other vertex by the edges and vertices

surrounding it.) The advantage of studying the weaker version of the Lovász con-

jecture is that Cayley graphs are connected to a finite group and a generating set,

so it is possible to show that the conjecture holds for particular kinds of groups and

generating sets, rather than attempting to prove the conjecture in full generality.

Many particular Cayley graphs have been shown to be Hamiltonian, but the

arguments are ad hoc and not easily genearlized. It was shown in 1983 by Marusic

that Cayley graphs of finite Abelian groups are guarunteed to have a Hamilton cycle

[17] . In 1986, D. Witte proved that the Cayley graphs of p-groups (a group Γ such

that all the elements of Γ have a power of p as their order, for some prime p) are

Hamiltonian [24].

3.3 - Isoperimetric number

The isoperimetric number has many applications in combinatorics, such as

finding bounds on graph eigenvalues (the eigenvalues of the adjacency matrix of

a graph), or on measuring the connectedness of a graph to find good expanders.

However, though useful, h(G) is difficult to calculate exactly. An oft-used alternative

is to find bounds for h(G) based on other properties of the particular graph in

question. We present some of the bounds that have been found recently.
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In 1993, Brooks, Perry, and Petersen [5] found the following bounds for the

isoperimetric number of certain Platonic graphs: for p a prime such that p ≡ 1 (mod

4), p2−2p+5
4(p−1)

≤ h(πp) ≤ p(p−1)
2(p+1)

.

In 2009, Huang, Jin, and Liang found the following bound for the isoperimetric

number of a k-degree Cayley graph (an undirected graph with n(k− 1)n vertices for

any n ≥ 2, k ≥ 3): h(Gn) ≤ 2
n−1

[13].

One of the more recent results for Zn was found two years later; Lanphier

and Rosenhouse [15] used combinatorics to find upper and lower bounds for the

isoperimetric number of regular graphs with high degree, and they gave the specific

application of the Platonic graphs over the rings Zn. For πZn , the isoperimetric

number is bounded above and below as follows, where
∏
p|n

represents the product over

those primes p which divide n: n
2
(1−

√
1− 2

∏
p|n

(
1− 1

p

)
+
∏
p|n

(
1− 1

p2

)
) ≤ h(πZn) ≤

n
2
− 1∏

p|n
(1+ 1

p)
.
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CHAPTER 4

THE DECOMPOSITION THEOREM

In this chapter, we seek to find a decomposition for the quotient graphs of

the Cayley graphs of PSL(2) over finite commutative rings. By discovering the

structure of the quotient graphs, we are able to study the structure and properties

of the Cayley graphs.

First we will define the Cayley graphs we study, as well as their quotient

graphs. We will show that the quotient group is isomorphic to 2-tuples, which are

easier to study than the original matrices, and then we will examine the adjacencies

that exist in the quotient graph. In particular, we will show that for finite rings

without zero divisors, the quotient graph looks like a complete multigraph of wheels.

Each vertex in a wheel sends two edges to every other wheel.

We now define our Cayley graphs. Let R be a finite commutative ring, with

n = |R|. Then

SL2(R) = {( a bc d ) | a, b, c, d ∈ R, ad− bc = 1}

and

ΓR = PSL2(R) = SL2(R)/{±I}.

For a ∈ R×, let Ia ∈ ΓR be Ia = ( 0 a
−a−1 0 ). Let tR be a symmetric generating

set for R+, where R+ is the ring as a group under addition. This means that R+

has generators as a group under addition. Some examples are: Z+ has generators

{1,−1}, Z+
n has generator {1}, and Z+

i has generators {1,−1, i,−i}. Let

T+
R = {( 1 t

0 1 )|t ∈ tR},

T−R = {( 1 0
t 1 )|t ∈ tR},
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and let TR = T+
R or T−R . Let SR be a symmetric generating set for ΓR so that

Ia∪TR ⊂ SR for some a ∈ R×. Let GR = G(ΓR, SR) be the Cayley graph of ΓR with

respect to SR. Note that GR is |SR|-regular. For example, for R = Zn, the ring of

integers modulo n, then 1 ∈ Z×n and {−1, 1} is a symmetric generating set for Zn.

Thus we can take SR = {( 0 1
−1 0 ), ( 1 ±1

0 1 )}. In this case, GR is a cubic graph.

Our first major mathematical step will be to examine quotient graphs of

Cayley graphs of PSL2(R). If we let NR be the subgroup of PSL2(R) that is the

set of matrices

NR = {( a r
0 a−1 ) | r ∈ R, a ∈ R× − {0}},

then the quotient PSL2(R)/NR ≈ {( c d ) | c, d ∈ R, cd 6= 0}.

We will study graphs related to these objects as a prelude to generalizing our

findings to Cayley graphs.

Let G′R denote the quotient graph GR/NR, which is to say G′R = G′R,a. That is,

G′R is the multigraph whose vertices are given by the cosets of Γ′R, where Γ′R = G/N .

Then distinct cosets of NRγ1 and NRγ2 are joined by as many edges as there are

in GR of the form (v1, v2) where v1 ∈ NRγ1 and v2 ∈ NRγ2. Note that Γ′R is not a

group, so G′R is not a Cayley graph. However, G′R is induced from the Cayley graph

GR, and is therefore useful to study in order to glean information about the GR.

Lemma 4.1.1. G′R is a minor of GR.

Proof. Recall that by Lemma 2.3.1, quotient graphs are minors. G′R is a quotient

graph of GR, hence G′R is a minor of GR.

Note that the Cayley graph of NR is a grid. G′R is obtained by taking a copy

of GR and contracting each little copy of NR within GR to a single point. Then G′R
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contains K|R×| as a minor. As G′R is a minor of GR, it follows that GR also contains

K|R×| as a minor.

Example 4.1: GR

2

1

3

4

5

6

Example 4.2: G′R: the two copies of NR contracted to single points

1′

4′

This allows us to prove the following proposition, where the isomorphism is

an isomorphism of sets.

Proposition 4.1.2. Γ′R
∼= {±1}\{( α β )|α, β ∈ R, (zα, zβ) 6= (0, 0) for z ∈ Z(R)}.

Proof. Let

S = {±1}\{( α β )|α, β ∈ R, (zα, zβ) 6= (0, 0), z ∈ Z(R)}.

Let [( α β
γ δ )] denote an element in Γ′R where [( α β

γ δ )] denotes the equivalence class in Γ′R

of ( α β
γ δ ) ∈ ΓR. Let [( γ δ )] denote an element in S. Define φ : Γ′R → S as the mapping

given by φ([( α β
γ δ )]) = [( γ δ )]. Suppose that A = ( α β

γ δ ) ∈ PSL2(R), A′ = ( α
′ β′

γ′ δ′ ) ∈

PSL2(R), are such that φ(A) = φ(A′). Then [( γ δ )] = [( γ′ δ′ )], so ( γ δ ) = ±( γ′ δ′ ).

Recall that PSL2(R) = SL2(R)(mod±1). Therefore ( α
′ β′

γ′ δ′ ) = ( α′ β′

±γ′ ±δ′ ). Now if we

mod both sides of the equality by ±1, we see that ( α
′ β′

γ′ δ′ ) = ( ±α
′ ±β′

γ′ δ′ ). Since ( α β
γ δ ) =

( α
′ β′

γ δ ) ∈ PSL2(R), both have determinant 1. So, αδ − γβ = 1 and α′δ − γβ′ = 1,

and thus α′αδ − α′γβ = α′ and αα′δ − αγβ′ = α, and so γ(β′α − α′β) = α′ − α.
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Similarly, we get αβ′δ − ββ′γ = β′ and α′βδ − ββ′γ = β, so δ(αβ′ − α′β) = β′ − β.

Setting a = αβ′ − α′β ∈ R, we get γa = α′ − α and δa = β′ − β, so α′ = α+ γa and

β′ = β + δa. Therefore

( α
′ β′

γ δ ) = ( α+γa β+δa
γ δ ) = ( 1 a

0 1 )( α β
γ δ ),

and so

[( α
′ β′

γ δ )] = [( 1 a
0 1 )( α β

γ δ )] = [( α β
γ δ )],

making φ one-to-one. Now to show φ is onto, let [( γ δ )] ∈ S. By Lemma 2.2.8, there

exists x, y ∈ R such that xδ − yγ = 1. Then det(
x y
γ δ ) = 1 and so (

x y
γ δ ) ∈ PSL2(R).

Therefore φ[(
x y
γ δ )] = [( γ δ )], making φ onto.

We now loosely define the three main subgraphs that partition a Cayley graph.

The subgraph induced by the units we will call CR; the subgraph induced by the zero

divisors we will call OR, and the subgraph induced by the elements that are neither

units nor zero divisors we will call TR. Note that TR does not exist if R is finite, by

Lemma 2.2.7. CR looks like a complete multigraph of wheels (see Example 4.3), and

OR seems to orbit it. These subgraphs are defined more rigorously in section 4.2.

Example 4.3: A complete multigraph on two copies of W4

c1

c2

c3

w

c1

c2

c3

w

Note that if our ring R = Zp for a prime p, then OZp = Ø and so
|OZp |
|CZp |

= 0.

When n is not prime we have that OZn is nonempty. In that case, we have the
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following result, which shows that OZn can be arbitrarily large or small in comparison

to CZn .

Proposition 4.1.3. Let ε > 0 be arbitrarily small and M > 0 be arbitrarily large.

There exists an n ∈ N such that 0 <
|OZn |
|CZn |

< ε and there exists another n ∈ N such

that
|OZn |
|CZn |

> M .

Proof. From [14], we have

|PSL2(Zn)| = n3

2

∏
p|n

(
1− 1

p2

)

and so

|G′Zn
| = n2

2

∏
p|n

(
1− 1

p2

)
.

From the decomposition of CZn we have

|CZn| =
n(n+ 1)

2

∏
p|n

(
1− 1

p

)
[14].

Thus

|OZn| = |G′Zn
| − |CZn|

=
n2

2

∏
p|n

(
1− 1

p2

)
− n(n+ 1)

2

∏
p|n

(
1− 1

p

)

=
n

2

∏
p|n

(
1− 1

p

)n∏
p|n

(
1 +

1

p

)
− n− 1

 .
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Thus

|OZn|
|CZn|

=

n
2

∏
p|n

(
1− 1

p

)(
n
∏
p|n

(
1 + 1

p

)
− n− 1

)
n+1

2
n
∏
p|n

(
1− 1

p

)
=

n

n+ 1

∏
p|n

(
1 +

1

p

)
− 1.

The Riemann zeta function ζ(s) =
∞∑
n=1

n−s, for s ∈ C and Re(s) > 1, has the Euler

product expansion ζ(s) =
∏

p prime

1
1− 1

ps
, and it is well known that |ζ(s)| → ∞ as

s → 1. Then let Pk =
k∏
j=1

(1 − 1
pj

) be the product over the first k primes. Since

ζ(s)→∞ as s→ 1, we have that as k increases
k∏
j=1

(1− 1
psj

)−1 →∞. It follows that

Pk → 0 as k increases. Let Qk =
k∏
j=1

(
1 + 1

pj

)
be the product over the first k primes.

Then

PkQk =

(
k∏
j=1

(
1− 1

pj

))( k∏
j=1

(
1 +

1

pj

))

=
k∏
j=1

(
1− 1

p2
j

)
.

As

ζ(2) =
π2

6

=
∏

p prime

(
1− 1

pj

)−1

,

then PkQk → 6
π2 as k increases. Thus if we take nk = p1 . . . pk, a product of the first
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k primes, then as k increases, we see that

|OZn |
|CZn|

=
nk

nk + 1

∏
p|n

(
1 +

1

p

)
− 1

grows arbitrarily large.

Now take n = pr. Then

|OZn|
|CZn|

=
n

n+ 1

∏
p|n

(
1 +

1

p

)
− 1

=
pr

pr + 1

(
1 +

1

p

)
− 1

=
pr−1 − 1

pr + 1
.

If p > 1
ε
, then ε > 1

p
and pr · 1

p
< εpr + ε + 1. Thus, pr−1 − 1 < ε(pr + 1) and

|OZn |
|CZn |

= pr−1−1
pr+1

< ε.

4.2 - The structure of quotient graphs

The following lemma helps us start to understand the structure of the quotient

graphs. The brackets around [(α, β)] and [(γ, δ)] indicate that (α, β) and (γ, δ) are

up to ± equivalence classes.

Lemma 4.2.1. Let [(α, β)] and [(γ, δ)] be vertices in G′R. Then [(α, β)] and [(γ, δ)]

are adjacent in G′R if and only if det( α β
γ δ ) = ±a−1.

Proof. Let ΨΓ : ΓR → Γ′R denote the quotient map, which is ΨΓ(g) = NRg, and let φ :

Γ′R → S denote the isomorphism of sets from Proposition 4.1.3. For ( α β
γ δ ) ∈ GR, let

ΨG( α β
γ δ ) = Φ(ΨΓ( α β

γ δ )) = [( γ δ )], and so ΨG : GR → G′R is a graph homomorphism.

Note that if g1 ∈ Ψ−1
G (g′1) and g2 ∈ Ψ−1

G (g−1
2 ) so that g1 = ( 0 a

−a−1 0 )g2, then g1 and

g2 are adjacent in GR. It follows that g′1 and g′2 are adjacent in G′R. Let [( α β )]

21



and [( γ δ )] be vertices in G′R so that det( α β
γ δ ) = ±a−1. Then ( aα aβ

γ δ ) and ( aγ aδα β )

are in ΓR, and ( 0 a
−a−1 0 )( aα aβ

γ δ ) = ( aγ aδα β ). Since ΓR is defined modulo {±I}, we

have [( −aγ −aδα β )] = [( aγ aδ
−α −β )] in ΓR. Thus ( aα aβ

γ δ ) and ( −aγ −aδα β ) are adjacent in GR,

joined by an edge that corresponds to the involution ( −aγ −aδα β ) in SR. From the first

paragraph of the proof, we have that [( α β )] and [( γ δ )] are adjacent in G′R.

Now let Ψ : GR → G′R be the graph homomorphism induced by the quotient

map. Let g′1 ∈ [(α, β)] ∈ V (G′R) and g′2 ∈ [(γ, δ)] ∈ V (G′R) be adjacent in G′R. It

follows that there exist g1 ∈ Ψ−1(g′1) and g2 ∈ Ψ−1(g′2) so that g1 is adjacent to g2

in GR. The quotient map Ψ takes ( x y
z w ) ∈ GR to [( z w )] ∈ G′R so g1 = (

x y
α β ) and

g2 = ( w z
γ δ ) where det(g2) = ±1. Since g1 and g2 are adjacent in GR, it follows that

g2 = ( 1 ±t
0 1 )g1 or g2 = ( 0 a

−a−1 0 )g1. In the former case, we would have g′2 = Ψ(g2) =

Ψ(g1) = g′1, which contradicts G′R being a simple graph. So we must have the latter

case. Thus, ( w z
γ δ ) = g2 = ( 0 a

−a−1 0 )g1 = ( 0 a
−a−1 0 )(

x y
α β ) = ( aα aβ

−a−1x −a−1y ) and so w = aα

and z = aβ. Thus

det( α β
γ δ ) = a−1 det( aα aβ

γ δ )

= a−1 det( w z
γ δ )

= ±a−1.

This leads us to

V (G′R) = V (CR) ∪ V (OR)

where CR has a distinct structure. Let α ∈ R×, and define V (α) ⊂ V (G′R) by

V (α) = {(0, α), (a−1α, β)|β ∈ R}.
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Let H(α) = G[V (α)] be the subgraph of G′R induced by V (α). Note that |H(α)| =

n + 1. Further note that |NR| = n, implying that |V (G′R)| = |V (GR)|
n

. We also have

that GR is |SR|−regular.

Let H(α) 6= H(α′) with α, α′ ∈ R×.

Lemma 4.2.2. ( α β ) ∈ H(α) is adjacent to two elements in H(α′).

Proof. Let ( α β ) ∈ H(α) and ( α′ β′ ) ∈ H(α′). Then by Lemma 4.2.1, ( α β ) is

adjacent to ( α′ β′ ) if and only if det( α β
α′ β′ ) = ±a−1, that is, if and only if αβ′−α′β =

±a−1. So ( α β ) is adjacent to ( α′ β′ ) if and only if β′ = α−1(α′β ± a−1). There are

two elements β′1 and β′2 ∈ R that satisfy this, which means there are two elements

( α′ β′1 ) and ( α′ β′2 ) ∈ H(α′) adjacent to ( α β ).

This means that each vertex in a wheel is adjacent to two vertices within

any other wheel. We now examine the structure of H(α). Recall that H(α) =

{( 0 α ), ( α−1a−1 β ) | β ∈ R}. Note that if ( α−1a−1 β ) is adjacent to ( α−1a−1 β′ ) then

±a−1 = det( α
−1a−1 β
α−1a−1 β′

)

= α−1a−1(β′ − β)

and so (β′ − β) = ±α, making β′ = β ± α. Thus, if there is some n ∈ N so that

n = 0 in R, then H(α) contains a cycle

( a−1α−1 β ), ( a−1α−1 β+α ), ( a−1α−1 β+2α ), . . . , ( a−1α−1 β+(n−1)α ).

Depending on the structure of R, there can be several such cycles in H(α).

Lemma 4.2.3. Let α, δ ∈ R×. If δ 6= ±α, then H(δ) ∩H(α) = ∅.

Proof. As GR is modulo ±1, then so is G′R and therefore H(±α) = H(α). Suppose

δ 6= ±α, then (0, δ) 6= (0, α), and if (a−1δ, β) = (a−1α, β′) for some β, β′ ∈ R, then
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a−1δ = a−1α. Thus α = δ, which gives a contradiction. Therefore, we must have

H(α) ∩H(δ) = ∅.

Let CR be the subgraph of G′R induced by the H(α)’s. That is, V (CR) =⋃
α

V (H(α)) where the union is over the distinct H(α)’s (by Lemma 4.2.3, the wheels

do not overlap.)

Now let

OR = {(γ, δ) ∈ G′R|(γ, δ) /∈ CR}.

Lemma 4.2.4. OR = {(γ, δ) ∈ G′R|γ ∈ Z(R)}.

Proof. Let

SR = {(γ, δ) ∈ G′R|γ ∈ Z(R)}.

For (γ, δ) ∈ SR, (γ, δ) ∈ G′R and γ ∈ Z(R), so γ 6= 0. Since γ ∈ Z(R), by Lemma

2.3.7 γ /∈ R×. Thus γ 6= a−1α for any α ∈ R×, implying that (γ, δ) /∈ CR. Therefore,

(γ, δ) ∈ OR, and SR ⊆ OR. Now let (γ, δ) ∈ OR. If γ = 0, then (0, δ) ∈ G′R, and

since G′R is connected, there must be some (α, β) ∈ G′R such that det( α β
0 δ

) ∈ R×.

This implies that δ ∈ R×. Then (0, δ) ∈ H(δ) and so (0, δ) /∈ OR, and it follows that

γ 6= 0. If γ ∈ R×, then γ = a−1α for some α ∈ R×, and so (γ, δ) = (a−1α, δ) ∈ H(α).

Therefore γ /∈ R×. By the previous lemma, this implies that γ ∈ Z(R) and so

(γ, δ) ∈ SR. Thus OR ⊆ SR and the result follows.

Note that above we are looking only at the subset of zero divisors and units

in R, because we are concerned only with the finite case.

This gives us G′R = CR+OR, where CR∩OR = Ø. Note that if γ ∈ Z(R), δ /∈

Z(R), then (γ, δ) ∈ OR.

Corollary 4.2.5. If |R| <∞ and Z(R) = ∅, then G′R = CR.
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This guides us to examine the structure of OR more closely, as having zero

divisors adds complications to the structure of G′R.

4.3 - The Decomposition

As we have already discussed, a ring R can be partitioned into three disjoint

subsets (the units, the zero divisors, and for infinite rings, a third subset of elements

which are neither units nor zero divisors); in general, R = R× ∪ Z(R) ∪ R̃.

For α ∈ R̃, let

J(α) = {( α β ) | β ∈ R}.

Note that if α 6= ±α′ with α, α′ ∈ R̃, then J(α)∩J(α′) = Ø. Further, it is clear that

J(α) ∩OR = Ø and J(α) ∩ CR = Ø.

Lemma 4.3.1. For any α /∈ R× ∪ Z(R), J(α) is an independent set of G′R indexed

by R.

Proof. Let v, v′ ∈ J(α). Then v = ( α β ) and v′ = ( α′ β′ ) for some β, β′ ∈ R. We

have

det( α β
α′ β′ ) = αβ′ − αβ

= α(β′ − β).

Since α /∈ R×, we see that α(β′ − β) cannot be a unit in R. Thus ( α β ) and ( α′ β′ )

cannot be adjacent in G′R, so the vertices in J(α) are independent. Clearly the

vertices in J(α) are indexed by R.

Therefore, if there exists some α ∈ R − (R× ∪ Z(R)), then G′R contains an

independent set of size |R|. Furthermore, the edges in TR are those that connect

different J(α)s.
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Let TR =
⋃
α∈R̃

J(α). This leads us to the general decomposition of the associ-

ated Cayley graph, G′R.

We have now proved the main result of this paper: the decomposition of

the graph G′R and the corresponding decomposition of GR. The point is that the

subgraph CR has an organized, connected, and studiable structure, whereas OR and

TR have much less structure. However, TR = ∅ for finite rings, and OR depends upon

the zero divisors of R. In particular, OR = ∅ if R has no zero divisors.

Theorem 4.3.2. The graph G′R has the following decomposition:

V (G′R) = V (CR) ∪ V (OR) ∪ V (TR)

where

V (CR) =
⋃

α∈R×/{±1}

V (H(α)),

H(α) = {( α β ) | β ∈ R}.

If H(α) 6= H(α′) then the number of edges between H(α) and H(α′) is

e(H(α), H(α′)) = 2|R|,

V (OR) = {(γ, δ) ∈ G′R | γ ∈ Z(R)},

and

TR =
⋃
α∈R̃

J(α),

where J(α) = {( α β ) ∈ G′R | β ∈ R}.
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If R is finite and C ′R denotes the multigraph obtained from CR by contracting

each H(α) to a single vertex, then C ′R contains a spanning subgraph isomorphic to

K
2|R|
|R×|

2

, the complete multigraph on |R×|
2

vertices with 2|R| edges joining each pair of

vertices.

Note that if |R| <∞ then TR = ∅, and if Z(R) = ∅ then OR = ∅.
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CHAPTER 5

CONSEQUENCES OF THE DECOMPOSITION THEOREM

In this chapter, we wish to prove Hadwiger’s conjecture and Hamiltonicity

for the graphs we have been studying, and to find a bound on their isoperimetric

number.

5.1 - Hadwiger’s conjecture

Let R be finite and GR = G(ΓR, SR). Recall that Hadwiger’s conjecture would imply

that η(G) ≥ χ(G).

Corollary 5.1.1. For R and GR as above, we have η(GR) ≥ |R×|
2

.

Proof. GR contains CR, which contains K
2|R|
|R×|

2

as a minor.

The proof that Hadwiger’s conjecture holds for the Cayley graphs requires

the use of Brooks’ theorem.

5.1.1 Brooks’ theorem (Brooks). For any connected undirected graph G with max-

imum degree ∆(G),

χ(G) ≤ ∆(G),

unless G is a complete graph or an odd cycle, in which case χ(G) = ∆(G) + 1.

We are now able to show that Hadwiger’s conjecture holds for our Cayley

graphs.

Theorem 5.1.2. For R finite, if |R
×|
2
≥ |SR| then Hadwiger’s conjecture holds for

GR = G(ΓR, SR).
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Proof. From Corollary 5.1.1 and the hypothesis, we have

η(GR) ≥ |R
×|

2
≥ |SR|.

Now, GR is |SR|−regular so we have ∆(GR) = |SR| and η(GR) ≥ ∆(GR). By Brooks’

theorem, since GR is connected, non-complete, and non-cyclic, η(GR) ≥ ∆(GR) ≥

χ(GR).

Note that GR is non-cyclic because |S| ≥ 3. In a cyclic Cayley graph, for

example the Cayley graph of a cyclic group, we are only able to have one generator a

and also its inverse a−1. But the graph GR has the involution as a generator ( 0 a
−a−1 0 )

and also ( 1 tR
0 1 ) where tR generates the additive group R+. Thus, there are at least

2 elements that we need for tR, so GR has at least 3 generators and so is at least a

cubic graph. Therefore it is not cyclic.

We have established that η(GR) ≥ |R×|
2

for all GR with generating sets SR

that satisfy Ia ∪ TR ⊆ SR. By Brooks’ Theorem, ∆(GR) ≥ χ(GR) as GR is non-

complete and is not an odd cycle. Since GR is regular of degree |SR|, it follows that

|SR| ≥ χ(GR). Therefore, if |R
×|
2
≥ |SR|, then Hadwiger’s conjecture holds for GR.

5.2 - Hamiltonicity

Recall that a wheel graph is a graph created by connecting a vertex w to each

of the vertices c1, . . . , cn of a cycle.

Lemma 5.2.1. Wheel graphs are Hamilton connected.

Proof. We can prove this by construction. Let W be a wheel graph, and call its

vertex that is adjacent to every other vertex w. For any two vertices ci, ck ∈ W , we

can create a Hamilton path from ci to ck. We begin at ci and go clockwise around the

cycle until we reach the vertex ck−1, the vertex in the cycle adjacent to ck on its left.
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From the definition of a wheel graph, ck−1 is also adjacent to w, the center vertex, so

we go from ck−1 to w, which is also adjacent to ci−1. We then go from w to ci−1 and

from there go counterclockwise until we get to ck. This gives a Hamilton path. If

either of our desired endpoints is the center vertex, the construction is even simpler;

in this case we begin with the center vertex and go to ck+1, the vertex adjacent to

the other endpoint. Then we go around the cycle until we get back to ck.

Below is an example illustrating how we would construct a Hamilton path

from c1 to c7 in a wheel with nine vertices. On the left we illustrate what that wheel

looks like, on the right we show the construction.

Example 5.1: Constructing a Hamilton path from c1 to c7

c1 c2

c3

c4

c5c6

c7

c8

w

c1 c2

c3

c4

c5c6

c7

c8

w

Proposition 5.2.2. Let R be a finite commutative ring so that Z(R) = ∅. Then G′R

is Hamiltonian.

Proof. From the Decomposition Theorem, G′R has the structure of a complete multi-

graph K
2|R|
|R×|

2

with |R×|
2

vertices, and so that there is a wheel graph at each vertex.

Let w1, w2, . . . w |R×|
2

denote the distinct wheels so that

V (G′R) =

|R×|
2⋃
j=1

V (wj).
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Then there is a set of edges {ej}
|R×|

2
j=1 so that

w1

e1
− w2

e2
− w3...w |R×|

2

e |R×|
2

− w1.

Further, as there are 2|R| edges in G′R between any pair of wheels, we can find distinct

vertices u1,j, u2,j ∈ V (wj) so that ej has endpoints u2,j and u1,j+1. If j = |R×|
2

then

e |R×|
2

has endpoints u
2,
|R×|

2

and u1,1. From Lemma 5.2.1, there is a Hamilton path

Pj in Wj from u1,j to u2,j, for any j. Thus we have

u1,1P1u2,1

e1
− u1,2P2u2,2

e2
− ...

e |R×|
2 −1

− u
1,
|R×|

2

P |R×|
2

u
2,
|R×|

2

e |R×|
2

− u1,1,

which gives a Hamilton cycle in G′R.

Lemma 5.2.3. If (
x y
α β ) is adjacent to ( w z

γ δ ) in GR, and ( x
′ y′

α β ) is adjacent to ( w
′ z′

γ′ δ′ )

with γ 6= γ′, then (
x y
α β ) 6= ( x

′ y′

α β ) in GR.

Proof. If (
x y
α β ) is adjacent to ( w z

γ δ ), then

(
x y
α β ) = ( 0 a

−a−1 0 )( w z
γ δ )

= ( aγ aδα β ),

so (
x y
α β ) = ( aγ aδα β ). Similarly, if ( x

′ y′

α β ) is adjacent to ( w
′ z′

γ′ δ′ ), then ( x
′ y′

α β ) = ( aγ
′ aδ′

α β ),

and as γ 6= γ′, then aγ 6= aγ′, the result follows.

Let v ∈ V (G′R) and let G(v) denote the |R| vertices in V (G′R) equivalent to v

under the action of NR. For convenience, we also refer to the subgraph induced by

these NR vertices as G(v).

Lemma 5.2.4. Let R be a finite commutative ring with |R| odd. If |tR| ≥ 4 then the

graphs G(v) are Hamilton connected.
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Proof. Let φ : R+ → NR be the mapping φ(x) = ( 1 x
0 1 ). Then

φ(x+ y) = ( 1 x+y
0 1 )

= ( 1 x
0 1 )( 1 y

0 1 )

= φ(x)φ(y),

so φ is a homomorphism. It is clear that φ is onto, and if φ(x) = φ(y) then ( 1 x
0 1 ) =

( 1 y
0 1 ), so x = y. Thus φ is also an isomorphism.

For t ∈ tR, the symmetric generating set for R+, then φ(t) = ( 1 t
0 1 ) ∈ TR, the

symmetric generating set for NR. It follows that φ induces an isomorphism between

the Cayley graphs G(R+, tR) and G(NR, TR).

Because TR ⊆ S, where S is the generating set for GR, then by construction

G(v) is isomorphic to G(NR, TR). Therefore G(v) is isomorphic to G(R+, tR).

Since |tR| ≥ 4, G(R+, tR) is a Cayley graph of an Abelian group with at least

4 generators, so it contains a spanning subgraph isomorphic to a grid. Thus G(v)

contains a spanning subgraph isomorphic to a grid. By Theorem 4 of [6], grid graphs

are Hamilton connected if and only if they are neither cyclic nor bipartite. Because

the grid graph in G(v) is |tR|-regular, and |tR| ≥ 4, the graph is not cyclic. Since

|R| is odd, the cycle generated by ( 1 1
0 1 ) ∈ G(v) has odd length. It is well-known

(see [23]) that bipartite graphs do not contain cycles of odd length. Thus the grid

graph in G(v) is not bipartite and so it is Hamilton connected. It follows that G(v)

is Hamilton connected.

Lemma 5.2.5. Let [( α β )] ∈ V (G′R) be adjacent to distinct vertices [( α β0 )] and

[( α β1 )] in G′R. Then there exist distinct vertices (
x y
α β ) and ( x

′ y′

α β ) such that (
x y
α β ) is

adjacent to a vertex (
x0 y0
α β0 ) in GR and ( x

′ y′

α β ) is adjacent to a vertex (
x1 y1
α β1 ) in GR.

Proof. Let φ : GR → G′R be the mapping on the graphs induced by the quotient map
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on the respective groups. Then φ(
x y
α β ) = [( α β )]. As [( α β )] is adjacent to [( α β0 )] in

G′R then there are vertices in the respective preimages of φ, (
x y
α β ) and (

x0 y0
α β0 ), that

are adjacent in GR. Therefore, there is some s ∈ S, the symmetric generating set of

ΓR, so that s(
x y
α β ) = (

x0 y0
α β0 ). If s ∈ TR, then s = ( 1 t

0 1 ) and

s(
x y
α β ) = ( 1 t

0 1 )(
x y
α β )

= ( x+tα y+tβ
α β ).

But since β 6= β0, this cannot be equal to (
x0 y0
α β0 ).

Thus

s(
x y
α β ) = ( 0 −a

−a−1 0 )(
x y
α β )

= ( −aα y+−aβ0
−a−1x −a−1y ),

which gives (
x0 y0
α β0 ) = ( −aα −aβ

−a−1x −a−1y ). Thus (
x y
α β ) = ( −aα −aβ0α β ). Similarly, if ( x

′ y′

α β ) is

adjacent to (
x1 y1
α β1 ) then ( x

′ y′

α β ) = ( −aα −aβ1α β ). β0 6= β, so (
x y
α β ) 6= ( x

′ y′

α β ) and these

vertices are adjacent to the appropriate vertices in the statement of the lemma.

Note that the same argument deals with the center vertex so it does not need to be

addressed separately.

As a direct result of the decomposition and the lemmas above, we have the

following corollary. Note that GR is 1 + |tR|-regular (and G′R is |R|-regular).

Corollary 5.2.6. For R a finite commutative ring such that |R| is odd, Z(R) = ∅,

and |tR+ | ≥ 4, GR is Hamiltonian.

Proof. Let k = |GR|. Since G′R is Hamiltonian, there is a Hamilton cycle v1, ..., vk in

G′R. Let ei be the edge joining vi to vi+1 for 1 ≤ i ≤ k − 1 and let ek be the edge

joining vk to v1. Let {G(vi)}ki=1 denote the |R| vertices in GR that give rise to the
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vertex vi ∈ V (G′R). In other words, for φ : GR → G′R the usual mapping induced by

the quotient map, we have φ(v) = vi for any v ∈ G(v)i.

For every ei as above, there is a pair of vertices w2,i, w1,i+1 ∈ V (GR) that

are the endpoints of ei, where w2,i ∈ G(v)i and w1,i+1 ∈ G(v)i+1. Note that it is

understood that if i = k then w1,k+1 is w1,1 and G(v)i+1 is G(v)1. Therefore, for

each i there are vertices w1,i, w2,i ∈ G(v)i so that w1,i is adjacent to w2,i−1 and w2,i

is adjacent to w1,i+1.

Now φ(w1,i) = φ(w2,i) = vi, and vi is adjacent to vi−1 and vi+1. By the previ-

ous lemmas, there exist distinct vertices, which we label w1,i, w2,i, in the preimage of

vi so that w1,i is adjacent to some w2,i−1 in the preimage of vi−1, and w2,i is adjacent

to some w1,i+1 in the preimage of vi+1. Therefore we can assume that w1,i and w2,i

are distinct.

Since G(v)i is Hamilton connected, there is a Hamilton path Pi from w1,i to

w2,i in G(v)i. Thus we have a Hamilton cycle

w1,1P1w2,1

e1
− w1,2P2w2,2

e2
− ...

ek−1

− w1,kPkw2,k

ek
− w1,1

in GR.

5.3 - Isoperimetric number

Note that if |R| <∞ and Z(R) = ∅, then V (G′R) = V (CR).

If |R×| ≡ 0 mod 4, then CR can be decomposed into two sets S and S ′, each

with |R×|
4

copies of H(α).

As there are 2|R| edges between any two distinct H(α)s, then there are 2|R||R×|
4

edges from one H(α) in S and all the other H(α)s in S ′. Thus there are 2|R|( |R
×|
4

)2

edges between S and S ′. There are |R| + 1 vertices in each H(α), so there are
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|R×|
4

(|R|+ 1) vertices in S. So we have

h(G′R) ≤ |∂S|
|S|

=
2|R|( |R

×|
4

)2

|R×|
4

(|R|+ 1)

=
|R|(|R×|

2(|R|+ 1)
.

As |NR| = |R|, there are |R| vertices in GR for each vertex in G′R, so we get

h(GR) ≤ |R×|
2(|R|+ 1)

.

If |R×| ≡ 2 (mod 4), then CR can be decomposed into two sets S and S ′,

where S has
|R×|

2
−1

2
= |R×|

4
− 1

2
copies of H(α) and S ′ has

|R×|
2

+ 1

2
=
|R×|

4
+

1

2

copies of H(α). Thus S has

(|R|+ 1)(
|R×|

4
− 1

2
)

vertices. As argued above, there are

2|R|( |R
×|

4
− 1

2
)(
|R×|

4
+

1

2
) = 2|R|(( |R

×|
4

)2 − 1

4
)

edges between S and S ′. Thus

h(GR) ≤ |∂S|
|S|

35



=
2|R|(( |R

×|
4

)2 − 1
4
)

(|R|+ 1)( |R
×|
4
− 1

2
)

=
|R|(|R×|+ 2)

2(|R|+ 1)

and so h(GR) ≤ |R×|+2
2(|R|+1)

.

Corollary 5.3.1. Let |R| <∞ and Z(R) = ∅. Then

h(GR) ≤


|R×|

2(|R|+1)
|R×| ≡ 0 (mod 4)

|R×|+2
2(|R|+1)

|R×| ≡ 2 (mod 4).

Note that this only holds in general for rings without zero divisors; rings

where Z(R) 6= Ø have to be examined on a case-by-case basis.
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CHAPTER 6

INTERESTING EXAMPLES

One ring we might want to study is the ring of integers modulo an odd prime

p - a ring without zero divisors. Let R = Zp, for odd prime p. By Corollary 5.3.1,

the isoperimetric number is bounded as follows:

h(GR) ≤


p−1

2(p+1)
p ≡ 1 (mod 4)

p+1
2(p+1)

p ≡ 3 (mod 4).

In either case, h(GR) ≤ 1
2
.

We are also able to show Hamiltonicity for this ring. Let SR = {( 0 1
−1 0 ), ( 1 ±1

0 1 ), ( 1 ±2
0 1 )},

a generating set for PSL(2,Zp). We have the Cayley graph G(PSL2(Zp), SR) is

Hamiltonian by Corollary 5.2.6.

As an example of a ring for which we can show Hadwiger’s conjecture, let

R = Zn and let SR = {( 0 1
−1 0 ), ( 1 ±1

0 1 ), ( 1 ±2
0 1 )}, a generating set for PSL(2,Zn).

When

|Z×n | ≥ 2|SR|

= 10,

so n
∏
p|n

(
1− 1

p

)
≥ 10, then Hadwiger’s conjecture holds for G(PSL(2,Zn), SR) by

Theorem 5.1.2.
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