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The short-term effects of manganese toxicity on ribulose 1,5 bisphosphate

carboxylase (Rubisco) activity and concentration in tobacco chloroplasts were examined.

The activity of the enzyme from both manganese-treated and control plants was

determined 6, 12, 18, 24 , and 48 h after introduction of manganese (80 mg/Li. Enzyme

activity was determined by monitoring rates of radioactive CO2 fixation into acid stable

products. A slight stimulation of the enzyme's activity was noted in experimental plants

after 18 h of exposure to manganese as compared with control plants. A decrease in the

enzyme's activity in experimental plants was noted after 48 h of exposure. Visible

symptoms such as chlorosis and decreased leaf size were also observed after 48 h of

manganese exposure in experimental plants. Using Rocket Immunoelectrophoresis, no

appreciable difference between Rubisco concentration levels of the experimental plants

and the control plants was noted after 6, 12, 18, 24, and 48 h of manganese exposure

indicating that the effect on Rubisco activity is a post-translational phenomenon and that

Rubisco is not being degraded at an accelerated rate. Even after 7 d of exposure to high

manganese concentrations, when visible symptoms such as chlorosis and necrotic lesions

were very evident, the level of Rubisco in the manganese-treated plants varied little from

the levels in the control plants. Manganese accumulated in the experimental plants to

concentrations as high as 3282 mg,/g dry wt as determined by atomic absorption

spectrophotometry. A shuttling mechanism for manganese between young and old leaves

V i i



wa, indicated by an observed decrease in the concentration of manganese in the young

leaf tissue between 12 and 18 h after treatment .
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INTRODUCTION AND LITERATURE REVIEW

Manganese is a widely distributed element which is essential to plant systems. It

serves as a transfer agent in photosystem II, the oxygen evolution system of photosynthesis

(Packham and Barber, 1984). In addition, manganese is important in the proper

functioning of enzymes such as catalase, peroxidases, and superoxide dismutase (Leidi et

al., 1987). Recently it has been speculated that a manganeselpyridoxal phosphate system

in the presence of peroxide and phenol may be important in the oxidative decarboxylation

of amino acids (Smith and Marshall, 1988). Thus a certain amount of manganese is

necessary for plant growth and proliferation. When manganese concentrations become

greater than the desired optimal level, deleterious effects may result . This condition is

known as manganese toxicity (Sigel, 1986.) As industrial technology develops, numerous

conditions could result in increased manganese in soils including acid rain (Foy et al.,

1978; Rechcigl et al., 1987), and the use of industrial and private sewage on agricultural

land as fertilizer. This sludge can increase the manganese in the soil to concentrations

exceeding 700 mg/kg, a level which produces toxic effects in plants (Hue et al., 1988). As a

result, decreased dry matter accumulations were observed in field grown burley tobacco

as Mn concentrations increased. These decreased accumulations occurred when Mn

concentrations reached about 400 µg/g, a concentration which would not result in the

visible symptoms associated with manganese toxicity (Miner and Sims, 1983).

The visible symptoms of manganese toxicity vary and may be observed as early as

24 h after contamination (Nable et al., 1988). These symptoms include necrotic spots in

barley (Rechcigl et al., 1987) and lettuce leaves (Ohki, 1984), puckering, distortion of

leaves, mottled chlorosis and necrotic lesions in cotton (Foy et al., 1978; Sirkar and Amin,

1974). Brown spots, chlorosis, and leaf shedding are characteristic symptoms of

manganese toxicity in cowpea (Horst, 1983; Wissemeier and Horst, 1987i Similar



symptoms are seen in soybeans and wheat such as crinkle leaf and necrotic spots (Heenan

and Campbell, 1981; Rutty et al., 1979.) In tobacco, chlorosis leads to necrotic lesions.

Toxicity is usually seen in the young leaves first and affects the lamina of the leaves

before affecting the midvein. Reduced yields may result from manganese toxicity in

tobacco (Ohki, 1984; Rufty et al., 1979).

Manganese is normally present in the soil at levels between 5C0-900 mgikg.

Manganese in the divalent form is most accessible to plants (Sigel, 1986). Low pH and

flooding conditions facilitate the reduction of Mn+4 and Mn+3 to the available divalent

form (Patrick and Turner, 1968; Sigel, 1)861. There is evidence that a plant's ability to

tolerate wet soil conditions coincides ‘,..ith the plant's tolerance of excess manganese. The

tolerance of rice, for example, is attributed to the ability of rice roots to oxidize manganese

and limit concentrations of the accessible divalent form. In more alkaline pH conditions,

microbial reduction of manganese to the divalent form also produces an environment

favorable for manganese toxicity (Foy et al., 1978.) 

In addition to the availability of manganese, other factors influence manganese

toxicity. One factor is the genotypic differences between plants. Manganese tolerance in

cowpeas is more related to the genotypic variability within the species than the actual

concentration of the manganese available to the plant (Horst, 1983). Temperature is

another factor affecting manganese toxicity. Tobacco plants grown in warmer

temperatures were more tolerant to high tissue levels of manganese. This was attributed to

the increased rate of leaf expansion and vacuolar capacity in the warmer climate (Rufty et

al., 1979).

Though the actual biochemical mechanism of manganese toxicity in plants is not

fully understood, several ideas have been proposed. One hypothesis is that manganese,

because of its multiple oxidation states, may allow the thylakoid membrane to become more

permeable to 02 which could cause lipid peroxidation. This peroxidation would cause the

disorganization of membrane structure and the loss of photochemical activities (Panda et
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al., 1987). Another proposal is that excess manganese could cause indoleacetic acid

(auxin) to be destroyed (Foy et al., 1978; Ohki, 1984). Enzymatic activity changes were

noted when cotton plants were exposed to manganese concentrations between 81-200 mg/I...

First, manganese accumulated in the leaf tissue. After this accumulation, a rise in

respiration was noted followed by the stimulation of polyphenoloxidase. It was at this point

that the first visible symptoms of manganese toxicity were observed in the cotton plants.

After this series of changes, it was noted that ethylene was evolved followed by the

stimulation of peroxidase activity. Severe symptoms of manganese toxicity appeared in

the cotton plants at this point. After the severe symptoms had become evident, terminal

oxidase activity and respiration both were noticeably depressed. The final morphological

changes which were observed were the abscission of the growing tip and the proliferation of

the stem tissue (Sirkar and Amin, 1974).

One of the most widely cited explanation of manganese toxicity is the inhibition 3f

other cations such as magnesium and iron, by manganese absorption. Because

manganese and magnesium are both divalent ions and are of similar atomic radii, the

decrease of magnesium has been attributed to ion absorption competition. Since chlorosis

is not only a symptom of manganese toxicity but is also a symptom of magnesium

deficiency, this proposal is widely accepted (Allen and Robinson, 1980; Heenan and

Campbell, 1981). Manganese may block the access of the iron ions to the functional sites of

the magnesium branch of the tetrapyrrol synthesis pathway. Because of this blockage, iron

deficiency may result (Csatorday et al., 1984). Disagreement with this hypothesis was

registered in a study of tobacco which found only a 25% decline in iron levels relative to

controls in plants on which manganese treatments were conducted. Concentrations of

iron remaining in the plant still remained greater than the amount required for the

maximal growth of tobacco leaves. Iron requiring enzymes such as catalase, peroxidase,

and respiratory complex enzymes were not greatly affected throughout the development of

manganese toxicity (Nable et al., 1988).



4

In the phytoene biosynthesis system, geranylgeranyl pyrophosphate (GPP) was

diminished with increasing amounts of manganese. Since GPP is an intermediate in

gibbereilic acid synthesis, growth reductions could occur with toxic levels of manganese

(Clairmont et al., 1986; Wilkinson and Ohki, 1988.) 

Another proposal for the mechanism of manganese toxicity is that manganese

affects photosynthesis. Since manganese is required for isoprenoid synthesis which

produces many of the essential elements of photosynthesis such as carotenoids, chlorophyll

and sterols, an excess of manganese could have a detrimental affect on the production of

these compounds. Increased production of polypheno)oxidase activity could inhibit

photosynthesis. If reduced polyphenoloxidase leaked through a ruptured tonoplast, the

phenolics produced could inhibit photosynthesis (Noble et al., 1988).

A photosynthetic enzyme which has been studied in regard to its reaction to

manganese toxicity is ribulose 1, 5 bisphosphate carboxylase / oxygenase (Rubisco). This

enzyme was called Fraction I protein due to its electrophoretic homogeneity by Wildman

and Bonner who found it to be the major protein constituent of green leaves (Wildman and

Bonner, 1947). Since that time it has been shown that the enzyme catalyzed the initial steps

in both the carbon reduction cycle of photosynthesis and the oxygenation of ribulose

bisphosphate in photorespiration (Chapman et al., 1986; Lundquist and Schneider, 1989).

The Rubisco molecule is shaped like a barrel and is composed of 16 subunits, 8

large and 8 small. A fourfold molecular axis runs down a central aqueous channel

Chapman et al., 1986). The functional unit of carboxylase activity is a dimer of large

subunits. The active site is located in the parallel alpha/beta barrel domain (Lundquist

and Schneider, 1989). The height of the molecule is 10.5 nm and the diameter at the widest

point is approximately 13.2 nm (Chapman et al., 1986). The sequence of the small subunit

(ssu) is composed of 145 amino acids containing only three cysteine molecules per subunit

The ssu also contains a high proportion of aromatic residues, a core of four antiparallel

beta- strands, and three alpha-helices. The large subunit (/su) is composed of 475 amino
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acids (Knight et al., 1989). In higher plants the /su and ssu are coded for by the respective

genes rbcl and rbcs which are located in different subceilular compartments. The rbcl is

transcribed and translated in the chloroplast yielding the 53-kDa polypeptide The rbcs is

encoded in the nucleus, transcf ibed into a 20-kDa precursor polypeptide which must be

transported into the chloroplast, a process requiring a transit peptide. The mature ssu

contains highly conserved sequences of 16 amino acids which may constitute the domains

needed to facilitate the assembly of the holoenzyme (Wasmann et at., 1989).

In order for the carboxylation and oxygenation reactions to occur, the enzyme must

be activated. First the epsilon-amino group of a conserved lysine side chain must react

with a carbon dioxide molecule forming a carbamate. This carbamate is stabilized by a

Mg+2 ion. The ternary complex consisting of the enzyme-009-Mg+2 is now activated and

ready to catalyze both the oxygenation and carboxylation of ribulose bisphosphate. The

better understood carboxylation reaction consists of three distinct partial reactions. The

first partial reaction is the enolization of ribulose bisphosphate followed by the hydrolysis

of the stable six carbon intermediate, 2-carboxy-3-keto-D-arabinitol 1,5 bisphosphate.

These two initial reactions are both catalyzed by the activated Rubisco enzyme. The third

reaction is the decarboxylation of the six carbon intermediate which leads to the enediolate

form of ribulose 1,5 bisphosphate. This third step which is catalyzed by the nonactivated

enzyme is mechanistically different from the true reverse reaction of the carboxylation

step. The third reaction differs from the true reverse carboxylatior. step in that it lacks both

a metal ion and a carbamate and in that it can be inhibited by a transition state analogue,

2-carboxy-D-arabinito1-1,5 bisphosphate. Since in the activated enzyme the 2-carboxyl

group is ligated with a metal ion, the metal seems to play an integral role in catalysis. In

fact, x-ray crystallographic studies of Rubisco and its transition state analogue indicate

that the metal not only is essential for catalysis, but it may also play a role in the proper

positioning of the substrate lLundquist and Schneider, 1989).

Stromal protein-protein interactions may exist between Rubisco and
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phosphoribulokinase. This enzyme has been found to copurify with Rubisco unless treated

with high salt concentrations. This binding specificity between the kinase and the

carboxylase showed enhanced stability during catalysis and could have some kinetic

benefits tc the carboxylation reaction (Sainis et al., 1989).

Since Rubisco is an abundant enzyme comprising 65% of the soluble leaf protein

(Salvucci et at., 1986), and because of its importance in photosynthesis, it was chosen as the

object of study in the investigations of the short-term effects of manganese toxicity on

tobacco chloroplasts. Both enzyme activity and enzyme concentrations in tobacco tissue

were measured and compared.



MATERIALS AND METHODS

Plant Growth Condition

Stcotiana tabacum plants, variety KY 17, were grown from seeds in a growth

chamber for 85-95 d on a 12/12 h light/dark photoperiod. Plants were then transplanted into

individual pots to allow for root expansion. After 2 wk, thc roots of the plants were washed

to remove soil and the plants were transferred to tubs each containing 8 L of one-half

strength Hoagland's solution (Hoagland and Arnon, 1950) which was aerated. Plants

were allowed to adjust to the hypotonic solution for 7 d. After this time, 80 trig/L Mn as

MnC12•4H20 was introduced into the experimental tub. The photoperiod was then adjusted

to 24 h of continuous light. The maintenance of activated Rubisco requires constant light

( Portis et al.. 1987)

Sampling:

Leaf samples were taken primarily from the young leaves at 6, 12, 18, 24, and 48 h

after treatment with manganese The leaves were analyzed for Rubisco activity, Rubisco

concentration, total protein content, and manganese concentration at these time intervals

both in control and experimental plants

Rubisco Activity:

Rubisco activity was determined by a modified radioactive isotope technique

(Boon-Long 1980; Johnson et al., 1974; and Laing, et al., 1975). Leaf material (0.4 g) was

macerated in 5 mL of extraction media l50mM Hepes, pH 8.1, 10 mM MgCl, 5 mM D-

isoascorbate, 0.25 mM Na2EDTA, 5 niNI Dithiothreotol (DTT), and 0.025 m111 polyvinyl-

pyrrolidone (PVP)I and centrifuged in a Beckman Centrifuge at 17,000 x g for 20 min at

2-3 °C. One mI, of assay media I 50mM Hepes, pH 8.1, 5mM MgCl, 3 mM DTT, 0.1 mM

7
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Na2E1YrA, 0.1 mM ribulose 1,5 bisphosphate (RUBP), 0.1 mM Nall14CO3, and 2.4 mM

NaHC031 was added to a scintillation vial and incubated for exactly 4 min at 25°C. The

reaction was initiated by the addition of 0.1 niL of cold crude enzyme extract and incubated

3 min. The reaction was stopped by the addition of 0.1 mL of 6N acetic acid. All samples,

assayed in triplicate, were then allowed to air dry overnight in a hood to remove the excess

14CO2 which was not fixed into acid stable 3-phosphoglycerate (PGA). The contents of the

vials were then redissolved in 1 mL of deionized water and vortexed. After the addition of

10 mL of scintillation cocktail (18 mM 2,5-diphenyloxazole, 0.26 mM 1,4-bis15-phenyl 1-2-

oxazoly 11-benzene, 33% Triton X-100, 68% toluene), the radioactivity was determined by a

Packard Liquid Scintillation Counter .

Protein Analysis:

Protein determinations were performed using Biorad (Biorad Laboratories)

protein reagent concentrate diluted 1.5 (dye to deionized water). Bovine serum albumin

(BSA) was used as a standard protein (range of 0 to 200 lig proteinimL). One mL of diluted

Biorad solution was added to 50µ1., of sample and the absorbance monitored at 595 nm

using a Shimadzu Research Spectrophotometer. This protein method uses the phenomenon

that Coomassie Brilliant Blue G-250 dye absorbs maximally at 465 nm. When the dye is

bound to protein, however, the maximal adsorption of the dye shifts to 595 nm. The method

is sensitive and has fewer interferences than the more complicated Lowry method c Bell

and Bell, 1988).

Rubiseo Purification:

Rubisco was purified from tobacco by a modified procedure by Salvucci (Salvucci et

al., 1986). Three hundred g of tobacco lamina with the mid-ribs removed were

homogenized in 600 mL of extraction buffer (50 rn111 Tris-HCL pH 7.6, 20mM MgCl, 20

mM NaHCO3, 0.1 mM EDTA, 10 mM Drr, 1% casein, 2% PVP, 10% glycerol) with a
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chilled blender. The slurry was filtered through 8 layers of cheesecloth and 1 layer of

miracloth which had been prerinsed with deionized water and chilled. The filtrate was

then centrifuged at 9486 x g for 20 min in large screw-top centrifuge containers. The

supernatant was decanted and the extraneous protein was precipitated out by bringing the

salt concentration to 40% by the addition of saturated ammonium sulfate. The solution

again was centrifuged at 9486 x g for 20 min. The supernatant was brought to 60%

ammonium sulfate to precipitate Rubisco. Again the mixture was centrifuged at 9486 x g

for 20 min. The pellet was dissolved in 20 mL of Sephacryl buffer 100mM Tris-HCL pH

7.6, 20mM MgCl, 20 mM NaHCO3, 0.1 mM EDTA, 50 m111 2-methanol). The redissolved

pooled pellets were then ultracentrifuged for 1 h at 45000 x g at 4°C. The clarified

resuspended pellet was then loaded onto a Sephacryl S-300 (330 m1.4 column with a flow rate

of 0.3 mIlmin. Protein was monitored at 280 nm using an ISCO VA-5LN monitor with a 5

mm HPLC flow cell. One mL fractions were collected with an ISCO FOXY fraction

collector. Fractions from tubes 14-18 were pooled and an estimation of the protein content

was accomplished based on absorption at 280 nm. Additional purification of the enzyme

was carried out by ion-exchange Fast Protein Liquid Chromotography on a Mono Q

column. Ten mg of protein was loaded via a 10 mL superloop and protein was eluted with a

KCI gradient. The elutant was again collected by the fraction collector and monitored at

280 nm. The tubes containing the Rubisco were pooled, brought to 60% ammonium sulfate

saturation and allowed to settle. The Rubisco slurry was then dropwise added to liquid

nitrogen to form pearls ' These were stored at -800C.

To use the purified Rubisco from tobacco, a "pearl was thawed and desalted with

G-50 Sephadex column chromatography. The Rubisco was placed directly on the G-50

column and eluted using Immunoelectrophoretic Tricine IV Buffer, pH 8.6.
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Rub isco Concentration:

Tobacco leaf lamina (0 4 g) was ground in 500 µL of extraction buffer (25 mM

Hepes pii 7.5, 1 niM EDTA, 5 niM isoascorbate, 4 niM DTT) and microfuged (12000 x g) for

1.5 min to remove membrane fragments. Specific rabbit antibodies made to the

holoenzyme were obtained from Cocalico Biological Inc. of Reanstown, Pennsylvania.

Fifty ILL of the antibody were incorporated into a 1% agarose gel (2 Biorad agarose

immunoelectrophoretic tablets in 10 ml of Immunoelectrophoretic Tricine IV Buffer, pH

8.6) which was poured onto FMC GelBond agarose gel support medium. As the enzyme

migrated in the electric field through the gel, it came into contact with the antibody. An

antigen/antibody complex was formed in the shape of an ascending rocket. The height of

the rocket was proportional to the amount of antigen placed in the well (Laurel! and

McKay, 1981). Immunoelectrophoresis Tricine IV Buffer. pH 8.6 was wicked onto the gel

using Whatman #1 filter paper. Electrophoresis was run for 30 min at 35 V and then for 16

hat 80 V.

The gels were then pressed under Whatman #4 filter paper for 30 min, dried with a

hair dryer, and stained for 15 min with Coomassie Blue Stain (1.0 g coornassie brilliant

blue stain, 10 mL glacial acetic acid, 160 mL ethanol diluted to a L with deionized H20).

After soaking the gels .n destainer (10 mL glacial acetic acid, 160 mL ethanol diluted to a

L with deionized 1120) for 10 min, the gels were allowed to air dry.

Manganese concentrations:

Dried leaf material (0.1 g) was placed in a 25 mL Erlenmeyer flask. After adding 5

mL of 9:1 (v/v) nitric/perchloric acid solution, the samples were allowed to reflux for 12 h,

after which they were evaporated to dryness. The ashed material was redissolved in 5 mi.

of 1N HC1 and analyzed on a Perkin Elmer Atomic Absorption Spectrophotometer for

manganese concentrations.



RESULTS AND DISCUSSION

When Rubisco activities of control plants were compared with those which had been

exposed to manganese (80 mg/L), there was little difference between the two activities at 6

and 12 h after treatment (See Table I and Fig. 1). However, 18 h after treatment the

activities of the experimental plants were slightly but consistently higher than the control

plants. Twenty-four h after contamination, the activities of control and experimental

plants were approximately equal Rubisco activities in Mn treated plants were lower than

the corresponding control plants after 48 h. These differences were not substantiated

statistically, however, when subjected to a Student's t test (Steele and Tome, 1980). These

trends were maintained when Rubisco activities were calculated on a protein basis (See

Table II and Fig. 2) using the Biorad protein technique previously described. When the

data for the protein based activities were analyzed statistically, significant differences

were noted at a confidence level of 0.05. After 6 h of exposure to manganese, the control was

significantly higher than the manganese-treated plant. After 12 and 18 h the manganese

treated plants had Rubisco activities significantly higher than the control plants. Twenty-

four h after treatment, there was no significant difference between control and treated

plants. After 48 h of high manganese the control plants had Rubisco activities

significantly higher than the manganese-treated plants.

The trends for both the dry weight and the protein based activities of Rubisco from

this short-term study were different from those observed over long term exposure

experiments. Rubisco activity of tobacco chloroplasts treated with Mn was significantly

lower than controls after a period of 24 h. This decrease in activity continued upon further

exposure to Mn (Toman et al., 1984). The discrepancies for the 24 h time period could

simply be due to the varying response of different varieties of tobacco to Mr. toxicity.

II



Table I
Hubisco Activity Comparisons

(dry wt basis)

Time
(h) (# experiments)

Control

(mg CO2/g dry wt/h)
Manganese

(mg CO2/g dry wthi )
b 15 i 6.08 6.02
12 (14) 12.58 13.33
18 (15) 10.56 13.42
24 (16) 10.40 10.98
48 (12) 11.84 8.72

Rubisco Activity in Control and Manganese-Treated
Plants

1 4 — 14 15
1 2.

1 2 — 16

1 0
Rubisco

Activity mg
8 15

Control

CO24 dry wt/h 6
Manganese

4 —

2 —

6 h 12h 18h 24n 48h

Fig. 1: ltubisco activity in control and manganese treated plants. All values are
averages of the number of experiments shown above the bars.
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Table II
Rubisco Activity Comparisons

(protein basis)

Time
ih (# experiments)

Control
( g CO2,/µg protein/h)

Manganese
(ng CO211-ig Proteinih)

6 ( 15) 3.01 2.50
12 (13) 3.90 6.30
18 (15) 7.50 9.80
24 (13) 3.59 3.59
48 (12) 458 1.01

Rubisco Activity in Control and Manganese -Treated
Plants (Protein Basis)

1 0

8

15

12

Itubisco
Activity ng 6 —

13
• Control

CO2/mg
4

15
0 Manganeseprotein 

2

0

6h i2 n 18h 24h 48h

Fig. 2: Rubisco Activity per mg protein. All values are averages of the number of
experiments designated above the bar lines.
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However, it appears that manganese does not reduce the activity of Rubisco in the initial

time after treatment as was noted after longer exposures to manganese.

To insure that manganese was indeed being absorbed by experimental plants,

manganese determinations were performed. The manganese concentration in

experimental plants was much higher than that in control plants ( See Table III). However,

after 12 h of treatment, a decrease appeared in the manganese concentration as compared

to the concentration at 6 h. The concentration of manganese increased 387% between 12 and

24 h ( See Fig. 3). Some plants have the ability to compartmentalize metal ions to protect

themselves from possible interference of the ion with important cell processes. Other

plants may combat excess manganese by shuttling the metal from the rapidly growing

young leaves to the older leaves. The older leaves may then be shed, thus ridding the plant

of the excess manganese (Bingham et al., 1986). Since the younger leaves were general1y

used in analysis, the shuttling hypothesis could apply. To test this hypothesis, both young

and old leaves were sampled and the accuniulation of manganese in the tissue was

compared. The young leaves showed the characteristic decrease in concentration after 12

h, while the manganese concentration in the older leaves progressively increased (See

Table IV and Fig. 4). These results indicated that a shuttling mechanism may exist

between young and old leaves. Rubisco activity increases and decreases in light of the

fluxing manganese concentrations, pose an interesting hypothesis. The Rubisco activity

of the control and experimental plants seemed to be equal as long as the plant could combat

the problem by shuttling the manganese out of the young leaf tissue as seen in both the 6 and

12 h data (See Table V). As soon as the manganese concentration became too great for the

shuttling mechanism to control, there was a slight increase in the Rubisco activity. Then

as manganese continued to accumulate, the Rubisco activity leveled off and decreased as

compared to the control.

To examine the possibility that manganese affected the translation of the enzyme,

Rubisco concentrations were determined by rocket immunoelectrophoresis.
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Table ill
Manganese Concentrations in Young Leaves
(All values are averages of 26 experiments)

T i m e
( h )

Control
(Ligig dry wt)

Manganese
(µgig dry w t )

6 178 768
12 165 311
1%z 151 10n
24 173 1890
48 NA NA

2000

1 800

1 600

1 4 0 0
Manganese 1 2 0 0

Concentration 1 000
µgig dry wt 800

600

400

200

Manganese Concentrations in Young Leaves

6h 12 18 h 24 h

Fig. 3: Manganese concentrations (µg/g dry wt) in young leaves
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Table IN'
Manganese C'oneentrations in Young and Old Leaves

Time
(h )

Young Leaf
( ag g dr) m.t ,

Old Leaf
(pg g dr) NNt.)

6 525 322
12 504 661
18 1242 872
24 1906 1065
48 3282 2110 

J

Manganese Concentrations in Young and Old Leaves

Manganese
Concentrations

pglg dry wt

3500 —

3000 —

2500 —

2000 —

1 500 —

1 000 *-

500 •

6h 12h 18h 24h 4 8 h

-6- Young Leaves

-a- Old Leaves

Fig. 4: Comparison of manganese concentrations (ag/g dry wt) in young and old
leaves.
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Table V
The Average Itubisoo Activity of Control and Manganese-treated Plants Compared With

the Concentnition of Mn Accumulated in the Young Leaves

Time
(h)

Control

(mg CO2/g dry wt/h)(mg
Manganese
CO2/g dry wt/h)

Young Leaf
(peg dry ‘vt)

6 6.08 6.02 52.5

12 12.58 13.33 504

IS 10.56 13.42 1242

24 10.40 10.98 1906

11.8448  8.78 3282
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This method is made specific for Rubisco by placing an antibody to the enzyme in the

agarose gel. The buffer must be wicked to the gel during this procedure so as not to

solubilize the antibody in the buffer. By utilizing known amounts of Rubisco along with

the unknown samples, a standard curve may be plotted and used to determine the enzyme

concentration in the tobacco plant tissue (See Fig.5). A standard curve was determined for

each rocket immunoelectrophoretic assay. However, since the antibody in the gel must be

specific for tobacco Rubisco, the enzyme must first pe purified from tobacco plants to be

used as standards in the electrophoretic technique as well as to make the specific antibody

against the enzyme. This purification was done by Fast Protein Liquid Chromatography

(FPLC) which is similar to High Performance Liquid Chromatography in that pumps are

used to pass a substance through an ion exchange column. In FPLC all of the columns,

pumps, and other components that may come into contact with the protein are made of glass

so as not to interfere with the activity of the protein being purified. The FPLC system may

also be effectively utilized at cool temperatures which facilitates the maintenance of an

enzyme's activity (Salvucci et al., 1986).

When Rubisco concentrations in the control were compared with concentrations in

the experimental plants See Fig. 6), no significant differences were noted as determined

by the Student's t Test . In fact, the concentrations of Rubisco were almost identical

between control and Mn treated plants for 6. 12, 18, 24, and 48 h. These results indicated

that manganese affected the activity of the enzyme and not the actual production of the

enzyme. Therefore translational or pretranslational processes of Rubisco production are

likely not affected. These results also indicate that the degredation of Ruhisco is not

enhanced. One would expect to eventually see a decline in the Rubisco concentration after

increased exposure to manganese, because of the appearance of the visible symptoms which

indicate that the metabolic reactions within the plant are being affected. But even after 7 d

of exposure to manganese toxicity, when the visual symptoms are very evident, the Rubisco



I 0

Rocket Immunoelectrophoresis Standard Curve

3 .5

3 —

2 5 —

ran

Height cm
1 5 —

(3.15

•

0 0. 1 3 0.34 0.55

1.4 Rubiseo

Fig. 5: Standard curve for Rubisco concentration assay.



Rubisco Concentration Comparisons as Determined by
Rocket Inununoelectrophoresis

200

150

12
14

Rubisco 14
14

11 Control
Concentration 100

lig protein 0 Manganese

50

0

6h 12h 18h 24h 48h

Fig. 6: Rubisco concentration (pg protein) in manganese treated and control plants.
All values represent averages of the number of experiments designated above the bar

lines.

Rubisco Concentrations After 7 Days of Manganese
Treatment

1 0 0

80

Rubisco 60
Concentrations

pg protein 4 0

20

0

—

—

—

—

—

Control Manganese

a Control

0 Manganese

Fig. 7: Rubisco concentrations G.g protein) in control and manganese treated
plants after 7 days. All values are averages of 14 experiments.
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levels between the control and experimental plun,s remain relatively similar ( See Fig. 7).

Thus the marked decline in Rubisco activity after prolonged manganese exposure cannot

be attributed to a decrease in the production of or increase in the degredation of the enzyme

protein.

To explore other possible explanations for the proposed stimulation of Rubisco

activity after 18 h of contamination and the more substantiated decline in activity after

48 h, one must consider the role of the metal ion in the activity of the enzyme. A divalent

metal ion, usually Mg+2, is required to form the active enzyme-0O2-Mg+2 complex of

Rubisco (Pierce and Reddy, 1986). The activating CO2 binds to the epsilon-amino group of

lys-201 of the large subunit. The carbamate that is formed is stabilized by Mg+2 (Yokota

and Kitaoka., 1989; Lorimer et al , 1989.) The complex may then catalyze either the

carboxylation or the oxygenation of ribulose 1,5 bisphospate (RUBP) (Pierce and Reddy,

1986). Since Mg +2 and Mn+2 are both divalent and of similar atomic radii ( Mg+2 ionic

radius = 0.072 nm, Mn+2 ionic radius = 0.083 rim) and since Rubisco has a greater affinity

for manganese than magnesium, manganese could substitute for magnesium in the active

enzyme (Bingham et al., 1986; Houtz et al., 1988). When a series of metals were used to

activate the enzyme, only Mg+2 and Mn+2 allowed for the catalysis of both the carboxylase

and the oxygenase reactions of RUBY. However, the ratio of oxygenase to carboxylase

activities was increased by the substitution of Mn+2 for Mg+2 (Pierce, 1986). This increase

occurred because when the quaternary complex was formed with Mn+2 instead of Mg+2

lenzyme-0O2-Mn+2-carboxyarabinitol bisphosphate (CABP)I, an exceedingly stable,

tightly bound analogue of the carboxylated reaction intermediate was formed preventing a

quick reaction between the bound RUBP and the active site (Pierce and Reddy, 1986;

Lorimer et al., 1989). The resonance of the Mn+2 bound CABP and the carbamate

molecules was obliterated as determined by Nuclear Magnetic Resonance (NMR). The

loss of resonance was caused by the strong relaxation effects of the paramagnetic ion on the

phosphorus atoms of ("ABP (Pierce, 1986/



The metal ion may also play a role in determining the relative substrate

specificity of the enzyme (Pierce, 1988). Interactions of the divalent metal ion with the

carbonyl group of the substrate would assist the placement of the substrate correctly in the

catalytic site. Polarization of the carbonyl group by the metal icn could form an enediol by

extracting a proton. Then the CO2 or 02 could react with the enediol consistently with the

normal proposed kinetic pathway of the enzyme (Lorimer et al., 1989). Thus, substituting

metal ions could alter the placement of the substrate in the active site. This substitution

could enhance or decrease the reactivity of the enzyme based on the orientation in which the

substrate was placed.

Kinetically, the enzyme is much more efficient when magnesium is used. For

example, the ratio of Vmax/Km values, which is highly dependent on the nature of the

activating metal, has a value of 80 in spinach with Mg+2 used as the activating ion, and a

value of 3 when Mn +2 is used as the activating ion (Pierce, 1986). Therefore, when

manganese bombards the plant's system, a substitution would decrease the kinetics of the

carboxylase reaction thus lending insight to a possible explanation for the decrease in

Rubisco activity after 48 h.

However, electron spin resonance studies suggested that Mn+2 could have a direct

role in the catalysis of RUBP carboxylation. Chemically, a M 2 coordinated to the

negatively charged acid would cause stabilization since it would serve as an electron sink

( Miziorko and Sealy, 1984). If this is true, when the manganese first bombards the plant

system after 18 h, the manganese could briefly enhance the carboxylation reaction.

Though Rubisco is known to have a potent nocturnal inhibitor, 2-

carboxyarabinitol-1-phosphate, it has not been shown to be stimulated by manganese (Beck

et al., 1989.) Thus stimulation of the Rubisco inhibitor by manganese to decrease the

enzyme's activity is unlikely.

The discovery of Rubisco Activase suggests another hypothesis for the effect of

manganese on Rubisco activity. In most plants the activated Rubisco spontaneously forms
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the carbamylated enzyme upon the addition of CO2 and Mg+2 (Werneke et at., 1988).

However, in 1982 a mutant strain of Arabidopsis did not maintain active Rubisco at

atmospheric levels of CO2. This strain was missing the soluble, chloroplast protein.

Activase (Portis et at., 1987). Activase is thought to catalyze carbamylation, the

coordination of the carbamate to the active site by the metal ion. Carbamylation ratios may

be predicted by the activity ratios of Activase (Butz and Sharkey, 1989). Thus metal ion

substitution could greatly alter this process. This enzyme has not been characterized

sufficiently to substantiate this hypothesis.

Rubisco Activase in vitro was found to be dependent on ATP and is inhibited by

ADP. Thus it may be regulated by ATP concentrations within the chloroplast. The

Activase was labile and the ATPase activity required Mg+2. Manganese caused slight

stimulation of the ATPase activity which copurified with the Rubisce activase activity

(Robinson and Portis, 1989). Since Activase was intrinsically involved in Rubisco

activation and had a metal cofactor, the effects of manganese toxicity on Rubisco activity

could be attributed to the effects of manganese toxicity on Rubisco Activase.

Though the actual mechanism of manganese toxicity on plants may be a syndrome

instead of an isolated event, the effect on Rubisco activity probably plays a role in the

overall result of manganese toxicity. Because of its importance in photosynthesis, a

decline in Rubisco activity can cause a decline in the photosynthesis of a plant. The result

of this study indicated that the mechanism of manganese toxicity on Rubisco was not a

pretranslational or degredation event but may have involved cation substitution which

would lower the kinetics of the carboxylase reaction or alter the substrate specificity.

Rubisco Activase, an important enzyme in Rubisco activation, could also be affected by

high levels of manganese since it, too, has a metal cofactor. This concept needs

investigation. Whatever the mechanism may be, the plant attempts to combat the

manganese toxicity by shuttling the ion to the older leaves away from the young growing
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tissue. This shuttling mechanism, however, eventually is overcome and the inevitable

post-translational decline in Rubisco activity occurs.
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