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Vibratory communication has evolved in numerous animal groups, 

including insects, spiders, fishes, mammals, and was recently discovered in 

veiled chameleons (Chamaeleo calyptratus). I examined the mechanism by 

which C. calyptratus produce these biotremors. Muscle activity data were 

gathered during simulated anti-predator responses via electromyography (EMG) 

with simultaneous recordings of biotremor production using an accelerometer. I 

correlated EMG data with the accelerometer data to implicate the muscles 

responsible for the production of the biotremors. Mixed-effect linear regression 

models described the mechanism, and a model selection framework determined 

which model fit the data best. I then used an analysis of variance to partition the 

variance to each variable to determine which muscles were most important in the 

biotremor producing mechanism. The Mm. sternohyoideus superficialis et 

profundus, Mm. mandibulohyoideus, and M. levator scapulae were active during 

the production of biotremors. Mean latency calculations revealed that the M. 

levator scapulae and Mm. mandibulohyoideus activated prior to the vibration 

onset, and the Mm. sternohyoideus superficialis et profundus activated after the 

vibration onset. The M. sternohyoideus superficialis then ceased activity prior to 

vibration cessation, and the M. sternohyoideus profundus, Mm. 
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mandibulohyoideus, and M. levator scapulae ceased activity after the vibration 

had ended. The description of the biotremor producing mechanism further 

supports that C. calyptratus can produce biotremors, possibly for communication. 
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1 Introduction 

 
1.1 Animal Communication 
 

Animal communication is essential to the fitness of individuals, the 

success of populations, and the evolution of species (Endler 1993; Bass & Clark 

2003; Bradburry and Vehrencamp 2011; Searcy and Nowicki 2012). 

Communication mechanisms are shaped by the selective pressures of ecological 

niches, which include all biotic (intra- and interspecific interactions) and abiotic 

factors (e.g., temperature, transmission medium, geometry of reflective surfaces, 

and composition of boundaries) (Endler 1993; Bass & Clark 2003; Searcy and 

Nowicki 2012). The myriad mechanisms observed in nature are a result of these 

selective pressures. For example, vibratory communication of insects emerged 

from living on dense plant matter, which is highly conducive to the transduction of 

vibrations, for millions of years (Hill & Wessel 2016). Complex acoustic 

vocalizations of passerine birds developed for communication through the air and 

through densely populated forests and grasslands (Beckers 2011). Seismic 

communication allows elephants to communicate over long distances across the 

African savanna (O’Connell-Rodwell et al. 2001, O’Connell-Rodwell 2007).  

Vertebrate mechanisms of communication have specifically evolved for 

effective transmission of signals through Earth’s crust, water, plant substrate, and 

air (Endler 1993). Most mammals and some lizards employ the vibration of vocal 

cords, which is housed in the larynx, to produce a limited number of vocalizations 

(Raghavendra et al. 1987); whereas most birds utilize the syrinx, which can 
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produce a larger repertoire of songs (Fee et al. 1998; Smyth & Smith 2002; 

Elemans et al. 2003). Some fishes produce acoustic signals via muscles that 

vibrate the swim bladder (Fine et al. 2001), while others use pectoral spines to 

drum the swim bladder to produce sound (Fine et al. 1997). Certain species of 

herring also communicate via explosive expulsions of air from their anuses 

(Wilson et al. 2004). Many reptiles and amphibians lack vocal folds or a syrinx 

and are considered “silent.” However, frogs use arytenoid cartilage ridges of the 

trachea to modulate sound production (Given 1987), and some lizards have been 

documented hissing (Moore et al. 1991; Labra et al. 2007). Many of these 

strategies are well studied, but much remains to be understood about true 

vertebrate vibratory communication.  

True vibratory communication is defined by the use of biotremors to 

deliberately send information to an intended receiver to the benefit of both 

parties. Biotremors are vibrational signals that are transmitted through a solid 

substrate (e.g., plant matter, soil, etc.). Biotremors are produced as Rayleigh 

surface waves, which are a type of seismic surface wave that occur at a 

boundary between two distinct media where particles are oscillated both 

perpendicular and parallel to direction of the wave’s propagation (Hill & Wessel 

2016). Biotremors can be produced by the stridulation of an insect’s wing or the 

contraction of muscles, much like an acoustic signal is generated. However, the 

distinction between an acoustic signal and a biotremor is the medium through 

which the signal is transmitted, acoustic signals travel through the air and 

biotremors through a substrate. The only notable examples of true vibratory 
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communication are found in elephants, insects, and blind-subterranean mole rats 

(Heth et al. 1987; O’connell-Rodwell 2007; Hill & Wessel 2016). For example, 

elephants contract their laryngeal muscles to produce biotremors that travel 

through the ground and are received by fatty tissues on the bottom of the foot 

pads of other elephants (O’connell-Rodwell et al. 2001; O’connell-Rodwell 2007).  

There is also evidence from museum specimens that suggests some extinct 

amphibians were capable of vibratory communication, but may have only been 

capable of detecting vibrational signals not producing them (Hildebrand & 

Goslow 1985). 

The detection of vibrational signals from prey or predators (Hildebrand & 

Goslow 1985) and the production of biotremors as a defense mechanism do not 

constitute true communication because the information conveyed by these 

biotremors does not explicitly benefit the sender and receiver. These defense 

signals are often produced by prey species, and they are created with the same 

muscles or organs that are used to generate the signals for true communication. 

For example, many mammals, including primates and sciurid rodents, also 

produce defense signals using the same mechanism that is used in true 

communication (Macedonia & Evans 1993).  

Barnett et al. (1999) documented the use of biotremors (50-150 Hz), 

accompanied with an audible hoot, by Chamaeleo calyptratus during courtship, 

copulation, and territorial displays. C. calyptratus and ground-dwelling 

chameleons have also been documented producing biotremors as a defense 

mechanism (Barnett et al. 1999; Tolley & Herrel 2014). Ground-chameleons use 
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biotremors to shake off smaller insects (e.g., ants) that may prey on them, while 

also remaining in a cryptic state (Tolley & Herrel 2014). The ability to generate 

biotremors adds to the growing list of chameleon peculiarities.  

 

1.2 Chameleons 
 

Chameleons evolved in East Africa, and later colonized the Ethiopian, 

Palearctic, and Oriental geographic regions (Tolley & Herrel 2014). Currently, 

chameleons inhabit Africa (including Madagascar and the Seychelles), Southern 

Europe, the Southern Arabian Peninsula, and the Near East. A small number of 

species have also been introduced to Hawaii, California, and Florida (Tolley & 

Herrel 2014). Chameleons live in a wide range of environments within these 

geographical regions: the tropical rainforests of Madagascar, alpine grasslands 

of the Ugandan Ruwenzori Mountains, Ruwenzori Mountain forests of Ethiopia, 

savannahs and shrubby habitats, deserts, and semi-deserts (Tolley & Herrel 

2014).  

Chameleons have evolved many specialized characteristics, such as 

prehensile tails and fused, opposing digits for maneuvering in arboreal 

environments, turreted and independently moving eyes with negatively powered 

lenses for accommodation, ballistic tongues, chemically modulated prey-luring, 

and rapid physiological color change behaviors that all help make chameleons 

voracious predators (Measy et al. 2009; Huskey 2017). Many also possess a 

water-catching casque that collects water and funnels it to the mouth (Measy et 

al. 2009; Huskey 2017). Extreme sexual dimorphism is also observed in many 
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species. For example, in C. calyptratus, males are larger (mass, snout-vent 

length, etc.), have larger casques, possess spurs on their hind limbs, and 

possess a larger repertoire of colors (Tolley & Herrel 2014). Chameleon’s unique 

characteristics have made the most studied squamate (Tolley & Herrel 2014). 

However, research has yet to elucidate the many complexities of their behavior. 

For example, it has long been thought that chameleons only communicate via 

physiological changes in color, but, as previously mentioned, there is evidence 

that C. calyptratus use biotremors (Barnett et al. 1999) for intraspecific 

communication (i.e., courtship, territoriality, and mating) and interspecific 

communication (i.e., defense mechanism or distress signal). However, according 

to Tornier (1905) and further supported by Huskey (unpublished data), 

chameleons lack a syrinx and true functional vocal cords that are thought to be 

needed to facilitate biotremor production accompanied by a vocalization (audible 

hoots). Wever (1968, 1969a, 1969b) demonstrated that chameleons have 

reduced hearing due to the lack of an external ear (pinna) and tympanic 

membrane. However, Hartline (1971) has compared the auditory structures of 

chameleons to that of snakes and found that the structures are theoretically 

capable of detecting biotremors. The absence of a syrinx, vocal cords, and 

external ears (Wever 1968; Wever 1969a; Wever 1969b; Measey et al. 2009) 

paired with the theoretical ability to detect biotremors (Hartline 1971; Barnett et 

al. 1999) suggest an alternative mechanism of communication among C. 

calyptratus.  
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1.3 Biotremor Production 
 

Approximately 20 of the 200 species of chameleons (Glaw 2015) possess 

a gular pouch (Figure 1), an out-pocketing of the trachea housed ventrally and 

posteriorly to the lower jaw and superiorly to the hyoid retractor muscles (Huskey 

pers. obs.; Tornier 1905; Germershausen 1913). The gular pouch of each 

species has a unique morphology (Figure 2; Tornier 1905; Germershausen 

1913), but its function has yet to be determined. I examined activity of the Mm. 

mandibulohyoideus, M. sternohyoideus superficialis, and M. sternohyoideus 

profundus because of their close association with the gular pouch (Figure 3). I 

chose the Mm. levator scapulae due to observations by Barnett et al. (1999) that 

a head-click (a rapid side-to-side movement of the head) is observed with 

biotremors. I used the Mm. triceps as a control muscle. C. calyptratus produce 

biotremors as a defense mechanism, which provides a reliable and repeatable 

framework with which to elicit a biotremor from a chameleon.  

I hypothesized that the hyoid retractor muscles produce the biotremor, and 

the gular pouch acts as an amplifier of the biotremor to produce the audible hoot 

that was observed by Barnett et al. (1999). The biotremor producing mechanism 

is similar to the specialized sonic muscles surrounding the swim bladder of some 

fishes. It is theoretically possible to create a biotremor without the gular pouch 

(i.e., the defensive biotremors observed in C. calyptratus and ground-dwelling 

chameleons). However, the gular pouch may be necessary for the production of 

the audible hoot associated with the true communication observed by Barnett et 

al. (1999), but not necessary for the production of the biotremor itself. It is then 
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conceivable that the muscles responsible for producing biotremors in an 

antipredator context are the same that produce biotremors as a means of true 

communication.   

I used C. calyptratus because Barnett et al. (1999) demonstrated that 

biotremors are easily elicited from this species. I employed electromyography 

(EMG) and accelerometry to (1) correlate the electrical activity of the muscles 

with the biotremor, (2) determine the order of muscle activity during biotremor 

production, (3) establish the muscles responsible for biotremors, (4) elucidate 

which muscles play an important role in the duration of the biotremors, and (5) 

illuminate any sexual dimorphism present in the biotremor frequencies.  
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2 Materials and Methods  

2.1 Chameleon Housing and Care 

Chameleons were housed individually in large glass terrariums with heat 

lamps and ultraviolet (UV) light sources on a 12-hour day-night cycle. The cages 

were separated by an opaque partition to decrease or eliminate stress on the 

animals, as C. calyptratus are quite territorial. They were fed a diet of five, 

engorged crickets (fed a diet of sweet potatoes and cricket food) and watered 

three times a day by a MistKing Ultimate Misting System.  

 

2.2 Electrode Construction 
 

Bipolar hook electrodes were constructed with formvar-insulated nichrome 

wire (0.0020” bare and 0.0026” coated A-M Systems). Electrodes were 

comprised of two wires glued at their terminal ends with veterinary-grade 

cyanoacrylate. The wires were then threaded through a 27-gauge hypodermic 

needle. One millimeter of insulation was removed from the glued tips, and the 

wires bent away from each other in an arrowhead shape according to Anderson 

& Deban (2012). The constructed electrodes were autoclaved prior to surgery.  

 

2.3 Surgery 
 

The following protocol was approved by The University of South Dakota 

IACUC (AUP 17-12). Chameleons were anesthetized in an induction chamber 

with 5% isoflurane/1L O2/minute and then placed in a mask receiving the same 

concentration of isoflurane throughout the surgical procedure. The chameleon 
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was positioned on its left side on a stage under a dissecting microscope.  

Electrodes were then implanted, via a hypodermic needle, into the Mm. levator 

scapulae (Figure 4), M. sternohyoideus superficialis (Figure 5), M. 

sternohyoideus profundus (Figure 5), Mm. mandibulohyoideus (Figure 5), Mm. 

triceps control muscle (Figure 6), and under the skin as a reference (Figure 6), a 

baseline for measurement by other electrodes. Veterinary-grade cyanoacrylate 

was applied to the implantation site securing the electrodes in place. The 

electrode wires were held together using rubber cement, approximately five 

centimeters from their implantation site along the remaining length of the 

nichrome wire. As the individual fully recovered from anesthesia, one millimeter 

of insulation was removed from the end of the electrodes and soldered to a plug 

(Anderson & Deban 2012). The plug and accelerometer were attached to a 

differential amplifier and PowerLab16/35 (ADInstruments; Dunedin, New 

Zealand) to record EMG and accelerometry data in LabChart V8.1.6 

(ADInstruments; Dunedin, New Zealand).  

 
2.4 EMG and Accelerometry 
 

Chameleons were placed on a 12.7 mm-diameter wooden dowel after 

surgical recovery was complete, and the accelerometer was attached to their 

casque with beeswax (Figure 7). Biotremors were elicited in an antipredator 

context via the perceived physical threat of a syringe prodding the elbow. The 

forelimb that was not implanted with the control electrode was used to avoid any 

accidental stimulation of the implanted electrode in the Mm. triceps. This was 

repeated for six individuals, three males and three females. Chameleons were 
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then anesthetized after trials to surgically verify the integrity of electrode 

implantation.  

 
 
2.5 Statistical analysis 
 

The biotremors and EMG data were analyzed for correlation, latency to 

onset and offset (the time between muscle activation or cessation and biotremor 

production and termination), and effects of individual muscles or interactions 

between muscles on the duration of the biotremor. A total of 186 biotremors with 

corresponding EMG data were recorded from six individuals, three males and 

three females. Due to a limited number of test subjects, the experimental design 

of this project was such that repeated measures were taken from each individual. 

Therefore, these data do not satisfy the independence of observations 

assumptions of parametric analyses, so I included a random-effect parameter in 

my mixed effects linear models to account for all variation associated with the six 

individuals that were analyzed. Further, to account for violation of the normality 

assumption, I used a non-parametric resampling procedure for my comparison of 

frequencies between the sexes. The number of EMG recordings for each muscle 

is different due to the removal of electrodes by some individuals during some 

trials, which resulted in differing degrees of freedom (df) for all statistical 

analyses that incorporated all 186 observations of each muscle. An alpha value 

of 0.05 was used for all statistical analyses. 

The correlation analyses were performed using linear regressions of the 

biotremors and the muscle electrical activity. To correlate which muscles were 
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generally responsible for the biotremor, durations (seconds) were used. Peak 

amplitude of the electrical activity of the muscles and biotremors were regressed 

to determine which muscles were responsible for the peak amplitude of the 

biotremor. The regression of the peak amplitudes provided a more precise 

picture of which muscles are most responsible because it is a specific point in 

time during the biotremor, rather than an entire biotremor.  

Mixed-effect linear models were performed using the lme4 (Bates et al. 

2015) and car (Fox and Weisberg 2011) packages in R (R Core Team 2013). 

Mixed-effect linear models were created to describe which muscle contributed 

the most to the variation observed in the duration and peak amplitude of the 

biotremors. The model selection frameworks, Akaike’s Information Criterion 

(AIC), Corrected Akaike’s Information Criterion (AICc) and Bayesian Information 

Criterion (BIC), were used to evaluate how well each model explained the 

variation in the duration and time of peak activity in the biotremors. ‘Individual’ 

was included in the model as a random effect parameter to account for any 

variation attributed to the individuals, as there were repeated measures for all six 

individuals. The durations and peak amplitudes of the Mm. levator scapulae (LS), 

M. sternohyoideus superficialis (SH), M. sternohyoideus profundus (ST), and 

Mm. mandibulohyoideus (MH) were included as fixed-effect parameters in the 

models. An analysis of variance, using the lmerTest package (Kuznetsova et al. 

2017), partitioned the variance to each parameter to determine the most 

important muscles responsible for the change in the duration and the peak 

amplitude of the biotremors. Muscles were then removed from the model in a 
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step-wise manner to determine which muscles most influenced the variation in 

biotremor duration, or if a model with fewer parameters best explained the 

variation within the biotremors. Models that included less than three parameters 

or a single interaction between two parameters were less explanatory than the 

additive, full, and three parameter models, except for the single parameter model 

‘ST’ in the duration model comparisons. All other one and two parameter models 

were thus excluded from further analyses.  

To illuminate any sexual dimorphism of biotremor frequency, a non-

parametric resampling procedure was used in R to generate 10,000 random 

means calculated from the observed difference in means. Randomly generated 

means were used to create a normal distribution with which to compare our 

observed difference in means. This procedure was used because it is more 

conservative than parametric analyses, and it accounts for the non-normal 

distribution of the data.  
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3 Results 

3.1 Correlation of Muscular Electrical Activity and Biotremor Activity 
 

The durations of muscular electrical activity were correlated with the 

biotremor duration (Table 1; Figures 8-11). The M. sternohyoideus superficialis 

duration most strongly correlated (r2 = 0.9644; p = <0.001), the Mm. levator 

scapulae the least correlated (r2 = 0.5744; p = <0.001), and the Mm. triceps 

control was not correlated to biotremor duration (r2 = 0.0022; p = 0.24). The times 

of peak muscular amplitude were strongly correlated with the times of the peak 

biotremor amplitudes (Table 2; Figures 13-16), with the time of peak activity in 

the M. sternohyoideus superficialis most correlated with the times of the 

biotremor peak amplitudes (r2 = 0.9962; p = <0.001). The Mm. triceps durations 

were not associated with the biotremors (p = 0.24). The Mm. triceps activity was 

attributed to movement of the individuals during the prodding of the elbow.  

 

3.2 Mechanistic Description 

 The latencies to onset and offset of the muscles were calculated using the 

mean time of activation and cessation in relation to the biotremors. For latency to 

onset, negative numbers indicate activity before the biotremor activation, and 

conversely, for latency to offset, negative numbers indicate activity after 

biotremor cessation. The mean latencies to onset and offset are M. 

sternohyoideus superficialis (onset = 0.016 seconds and offset = 0.075 seconds), 

M. sternohyoideus profundus (onset = 0.014 seconds and offset = - 0.137 

second) Mm. mandibulohyoideus (onset = - 0.040 seconds and offset = - 0.011 
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seconds) M. levator scapulae (onset = - 0.196 seconds and offset = - 0.045 

seconds), and Mm. triceps (onset = 0.021 and offset = - 0.682).  

The calculated latency to onset and offset depict the mechanistic 

interactions of the muscles before, during, and after the biotremor (Figure 17). 

The M. levator scapulae and Mm. mandibulohyoideus activated prior to the 

biotremor onset, and the M. sternohyoideus profundus and M. sternohyoideus 

superficialis activated after the biotremor onset. The M. sternohyoideus 

superficialis then ceased activity prior to vibration cessation, and the M. 

sternohyoideus profundus, Mm. mandibulohyoideus, and M. levator scapulae 

ceased activity after the vibration had ended. 

Linear mixed-effect regression model comparisons (AIC/AICc/BIC) for 

biotremor duration indicate that model ‘ST’ best explains the observed variation 

in biotremor duration, when compared to all other models (Table 4). An analysis 

of variance of model ‘ST’ shows that the M. sternohyoideus profundus explains 

the most variation in the duration of the biotremor (p < 0.001; Table 5).  

Linear mixed-effect regression model comparisons (AIC/AICc/BIC) for peak 

amplitude of the biotremor indicate that model ‘No ST’ best explains the 

observed variation in biotremor peak amplitude, when compared to all other 

models (Table 6). An analysis of variance of model ‘No ST’ shows that the M. 

sternohyoideus superficialis explains the most variation in the peak amplitude of 

the biotremor (p < 0.001; Table 7). The Mm. mandibulohyoideus was also a 

significant contributor to the variation in peak amplitude (p = 0.02; Table 7).  
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3.3 Sexual Dimorphism 
 

As demonstrated in Table 9, the mean female biotremor frequency (153.96 

Hz) was significantly different (p <0.001; Figure 19) than the mean male 

biotremor frequency (132.58 Hz). An analysis of variance and post-hoc Tukey 

HSD test (Table 10) indicated that there was a significant difference between the 

biotremor frequencies of male one and male two (p <0.001), male two and male 

three (p = 0.02), but not between male one and male three (p = 0.29). Females 

were not significantly different. Figure 20 demonstrates that the difference in 

biotremor frequency observed in the males may be due to the size of the 

individuals.  
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4. Discussion 

 
4.1 Correlation of Biotremor and Muscles  
 

Chameleon biotremors have been cited in the literature and anecdotally 

reported by chameleon enthusiasts for decades (Brygoo 1971; Hillenius 1986; 

Tilbury 1992; Barnett et al. 1999). My results establish that the M. sternohyoideus 

superficialis, M. sternohyoideus profundus, Mm. mandibulohyoideus, and Mm. 

levator scapulae are responsible for the production of the biotremors in an 

antipredator response. This is demonstrated by linear regressions of durations 

and times of peak amplitudes (Figures 8-16; Tables 1-2), calculated latency to 

onset and offset, and linear mixed-effect regression models (Tables 4-7). 

These results have partially supported the hypotheses of Boka (2012) and 

Huskey (unpublished) that biotremors were produced by the muscles 

surrounding the trachea and gular pouch; however, the role of the gular pouch in 

this mechanism is not yet understood. It is possible that the gular pouch is only 

employed during biotremors that are used for intraspecific communication, where 

the gular pouch amplifies the biotremor and allows the signal to travel farther. 

The presence of audible hoots is the only tangible evidence for this amplification 

by the gular pouch. Since no audible hoots were heard during our trials, I 

hypothesize that the gular pouch is not used during antipredator biotremor 

production. Courtship, territoriality, and antipredator trials accompanied by EMG, 

accelerometry, and the possible use of multi–detector row computed tomography 

(Salto et al. 2003), which can create 3-D data sets from moving organs, are 

necessary to explicitly demonstrate that the gular pouch is involved in the 
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mechanism of biotremor production in these contexts. Further studies are also 

necessary to validate that the same muscles involved in an anti-predator 

response are employed in intraspecific communication. However, it is also 

conceivable that a different combination of muscles is involved in the production 

of biotremors for intraspecific communication.  

 

4.2 Mechanistic Description 
  

The latency to onset and offset data suggest that the M. levator scapulae 

is activated prior to the biotremor to lengthen the ventral hyoid muscles by 

drawing the head back. The Mm. mandibulohyoideus and M. sternohyoideus 

profundus are the supporting cast in the production of biotremors as they act 

antagonistically against one another. The M. sternohyoideus superficialis, which 

attaches to the caudal base of the hyoid bone, then contracts to produce a 

portion of the biotremor that results in its peak amplitude.  

The pattern of muscular contractions illustrated by the latency to onset 

data is further supported by our linear mixed-effect regression models for 

duration and peak amplitude. The model that best describes the variation in the 

duration of the biotremors was model ‘ST’, which included the M. sternohyoideus 

profundus, but did not include the Mm. levator scapulae, Mm. 

mandibulohyoideus, and M. sternohyoideus superficialis. The fact that the 

inclusion of the Mm. levator scapulae, Mm. mandibulohyoideus, and M. 

sternohyoideus superficialis in the additive model did not lead to an improvement 

in the model’s ability to explain the variation in the duration of the biotremors 
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suggests that they may have a more important role in the amplitude or frequency 

than duration. In other words, the Mm. levator scapulae, Mm. 

mandibulohyoideus, and M. sternohyoideus superficialis contribute in no 

substantial way to variation in timing of the biotremor, and thus contribute little to 

the changes in biotremor duration in comparison to the M. sternohyoideus 

profundus.  

The importance of the M. sternohyoideus superficialis is supported by our 

linear mixed-effect regression models that describe the variation in the time of 

peak amplitude of the biotremors. The model that best explained the time of peak 

amplitude variation was model ‘No ST’, which includes the M. sternohyoideus 

superficialis. The inclusion of the M. sternohyoideus superficialis in the model 

suggests that the peak amplitude of the biotremor cannot be achieved without 

this muscle. The analysis of variance of model ‘No ST’ also demonstrated that 

the M. sternohyoideus superficialis explained the most variation in peak 

amplitude, with the Mm. mandibulohyoideus also significantly contributing to the 

peak amplitude.  

A study with a larger sample size and including more muscles in the EMG 

analysis will yield a better understanding of the mechanistic interactions that 

produce these biotremors. More comprehensive muscular surveys would also be 

advantageous as I only sampled a handful of the muscles in the neck. It is 

possible that there are other muscles that are involved in this mechanism, though 

unlikely because I sampled the muscles most closely associated with the gular 

pouch. 
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The determination that the M. sternohyoideus profundus, M. 

sternohyoideus superficialis, and Mm. mandibulohyoideus are primarily 

responsible for the production of the biotremors will allow scientists to determine 

if its physiological properties (i.e., super-contracting, slow-twitch, fast-twitch, etc.) 

are different than those of other muscles. Electrophysiology and histology will 

illuminate any differences, and the results will allow for analysis of museum 

specimens for the presence of a muscle or muscles with the same physiological 

characteristics. The existence of muscles with the same physiological 

characteristics may be an indication of the ability to produce biotremors.  

 

4.3 Sexual Dimorphism 
 

A cursory exploration of biotremor frequencies reveals that males have 

lower mean frequencies than females (Table 7), with greater variation among 

males than females (Table 8). The non-parametric comparison of means 

indicates a significant difference between the frequency of male and female 

biotremors (Figure19; Table 7). There are a few outliers in the female data that 

may be due to the inconsistencies in defense response of the chameleons or 

inconsistent pressure while prodding the individuals. These results are congruent 

with the lengthy list of observed sexually-dimorphic traits and are likely a result of 

the size difference between males and females. The biotremors are a 

consequence of the M. sternohyoideus superficialis contracting, consequently 

those with a larger M. sternohyoideus superficialis will likely have a lower 
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frequency biotremor, which suggests that size may contribute to lower 

frequencies (Figure 20). 

The variation among male biotremor frequencies may be driving sexual 

selection in C. calyptratus. This would require significant variation in frequency 

observed between individual males with the more fit individuals having a higher, 

lower, or intermediate frequency, depending on female preferences. This is 

specifically important because C. calyptratus have been documented using 

biotremors during courtship (Barnett et al. 1999). Barnett et al. (1999) also 

documented the exchange of biotremors between males during territoriality 

displays.   
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5 Conclusion 

 

The present study is the first description of a biotremor producing 

mechanism in a reptilian species. The evidence produced here, in conjunction 

with the absence of a syrinx, vocal cords, and external ears (Wever 1968; Wever 

1969a; Wever 1969b; Measey et al. 2009) paired with the theoretical ability to 

detect biotremors (Hartline 1971; Barnett et al. 1999) demonstrates that 

biotremors can be utilized by C. calyptratus for communication. However, the 

hearing abilities of C. calyptratus must be further described, regarding their ability 

to detect vibrations, before it can definitively be said that biotremors are 

employed for true communication. Further studies of other chameleon species 

will also reveal if this ability is ubiquitous among all chameleons, merely a 

behavior exhibited by a few species, or a novel adaptation in C. calyptratus.  
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7. Tables  

Table 1: The M. levator scapulae, Mm. mandibulohyoideus, M. sternohyoideus 
profundus (M. sternothyroideus), and M. sternohyoideus superficialis (M. 
sternohyoideus), mean duration (seconds), r2, Standard Error, t-values, F-
statistics, degrees of freedom (df), and the associated p-values for the linear 
regression of biotremor duration and muscle electrical activity duration.  
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Table 2: Muscles, r2, Standard Error, t-values, F-statistics, degrees of freedom 
(df), and the associated p-values for the linear regression of time of peak activity 
of the biotremor and muscle electrical activity (V). The Mm. levator scapulae 
(LS), Mm. mandibulohyoideus (MH), M. sternohyoideus profundus (ST), and M. 
sternohyoideus superficialis (SH). 
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Table 3: The time of M. levator scapulae, Mm. mandibulohyoideus, M. 
sternohyoideus profundus (M. sternothyroideus), and M. sternohyoideus 
superficialis (M. sternohyoideus) activation and cessation in relation to the 
biotremor activation, peak activity, and offset. Active muscles, peak activity, and 
biotremor activity are indicated by an X and no activity is indicated by --. Time 
0.00 is the start of the biotremor.  
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Table 4: The models created to explain the variation in biotremor duration, 
including the model, parameters, degrees of freedom (df), AIC, AICc and BIC 
values. The M. levator scapulae(LS), Mm. mandibulohyoideus (MH), M. 
sternohyoideus profundus (ST), and M. sternohyoideus superficialis (SH) are the 
model parameters. 
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Table 5: The result of an analysis of variance of the muscle included in the model 
that best described the variation in biotremor duration according to both AIC, 
AICc, and BIC, with the corresponding degrees of freedom (df), sum of squares 
(SS), mean squares (MS), F-value, and p-values for the M. sternohyoideus 
profundus (ST). 
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Table 6: The models created to explain the variation in biotremor peak 
amplitude, including the model, parameters, degrees of freedom (df), AIC, AICc 
and BIC values. The M. levator scapulae(LS), Mm. mandibulohyoideus (MH), M. 
sternohyoideus profundus (ST), and M. sternohyoideus superficialis (SH) are the 
model parameters. 
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Table 7: The results of an analysis of variance of the muscles included in the 
model that best described the variation in biotremor peak activity according to 
both AIC, AICc, and BIC, with the corresponding degrees of freedom (df), sum of 
squares (SS), mean squares (MS), F-value (F), and p-values. The M. levator 
scapulae(LS), Mm. mandibulohyoideus (MH), and M. sternohyoideus superficialis 
(SH) are the model parameters. 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  



  

 33 

Table 8: Sex, number of individuals (n), the mean biotremor frequencies (Hz), 
Variance, and Standard Deviation of male and female biotremor frequencies. 
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Table 9: The results of t-tests between males. Lower and upper Confidence 
intervals (CI) and the corresponding p-values. 
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8. Figures 

Figure 1: The left side of a C. calyptratus trachea with a gular pouch (A) and of a 
Trioceros jacksonii xantholophus trachea without a gular pouch (B). 
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Figure 2: Images illustrating the diversity of the gular pouches from C. 
calyptratus, C. gracilis, T. melleri, C. dilepis, and Furcifer verrucosus.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 



  

 37 

Figure 3: Lateral view of a male C. calyptratus illustrating the tight association 
between the gular pouch (a) and the Mm. mandibulohyoideus (b), M. 
sternohyoideus superficialis (c), M. sternohyoideus profundus (d). 
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Figure 4: Electrode implanted into the Mm. levator scapulae and its location in 
relation to the ceratobranchial and Mm. mandibulohyoideus. 
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Figure 5: Electrodes implanted in the Mm. sternohyoideus superficialis, Mm. 
sternothyroideus superficialis et profundus, and Mm. mandibulohyoideus and 
their location in relation to the gular pouch and ceratobranchial. 
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Figure 6: electrodes implanted into the Mm. triceps (control electrode) and the 
reference under the skin.  
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Figure 7: A male C. calyptratus (post-surgery) on a 12.7 mm dowel with an 
accelerometer attached to the casque with beeswax. 
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Figure 8: A linear regression of the duration of Mm. sternohyoideus superficialis 
electrical activity and the duration of the biotremor. The axes are labeled in 
seconds, and blue circles indicate the duration of a single recorded biotremor 
and the corresponding duration of the muscular electrical activity. The black line 
is the line of best fit. 
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Figure 9: A linear regression of the duration of Mm. sternohyoideus profundus 
electrical activity and the duration of the biotremor. The axes are labeled in 
seconds, and blue circles indicate the duration of a single recorded biotremor 
and the corresponding duration of the muscular electrical activity. The black line 
is the line of best fit. 
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Figure 10: A linear regression of the duration of Mm. mandibulohyoideus 
electrical activity and the duration of the biotremor. The axes are labeled in 
seconds, and blue circles indicate the duration of a single recorded biotremor 
and the corresponding duration of the muscular electrical activity. The black line 
is the line of best fit. 
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Figure 11: A linear regression of the duration of Mm. levator scapulae electrical 
activity and the duration of the biotremor. The axes are labeled in seconds, and 
blue circles indicate the duration of a single recorded biotremor and the 
corresponding duration of the muscular electrical activity. The black line is the 
line of best fit. 
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Figure 12: A linear regression of the duration of Mm. triceps electrical activity 
and the duration of the biotremor. The axes are labeled in seconds, and blue 
circles indicate the duration of a single recorded biotremor and the corresponding 
duration of the muscular electrical activity. The black line is the line of best fit. 
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Figure 13: A linear regression of the peak M. sternohyoideus superficialis 
electrical activity and the peak activity of the biotremor. The axes are labeled in 
seconds, and blue circles indicate the time of a single recorded peak activity of 
the biotremor and the corresponding time of peak muscular electrical activity. 
The black line is the line of best fit. 
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Figure 14: A linear regression of the peak M. sternohyoideus profundus electrical 
activity and the peak activity of the biotremor. The axes are labeled in seconds, 
and blue circles indicate the time of a single recorded peak activity of the 
biotremor and the corresponding time of peak muscular electrical activity. The 
black line is the line of best fit. 
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Figure 15: A linear regression of the peak Mm. mandibulohyoideus electrical 
activity and the peak activity of the biotremor. The axes are labeled in seconds, 
and blue circles indicate the time of a single recorded peak activity of the 
biotremor and the corresponding time of peak muscular electrical activity. The 
black line is the line of best fit. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  



  

 50 

Figure 16: A linear regression of the peak Mm. levator scapulae electrical activity 
and the peak activity of the biotremor. The axes are labeled in seconds, and blue 
circles indicate the time of a single recorded peak activity of the biotremor and 
the corresponding time of peak muscular electrical activity. The black line is the 
line of best fit. 
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Figure 17: The timing of M. levator scapulae (white), Mm. mandibulohyoideus 
(red), M. sternohyoideus profundus (yellow), and M. sternohyoideus superficialis 
(orange) activation in relation to the onset, peak activity, and offset of the 
biotremor. (Photo credit: Marat Nadjibaev) 
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Figure 18: A boxplot of the biotremor frequencies (Hz) for female (yellow) and 
male (blue) C. calyptratus. The colored box indicates first and third quartiles, 
while the black line in the middle of the box displays the median. The error bars 
indicate a maximum of 1.5 times the interquartile range for the data, and the 
large black dots are outside the interquartile range, and small black dots indicate 
the mean. 
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Figure 19: A histogram of the differences in means from empirically generated 
data sets. The arrow indicates the location of our observed difference in means 
along the x-axis. The grey bars represent 95% of the distribution and the blue 
bars represent—the rejection zones—accounting for 5% of the distribution. The 
black arrow indicates the observed difference in mean frequency between 
females and males. 
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Figure 20: A linear regression of the mean frequencies (Hz) of the biotremors 
against the size in mass (g) for each individual, indicated by the red and black 
dots. The sex of each individual is indicated by the color of the dot (red = males 
and black = females).   
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