Fish-Oils Protect Against Hepatic Inflammation Following LPS Stimulation

MEGAN L. SCHALLER¹, DAKOTA R. KAMM¹, MATTHEW P. HARRIS¹, KEN A. WITT², KARIN E. SANDOVAL², and JOSHUA S. WOOTEN¹

Exercise Physiology Laboratory; Department of Applied Health¹, Department of Pharmaceutical Sciences²; Southern Illinois University Edwardsville; Edwardsville, IL

Category: Masters

Advisor / Mentor: Wooten, Joshua (jwooten@siue.edu)

ABSTRACT

Omega-3 polyunsaturated fatty acids (ω -3 FA) have shown to possess anti-inflammatory properties; however, it remains unclear if ω-3 FA can provide protection against LPS induced inflammation in hepatic tissue. PURPOSE: To determine the effects of dietary fat on hepatic cytokine gene expression and secretion following LPS stimulation. METHODS: Male C57B1/6] mice were randomly assigned to one of four diet groups for 32 weeks: low-fat lard (LFL, 10% fat), low-fat fish-oil (LFFO, 10% fat), high-fat lard (HFL, 41% fat), or high-fat fish-oil (HFFO, 41% fat). Hepatic gene expression and release of cytokines were induced by incubating liver tissue (100 mg) with or without LPS (25 μ g/mL media) for 20 hours. The cytokines interferon- γ (IFN- γ), interleukin-1 β (IL-1 β), IL-6, IL-10, monocyte chemoattractant protein-1 (MCP-1), and tumor necrosis factor- α (TNF- α) were evaluated. A 2-way factorial ANOVA was performed to identify significant (p<0.05) differences between fat amount (low-fat vs. high-fat) and fat type (lard vs. fish-oils) on cytokine gene expression and release. RESULTS: In samples without LPS, only IL-1ß expression was significantly (p=0.044) greater (2-fold) in high-fat compared to low-fat diets, matching a 2.7-fold higher (p=0.004) IL-1β media concentration. When comparing fat type in samples without LPS, IL-10 and TNF- α expression were 5-fold (p=0.006) and 2-fold higher (p=0.014), respectively, in lard-based diets leading to 1.5-fold (p=0.007) and 2-fold (p=0.014) higher media concentrations compared to fish-oil diets. Following LPS stimulation, MCP-1 and TNF- α mRNA expression were 3-fold (p=0.045) and 71% (p=0.023) higher, respectively, in high-fat when compared to low-fat groups. In contrast to samples without LPS, LPS stimulation increased the mRNA expression of IL-1 β such that it was 47% higher (p=0.008) in the low-fat groups when compared to the high-fat groups. When comparing fat type following LPS, expression of IFN-γ and TNF-α were 2.3-fold (p=0.033) and 2-fold (p=0.007) lower, respectively, in the fish-oil diets when compared to lard diets. In contrast, IL-6 mRNA expression was 5fold (p=0.044) higher in fish-oil diets following LPS stimulation. No difference in media concentrations of IFN- γ , TNF- α , and IL-6 were observed between diet types. **CONCLUSION:** The higher basal (untreated LPS samples) cytokine gene expression and secretion of IL-1 β in high-fat diets showed that IL-1 β response is independent to fat type. In contrast, IFN- γ and TNF- α expression were more sensitive to fat type versus amount of fat consumed, exemplified by lower cytokine activities post-LPS stimulation. These results display the protective role of fish-oils against chronic hepatic inflammation associated with obesity.

International Journal of Exercise Science