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The model is a linear chain in which each spin interacts with

its 2r nearest neighbors, the interaction energy being proportional to

1/r. Using a method similar to that of Montroll, the partition

function of the model in the thermodynamic limit is shown to be related

to the largest eigenvalue of a certain matrix. The largest eigenvalue

of the matrix is determined numerically for 3 < r < 12.

Also, a correct method is demonstrated for evaluating an improper

limit of the model, in which the interaction range is set to the chain

length before the limit of an infinite number of spins is taken.

Previously published works have performed this calculation incorrectly.

Although the numerical results show some evidence of convergence

to the improper limit, the results are inconclusive and furthermore

raise doubts about the practicality of the numerical method in this

context.
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CHAPTER I

INTRODUCTION

A. Ising Models

In 1925 Ernst Ising' proposed a simplified model of ferro-

magnetism in order to study the temperature dependent transition to

a ferromagnetic state. Since then, the Ising model has been modified

and reinterpreted to encompass other types of order-disorder phenomena.

The chief value of these models is that they are frequently simple

enough to yield analytic information while being more or less physi-

cally realistic.

The model proposed by Ising describes a one-dimensional lattice

of particles, each particle capable of possessing either a plus, "spin

up" state, or a minus, "spin down" state. Each particle interacts via a

nonmagnetic force with its two adjacent neighbors. Ising showed that

this model does not possess a phase transition, which by definition

exists when the average energy per particle or one of its derivatives

becomes discontinuous at a certain temperature. It is now known that

any one-dimensional system with a finite interaction range can not

undergo a phase transition. Interest in Ising-type systems has

therefore turned to higher dimensional models and one-dimensional

models with infinite interaction ranges.

The three-dimensional Ising model, which is of the most interest
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physically, has yet to be solve. The solution to the two-dimensional

nearest neighbor problem was first given by Lars Onsager
2 

in an

important paper in 1944, and since then several other solutions have

appeared. However, a solution for the two-dimensional model in a

magnetic field has yet to be offered.

The one-dimensional Ising models, or "Ising chains," which have

beeu studied are generally characterized by an interaction strength

that depends inversely in some manner on the interaction distance.

G. A. Baker
3 

has made an approximate calculation which suggests that a

model with an interaction strength that decreases as exp(-yd), where

-) is a parameter and d is the interaction distance, approaches a phase

transition as y approaches zero. Another approximate calculation of a

model,
4 

in which all interaction strengths are equal and which could be

considered as a limiting case of Baker's model, also suggests the

p:esence of a phase transition. Numerical treatments of a model
5

suggested to be more physically realistic, which has an interaction

strength that depends inversely on a power of the interaction distance,

indicate that a phase transition might occur for certain values of the

exponent.

Although approximate calculations and numerical treatments can

never prove the existence or nonexistence of critical points, it is

hoped that such methods will at least provide insight into the behavior

of a model. This paper examines a method of numerically evaluating the

properties of an infinite length !sing chain with a finite interaction

range. The properties of models with increasing interaction ranges are

computed and tabulated.



B. Review of Basic Statistical Mechanics

According to currently accepted theories, the state of a system

of particles is completely specified by giving either a denumerable set

of quantum numbers of the system or a denumerable set of variables

which are functions of the quantum numbers. Two states of a system are

said to be distinct if at least one of the quantum numbers or variables

assumes a differenc value in the two states. For a system with bound

states only, such as an Ising chain, the quantum numbers are discrete,

and the distinct states are therefore denumerable. It is convenient to

label the distinct states of such a system by a single subscript.

Let E.(N) be the total energy of N particles in state j, k be the

Boltzmann constant and a 1/kT, where T is the absolute temperature.

Notice that the case E. = E with j 0 R. is possible. A postulate due
J

to Boltzmann states that the relative probability of occurrence of

statejisequaltotheso-callediloltzmannfactor,"13(-43") ),

which implies that the probability the system will be observed to be in

state j is

P.(N) = Q
-1 

exp( -6 E
j
(N) )

3

where the canonical partition function QN is defined to be

QN

3

1 exp( -6 E (N) ) (1)

{j}

the sum extending over all distinct states of the system.

The average observed total energy <E(N)> is then given by
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<E(N)> y P.(N) E.(N)
{j}

-3 in QN ,
aS

and the average energy per particle EN is

N 
= N

-1 
<E(N)> .

The quantity of physical interest is the "thermodynamic limit"

of the last expression, which by definition is obtained by letting

the "volume" of the system and the number of particles in the system

approach infinity while the average particle density remains finite.

These limits should be taken before any other limiting operation, such

as differentiation, is performed. Since such a procedure has proved

to be impossible in general, one reverses the order of the limits. In

the special cases in which the limits can be properly evaluated, the

order is irrelevant.

Also, when one is interested in the bulk properties of matter, it

is necessary to examine the role surface effects have on those proper-

ties. If the thermodynamic limit is taken in such a way that the ratio

of "surface" particles to "interior" particles goes to zero, one is

assured that the quantities obtained are representative of particle-

particle, rather than particle-boundary, interactions. For a one-

dimensional system, such as an Ising chain, the surface particles are

merely the end particles in the chain.

The average energy per particle c in the thermodynamic limit is

given by



E = liM E
N

N cc

= lim ( —a 1/N
ln QN j

N 4 ec as

where it is assumed that

lim ( —a in QN I/N ) = -a Urn ( in Q
I/N

N 4 cc as as N 4 cc.

5

(2)

If one had an analytic expression for c, then virtually all

questions of thermodynamic interest could be answered. This paper is

concerned in particular with the specific heat cx at constant variable

x,

c
x

_
— 3T

where the standard thermodynamic notation for differentiation has been

used.

C. The Specific Model

Let a = (a k i I , I < k 0, where the superscript is an
J .

identifier, be a set of independent variables, each of which can assume

the value +I or -1 only. Such quantities are called "spin" variables.

For this discussion, it is convenient to group a into r subsets

k = (al!' 1 < j < N); in a later section it will also be convenient to

group a into N subsets o = (a
k

l I < k < r). Furthermore, a cyclic

subscript convention is adopted so that

°j+nN
k

ai



for any integer n. Notice that Eq. (3) implies that

o 
3

o
j 

.
+nN 

Consider a model whose total energy EN(3
1
) is given by

j=1

,
(

0
i=1 )y . . ,

where K :?,,J and J is a coupling constant. In figurative language,

Eq. (4) gives the total energy of a one-dimensional Ising model of a

ferromagnet with N spins in which cyclic (von Kaman) boundary

conditions have been imposed. Each spin interacts with its 2r

nearest neighbors, the interaction energy between a pair of spins

1 1
being r

-1 
J 0. o j+1 < k < Ifr.

j k

From the definition of the partition function, Eq.(1), the

partition function of the model is

QN = exp( EN(a1) )

where the sum is over the

-1's in o
1
.

distinct, ordered N-tuples of +1's and

The value of Q
N 
is determined with the aid of a certain

matrix A(6), in which A is independent of N. It will be shown in

Chapter II, Section B, that the partition function can be expressed

as the trace of A
N
. In terms of the eigenvalues of A, the partition

function can be expressed as

2
r

N ( x(8»N
i=1

6

(4)



The elements of A have a physical interpretation which vecludes

their possessing negative values. A theorem of Frobenius
6 

states that

the eigenvalue of largest magnitude of such a matrix is positive and

nondegenerate. If the eigenvalue of largest magnitude is denoted by

A
1' 

then

and

lim (A
2,
/A

I
)N 

= 0 ,
N +

2< Z

2r , I/N

lim 
Q1/N 
N 
. Urn (A

N 
(I + 1 (A

R.
/A

I
)" ))

I

2
r

N 1/N
A
1 

lim (1 + y (Ap1) )
N + Z=2

X
1 •

Denoting AI by A, it follows from the definition of c that

C

It is convenient to express c as the derivative with respect to

the scaled inverse temperature K. Since K $J,

—1 al( ax=
A 3$ 3K

-J 3A
31( •

It is also convenient to differentiate c with respect to 
K-1

(6)



to get the scaled specific heat. Let t E K
-1 

= kT/J. Then,

= at accx 1T at

k ac= 
.1 at

. a I
J at( x aK

— 1-1k at X K

8

(7)



CHAPTER II

THEORETICAL METHODS

A. Evaluation of the Infinite Range Model

It was noted above (page 1) that a one-dimensional system with

a finite range of interaction can not possess a phase transition. At

this time, however, no one has succeeded in exactly evaluating the

proper thermodynamic limit

lim ( lim x ) ,
r N

where x is some variable of interest. In the hope of obtaining some

Information about the model, various workers, notably Baker,
3 
have

evaluated

lim X
r =N
N -0- co

The result is not merely questionable because of the improper limit;

it is obtained by using a result which is valid for positive definite

matrices only, which is not the case for the matrix involved. There-

fore, a proper derivation is given below of

9



By setting the interaction range equal to the chain length, the

total energy of the model in Eq. (4) is given by

E(o
1
) K X a! ol .

( N 1 )2
= -K N I y ci ,

i=1

and the partition function is then given by

QN y exp( K N
-1 ( al. 

12 

) ,L.

1 1=1 1 )
a

10

where the sum is over all possible distinct sequences of +1's and -1's

that o
1 
can assume.

The integration formula
7

exp(a2/2) = f exp(-x2/2 + ax) (2n)

may now be used. Define

Then

QN

• CC

(3
1 
.E (2K/N)15 y

1.1

= f F exp(-x2/2) (2n) 1 dx (8)



where

where

exp(ax)

N

Y exp( x (21,-/N)-2 7 GL )
1 i=1

= II exp( x (2K/N)
1/2 

a
1 
)

1=1 1
a

= (2 cosh0
N

E x(2/NY' .

Thus, Eq. (8) is now

QN = 2
N 
N (21TK)

-1/2
(h(0)N du ,

h(p) E exp[l coshp .
4K

To obtain the thermodynamic limit it is necessary to evaluate

1/N
lim Qm = lim (2N Nil (2nK)

N " N

)1/N

f (h(o)N (II, )1/N

11

The left-most limit on the RHS is easily shown to be 2. The right-most

limit on the RHS can be evaluated by using the known result
8



co

liM
• siN
(f(t), dt )1/N

N
maximum f() .

<

The function h(P) has local extrema at those points where

which yields

h(w) = 
0dii
,

p = 2 K tanhu .

For K < 1/2, the only solution is p = 0, and h attains its global

maximum there. For K > 1/2, the solution p = 0 is a local minimum; the

maximum occurs for p = where E is the unique positive root of

E = 2 K tanh .

Thus, the partition function is

lim Q
1/N
,= 2 for K <

N

_E2
= 2 exp(

)
 cosh for K >

It follows that the average energy per particle is

0 for K < ,

-J (tanh)- for ‹ 1/2 ,

and the specific heat is

c
x 

0 for K < ,

k c2 
sinK cosK - E

for K > ½.

12



Since

and

lim c = 0,
< t

3
lim c =

, x 2

the specific heat is discontinuous and a phase transition exists at

K =

B. Formulation of the Matrix Representation

13

As noted earlier (page 5), the set of independent spin variables

o may be grouped into r ordered N-tuples a
k 
and N ordered r-tuples a..

In the following discussion a
k

and o. will be used to indicate both

the symbolic sets and the specific sets of +1's and -1's. If the

sense is not clear from the context, it will be explicitly mentioned.

Finally, notice that the sum over all 2
Nr 

distinct sequences of +1's

and -1's in a can be expressed as

0
•Y y y y

1 2 r
oN3 0 1 (52

It will now be shown that the RHS of Eq. (5) may be written as

the trace of a certain matrix. Let the 2rx2r matrix A have elements

-1
A(cjIok) 

= exp( r < f
j,k 
) C

where

(9)

(10)



and

fj,k

C.

r .
01. 7 1

3 i=1

r-1
i+1 i

TI a
i=1 3

14

where S(0) = 1, 6 = () otherwise. Both of the indices of A„ a. and ok,

run over all 2
r 
distinct sequences of +1's and -1's.

Then, directly from definitions,

Tr(A
N
) = X (A(o1,01))

a
l

X X --- X n
j+1
)

j=1
1 02 

0
N

which, by Eq. (9), is strictly equivalent to

where

Tr(A
N
) = X G(a

1
) ,

N
= X X SOO 

X 17, 
i 

A(a ,a ) 
i+12 3

a
r j=1

0 a

X X exp(r-lk y fj,j+1) n cj,j+1 •
2 3

a
r

0 a

Thus, the problem is reduced to showing that G(c,
1
) is just the

Boltzmann factor, exp( -0 EN(01) ).

The sum in Eq. (11) has 2Nr-N terms, but for a specific N-tuplu
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of +1's and -1's in , only one term is nonzero. For a nonzero term

to occur, the double product over the 6's requires that

i i+1
a. ,j+1 3

which implies

1 2
a. =

aj -1
• • •

.
j+1-i

= 0
j+1 -r '

• • •

< N, 1 < i < r-1 ,

j < (12)

Thus, for a nonzero term, a specific N-tuple of a
1 
determines

specific N-tuples of a
2
, a

3
, a

r
, and the sum in Eq. (11) contains

only one term for which that is the case.

After rewriting Eq. (12) as

1

j+i
= 

CT

j+1 '
1 < j < N, 2 < i < r , (13)

it follows that, for the nonzero term in

r .
1
(f

j,j+1 
= 0 , 1 

+0 01 )j+1 j+1
i=2

1 I 1 r 1
=

jj+1 
+ L G. ) 

'i=2 144 

and therefore

by definition,

by Eq. (13),





.77,1

CHAPTER III

NUMERICAL METHODS

A. Purpose and Comments

The calculation of Chapter II, Section A, which was acknowledged

to be possibly unjustifiable, indicates that a phase transition occurs

for an infinite length, infinite interaction range Ising chain at

-1
K .-- 2. In contrast, the nearest neighbor case, which is equivalent

to Ising's original model, possesses only a maximum, which occurs at

a lower numeric value of both c
x 

and K
-1 

than the infinite range

maximum. It is anticipated that models with increasingly long inter-

action ranges possess maxima which in the limit become the critical

point of the infinite range model. It is therefore of interest to

attempt to locate these maxima.

As noted on page 7, the largest eigenvalue of the matrix A yields

the partition function of a finite interaction range, infinite length

Ising chain. Unfortunately, the matrix is not analytically diagonal-

izable, but the largest eigenvalue can be found by using a numerical

technique. From the largest eigenvalue the average energy per particle

at a specific value of K can be found. From a table of these values,

the specific heat can be numerically calculated.

It is convenient for computational purposes that the indices of

the matrix A be integers; as defined in Eq. (10) they are the 2r

17
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18

distinct sequences of +1's and -1's of the r-tuple c Any scheme

that puts these sequences into one-to-one correspondence with the

integers 1, 2, ..., 2r is valid, so the following scheme is used. Let

the index a
i 
of A be represented by the integer

4 I ai
1+ 2J-L  

2
.1=1

As a specific example, consider the case where r = 3. The

matrix A is then 8x8, with indices as in Table 1. The matrix A is

shown explicitly in Figure 1.

Index

1 -t -1 -1

2 -1 -1 +1

3 -1 +1 -1

4 -1 +1 +1

5 +1 -1 -1

6 +1 -1 +1

7 +1 +1 -1

8 +1 +1 +1

Table 1.--Indices of A for cor-

responding sequences of 1
i 

for

r 3



-1
0 0 a ci 0 0 0 0

-1
0 (Lci

0 0 0 0 0 0 a
-1 

a
-3

-3
a

-1
a
 

0 0 0 0 0 0

0
-1

0 a a 0 0 0 0

-1
0 0 0 0 a a 0 0

0 0 0 0 0 0 aa 
3

a =

Figure 1.--Matrix A for r =

exp(K/3).

3. Here,

B. Method of Finding the Largest Eigenvalue

Since the power method of obtaining the eigenvalue of largest

magnitude of a given matrix is developed in most texts on numerical

analysis,
9 

the details peculiar only to the present problem are

outlined here.

Let X be the eigenvalue of largest magnitude with an associated

eigenvector cp. One starts with an almost arbitrary initial vector u

("almost arbitrary" to be defined later) and forms the sequence of

vectors

= A ui_, ,

u-1 
wi i = 1, 2, ...,

0

where Ilw111 is any suitable norm
10 

of w Then, for some component 9.



of w
i+1 

and u.,
1

lim
w1(Q) _
u(k)

20

(15)

Furthermore, the sequence of vectors 
fui 0 

1. converges to the eigen-
1=

vector associated with A.

The choice of the initial vector u is not completely arbitrary
0

because u must have a nonzero projection on However, the matrix
0

considered here has nonnegative elements, and a theorem of Frobenius
6

states that the eigenvector associated with the largest eigenvalue of

such a matrix is real and has all positive components. If u is
0

chosen such that all its components are positive, then the inner

product of u and is the sum of positive numbers, and therefore not
0

zero.

If u has all positive components, then with the matrix consid-

ered here, the components of the wi's are also all positive. In this

case a suitable choice for the norm in Eq. (I4b) is the first component

of the wits, which results in the first component of the ui's being

always equal to one. The first component is also chosen for the ratio

in Eq. (15); consequently, the first component of the wits are the

successive approximations to A.

The criteria for termination of the iterative process are

problematical. A practical solution is to terminate when two succes-

sive estimates of A are satifactorily close. An improvement on this

criterion can be made by observing that the relative error in the

estimate of the eigenvalue is approximately equal to the square of the

maximum relative error in the components of the estimate of the
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corresponding eigenvector. Thus, the iterative process is terminated

when the maximum relative change in the components of two successive

estimates of the eigenvector is small.

The power method is outlined in the "RIGHT-ITERATION" algorithm

below. It is assumed that the zeroth iterate of U, the matrix A, and

the maximum allowable error ERROR are chosen prior to execution of
max

the algorithm. After execution, L is the approximation of A and the

last iterate of U is the approximation of cp.

RIGHT-ITERATION algorithm:

Step 1; Set L
old 

to zero.

Set DONE to "false."

Step 2; Set W to the matrix product AU.

Set L to W(1).

Set ERRORT to I(L - Lid) / (L Lold)1'

Set L
old 

to L.

If ERRORL is greater than ERROR, then go to step 4.

Step 3; Set ERRORu to maximuml(W(i) - L.11(1))/(W(i) + L'U(1))1.

If ERRORu is less than ERRORmax, then set DONE to "true."

Step 4; Set U to W/L.

If DONE is equal to "false," then go to step 2.

Step 5; The algorithm is completed.

C. Method of Finding the Average
Energy per Particle

Given a table of values of A as a function of K, it is possible

in principle to numerically differentiate first A with respect to K to

obtain the average energy per particle c, and then c with respect to
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-1
to obtain the specific heat cx

. Numerical differentiation is

generally undesirable, however, and in the present case is not

necessary for obtaining c.

Consider the left eigenvalue problem,

A 0 = A

where A
T 

denotes the transpose of A, which is distinct from the right

eigenvalue problem,

A = X ,

which was discussed in the previous section. The sets of left and

right eigenvalues are identical, since

det(AI - A
T
) = det(AI - A

T
)
T 

= det(AI - A) .

The sets of left and right eigenvectors in general are distinct.

Denote the right and left eigenvectors associated with the

largest eigenvalue X as cp and 0, respectively, and use the standard

notations for differentiation,

X =

dK 9

and the inner product,

(x,Y) - x(i) y(i) .

Then one may differentiate the identity,

A(P.0) (0,A) ,



2'i

and obtain, after some manipulation,

A' = (9,A0/0,0 .

From Eq. (6) it follows that

= X'/X = X
-1 
(0,)

-1 (0,A) .

The elements of A are simple to compute from Eq. (10), being

d (A(0
j
o
k 

= d ( exp( r
-1
 K 

f 
)

j,k 
Cj,k

dK dc

-1
r
 
f. 

j A(c,0k )

The "AVERAGE-ENERGY" algorithm which follows, outlines the

procedure for finding values of -c/J at a sequence of different values

of K. Since the values of scaled average energy per particle are used

via numerical differentiation to obtain cx
, it is convenient to

evaluated -c/J at equally spaced intervals of K
-1
, and all calculations

are performed with effectively 15 decimal digits accuracy.

The AVERAGE-ENERGY algorithm refers to the RIGHT-ITERATION

algorithm discussed above (page 21) and a "LEFT-ITERATION" algorithm.

The latter is identical to the RIGHT-ITERATION algorithm except that

is substituted for "A" and "V" is substituted for "U" wherever

U and A appear in the RIGHT-ITERATION algorithm. The RIGHT-ITERATION

algorithm produces an approximation U of the right eigenvector (1) and

the LEFT-ITERATION algorithm produces an approximation V of the left

eigenvector 0. Both algorithms produce an approximation L of the

largest eigenvalue X.
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AVERAGE-ENERGY algorithm:

Step 1; Choose the interaction range of the model, R.

Choose the initial scaled temperature (K
-1
), X.

Choose the size of the increments of X, X.

Choose the number of values of -L/J desired, COUNT.

Choose the maximum allowable error, ERROR
max

Set vectors U and V to (1, 1, ..., 1).

Set LOOPCOUNTER to zero.

Step 2; Set X to X + AX.

-1
Set K to X .

Compute the elements of A for the values of K and R.

Perform the RIGHT-ITERATION algorithm (returns U and L).

Perform the LEFT-ITERATION algorithm (returns V and L).

Set Y to the inner product (V,U).

Compute the elements of A.

Set W to the matrix product AU.

Set Z to the inner product (V,W).

Set LPRIME to Z/Y.

Print LPRIME/L.

Step 3; Set LOOPCOUNTER to LOOPCOUNTER + 1.

If LOOPCOUNTER is less than COUNT, then go to step 2.

Step 4; The algorithm is completed.

D. Numerical Differentiation

The procedure used for approximating the derivatives of c is

based on differentiation of a polynomial that is constructed to pass

through a set of data points provided by the AVERAGE-ENERGY algorithm.
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Denoting Kby t and k'/X by E, the data points are ordered pairs

(t ,E ), (t ,E ), ..., which are separated by equally spaced increments
0 0 1 1

h ("AX" in the AVERAGE-ENERGY algorithm) of t. Then, at some point

t = t + uh, the approximation of E(t) can be given by Newton's forward
0

difference interpolation polynomial, which uses n+1 points to form

an n
th 

degree polynomial in u;

P
n 

= P (t + uh)
n

u (u-1) 
YE= E + u AE

o 
+

0 2! 0

▪ u (u-1) • (u-n+1) ,n
n! 

E
0

where the forward differences A E are defined recursively by
0

E. = A
1 
E. = E - E.j+1 j

A
i+1

E.

= Ai
Ej+1 

-

(16)

• < n, 0 < j < n .

It follows from Eq. (7) that the derivative of Eq. (16) with

respect to t,

p _ dud p
dt 'n dt du i n

_ld p
h du n '

is the approximation of _c/k. Furthermore, if Eq. (16) is differen-

tiated twice with respect to t,



d2
P

dt2 n

I d2 
P ,

h2 du2 n
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the result being set equal to zero and s.Aved for u, the location of

the maximum of c
x 
is found.

More accurate results are to be expected if u lies within the

interval 0 to n, since, after all, Pn is an interpolation polynomial.

Also, if the values of the E's have an uncertainty 6, then the forward

differences A
i
E will have an uncertainty on the order of 216. Even-

tually this uncertainty reaches the magnitude of the forward differ-

ences, at which point it becomes fruitless to use that or higher order

differences in the polynomial. This cumulative error effectively

places a limit on the number of useful data points, and hence the

degree of the polynomial.



CHAPTER IV

RESULTS AND CONCLUSIONS

A. Presentation of Results

A FORTRAN computer program, which is reproduced in the Appendix,

was written to implement the AVERAGE-ENERGY algorithm (page 24). Due

to limitations on computer time and memory, the models examined were

restricted to interaction ranges of twelve and less. The numerical

results obtained for 3 < r < 12 are presented in this section; the

following section contains the interpretation of the results.

The curves of average energy per particle and specific heat

shown in Figures 2 and 3, respectively, give a general indication of

the behavior of the properties of the models. The values of -c/J

for interaction ranges of eight, nine and ten, which yield the values

of c
x
/k plotted in Figure 3, were obtained from the computer program.

Included in both Figures for comparison are curves for the infinite

range model, from the calculations of Chapter II, Section A.

Table 2 lists the values of average energy per particle calcu-

lated by the computer program for the various models in the near

vicinity of the specific heat maxima. In obtaining these values, the

error level ("ERROR
max
" in the AVERAGE-ENERGY algorithm) was set to

lx10
-15
, and the scaled temperature increments ("AX" in the AVERAGE-

ENERGY algorithm and "h" is the discussion of Chapter III, Section D)
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Figure 2. Average energy per particle as a function of temper-

ature for r = 10 and r = c=. The curves for r = 8 and r = 9 are not

shown due to their closeness to the r = 10 curve.
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Figure 3. Specific heat as a function of temperature for r - S

9 and 10, and r =



lot

in

/j -c/J

3 1.1253 .7310634104614752 8 1.3498 .6134836060197968

1.1254 .7309898581275500 1.3499 .6133756108104800

1.1255 .7309163057887586 1.3500 .6132676155900362

1.1256 .7308427534506940 1.3501 .6131596203747139

4 1.1892 .7022256325612256 9 1.3773 .5957747701254438

1.1893 .7021422282103140 1.3774 .5956626636479821

1.1894 .7020588238527287 1.3775 .5955505571566642

1.1895 .7019754194961648 1.3776 .5954384506699093

5 1.2402 .6766523116218906 10 1.4017 .5794473400708567

1.2403 .6765610250635233 1.4018 .5793316079137512

1.2404 .6764697385051188 1.4019 .5792158757309540

1.2405 .6763784519564878 1.4020 .5791001435430809

6 1.2825 .6536462430225259 11 1.4238 .5640370209995478

1.2826 .6535484537190119 1.4239 .5639180598566488

1.2827 .6534506644133556 1.4240 .5637990987243939

1.2828 .6533528751174986 1.4241 .5636801376256132

7 1.3185 .6327329598260558 12 1.4435 .5500151909089815

1.3186 .6326296813832862 1.4436 .5498933300995018

1.3187 .6325264029287166 1.4437 .5497714692719470

1.3188 .6324231244764320 1.4438 .5496496084513769

Table 2.--Values of average energy per particle vs. temperature in the

near vicinity of the specific heat maxima for 3 < r < 12
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was set to 1-10
-4
. This value of h resulted in the fourth forward

differences being at the cumulative error level, with the assumption

that the values of average energy per particle are accurate to one

part in 10
15
; therefore, the interpolating polynomial was truncated

after the term including the third forward difference ," 1E . Under

this condition, the approximation of ex"' evaluated at the maximum of

c
x
, which is a measure of the "sharpness" of the peak, is simply

YE /113.
0

Table 3 contains the interpolated locations of the maxima of cx

and the values of -c/J at the maxima, along with the respective values

of A 3E /h3. Figure 4 displays the maxima listed in Table 3 and the
0

discontinuity of the infinite range model.

-1
-c /J c

x 
/k A 3E/ 0

3 1.125487 .7309258665141286 .735523394072 5.591

4 1.189387 .7020698978853619 .834043584245 7.693

5 1.240300 .6765607095248148 .912865600222 9.807

6 1.282618 .6535309427746348 .977893067684 11.937

7 1.318684 .6325431578413316 1.032784559599 14.085

8 1.349968 .6133016687060859 1.079952213976 16.242

9 1.377475 .5955783212286502 1.121064926722 18.425

10 1.401925 .5791873769686845 1.157321893956 20.613

11 1.423853 .5639735232274238 1.189611438633 22.830

12 1.443672 .5498054389533559 1.218608292121 25.056

iable 3.--Thermodynamic properties at the specific heat maxima for

3 < r < 12
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B. Interpretation of Results

From the results in the preceding section, a few qualitative

observations can be made. From Figure 3 it is seen that the specific

heat of each finite range model forms a bell-shaped curve that tends up

and to the right with increasing r; since the models have specific

heats that are close together at temperatures far enough from their

maxima, Figure 3 gives the impression that the specific heat curves are

skewing toward that of the infinite range model. Figure 4 indicates

that the position of the maxima tend toward higher values of both c
x

and temperature as r increases. Finally, from the values of 3E /h3
0

in Table 4, the peaks are growing sharper with increasing r.

Unfortunately, these observations by themselves do not give

sufficient reason to believe that the models converge to the infinite

range model. The shape of the specific heat curves of the finite

range models is too unlike that of the infinite range model, and the

maxima lie on a line that appears quite linear and which shows no

indication of turning toward the infinite range peak. However, an

interaction range of twelve is very far indeed from an infinite

interaction range; the tendency toward a phase transition may exist,

with the evidence being obliterated by a slow convergence.

C. Suggestions for Future Work

It is apparent that the interaction ranges examined must be made

longer, perhaps much longer, in order to show convincing evidence of a

tendency toward a phase transition. Unfortunately, since the addition

of each new spin to the interaction range requires doubling the array
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size of the computer program, one soon reaches the limit of present

computers, probably without achieving the interaction ranges long

enough to provide additional insight. Therefore, an altogether

different approach is clearly in order.

For one so inclined, however, the methods used in this paper

could be adapted to other finite range Ising chains. For example, the

interaction energy between spins could be made to be a function of the

interaction distance. Also, a "magnetic field" could be introduced.

Again, the considerations of the preceding paragraph apply.



Appendix

The FORTRAN version of the AVERAGE-ENERGY algorithm (page 24)

is reproduced below. The subroutines RMUL and LMUL form the matrix

products AU and AV, respectively.

AVERAGE ENERGY MAIN ROUTINE
IMPLICIT REAL*8(A-H2O-Z)
REAL*8 L,LP
COMMON A(8192),U(4096),V(4096),W(4096),E,ERR,L,N,M,MBY2
READ(5,99) X,DX,NSTEP,N,ERR

99 FORMAT(2F6.0,213,D8.1)
WRITE(6,100) X,DX,NSTEP,N,ERR

100 FORMAT('0',2F7.4,215,D8.1)
M=2**N
MBY2=M/2
NSTEPM=NSTEP-1

DO 1 I=1,M
U(I)=1.
V(I)=1.

1 CONTINUE
DO 4 I=1,NSTEP

X=X+DX
E=1./X
CALL SETUPO
CALL R1TER
CALL LITER
VU= 0.

DO 2 J=1,M
2 VU=VU+V(J)*U(J)

CALL SETUP!
CALL RMUL
VAU=0.

DO 3 J=1,M
3 VAU=VAU+V(J)*W(J)

LP=VAU/VU
ENERGY=LP/L
WRITE(6,101) ENERGY

101 FORMAT(/F20.16)
4 CONTINUE

STOP
END

35
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SUBROUTINE SETUPO
IMPLICIT REAL*8(A41,0-7.)
REAL*8 L
COMMON A(8192),U(4096),V(4096),W(4096),E,ERR,L,N,M,MBY2
DIMENSION BITS(I2)

DO 4 I=I,M
J1=7*I-9
IF(J1.GE.M) J1=J1-M
K=MBY2

DO 1 J=1,M
BITS(N-J4-1)=-1.
IF(J1.LT.K) GOTO 1
BITS(N-J+1)=1.
J1=J1-K

1 K=K/2
X=0.

DO 2 J=1,N
2 X=X+BITS(J)

Y=X+2
1F(I.GT.MBY2) GOTO 3
X=-X
Y=-Y

3 A(2*I-1)=DEXP(E*X/N)
A(2*I)=DEXP(E*Y/N)

4 CONTINUE
RETURN
END

SUBROUTINE RITER
IMPLICIT REAL*8(A-H 2O-Z)
REAL*8 L,LOLD
COMMON A(8192),U(4096),V(4096),W(4096),E,ERR,L,N,M,MBY2
LOLD=0.
DONE=0.

1 CALL RMUL
L=W(1)

ERL=DABS((L-LOLD)/(L+LOLD))
LOLD=L
IF(ERL.GT.ERR) GOTO 3
ERA=0.

DO 2 I=2,M

ERB=DABS(04(0-L*U(I))/(WI)+L*U(I)))
IF(ERB.GT.ERA) ERA=ERB

2 CONTINUE
IF(ERA.LT.ERR) DONE=1.

3 D04 I=2,M
4

IF(DONE.EQ.0.) GOTO 1
RETURN
END
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SUBROUTINE LITER
IMPLICIT REAL*8(A-H 2O-Z)
REAL*8 L,LOLD
COMMON A(8192),U(4096),V(4096),W(4096),E,ERR,L,N,M,MBY2

LOLD=0.
DONE=0.

1 CALL LMUL
L=W(1)
ERL=DABWL-LOLD)/(L+LOLD))
LOLD=L
IF(ERL.GT.ERR) GOTO 3
ERA=0.

DO 2 I=2,M
ERB=DABS(W(I)-L*V(I))/(W(I)+L*V(I)))
IF(ERB.GT.ERA) ERA=ERB

2 CONTINUE
IF(ERA.LT.ERR) DONE=1.

DO 4 I=2,M
4 V(I)=W(I)/L

IF(DONE.EQ.0.) GOTO 1
RETURN
END

1

SUBROUTINE SETUP1
IMPLICIT REAL*8(A-H2O-Z)
REAL*8 L
COMMON A(8192),U(4096),V(4096),W(4096),E,ERR,L,N,M,MBY2
DIMENSION BITS(12)

DO 4 I=1,M
J1=2*I-2
IF(J1.GE.M) J1=J1-M
K=MBY2

DO 1 J=1,M
BITS(N-J+1)=-1.
IF(J1.1t.K) GOTO 1
BITS(N-J+1)=1.
J1=J1-K

X=0.
K=K/2

DO 2 J=1,N
X=X+BITS(J)

Y=X+2

IF(I.GT.MBY2) GOTO 3
X=-X
Y=-Y

3 A(2*I-I)=X*DEXP(E*X/N)/N

A(2*I)=Y*DEXP(E*Y/N)/N
4 CONTINUE

RETURN
END
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SUBROUTINE RMUL
IMPLICIT REAL*8(A-H2O-Z)
COMMON A(8192),U(4096),V(4096),W(4096),E,ERR,L,N,M,MBY2
MBY2P1=MBY2+1

DO 1 I=1,MBY2
W(I)=A(2*I-1)*U(2*I-1) + A(2*I)*U(2*I)

1 CONTINUE
DO 2 I=MBY2P1,M

W(I)=A(2*I-1)*U(2*I-M-1) + A(2*I)*U(2*I-M)
2 CONTINUE

RETURN
END

SUBROUTINE LMUL
IMPLICIT REAL*8(A-H 2O-Z)
COMMON A(8192),U(4096),V(4096),W(4096),E,ERR,L,N,M,MBY2

DO 1 I=1,MBY2

W(2*I-1)=A(2*I-1)*V(I) + A(2*I+M-1)*V(I+MBY2)
W(2*I)=A(2*I)*V(I) + A(2*I+M)*V(I+MBY2)

1 CONTINUE
RETURN
END
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