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The main purpose of this thesis is to compare the performance of the score test and

the likelihood ratio test by computing type I errors and type II errors when the tests are

applied to the geometric distribution and inflated binomial distribution. We first derive

test statistics of the score test and the likelihood ratio test for both distributions.We

then use the software package R to perform a simulation to study the behavior of the

two tests. We derive the R codes to calculate the two types of error for each distribution.

We create lots of samples to approximate the likelihood of type I error and type II error

by changing the values of parameters.

In the first chapter, we discuss the motivation behind the work presented in this

thesis. Also, we introduce the definitions used throughout the paper. In the second

chapter, we derive test statistics for the likelihood ratio test and the score test for the

geometric distribution. For the score test, we consider the score test using both the

observed information matrix and the expected information matrix, and obtain the score

test statistic zO and zI .

Chapter 3 discusses the likelihood ratio test and the score test for the inflated

binomial distribution. The main parameter of interest is w, so p is a nuisance parameter

in this case. We derive the likelihood ratio test statistics and the score test statistics to

test w. In both tests, the nuisance parameter p is estimated using maximum likelihood

estimator p̂. We also consider the score test using both the observed and the expected

information matrices.
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Chapter 4 focuses on the score test in the inflated binomial distribution. We gen-

erate data to follow the zero inflated binomial distribution by using the package R. We

plot the graph of the ratio of the two score test statistics for the sample data, zI/zO, in

terms of different values of n0, the number of zero values in the sample.

In chapter 5, we discuss and compare the use of the score test using two types

of information matrices. We perform a simulation study to estimate the two types of

errors when applying the test to the geometric distribution and the inflated binomial

distribution. We plot the percentage of the two errors by fixing different parameters,

such as the probability p and the number of trials m.

Finally, we conclude by briefly summarizing the results in chapter 6.
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Chapter 1

Introduction

In statistics, a hypothesis is a statement about the numerical value of a population

parameter. There are two types of hypotheses. The null hypothesis, denoted H0, shows

the hypothesis that will not be rejected unless the data provide convincing evidence that

it is false. The alternative hypothesis, denoted H1 or Ha, shows the hypothesis that will

be accepted only if the data provide convincing evidence of its truth. A test statistic is a

sample statistic used in statistical hypothesis testing. A test statistic is computed based

on a random sample drawn from a population and it measures the difference between

the null hypothesis and what is observed in the sample. Generally, an extreme value

of a test statistic indicates strong evidence against the null hypothesis. In hypothesis

testing, a critical value is a value on the test distribution under the assumption that H0

is true, that is compared to the test statistic to determine whether to reject the null

hypothesis. A type I error is an incorrect rejection of a true null hypothesis, while a

type II error is incorrect acceptance of a false null hypothesis.

The score test, also known as Rao’s score test, is a statistical test of a simple

null hypothesis that a parameter of interest θ is equal to some particular value θ0.

We have the null hypothesis H0 ∶ θ = θ0, and the alternative hypothesis H1 ∶ θ ≠ θ0. Let

X = (X1, ...,Xn) be an independent and identically distributed sample from a probability

density function p(x, θ), where parameter θ = (θ1, ..., θr)T . Let

P (X; θ) = p(x1; θ) . . . p(xn; θ).

The score vector of Fisher is

S(θ) = [s1(θ), . . . , sr(θ)]T where sj(θ) = 1
P
∂P
∂θj

; j = 1, . . . , r.

The Fisher information matrix of order r × r is defined by

I(θ) = (ijk(θ)), where ijk(θ) = E(sj(θ)sk(θ)).
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Then the score test under the null hypothesis H0 ∶ θ = θ0 gives

RSS = S(θ0)T [I(θ0)]−1S(θ0).

The distribution of the score test statistic is a Chi-square distribution with 1 degree of

freedom under the assumption that H0 is true.

The likelihood function is a function of the unknown parameter θ given the data

X.

P (X; θ) = p(x1; θ) . . . p(xn; θ) = L(θ;X).

We take the natural logarithm of the likelihood function, which is log-likelihood

function:

logL(θ;X) =
n

∑
i=1
logPi(Xi; θ).

A likelihood ratio test is a statistical test used for comparing the goodness of fit

of two statistical models, the null hypothesis H0 ∶ θ = θ0 and alternative hypothesis

H1 ∶ θ ≠ θ0. The likelihood ratio test statistic, denoted by λ, is given by

λ = −2(L(θ) − supL(θ)),

where L(θ) is the log-likelihood function. The distribution of the likelihood ratio test

statistic is a chi-square distribution with 1 degree of freedom under the assumption that

H0 is true.
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Chapter 2

Geometric distribution

In probability theory, the geometric distribution is a discrete probability distribu-

tion that is used to model the number of failures until the first success when performing

a sequence of Bernoulli trials. We define the probability mass function as follows:

Pr(X = i) = (1 − p)ip, i = 0,1,2,3, ... (2.1)

where the random variable X denotes the number of failures until the first success.

For example, suppose an ordinary coin is tossed repeatedly until the first time a

“Head”appears. The probability distribution of the number of Tails until the first Head

is supported on the infinite set {0, 1, 2, 3, ...} and follows the geometric distribution

with p = 1
2 .

2.1. Likelihood ratio test

We write L(p) to denote the log-likelihood function for the geometric distribution.

Let ni, i = 0,1,2,3..., denote the number of times in the sample that Xi = i. Given a

random sample X1,X2, ...,Xn from a geometric distribution with probability p, we can

write

L(p) =
∞
∑
i=0
nilog{Pr(X = i)}

= n0log(p) +
∞
∑
i=1
nilog(1 − p)i + log(p)

∞
∑
i=1
ni

= nlog(p) +
∞
∑
i=1
inilog(1 − p),

(2.2)

where n =
∞
∑
i=0
ni. After deriving the log-likelihood function of geometric distribution, we

perform the likelihood-ratio test. A simple hypothesis test has the models under both
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the null and alternative hyphotheses, which are expressed as:

H0 ∶ p = p0

H1 ∶ p ≠ p0.
(2.3)

Under the null hypothesis, we use λ to denote the natural log of the likelihood

ratio. λ is defined as follows:

λ = −2(L(p0) − supL(p)),

where L(p) is the log-likelihood function, and sup is the supremum function. To find

supL(p), we maximize L(p) in terms of p, this gives supL(p) = L(p̂), where p̂ = n
n+d ,

∞
∑
i=1
ini = d. The second-order derivative of the log-likelihood fucntion at p̂ is less than 0,

which makes sure that we get the maximum value at p̂. The rules to reject or not reject

the null hypothesis are as follows:

If λ ≥ c, reject H0;

If λ < c, do not reject H0.

The value of c is calculated using a specified significance level α.

Substituting p̂ to λ gives

λ = −2(L(p0) −L(p̂))

= −2(nlog(p0) +
∞
∑
i=1
inilog(1 − p0) − (nlog(p̂) +

∞
∑
i=1
inilog(1 − p̂))).

(2.4)

Under the assumption that the null hypothesis is true and that the sample size n

is sufficiently large, the test statistic λ approximately follows a chi-square distribution

with one degree of freedom. Comparing λ with the critical value χ2
α(1) at a significance

level α, we reject or do not reject H0. Later, we discuss type I errors and type II errors

in Chapter 5 using Equation (2.4).
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2.2. Score test

The score test of the null hypothesis in (2.3) has test statistics of the form

z = U ′J−1U (2.5)

where U is the scores vector including the derivative of L with respect to the parameter

p. The matrix J is either the observed or the expected information matrix, denoted by

O and I, given below,

O = −(d
2L

dp2
)

I = E[O],

and both are evaluated at p = p0.

We denote
∞
∑
i=1
ni = n+ and

∞
∑
i=1
ini = d. The first-order and second-order derivatives

are given by

dL

dp
= n
p
− d

1 − p
d2L

dp2
= − n

p2
− d

(1 − p)2 .

Hence, the observed information matrix is given by

O(p0) = [ n
p20
+ d

(1 − p20)2
].

In order to derive the expected information matrix, we can apply the facts that

E[n0] = np, E[d] =
∞
∑
i=1
in(1− p)ip = n(1−p)

p , and E[n+] = n−np. The expected information

matrix is

E[O] = [ n
p2
+ n

p(1 − p)].
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Therefore, from Equation (2.5), the two score test statistics are given by

zO = ( n
p0
− d

1 − p0
)(− n

p20
− d

(1 − p0)2
)−1( n

p0
− d

1 − p0
)

zI = ( n
p0
− d

1 − p0
)( n
p20
+ n

p0(1 − p0)
)−1( n

p0
− d

1 − p0
).

We simplify the two score test statistics as:

zO = (nq0 − dp0)2
nq20 + dp20

zI =
(nq0 − dp0)2

nq0
,

(2.6)

where p0 is the hypothesized value of p under H0 and q0 = 1 − p0.
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Chapter 3

Zero-inflated binomial distribution

In probability, a zero-inflated binomial distribution is a distribution that allows for

frequent zero-value observations and follows the binomial distribution as well. We define

the probability mass function of the zero-inflated binomial distribution (ZIB) as follows,

Pr(X = 0) = w + (1 −w)(1 − p)m

Pr(X = i) = (1 −w)(m
i
)pi(1 − p)m−i i = 1,2,3, ...,m,

(3.1)

where the random variable X denotes the number of successes in a sequence of m inde-

pendent Bernoulli trials, w(> 0) is the zero-inflation probability.

3.1. Likelihood ratio test

We use L(w,p) to denote the log-likelihood for a zero-inflated binomial distribution,

and ni, i = 0,1, ...,m denotes the number of times that X = i in m independent Bernoulli

trials. The log-likelihood function of a zero-inflated binomial distribution given a random

sample X1,X2, ...,Xn from ZIB(w,m, p) is:

L(w,p) =
m

∑
i=0
nilog{Pr(X = i)}

= n0log(w + (1 −w)(1 − p)m) +
m

∑
i=1
nilog(1 −w) +

m

∑
i=1
nilog(

m

i
)

+
m

∑
i=1
inilog(p) +

m

∑
i=1
mnilog(1 − p) −

m

∑
i=1
inilog(1 − p)

(3.2)

Now, we perform the likelihood ratio test for a zero-inflated binomial distribution

to test the hypothesis: H0 ∶ w = 0 and H1 ∶ w ≠ 0.

In statistics, a nuisance parameter is any parameter which inference is not desired,

but which needs to be accounted for in the analysis of those parameters which are of

interest. In this situation, p is a nuisance parameter that is estimated by the maximum
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likelihood estimator p̂ and we also derive the maximum likelihood estimator for w to be

used in the likelihood ratio test. The first-order derivatives of L(w,p) are given by

∂L

∂w
= n0(1 − qm)
w + (1 −w)qm −

n − n0

1 −w
∂L

∂p
= −mn0(1 −w)qm−1

w + (1 −w)qm + d
p
− mn+

q
+ d
q
,

(3.3)

where q = 1−p, n+ =
m

∑
i=1
ni, n = n0+n+ and d =

m

∑
i=1
ini. Under H0, we plug w = 0 in Equation

(3.3) and let the first-order derivatives equal 0 to obtain the maximum estimator p̂1

∂L

∂p
∣
w=0 =

−mn + d
1 − p + d

p
= 0.

Solving this equation, we get p̂1 = d
mn . The second-order derivative of the log-likelihood

function at p̂ when w = 0 is less than 0, which gives that the log-likelihood function at

p̂ achieves the maximum value.

Under H1, we need to maximize L(w,p) with respect to both w and p. The maxi-

mum likelihood estimators under H1 are denoted by ŵ and p̂2. To obtain ŵ and p̂2, we

set both ∂L
∂p = 0 and ∂L

∂w = 0. After some steps of calculation, the maximum estimator ŵ

and p̂2 satisfy the system of equations below

ŵ = n0 − nq̂m2
n − nq̂m2

p̂2 =
dŵ + (1 − ŵ)dq̂m2

mŵ(n − no) −mn(1 − ŵ)q̂m2
,

(3.4)

where q̂2 = 1 − p̂2. We use λ to denote the natural log of the likelihood ratio, which is

defined by

λ = −2(L(0, p̂1) −L(ŵ, p̂2)).

Substituting w = 0, p̂1, ŵ, and p̂2, we obtain

λ = −2(n0log(1 − p̂1)m + dlog(p̂1) +mn+log(1 − p̂1) − dlog(1 − p̂1)

− n0(log(ŵ + (1 − ŵ)q̂2)) − n+log(1 − ŵ) − dlog(1 − q̂2) −mn+log(q̂2) + dlogq̂2).
(3.5)
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We can find a critical value χ2
α(1) at a significance level α based on the chi-square

distribution with 1 degree of freedom to compare with λ. If λ ≥ c, reject H0; if λ <c,

do not reject H0. We will use Equation (3.5) to discuss type I errors and type II errors

with changing values of parameters in chapter 5.

3.2. Score test

The two score tests of the null hypothesis at w = 0 that we discuss have the same test

statistic form as Equation (2.5). U is a score vector containing the partial derivatives of

L with respect to w and p, calculated when w = 0 and p = p̂1, where p̂1 is the maximum

likelihood estimator of p when w = 0. The observed and expected information matrix,

denoted by O and I, are given below

O(w,p) = −
⎛
⎜
⎝

∂2L
∂w2

∂2L
∂w∂p

∂2L
∂w∂p

∂2L
∂p2

⎞
⎟
⎠

I(w,p) = E[O],

(3.6)

both are evaluated at w = 0 and p = p̂1.

We have the first-order derivatives in Equation (3.3), and the second-order deriva-

tives are

∂2L

∂w2
= − n0(1 − (1 − p)m)2

(w + (1 −w)(1 − p)m)2 −
n+

(1 −w)2

∂2L

∂w∂p
= n0m(1 − p)m−1(w + (1 −w)(1 − p)m) + n0m(1 − (1 − p)m)(1 −w)(1 − p)m−1

(w + (1 −w)(1 − p)m)2

∂2L

∂p2
= n0wm(1 −w)(m − 1)(1 − p)m−2 − n0m(1 −w)2(1 − p)2m−2

(w + (1 −w)(1 − p)m)2 .

9



Letting w = 0 results in a simplification in the first-order derivatives:

∂L

∂w
= n0

(1 − p)m − n

∂L

∂p
= d −mn

1 − p +
d

p
.

(3.7)

The corresponding second-order derivatives are as follows,

∂2L

∂w2
= −n0(1 − (1 − p)m)2

(1 − p)2m − n+

∂2L

∂w∂p
= n0m(1 − p)m−1

(1 − p)2m

∂2L

∂p2
= d −mn

(1 − p)2 −
d

p2
.

Hence, when w = 0 and p = p̂1, the observed information matrix is

O(0, p̂1) =
⎛
⎜
⎝

n0(1−(1−p̂1)m)2
(1−p̂1)2m + n+ −n0m(1−p̂1)m−1

(1−p̂1)2m

−n0m(1−p̂1)m−1
(1−p̂1)2m

mn−d
(1−p̂1)2 +

d
p̂21

⎞
⎟
⎠
.

Since E[n0] = n(1 − p)m, E[d] =mnp, and E[n+] = n − n(1 − p)m, we obtain

E[∂
2L

∂w2
] = − n

(1 − p)m + n

E[ ∂
2L

∂w∂p
] = nm

1 − p

E[∂
2L

∂p2
] = nm

p(p − 1) .

Hence when w = 0 and p = p̂1, the expected information matrix is given by

I(0, p̂1) =
⎛
⎜
⎝

n
(1−p̂1)m − n − nm

1−p̂1

− nm
1−p̂1

mn
p̂1(1−p̂1)

⎞
⎟
⎠
.

When w = 0 and p = p̂1, ∂L
∂p = 0, from Equation (3.7) and Equation (2.5), the two

score test statistics have the simple form

10



z = κ(p̂1)(∂L∂p ∣w=0,p=p̂1)
2 = κ(p̂1)( n0

(1−p̂1)m − n)
2

where κ(p̂1) is either the (1,1) the element of the inverted observed information matrix

O(0, p̂1)−1 or inverted expected information matrix I(0, p̂1)−1. After some steps of cal-

culation and simplification, we find the score test statistic using the estimated observed

information matrix:

zO = (n0 − nq̂m1 )2(nmp̂21 − dp̂21 + dq̂21)
(n0(1 − q̂m1 )2 + nq̂2m1 − n0q̂2m1 )(nmp̂21 − dp̂21 + dq̂21) − n2

0m
2p̂21

(3.8)

where q̂1 = 1 − p̂1. The score test statistic using the estimated expected information

matrix is

zI =
(n0 − nq̂m1 )2

(n − nq̂m1 −mnp̂1q̂m−11 )q̂m1
. (3.9)

We apply these two score test statistics to find the ratio of zI to zO in Chapter 4,

and to study type I errors and II errors of the score test in Chapter 5.
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Chapter 4

Score test statistics for the zero-inflated binomial

distribution

The data of Table 1 come from a simulation of a zero-inflated binomial distribu-

tion. We collect one sample from a zero-inflated binomial distribution with 10 trials,

probability p = 0.5 and the zero-inflated coefficient w = 0.2.

Table 1. Data from a zero-inflated binomial distribution with m = 10, p =
0.5,w = 0.2.

i 0 1 2 3 4 5 6 7 8 9 10

ni 228 10 29 84 174 175 159 98 33 8 2

For the data in Table 1, we have the following values n0 = 228, d = 3887, and

p̂1 = 0.3887. We fix the value of ni for i ∈ {1,2,3, ...,10} and regard n0 as a variable in

Equation (3.8) and Equation (3.9). Then, we get the ratio zI/zO and the graph of the

ratio of the two test statistics for the zero-inflated binomial distribution.

Figure 1. The graph of the ratio of the two score test statistics for
the zero-inflated binomial distribution(1000, 10, 0.5, 0.2), zI/zO, plotted
versus n0.

12



We can see from Figure 1 that as n0 increases, the ratio increases as well, until the

maximum value of the ratio is reached. Thereafter, the ratio decreases as n0 increases

and produces a negative ratio until the minimum value of the ratio is achieved. Finally,

the ratio increases as n0 increases but the ratio still keeps negative. The change in sign

of the ratio occurs when the observed information matrix stops being positive-definite.

Any value of n0 greater than 111 will produce a negative score test statistic by using the

observed information matrix. The observed value of n0 = 228 is inside the area for n0

that results in a negative statistic. Thus the use of the observed information matrix in

this case results in an invalid value of the test statistic, and thus the score test cannot

be applied. As we can see, the negative values of score test statistic are obtained quite

often.

The maximum likelihood estimator of the parameter p is p̂1 = 0.5030(when w = 0).

Substituting p̂1 into zI and zO, we obtain zI = 56657.78 and zO = −173.5659.

The following is another sample of a zero-inflated binomial distribution. The data

set is collected from a zero-inflated binomial distribution with 10 trials, probability

p = 0.1 and zero-inflated coefficient w = 0.2. The data are as follows:

Table 2. Data from a zero-inflated binomial distribution with m = 10, p =
0.1,w = 0.2.

i 0 1 2 3 4 5 6 7 8 9 10

ni 474 303 155 57 10 1 0 0 0 0 0

In this sample data, we have the following values n0 = 474, d = 829 and p̂1 = 0.0829.

We do the same steps as in the former sample data. We change n0 from 0 to 1000 and

fix the value of n+ to get the ratio zI/zO and plot the ratio of the two test statistics for

the zero-inflated binomial distribution.

Figure 2 shows that as n0 increases, the ratio also increases, until the ratio reaches

the maximum value. Thereafter, the ratio decreases as n0 increases and eventually goes
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Figure 2. The graph of the ratio of the two score test statistics for
the zero-inflated binomial distribution(1000, 10, 0.1, 0.2), zI/zO, plotted
versus n0.

to negative values. The change in sign of the ratio occurs at the value of n0 greater than

828, and the sign of the ratio is influenced when the observed information matrix stops

being positive-definite. However, the observed value of n0 = 474 does not belong to the

region for n0 that results in a negative statistic.

The maximum likelihood estimator of the parameter p is p̂1 = 0.1065. Plugging p̂1

into zI and zO, we obtain zI = 238.986 and zO = −367.305.
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Chapter 5

Type I error and type II error

In statistical hypothesis testing, a type I error is the incorrect rejection of a true null

hypothesis, while a type II error is incorrectly retaining a false null hypothesis. In this

chapter, we focus on studying and comparing the percentage of type I errors and type II

errors for the score test and the maximum likelihood ratio test when testing parameters

for the geometric and the inflated binomial distributions. Table 3 is a summary of the

two types error.

Table 3. Types of error.

H0 is true H0 is false
Reject H0 Type I error,

P(Type I) = α
Correct decision

Do not reject H0 Correct decision Type II error,
P(Type II) = β

We choose α = 0.05 as a threshold value to make the decision to reject or not reject

the null hypothesis. Using the chi-square distribution with 1 degree of freedom, we find

the critical value λ = 3.84146 with the significance level of 0.05. Thereafter, we compare

the critical value λ with the values of the likelihood ratio test and the score test to reach

a decision about the null hypothesis H0. We perform a simulation study by taking lots

of sample data to estimate the percentage of type I errors and type II errors.

5.1. Type I error for the geometric distribution

For the geometric distribution, we perform hypothesis testing regarding parameter

p. We simulate 1000 sample data sets of the geometric distribution with p = 0.1. We

have the following hypothesis,

H0 ∶ p = 0.1

H1 ∶ p ≠ 0.1
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We calculate type I errors under the likelihood ratio test and the score test using two

score test statistic, zI and zO. Figure 3 shows type I errors for the geometric distribution

with various values of the sample size n.

Figure 3. Type I error for the geometric distribution.

In this case, we start the number of observations at 5 since we want to avoid the

situation when p̂ equals 0 which results in an undefined log(p̂). Figure 3 shows that the

type I errors of the geometric distribution when we choose different n are between 0.02

and 0.08. Comparing the performance of the likelihood ratio test and the score test,

figure 3 shows that the two tests yield similar performances. Note that the percentage

of type I error fluctuates around the chosen significance level of 0.05.
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5.2. Type II error for the geometric distribution

For type II errors, we consider two situations, one by fixing n, the number of the

observations, and another by fixing p0, the hypothesized values. First, we fix n and

estimate the likelihood of type II errors by the likelihood ratio test. We collect 1000

samples of 100 observations from the geometric distribution with probability p that takes

different values. Then we let p vary around p0, such as p0 = 0.1 and p0 = 0.3, to observe

the percentage of type II errors. Figure 4 shows the relationship between p0 and β. The

hypothesis is

H0 ∶ p = p0
H1 ∶ p ≠ p0

Figure 4. Type II error with n = 100, p0 = 0.1 for the geometric distribution.
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Figure 5. Type II error with n = 100, p0 = 0.3 for the geometric distribution.

Figure 4 and 5 show that the closer p is to p0, the bigger the probability of a type

II error. There is no big difference between the likelihood ratio test and the score test

in terms of percentage of type II error.

Second, we want to study likelihood of type II error when n changes for some fixed

values p0. We choose p = 0.1 to create the sample data and begin with n = 5. Figure

6, 7 and 8 show the percentage of type II error decreases as the number of observation

increases for p0 = 0.05, p0 = 0.15 and p0 = 0.2. When p0 = 0.05 and n < 35, the likelihood

ratio test has the smaller percentage of type II error than the score test. When p0 = 0.15

or 0.2 and n are small values, the score tests perform better than the likelihood ratio

test; also, the closer the value p0 to the true value p, the higher the percentage of type

II error in both tests.
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Figure 6. Type II error with p0 = 0.05 for the geometric distribution.

Figure 7. Type II error with p0 = 0.15 for the geometric distribution.
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Figure 8. Type II error with p0 = 0.2 for the geometric distribution.

5.3. Type I error for the zero-inflated binomial distribution

For the zero-inflated binomial distrition, we compute the percentage of type I errors

under the likelihood ratio test and the score test using zO and zI , for which we already

have the formulas Equation (3.2), Equation (3.8) and Equation (3.9) in Chapter 3. We

consider the hypothesis

H0 ∶ w = 0

H1 ∶ w ≠ 0

We estimate the percentage of type I error with different values of sample size n

under the likelihood ratio test and the score test. For each value of n, we discuss two

different situations, one fixing the number of trials, and another fixing the probability

of success in one trial. We let m equal 10 or 20 and p equal 0.1 or 0.3. Thus, we get
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four different combinations. Under each combination, we want α to hover around 0.05.

We run 100 times to get the percentage of type I error in each case.

First, we let m = 10 and p = 0.1. Figure 9 shows type I error at m = 10 and p = 0.1

with increasing sample sizes from 100 to 1000.

Figure 9. Type I error with m = 10 and p = 0.1 for zero-inflated binomial distribution.

Then we estimate type I error at m = 10 and p = 0.3 with increasing sample sizes

from 100 to 1000. We show the result in Figure 10.

We also want to compute type I errors at m = 20, p = 0.1 and m = 20, p = 0.3 with

increasing sample sizes. Figure 11 shows type I error with fixed m = 20, p = 0.1 and

Figure 9 shows type I error with fixed m = 20, p = 0.3.

21



Figure 10. Type I error with m = 10 and p = 0.3 for zero-inflated bino-
mial distribution.

Figure 11. Type I error with m = 20 and p = 0.1 for zero-inflated bino-
mial distribution.
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Figure 12. Type I error with m = 20 and p = 0.3 for zero-inflated bino-
mial distribution.

Comparing Figure 9 with Figure 10, we find that when the number of trials is fixed

at 10, the percentage of type I error under the likelihood ratio test and the score test

is smaller with larger value of probability of success in one trial under the same sample

size. Comparing Figure 9 with Figure 11, the graphs show that the smaller value of the

number of trials, the larger the value of the type I error with fixed p = 0.1. However,

comparing Figure 12 with Figure 10 or Figure 11, there is an abnormal type I error

of zO, which shows that type I error is significantly influenced by the sample size. We

recall the formula to calculate zO. If we choose m = 20, p = 0.3, there is no zero in a

sample set with small sample size. The probability at X = 0, P (X = 0) = 0.000798, is

very small, which results that n0 = 0 in a small sample size. Then zO = n, where n is

the sample size, is always greater than the critical value χ2
0.05 = 3.84146 at 1 degree of

freedom. In this case, we increase the sample size to 3,000 to see the change of type I
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error. Figure 13 shows type I error at m = 20, p = 0.3 with maximum sample size 3,000.

We can see that as the sample size increases, the percentage of type I error for score test

Figure 13. Type I error with m = 20 and p = 0.3 with larger sample size.

using test statistic ZO significantly decreases. Figure 13 shows that if the sample size is

large enough, type I error can reach the value below 0.05.

Comparing the values of percentages of type I error between the likelihood ratio

test and the score test, figures 9 to 13 show that for the smaller number of trials m

and probability p with the same sample size n, the difference between the two tests is

insignificant. When the probability p is increasing, there is no zero in a sample which

causes ZO = n and ZO is always greater than χ2
0.05 = 3.84146 at 1 degree of freedom. In

this case, the likelihood ratio test performs better than the score test.
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Next, we still discuss type I error under the likelihood ratio test and the score test

when we fix the sample size and the number of trials with the probability of success

in one trial being a variable. We run 100 times at n = 1000,m = 10 to compute the

percentage of type I error.

Figure 14. Type I error with n = 1000 and m = 10.

Figure 14 shows type I error at different values of p with fixed n = 1000,m = 10. In

this figure, the type I error under zO is obviously increasing when p > 0.4, because when

p is increasing, the probability of 0 in one sample data is decreasing. Once there is no 0

in the sample data, zO will be n, which is always greater than the critical value 3.84146

and the score test leads to the wrong decision. Type I error under the likelihood ratio

test and the score test using the expected information matrix decreases with increasing

probability.
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5.4. Type II error for the zero-inflated binomial distribution

We discuss type II error in three situations by changing different parameters in the

zero-inflated binomial distribution. In each case, we run 100 times to avoid some random

mistake. Firstly, we fix m = 10, p = 0.1 and w = 0.2, with the sample size changing from

100 to 2000.

Figure 15. Type II error with m = 10, p = 0.1 and w = 0.2.

Figure 15 shows the relationship between sample sizes with type II error under the

likelihood ratio test and the score test fixing m,p and w. The type II error is decreasing

when the sample size is increasing. If the sample size is big enough, the type II error
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will reach 0. There is not a big difference in type II error between the two types of score

tests.

Secondly, we fix n = 1000,m = 10 and w = 0.2, choosing p as a variable.

Figure 16. Type II error with n = 1000,m = 10 and w = 0.2.

In Figure 16, we find that the percentage of type II error decreases with the prob-

ability increases and other parameters remain at n = 1000,m = 10 and w = 0.2. At

p = 0.05, the score test performs better than the likelihood ratio test. At other value of

p, those type II errors under the likelihood ratio test and the score test are almost the

same value.
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Finally, we discuss the influence on type II errors by changing the zero-inflated

parameter w and fixing n = 1000,m = 10, and p = 0.1.

Figure 17. Type II error with n = 1000,m = 10 and p = 0.1.

Figure 17 indicates that the percentage of type II errors under the likelihood ratio

test and the score test decrease with the zero-inflated parameter being farther away from

the hypothesised value zero. There is no substantial difference between the likelihood

ratio test and the score test.

We only show percentages of type II errors when w is less than 0.2. If we increase

the inflated parameter w, there will be many zeros in the sample data. In this case, ZO

might be less than 0, which is impossible under the chi-square distribution, and thus we

cannot apply the score test using the observed information matrix. We want to show
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the percentage of times that the score test cannot be applied. We fix the sample size

n = 1000 and choose m = 10, p = 0.1;m = 10, p = 0.3 and m = 20, p = 0.1. We run each

case 1000 times.

Table 4. The percentage of time that score test cannot be applied.

w m=10, p=0.1 m=10, p=0.3 m=20, p =0.1

0.1 0 0 0
0.2 0 0 0
0.3 0.029 0.57 0.004
0.4 0.332 1 0.559
0.5 0.77 1 0.999
0.6 0.947 1 1
0.7 0.987 1 1
0.8 0.986 1 1
0.9 0.977 1 1

Table 4 shows that the percentage of times that the score test cannot be applied is

increasing with the inflated parameter increasing. When w is less than or equal 0.2, the

percantage in each case is 0.
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Chapter 6

Conclusion

We derived formulas to compute the likelihood ratio test statistic and the score test

statistic for the geometric distribution and the zero-inflated binomial distribution. The

two score test statistics are calculated by the estimated observed information matrix and

the expected information matrix. We focus on computing score test statistics for the

zero-inflated binomial distribution to calculate the ratio zI/zO with fixed ni, i = 1, ...,m.

There are many instances in which the score test statistics using the observed information

matrix are negative, which leads to a negative ratio zI/zO.

We study type I errors and type II errors for the geometric distribution and the

zero-inflated binomial distribution. For the geometric distribution,we consider the null

hypothesis and the alternative hypothesis, H0 ∶ p = 0.1 and H0 ∶ p ≠ 0.1. We find that the

percentages of type I errors with various values of sample size for the likelihood ratio

test and the score test are between 0.02 and 0.08. For type II errors, we have H0 ∶ p = p0
and H0 ∶ p ≠ p0. The percentages of type II error for the two tests are almost the same

with fixed sample size n. The closer p is to p0, the bigger the value of type II error is.

The percentages of type II errors in both tests decrease with increasing sample size.

For the zero-inflated binomial distribution, p is a nuisance parameter. We have

the null hypothesis and the alternative hypothesis, H0 ∶ w = 0 and H0 ∶ w ≠ 0. The

percentages of type I errors under the two tests are almost the same when m and p are

small. When m and p are increasing, the percentage of type I errors of the score test

statistics using the estimated observed information matrix is extremely high because

of no zero is in samples with small size. For different values of p, the percentage of

type I errors of the score test using the estimated expected information matrix and the

likelihood ratio test decrease as the probability p increases, while that of the score test

statistic using the estimated observed information matrix decreases at first and then
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increases as p increases. For type II errors, there is no substantial difference between the

likelihood ratio test and the score test. The percentage of type II errors is decreasing

when one of the parameters, n, p,w is increasing while others are fixed.
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APPENDIX

#Code to c r e a t e data f o r t ab l e 1 and 2

r . Zib<− f unc t i on (n ,m, p ,w)

{

U<− r u n i f (n)

X<−rep (0 , n)

f o r ( i in 1 : n)

{

i f (U[ i ]<Zib . cd f (m, 0 , p ,w) )

{

X[ i ]<−0

}

e l s e

{

B=FALSE

I=0

whi le (B==FALSE)

{

i n t<−c ( Zib . cd f (m, I , p ,w) , Zib . cd f (m, I +1,p ,w) )

i f ( (U[ i ]> i n t [ 1 ] )&(U[ i ]< i n t [ 2 ] ) )

{

X[ i ]<−I+1

B=TRUE

}

e l s e

{
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I=I+1

}

}

}

}

r e turn (X)

}

Zib . cd f<− f unc t i on (m, j , p ,w)

{

r e turn (w+(1−w) *(1−p)ˆm+(1−w) *sum( pbinom ( j , s i z e=m, prob=p ) )

−(1−w) *dbinom (0 , s i z e=m, prob=p ) )

}

r . Zib ( 1 0 0 0 , 1 0 , 0 . 5 , 0 . 2 )

r . Zib ( 1 0 0 0 , 1 0 , 0 . 1 , 0 . 2 )

#Figure 1 and 2 : r a t i o

O<− f unc t i on ( n0 , n , d ,m, p)

{

r e turn ( ( n0−n*(1−p)ˆm)ˆ2 * (m*n*pˆ2−d*pˆ2+d*(1−p )ˆ2) / ( ( n0* (1

−(1−p)ˆm)ˆ2+n*(1−p )ˆ(2 *m)−n0*(1−p )ˆ(2 *m) ) * (m*n*pˆ2−d*pˆ2

+d*(1−p)ˆ2)−n0ˆ2*mˆ2*p ˆ2))

}

I<− f unc t i on ( n0 , n ,m, p)

{

r e turn ( ( n0/(1−p)ˆm−n)ˆ2 *(1−p)ˆm/ (n−n*(1−p)ˆm−n*m*p*(1−p )ˆ(m−1)) )

33



}

r a t i o<− f unc t i on ( n0 , n , d ,m, p)

{

r e turn ( re turn ( I ( n0 , n ,m, p) /O( n0 , n , d ,m, p ) ) )

}

v<−c (0 ,100 ,200 ,300 ,400 ,500 ,600 ,700 ,800 ,900 ,1000)

r . Zib ( 1 0 0 0 , 1 0 , 0 . 5 , 0 . 2 )

v1<−c ( r a t i o (0 , 772 , 3887 ,10 , 0 . 5035 ) , r a t i o (100 ,872 ,3887 ,10 ,0 . 4458) ,

r a t i o (200 ,972 ,3887 ,10 ,0 . 3999) , r a t i o (300 ,1072 ,3887 ,10 ,0 . 3626) ,

r a t i o (400 ,1172 ,3887 ,10 ,0 . 3317) , r a t i o (500 ,1272 ,3887 ,10 ,0 . 3056) ,

r a t i o (600 ,1372 ,3887 ,10 ,0 . 2833) , r a t i o (700 ,1472 ,3887 ,10 ,0 . 2641) ,

r a t i o (800 ,1572 ,3887 ,10 ,0 . 2473) , r a t i o (900 ,1672 ,3887 ,10 ,0 . 2325) ,

r a t i o (1000 ,1777 ,3887 ,10 ,0 . 2194) )

r . Zib ( 1 0 0 0 , 1 0 , 0 . 1 , 0 . 2 )

v3<c ( r a t i o (0 , 526 , 829 , 10 , 0 . 1576 ) , r a t i o (100 ,626 ,829 ,10 , 0 . 1324) ,

r a t i o (200 ,726 ,829 ,10 , 0 . 1142) , r a t i o (300 ,826 ,829 , 10 , 0 . 1004) ,

r a t i o (400 ,926 ,829 ,10 , 0 . 0896) , r a t i o (500 ,1026 ,829 ,10 ,0 . 0808) ,

r a t i o (600 ,1126 ,829 ,10 ,0 . 0736) , r a t i o (700 ,1226 ,829 ,10 ,0 . 0676) ,

r a t i o (800 ,1326 ,829 ,10 ,0 . 0625) , r a t i o (900 ,1426 ,829 ,10 ,0 . 0581) ,

r a t i o (1000 ,1526 ,829 ,10 ,0 . 0543) )

p l o t (v , v1 , type=”o” , xlab=expr e s s i on ( ”n” [ 0 ] ) , y lab=expre s i on ( ”Z” [ I ] /

”Z” [O] ) )

p l o t (v , v3 , type=”o” , xlab=expr e s s i on ( ”n” [ 0 ] ) , y lab=expre s i on ( ”Z” [ I ] /

”Z” [O] ) )

#Figure 3 : type I e r r o r f o r geometr ic d i s t r i b u t i o n

#l i k e l i h o o d r a t i o t e s t
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compare<− f unc t i on (n , p)

{

x<−rgeom (n , p)

d<−sum( x )

phat<−n/ (n+d)

lamda<−(−2* (n* l og (p)+d* l og (1−p)−(n* l og ( phat)+d* l og (1−phat ) ) ) )

countML<−0

i f ( lamda > 3 .84146)

countML=countML+1

return (countML)

}

d i f f n<− f unc t i on (m, n , p)

{

Z<−rep (0 , n)

f o r ( i in 1 : n)

{

Y<−rep (0 ,m)

f o r ( j in 1 :m)

{

Y[ j ]<−compare (100 *n , p)

}

Z [ i ]<−sum(Y) /m

}

r e turn (Z)

}

#z O
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compareO<− f unc t i on (n , p)

{

x<−rgeom (n , p)

d<−sum( x )

phat<−p

ZO<−( ( n*(1−phat )−d*phat )ˆ2 / ( ( n*(1−phat)ˆ2+d*phat ˆ2 ) ) )

countO<−0

i f (ZO>3.84146)

countO=countO+1

return ( countO )

}

di f fnO<− f unc t i on (m, n , p)

{

Z<−rep (0 , n)

f o r ( i in 1 : n)

{

Y<−rep (0 ,m)

f o r ( j in 1 :m)

{

Y[ j ]<−compareO (100 *n , p)

}

Z [ i ]<−sum(Y) /m

}

r e turn (Z)

}#z I

compareI<− f unc t i on (n , p)
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{

x<−rgeom (n , p)

d<−sum( x )

phat<−p

ZI<−( ( n*(1−phat )−d*phat )ˆ2 / (n*(1−phat ) ) )

countI<−0

i f ( ZI>3.84146)

countI=countI+1

return ( countI )

}

d i f f n I<− f unc t i on (m, n , p)

{

Z<−rep (0 , n)

f o r ( i in 1 : n)

{

Y<−rep (0 ,m)

f o r ( j in 1 :m)

{

Y[ j ]<−compareI (100 *n , p)

}

Z [ i ]<−sum(Y) /m

}

r e turn (Z)

}

#the graph o f type I e r r o r

F ina l<− f unc t i on (m, n , p)
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{

v<−seq (100 ,1000 , by=100)

v1<−d i f f n (m, n , p)

v2<−di f fnO (m, n , p)

v3<−d i f f n I (m, n , p)

p l o t (v , v1 , type=”b” , pch=19, xlab=”The number o f ob s e rva t i on s ” ,

ylab=” alpha ” , main=”Type I e r r o r ” , ylim=c ( 0 , 0 . 1 ) , xl im=c (100 ,1000) )

l i n e s (v , v2 , pch=17, type=”b” , l t y =2)

l i n e s (v , v3 , pch=15, type=”b” , l t y =3)

legend ( ” top r i gh t ” , l egend=expr e s s i on ( ”LR” , ”z” [O] , ”z” [ I ] ) , pch=

c (19 , 17 , 15 ) , l t y =1:3 , cex =0.8)

}

#Figure 4 and 5

compare2<− f unc t i on (n , p , p0 )

{

x<−rgeom (n , p)

d<−sum( x )

phat<−n/ (n+d)

beta<−(−2* (n* l og ( p0)+d* l og (1−p0)−(n* l og ( phat)+d* l og (1−phat ) ) ) )

countML<−0

i f ( beta <3.84146)

countML=countML+1

return (countML)

}

per2<− f unc t i on (m, n , p , p0 )

{
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Y<−rep (0 ,m)

f o r ( j in 1 :m)

{

Y[ j ]<−compare2 (n , p , p0 )

}

sum(Y)

re turn (sum(Y) /m)

}

di f fn f ixLRT<− f unc t i on (m, n , p , p0 )

{

Z<−rep (0 , p0 )

f o r ( i in 1 : p0 )

{

Z [ i ]<−per2 (m, n , p , i / 100)

}

r e turn (Z)

}

#z O

compareO2<− f unc t i on (n , p , p0 )

{

x<−rgeom (n , p)

d<−sum( x )

ZO<−( ( n*(1−p0)−d*p0 )ˆ2 / ( ( n*(1−p0)ˆ2+d*p0 ˆ2 ) ) )

countO<−0

i f (ZO<3.84146)

countO=countO+1
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r e turn ( countO )

}

perO2<− f unc t i on (m, n , p , p0 )

{

Y<−rep (0 ,m)

f o r ( j in 1 :m)

{

Y[ j ]<−compareO2 (n , p , p0 )

}

sum(Y)

re turn (sum(Y) /m)

}

d i f f n f i x O 2<− f unc t i on (m, n , p , p0 )

{

Z<−rep (0 , p0 )

f o r ( i in 1 : p0 )

{

Z [ i ]<−perO2 (m, n , p , i / 100)

}

r e turn (Z)

}

#z I

compareI2<− f unc t i on (n , p , p0 )

{

x<−rgeom (n , p)

d<−sum( x )
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ZI<−( ( n*(1−p0)−d*p0 )ˆ2 / (n*(1−p0 ) ) )

countI<−0

i f ( ZI<3.84146)

countI=countI+1

return ( countI )

}

per I2<− f unc t i on (m, n , p , p0 )

{

Y<−rep (0 ,m)

f o r ( j in 1 :m)

{

Y[ j ]<−compareI2 (n , p , p0 )

}

sum(Y)

re turn (sum(Y) /m)

}

d i f f n f i x I 2<− f unc t i on (m, n , p , p0 )

{

Z<−rep (0 , p0 )

f o r ( i in 1 : p0 )

{

Z [ i ]<−per I2 (m, n , p , i / 100)

}

r e turn (Z)

}

Figure4<− f unc t i on (m, n , p , p0 )
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{

v<−seq ( 0 . 0 1 , 0 . 9 9 , by=0.01)

v1<−di f fn f ixLRT (m, n , p , p0 )

v2<−d i f f n f i x O 2 (m, n , p , p0 )

v3<−d i f f n f i x I 2 (m, n , p , p0 )

p l o t (v , v1 , type=”b” , pch=19, xlab=”p” , ylab=” beta ” ,

main=”Type I I e r r o r ” , yl im=c ( 0 , 1 ) , xl im=c ( 0 , 1 ) )

l i n e s (v , v2 , pch=17, type=”b” , l t y =2)

l i n e s (v , v3 , pch=15, type=”b” , l t y =3)

legend ( ” top r i gh t ” , l egend=expr e s s i on ( ”LR” , ”z” [O] , ”z” [ I ] ) ,

pch=c (19 , 17 , 15 ) , l t y =1:3 , cex =0.8)

}

#f i g u r e 6 ,7 ,8

#l i k e l i h o o d r a t i o t e s t

diffnLRT<− f unc t i on (m, n , p , p0 )

{

Z<−rep (0 , n)

f o r ( i in 5 : n)

{

Z [ i ]<−per2 (m, i , p , p0 )

}

r e turn (Z)

}

#z O

di f fnOgeo<− f unc t i on (m, n , p , p0 )

{

42



Z<−rep (0 , n)

f o r ( i in 5 : n)

{

Z [ i ]<−perO2 (m, i , p , p0 )

}

r e turn (Z)

}

#z I

d i f f n I g e o<− f unc t i on (m, n , p , p0 )

{

Z<−rep (0 , n)

f o r ( i in 5 : n)

{

Z [ i ]<−per I2 (m, i , p , p0 )

}

r e turn (Z)

}

Figure6<− f unc t i on (m, n , p , p0 )

{

v<− t a i l ( seq (1 , n , by=1) ,n−5)

v1<− t a i l ( diffnLRT (m, n , p , p0 ) , n−5)

v2<− t a i l ( d i f fnOgeo (m, n , p , p0 ) , n−5)

v3<− t a i l ( d i f f n I g e o (m, n , p , p0 ) , n−5)

p l o t (v , v1 , type=”b” , pch=19, xlab=”n” , ylab=” beta ” ,

main=”Type I I e r r o r ” , yl im=c ( 0 , 1 ) , xl im=c (0 , n ) )

l i n e s (v , v2 , pch=17, type=”b” , l t y =2)
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l i n e s (v , v3 , pch=15, type=”b” , l t y =3)

legend ( ” top r i gh t ” , l egend=expr e s s i on ( ”LR” , ”z” [O] , ”z” [ I ] ) ,

pch=c (19 , 17 , 15 ) , l t y =1:3 , cex =0.8)

}

#f i g u r e 9 to12

#l i k e l i h o o d r a t i o t e s t

IBlamda<− f unc t i on (n ,m, p ,w)

{

d<−sum( r . Zib (n ,m, p ,w) )

numberofzero<−c ( r . Zib (n ,m, p ,w) )

n0<− l ength ( which ( numberofzero==0))

phat1<−d/ (m*n)

qhat2<−un i roo t ( func t i on ( x)−d*n0*xˆm+(m*n*n0−m*n0*n0 ) *x

+d*n0+m*n0*n0−m*n*n0 , lower =0,upper =0.9999)$ root

what2<−( n0−n*qhat2ˆm) / (n−n*qhat2ˆm)

i f e l s e ( qhat2==0,0,−2* ( n0* l og ((1− phat1 )ˆm)+d* l og ( phat1 )

+m* (n−n0 ) * l og (1−phat1 )−d* l og (1−phat1 )−n0* ( l og ( what2+

(1−what2 ) *qhat2ˆm)) −(n−n0 ) * l og (1−what2)−d* l og (1−qhat2 )−

m* (n−n0 ) * l og ( qhat2)+d* l og ( qhat2 ) ) )

}

I B l r t<− f unc t i on (n ,m, p ,w)

{

lamda<−IBlamda (n ,m, p ,w)

count<−0

i f ( lamda>3.84146)

count=count+1
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r e turn ( count )

}

per ib<− f unc t i on ( l , n ,m, p ,w)

{

Y<−rep (0 , l )

f o r ( i in 1 : l )

{

Y[ i ]<− I B l r t (n ,m, p ,w)

}

sum(Y)

re turn (sum(Y) / l )

}

d i f f n i b<− f unc t i on ( l , n ,m, p ,w)

{

Z<−rep (0 , n)

f o r ( i in 1 : n)

{

Z [ i ]<−per ib ( l , i * 100 ,m, p ,w)

}

r e turn (Z)

}

IBlamdazo<− f unc t i on (n ,m, p ,w)

{

d<−sum( r . Zib (n ,m, p ,w) )

numberofzero<−c ( r . Zib (n ,m, p ,w) )

n0<− l ength ( which ( numberofzero==0))
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phat1<−d/ (m*n)

qhat1<−1−phat1

lamda<−( n0−n*qhat1ˆm)ˆ2 * ( (m*n−d) *phat1ˆ2+d*qhat1 ˆ2)

/ ( ( n0*(1−qhat1ˆm)ˆ2+(n−n0 ) *qhat1 ˆ(2 *m) ) * ( (m*n−d) *phat1 ˆ2

+d*qhat1 ˆ2)−n0ˆ2*mˆ2*phat1 ˆ2)

re turn ( lamda )

}

IBzo<− f unc t i on (n ,m, p ,w)

{

lamda<−IBlamdazo (n ,m, p ,w)

count<−0

i f ( lamda>3.84146)

count=count+1

return ( count )

}

per ibzo<− f unc t i on ( l , n ,m, p ,w)

{

Y<−rep (0 , l )

f o r ( i in 1 : l )

{

Y[ i ]<−IBzo (n ,m, p ,w)

}

sum(Y)

re turn (sum(Y) / l )

}

d i f f n i b z o<− f unc t i on ( l , n ,m, p ,w)
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{

Z<−rep (0 , n)

f o r ( i in 1 : n)

{

Z [ i ]<−per ibzo ( l , 100 * i ,m, p ,w)

}

r e turn (Z)

}

#z I

IBlamdazi<− f unc t i on (n ,m, p ,w)

{

d<−sum( r . Zib (n ,m, p ,w) )

numberofzero<−c ( r . Zib (n ,m, p ,w) )

n0<− l ength ( which ( numberofzero==0))

phat1<−d/ (m*n)

qhat1<−1−phat1

lamda<−( n0−n*qhat1ˆm)ˆ2 / ( ( n−n*qhat1ˆm−m*n*phat1*qhat1 ˆ(m−1))

*qhat1ˆm)

return ( lamda )

}

IBz i<− f unc t i on (n ,m, p ,w)

{

lamda<−IBlamdazi (n ,m, p ,w)

count<−0

i f ( lamda>3.84146)

count=count+1
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r e turn ( count )

}

p e r i b z i<− f unc t i on ( l , n ,m, p ,w)

{

Y<−rep (0 , l )

f o r ( i in 1 : l )

{

Y[ i ]<−IBz i (n ,m, p ,w)

}

sum(Y)

re turn (sum(Y) / l )

}

d i f f n i b z i<− f unc t i on ( l , n ,m, p ,w)

{

Z<−rep (0 , n)

f o r ( i in 1 : n)

{

Z [ i ]<−p e r i b z i ( l , 100 * i ,m, p ,w)

}

r e turn (Z)

}

Figure9<− f unc t i on ( l , n ,m, p ,w)

{

v<−seq (100 ,1000 , by=100)

v1<−d i f f n i b ( l , n ,m, p ,w)

v2<−d i f f n i b z o ( l , n ,m, p ,w)
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v3<−d i f f n i b z i ( l , n ,m, p ,w)

p l o t (v , v1 , type=”b” , pch=19, xlab=”Sample s i z e ” , ylab=” alpha ” ,

main=”Type I e r r o r ” , ylim=c ( 0 , 1 ) , xl im=c (100 ,1000) )

l i n e s (v , v2 , pch=17, type=”b” , l t y =2)

l i n e s (v , v3 , pch=15, type=”b” , l t y =3)

legend ( ” top r i gh t ” , l egend=expr e s s i on ( ”LR” , ”z” [O] , ”z” [ I ] ) ,

pch=c (19 , 17 , 15 ) , l t y =1:3 , cex =0.8)

}

#f i g u r e 1 3

Figure13<− f unc t i on ( l , n ,m, p ,w)

{

v<−seq (100 ,3000 , by=100)

v1<−d i f f n i b z o ( l , n ,m, p ,w)

p l o t (v , v1 , pch=17, type=”b” , l t y =2, xlab=”Sample s i z e ” , ylab=” alpha ” ,

main=”Type I e r r o r ” , ylim=c ( 0 , 1 ) , xl im=c (100 ,3000) )

legend ( ” top r i gh t ” , l egend=expr e s s i on ( ”z” [O] ) , l t y =2,pch=17, cex =0.6)

}

#f i g u r e 1 4

#LRT

d i f f p i b<− f unc t i on ( l , n ,m, p ,w)

{

Z<−rep (0 , p)

f o r ( i in 1 : p)

{

Z [ i ]<−per ib ( l , n ,m, 0 . 1 * i ,w)

}
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r e turn (Z)

}

#z O

d i f f p i b z o<− f unc t i on ( l , n ,m, p ,w)

{

Z<−rep (0 , p)

f o r ( i in 1 : p)

{

Z [ i ]<−per ibzo ( l , n ,m, 0 . 1 * i ,w)

}

r e turn (Z)

}

#z I

d i f f p i b z i<− f unc t i on ( l , n ,m, p ,w)

{

Z<−rep (0 , p)

f o r ( i in 1 : p)

{

Z [ i ]<−p e r i b z i ( l , n ,m, 0 . 1 * i ,w)

}

r e turn (Z)

}

Figure14<− f unc t i on ( l , n ,m, p ,w)

{

v<−seq ( 0 . 1 , 0 . 9 , by=0.1)

v1<−d i f f p i b ( l , n ,m, p ,w)
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v2<−d i f f p i b z o ( l , n ,m, p ,w)

v3<−d i f f p i b z i ( l , n ,m, p ,w)

p l o t (v , v1 , type=”b” , pch=19, xlab=”p” , ylab=” alpha ” , main=”Type I

e r r o r ” ,

ylim=c ( 0 , 1 ) , xl im=c ( 0 . 1 , 0 . 9 ) )

l i n e s (v , v2 , pch=17, type=”b” , l t y =2)

l i n e s (v , v3 , pch=15, type=”b” , l t y =3)

legend ( ” t o p l e f t ” , l egend=expr e s s i on ( ”LR” , ”z” [O] , ”z” [ I ] ) , pch=c (19 ,

17 ,15) ,

l t y =1:3 , cex =0.8)

}

#f i g u r e 1 5

#LRT

I B l r t 2<− f unc t i on (n ,m, p ,w)

{

beta<−IBlamda (n ,m, p ,w)

count<−0

i f ( beta <3.84146)

count=count+1

return ( count )

}

p e r l r t 2<− f unc t i on ( l , n ,m, p ,w)

{

Y<−rep (0 , l )

f o r ( i in 1 : l )

{
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Y[ i ]<−I B l r t 2 (n ,m, p ,w)

}

sum(Y)

re turn (sum(Y) / l )

}

d i f f n l r t<− f unc t i on ( l , n ,m, p ,w)

{

Z<−rep (0 , n)

f o r ( i in 1 : n)

{

Z [ i ]<−p e r l r t 2 ( l , 100 * i ,m, p ,w)

}

r e turn (Z)

}

#z O

IBzo2<− f unc t i on (n ,m, p ,w)

{

beta<−IBlamdazo (n ,m, p ,w)

count<−0

i f ( beta <3.84146)

count=count+1

return ( count )

}

perzo2<− f unc t i on ( l , n ,m, p ,w)

{

Y<−rep (0 , l )
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f o r ( i in 1 : l )

{

Y[ i ]<−IBzo2 (n ,m, p ,w)

}

sum(Y)

re turn (sum(Y) / l )

}

d i f f n z o<− f unc t i on ( l , n ,m, p ,w)

{

Z<−rep (0 , n)

f o r ( i in 1 : n)

{

Z [ i ]<−perzo2 ( l , 100 * i ,m, p ,w)

}

r e turn (Z)

}

#z I

IBz i2<− f unc t i on (n ,m, p ,w)

{

beta<−IBlamdazi (n ,m, p ,w)

count<−0

i f ( beta <3.84146)

count=count+1

return ( count )

}

p e r z i 2<− f unc t i on ( l , n ,m, p ,w)
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{

Y<−rep (0 , l )

f o r ( i in 1 : l )

{

Y[ i ]<−IBz i2 (n ,m, p ,w)

}

sum(Y)

re turn (sum(Y) / l )

}

d i f f n z i<− f unc t i on ( l , n ,m, p ,w)

{

Z<−rep (0 , n)

f o r ( i in 1 : n)

{

Z [ i ]<−p e r z i 2 ( l , 100 * i ,m, p ,w)

}

r e turn (Z)

}

Figure15<− f unc t i on ( l , n ,m, p ,w)

{

v<−seq (100 ,2000 , by=100)

v1<−d i f f n l r t ( l , n ,m, p ,w)

v2<−d i f f n z o ( l , n ,m, p ,w)

v3<−d i f f n z i ( l , n ,m, p ,w)

p l o t (v , v1 , type=”b” , pch=19, xlab=”Sample s i z e ” , ylab=” beta ” ,

main=”Type I I e r r o r ” , yl im=c ( 0 , 1 ) , xl im=c (0 ,2000 ) )
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l i n e s (v , v2 , pch=17, type=”b” , l t y =2)

l i n e s (v , v3 , pch=15, type=”b” , l t y =3)

legend ( ” top r i gh t ” , l egend=expr e s s i on ( ”LR” , ”z” [O] , ”z” [ I ] ) ,

pch=c (19 , 17 , 15 ) , l t y =1:3 , cex =0.8)

}

#f i g u r e 1 6

t y p e 2 d i f f p<− f unc t i on ( l , n ,m, p ,w)

{

v1<−p e r l r t 2 ( l , n ,m, p ,w)

v2<−perzo2 ( l , n ,m, p ,w)

v3<−p e r z i 2 ( l , n ,m, p ,w)

re turn ( l i s t ( v1 , v2 , v3 ) )

}

v<−c ( 0 . 0 5 , 0 . 0 8 , 0 . 1 , 0 . 1 2 , 0 . 1 5 , 0 . 2 , 0 . 3 , 0 . 4 , 0 . 5 , 0 . 6 , 0 . 7 , 0 . 8 , 0 . 9 )

v1<−c ( 0 . 2 7 , 0 . 2 , 0 . 1 3 , 0 . 0 3 , 0 . 0 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 )

v2<−c ( 0 . 4 1 , 0 . 1 8 , 0 . 1 , 0 . 0 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 )

v3<−c ( 0 . 4 , 0 . 2 4 , 0 . 1 2 , 0 . 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 )

p l o t (v , v1 , type=”b” , pch=19, xlab=”p” , ylab=” beta ” ,

main=”Type I I e r r o r ” , yl im=c ( 0 , 1 ) , xl im=c ( 0 , 1 ) )

l i n e s (v , v2 , pch=17, type=”b” , l t y =2)

l i n e s (v , v3 , pch=15, type=”b” , l t y =3)

legend ( ” top r i gh t ” , l egend=expr e s s i on ( ”LR” , ”z” [O] , ”z” [ I ] ) ,

pch=c (19 , 17 , 15 ) , l t y =1:3 , cex =0.8)

#f i g u r e 1 7

#LRT

d i f f w l r t<− f unc t i on ( l , n ,m, p ,w)
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{

Z<−rep (0 ,w)

f o r ( i in 1 :w)

{

Z [ i ]<−p e r l r t 2 ( l , n ,m, p , 0 . 0 1 * i )

}

r e turn (Z)

}

#z O

di f fwzo<− f unc t i on ( l , n ,m, p ,w)

{

Z<−rep (0 ,w)

f o r ( i in 1 :w)

{

Z [ i ]<−perzo2 ( l , n ,m, p , 0 . 0 1 * i )

}

r e turn (Z)

}

#z I

d i f f w z i<− f unc t i on ( l , n ,m, p ,w)

{

Z<−rep (0 ,w)

f o r ( i in 1 :w)

{

Z [ i ]<−p e r z i 2 ( l , n ,m, p , 0 . 0 1 * i )

}

56



r e turn (Z)

}

Figure17<− f unc t i on ( l , n ,m, p ,w)

{

v<−seq ( 0 . 0 1 , 0 . 2 , by=0.01)

v1<−d i f f w l r t ( l , n ,m, p ,w)

v2<−d i f fwzo ( l , n ,m, p ,w)

v3<−d i f f w z i ( l , n ,m, p ,w)

p l o t (v , v1 , type=”b” , pch=19, xlab=”w” , ylab=” beta ” ,

main=”Type I I e r r o r ” , yl im=c ( 0 , 1 ) , xl im=c ( 0 . 0 1 , 0 . 2 ) )

l i n e s (v , v2 , pch=17, type=”b” , l t y =2)

l i n e s (v , v3 , pch=15, type=”b” , l t y =3)

legend ( ” top r i gh t ” , l egend=expr e s s i on ( ”LR” , ”z” [O] , ”z” [ I ] ) ,

pch=c (19 , 17 , 15 ) , l t y =1:3 , cex =0.8)

}

##Table4

i n v a l i d t e s t<− f unc t i on (n ,m, p ,w)

{

beta<−IBlamdazo (n ,m, p ,w)

count<−0

i f ( beta<0)

count=count+1

return ( count )

}

p e r i n v a l i d<− f unc t i on (k , n ,m, p ,w)

{
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Y<−rep (0 , k )

f o r ( i in 1 : k )

{

Y[ i ]<− i n v a l i d t e s t (n ,m, p ,w)

}

sum(Y)

re turn (sum(Y) /k )

}

p e r i n v a l i d w d i f f<− f unc t i on (k , n ,m, p ,w)

{

Y<−rep (0 ,w)

f o r ( i in 1 :w)

{

Y[ i ]<−p e r i n v a l i d (k , n ,m, p , 0 . 1 * i )

}

r e turn (Y)

}

p e r i n v a l i d w d i f f ( 1000 , 1000 , 10 , 0 . 1 , 9 )

[ 1 ] 0 .000 0 .000 0 .029 0 .332 0 .770 0 .947 0 .987 0 .986 0 .977

p e r i n v a l i d w d i f f ( 1000 , 1000 , 10 , 0 . 3 , 9 )

[ 1 ] 0 .00 0 .00 0 .57 1 .00 1 .00 1 .00 1 .00 1 .00 1 .00

p e r i n v a l i d w d i f f ( 1000 , 1000 , 20 , 0 . 1 , 9 )

[ 1 ] 0 .000 0 .000 0 .004 0 .559 0 .999 1 .000 1 .000 1 .000 1 .000

p e r i n v a l i d w d i f f ( 1000 , 1000 , 20 , 0 . 3 , 9 )

[ 1 ] 0 1 1 1 1 1 1 1 1
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