Inter-Segmental Coordination Strategies and Kinematics Utilized During a Single Leg 180° Jump

Kellen T. Krajewski1, Carla McCabe2, Susan Brown3, Chris Connaboy1. 1University of Pittsburgh, Pittsburgh, PA, 2University of Ulster, Belfast, Northern Ireland, UK, 3Edinburgh Napier University, Edinburgh, Scotland, UK

Recent literature indicates multi-planar analysis provides a more robust assessment for functional instabilities that could indicate injury. The single-leg 180° jump requires multi-planar movement, dynamic effort and allows for bilateral assessment. **PURPOSE:** To determine inter-segmental thorax and pelvis coordination and knee kinematic strategies utilized when performing a single-leg 180° jump. **METHODS:** 14 male elite rugby players performed five single leg 180° jumps on each leg, with 3D kinematic data collected using a 12 camera motion capture system. Independent t-tests were used to determine any significant differences in abduction (ABD)/adduction (ADD) between the dominant limb (DL) and non-dominant limb (NDL) during the loading (LOP) and landing (LAP) phases following a 180° single leg jump. Continuous relative phase (CRP) was calculated as a representative of inter-segmental coordination between the segmental rotations of the thorax and the pelvis about the vertical (z) axis. **RESULTS:** At LOP, NDL greater peak ABD (p = .01). At LAP, DL greater peak ADD (p=.05). At LAP, NDL, greater peak ABD (p=.01). CRP plots denoted differences in pelvis/thorax segmental coordination for both the DL and NDL (see figure 1). **CONCLUSIONS:** Differential inter-segmental movement CRP plots indicate participants can utilize a thorax led; pelvis led or synchronized rotational method. Variability is more pronounced during the LAP, indicated by significant differences in bilateral LAP peak ADD/ABD, which is of greater interest for injury risk prediction because of the dynamic loading of the tissues. Future research should assess CRP to identify compensatory strategies and injury risk.

Figure 1: Thorax/Pelvis Coordination: DL (Left) vs NDL (Right)