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It has been shown in studies involving many temperate-

zone avian species that annual variation in day length is a

major environmental factor influencing the timing of

seasonal events such as gonadal development, molt, fat

deposition, and migration. The mechanism whereby these

birds measure day length involves a circadian rhythm of

photosensitivity which is entrained by the daily photoperiod.

If light occurs such that it coincides with the photosensitive

phase of this rhythm, an event such as gonadal recrudescence

is induced. This study was carried out in photosensitive

White-throated Sparrows in winter and spring of 1982 to

explore the possibility that temperature might modify the

expression of the circadian rhythm of testicular photosensi-

tivity. Upon treatment with interrupted-night photoperiods,

birds held on LD 9:15 at temperatures averaging 27.6 C

exhibited a daily rhythm in testicular photosensitivity,

whereas birds held on LD 9:15 at temperatures averaging

3.7 C did not show such a daily rhythm. These results

support the hypothesis that temperature modifies the timing

of certain seasonal events in the White-throated Sparrow by

vii



influencing the expression of a circadian rhythm of



INTRODUCTION

During the past several decades, much research has been

done in regard to understanding the mechanisms by which

photoperiodic organisms measure day length. It is now

generally accepted that length of the daily period of light

and its seasonal changes play a fundamental role in the

regulation of the annual cycles of many plants and animals.

It has been shown in numerous studies involving different

avian species of temperate zones that day length is important

in synchronizing the reproductive cycle with the environmental

cycle such that reproduction occurs at a time of year when

breeding success is most likely (Meier and Ferrell 1973).

Seasonal variation in day length is a major factor influencing

the timing of events such as gonadal development, molt,

migratory fat deposition, and migratory behavior in birds.

Photoperiodic control of the annual reproductive cycle has

been known since the seventeenth century when Dutch bird

netters produced singing decoys in autumn in order to net

migrants by holding males on reduced light in spring and

summer (Hoos 1937 in Farner 1964). A correlation between

increase in gonad size and the lengthening days of spring had

been frequently observed (Etzold 1891, Loisel 1900-1902 in

Allender 1936); however, formal experimentation in this area

was not initiated until 1925 when it was discovered that

premature spermatogenesis and vernal migration could be
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induced out of season in male Dark-eyed Juncos (Junco

hyemalis) by adding several hours of artificial illumination

to natural winter day lengths (Rowan 1925, 1926). Bissonnette

(1930), working with Sturnus vulgaris, confirmed Rowan's

report (Rowan 1938; Bissonnette 1937). It has been demon-

strated using different avian species that regulation of

testicular growth involves a circadian rhythm of photosensi-

tivity (Hamner 1963, 1964; Farner 1964, 1965; Menaker and

Eskin 1967; Follett and Sharp 1969; Turek 1974; Meier 1976;

Meier and Ferrell 1978; Kumar and Tewary 1982). Elliot et al.

(1972) demonstrated this mechanism in mammals. Bunning

(1936, 1960) was the first to propose a mechanism based on

circadian rhythms to explain photoperiodism in plants and

animals. According to this hypothesis, light has a dual

action in photoperiodic systems. The onset of light entrains

or sets the timing of a rhythm of photosensitivity to the

inductive effects of light. If the daily photoperiod is of

sufficient length, light will occur coincident with the

photosensitive (photoinducible) phase of the photosensitivity

rhythm and will induce a physiological process such as

gonadal development, a response normally produced only by

long day lengths. Light coinciding with any other phase of

the rhythm of photosensitivity will not affect the gonads.

As first shown by Hamner (1963) and supported by numerous

studies (Farner 1964, 1965; Menaker and Eskin 1967; Follett

and Sharp 1969; Turek 1974; Meier 1976; Meier and Ferrell

1978; Kumar and Tewary 1982), induction does not depend on
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the length of the photoperiod but rather on the time at which

light occurs.

Few investigations have been directed toward studying

proximate factors other than light which might influence the

timing of events annually. Prior to the classical experiments

of Rowan (1938), it was assumed that reproduction in temperate

latitudes was regulated by the warming temperatures of spring

(Marshall 1959). After Rowan's work showing the significance

of light, the importance of other factors such as temperature

was discounted by many. Some of Rowan's original work showing

recrudescence in Dark-eyed Juncos at temperatures of -47 C

seemed to indicate the relative unimportance of temperature in

the avian reproductive cycle. Spermatogenesis was induced

independently of rising temperatures. Likewise, Kendeigh

(1941) reported that in English Sparrow (Passer domesticus),

exposure to fluctuating outdoor temperatures did not inhibit

gonadal development under a lengthened photoperiod. Results

of other studies, however, have indicated that temperature is

an important proximate factor involved in timing of repro-

duction. Results of one experiment wherein the stage of

gametogenesis in feral birds was examined at exactly the same

time of year and locality during two successive winters, one

unusually cold and the other extremely mild, demonstrated

the inhibiting effect of cold temperature and the accelerating

effect of mild temperature (Marshall 1959). Burger (1948)

found that under favorable photoperiodic conditions,

recrudescence in Starlings proceded at a faster rate when
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birds were subjected to constant high temperat
ures (32-35 C

or 38-40 C) than when birds were subjected t
o fluctuating

moderate temperatures (11-24 C). Farner and Mewaldt (1952)

demonstrated with White-crowned Sparrows tha
t if length of

photoperiod and light intensity were sufficien
t to induce

premature gonadal development, the rate of dev
elopment could

be accelerated by exposure to higher tempera
tures. Warm

temperatures by themselves did not induce go
nadal development.

The data from previous investigations seem t
o be in

agreement in regard to the effect of tempera
ture on the rate

of gonadal development induced by long day l
engths. Ambient

temperatures higher than normal during the n
atural period of

reproductive development accelerate this d
evelopment. However

there is little information regarding the 
effect of colder

than normal temperatures. It seemed likely that temperature

has a modifying effect on photoperiodism. 
Therefore, the

following experiments were designed to det
ermine whether or

not cold temperatures modify the photoperi
odic effect on the

expression of the seasonal events related 
to avian reproduc-

tion and, if so, by what mechanism.



MATERIALS AND METHODS

The White-throated Sparrow, Zonotrichia albicollis,

a small migratory, passerine species was used in the present

investigation. Birds, captured during January and February

1982, in Bowling Green, Kentucky, using chicken wire traps,

were held in a large indoor aviary until experimental treat-

ments were initiated. During this time they were maintained

under natural photoperiod conditions (i.e., approximately

LD 9:15). This day length is reportedly not sufficient to

stimulate reproductive development (Wolfson 1959; Farner

et al. 1953). The gonads are no longer refractory to light

stimulation at this time of year and can be photostimulated

with increased day lengths (Shank 1959).

Once a sufficient number of birds was captured, they

were laparotomized to determine sex. Measures of certain

physiological and behavioral parameters used in previous

studies (Eyster 1954; Weise 1956) were chosen to monitor

seasonality. They included left testis width, body weight,

subcutaneous fat stores, and daily locomotor activity. Males

were preferred because gonadal growth is easily monitored

in situ. Females were released. However, several females

were mistakenly included in the group of birds used in

Experiment I. Data from female birds were not included in

statistical analyses.

The birds were divided into two groups of 18 birds
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each. One group was exposed to warm temperatures throughout

the experiment,and the other group was exposed to cold

temperatures for the duration of the experiment. The two

temperature treatment groups were each subdivided into three

photoperiodic treatment groups. Birds in each of these

groups were held under a basic LD 9:15 schedule. The light

period of this schedule will subsequently be referred to as

the daily photoperiod. In addition to this daily photoperiod,

birds in each group received one additional hour of light

during a particular phase of the dark period. Birds of

groups 1, 2, and 3 received this additional hour of light at

12, 16, and 20 hours after the onset of the daily photoperiod,

respectively. Therefore, each bird was exposed to ten hours

of light daily which is not sufficient to stimulate rapid

testicular growth in White-throated Sparrows (Wolfson 1959;

Farner et al. 1953). These treatment groups will subsequently

be designated by W-12, W-16, W-20, C-12, C-16, and C-20.

C or W represent the temperature treatment and 12, 16, and 20

represent the time of onset of the additional hour of light.

All birds received food and water ad libitum.

The birds were housed individually in cages within

photoperiod chambers. These light-tight, ventilated compart-

ments were equipped with 15-watt fluorescent lights that

provided an intensity of light at perch height of 340 lux in

cages in warm-temperature chambers and 410 lux in cages in

cold-temperature chambers. Light onset was operated auto-

matically by timers. A Taylor maximum-minimum thermometer
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was placed inside each photoperiod chamber and the high and

low temperatures were recorded daily.

In addition, one of the two perches in each cage rested

on a microswitch attached to the cage externally and these

in turn were wired to an Esterline-Angus event recorder.

Activity (perch hopping) of the birds was continuously

recorded during the last two weeks of each experiment. Each

time the bird hopped onto the perch, an electrical circuit

was completed and the movement was recorded as a dash on a

continuously moving paper chart. The paper chart was sub-

divided into 10-minute increments. Locomotor activity during

these 10-minute intervals was assigned a value of 0.0, 0.3,

0.6, or 1.0 activity units representing increasing degrees

of activity. The sum of these six 10-minute values

represented the total amount of activity which occurred

during a given hour. Hourly activity was therefore assigned

a value ranging from 0 representing no activity to 6 reore-

senting continuous activity. Six days of activity were

averaged together and graphed to form a representative daily

activity pattern.

Experimental treatments were carried out between

7 February and 28 February 1982 (Experiment I). They were

repeated between 8 March and 6 May 1982 (Experiment II).

During Experiment I, the photoperiod chambers containing

groups W-12. W-16 and W-20 were placed indoors where temper-

atures ranged from 18.9 C to 31.1 C and averaged 25.1±2 C.

Temperatures inside chambers containing groups C-12, C-16
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and C-20, placed out-of-doors under a shelter, fluctuated

between -15.6 C and 10.6 C and averaged 5.7±2 C. During

Experiment II, the W groups were similarly placed indoors

where the average temperature was 27.6±2 C. Due to warming

weather, the C groups were placed inside a walk-in cooler

where the temperature was maintained at 3.8±2 C throughout

the test period.

After three weeks of exposure to the experimental

conditions, the birds were laparotomized. Left testis

widths were measured in situ to the nearest 0.1 mm. Body

weights were measured to the nearest 0.01 gm and visual

observations of subcutaneous fat deposition were made. The

fat deposition index used was a subjective measurement of

observable subcutaneous fat similar to the index used by

McCabe (1943), Blanchard (1941), and Wolfson (1945). This

system of five classes provided an index of subcutaneous fat

in which 0 represented no visible fat in the furcular depres-

sion or on the abdomen. Classes 1, 2, and 3 represented

successively increasing increments of fat and class 4

represented maximum fat deposition in both furcular depression

and abdominal regions.

Results of Experiment II indicated that there was not a

dramatic response to the photoperiod treatments by either W

or C groups after three weeks. Therefore, treatments were

continued for an additional three weeks. The locations and

conditions of the experiment remained the same. This addition-

al three week period of treatments will be considered as part
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of Experiment II.

Data of both Experiments I and II were analyzed

statistically by one way analysis of variance using an SPSS

computer program (Nie et al. 1975). The responses of the

three photoperiodic treatment groups were compared within

each temperature treatment group. Student-Newman-Keuls

multiple range test was used to identify significant differ-

ences among the three photoperiodic treatment groups within

each temperature treatment group. Differences were considered

significant at the 95% confidence level (p0.05).



RESULTS

Experiment I was carried out as a pilot study during

the month of February 1982 to determine if a daily rhythm

of testicular photosensitivity is involved in photoperiodism

in the White-throated Sparrow and, if so, whether its

expression is influenced by temperature. Results are

presented in Table 1 and Figures 1 and 2. The experiment

was begun with a fairly homogeneous group of birds. Fully

regressed gonads with the testis width measuring 1.1+0.1 mm

were observed during the preliminary laparotomies. Body

weights were similar initially (i.e., average weight of

27.90+0.73 gm) and subcutaneous fat stores were low. At the

conclusion of three weeks of treatment (Figure 1), the average

testis width (i.e., 1.140.3 mm) of birds in the cold treat-

ment groups was similar to the initial testis width. There

were essentially no differences in testicular growth among

the three photoperiodic treatment groups at this temperature

(Figure 1). There was a slight change overall in the left

testis width (i.e., 0.6+0.2 mm) in birds held at W (Table 1).

Birds of group W-16 showed the greatest response with an

average change of 0.8+0.1 mm in testis width. However, this

change in width was not statistically different from the

change in testicular width observed in birds of groups W-12

and W-20. All birds lost body weight during the experiment.

The average amount lost among the cold and warm acclimating
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Figure 1. Left testis width in sparrows of Experiment
held under photoperiodic schedules represented by
unshaded (light) and shaded (dark) areas in the
lower horizontal bars. Testicular responses to
photoperiodic treatments are depicted above the
interrupted-night photoperiod representation.
The hatched circle represents mean initial testis
width, open circles represent mean testis widths
of birds held at warm temperatures (25.1±2 C)
after three weeks of treatment, and dark circles
represent mean testis widths of birds held in
cold conditions (5.7-2 C) after three weeks of
treatment. Treatments were initiated 7 February
1982. Vertical lines represent one standard
error about the mean (S.E.M.).





13

birds was 1.69±0.60 gm and 2.57±0.37 gm, respectively. In

general, fat store changes reflected body weight changes.

The locomotor activity patterns of all birds were

similar throughout the treatment period regardless of the

temperature and photoperiod treatment. An obvious daily

rhythm characterized by a sharp rise of locomotor activity

in the morning was evident. Peak levels of locomotor

activity occurred coincident with the onset of the daily

light period. Some anticipation of onset of light was exhib-

ited as indicated by onset of activity occurring one to two

hours before actual onset of the light period. Locomotor

activity steadily declined during the light period until late

afternoon at which time a smaller peak of activity occurred

at approximately one hour before the offset of the daily

light period. The activity then proceeded to decline until a

low point was reached usually one hour after the daily light

period. From this point, activity began to increase again in

anticipation of the hour of additional light. Definite

responses to the light interruptions are indicated by the

corresponding peaks of activity. The recordings suggest

further that the birds also anticipated the light interruptions

of the other treatment groups in that the onset of activity

preceded the onset of these interruptions. Although birds

not receiving light also responded during other interruption

times, a light meter reading indicated that there was no

leakage of light between compartments of the chambers. There-

fore, it is suggested that the noise of the perches and
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Figure 2. Daily locomotor activity patterns of the three
photoperiodic treatment groups of sparrows of
Experiment I held at C (dashed line) and W
(solid line) during three weeks of treatment.
Bars beneath each group represent the light
(unshaded) - dark (shaded) cycles.





15

microswitches produced as the birds hopped and chipping

noises elicited by the birds receiving light probably acted

as a general disturbance for all other birds.

Experiment II was conducted to explore further the pos-

sibility that temperature might influence the expression of

a daily rhythm of testicular responsiveness to light. Results

presented in Table 2 and Figures 3, 4, and 5 will be

discussed in terms of results obtained at the end of three

weeks and at the end of six weeks of treatment. Changes in

testis width and body weight after three and six weeks of

treatment refer to the differences between initial measure-

ments and measurements after three and six weeks. As in

Experiment I, at the end of three weeks of exposure to

experimental conditions, there was an insignificant change

(0.2+0.1 mm) in the testis widths of those birds exposed to

cold regardless of photoperiodic treatment. Testicular

growth was slightly greater in birds maintained in warm

conditions compared with growth in birds at C. However,

widths at three weeks were not significantly different from

initial widths. In that results from both temperature

treatment groups after three weeks were similar to results at

the end of Experiment 1, it is suggested that, as with birds

in the first experiment, birds of Experiment II were not

fully acclimated to cage conditions at the start of the

treatment period. Consequently, responses to treatments

were not maximal. Therefore, the experimental conditions

were continued for an additional three weeks. At the end of
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Figure 3. Left testis width in sparrows of Experiment II

held under photoperiodic schedules represented

by unshaded (light) and shaded (dark) areas in

the lower horizontal bars. Testicular responses

to photoperiodic treatments are depicted above

the interrupted-night photoperiod representation.

The hatched circle represents mean initial testis

width, open circles represent mean testis widths

of birds held at warm temperatures (27.6±2 C)

after three weeks of treatment, dark circles

represent mean testis widths of birds held in

cold conditions (3.8±2 C) after three weeks of

treatment, open squares represent mean testis

widths of birds held in warm conditions (27.6+2 C)

after six weeks of treatment, and dark squares

represent mean testis widths of birds held in

cold conditions (3.8±2 C) after six weeks of treat-

ment. Experiment II was initiated 8 March 1982.

Vertical lines represent one standard error about

the mean (S.E.M.).
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Figure 4. Daily locomotor activity patterns of the three
photoperiodic treatment groups of sparrows of
Experiment II held at C (dashed line) and W
(solid line) during the first three weeks of
treatment. Bars beneath each group represent
the light (unshaded) - dark (shaded) cycles.
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Figure 5. Daily locomotor activity patterns of the three

photoperiodic treatment groups of sparrows of

Experiment II held at C (dashed line) and W

(solid line) during the second three weeks of

treatment. Bars beneath each group represent

the light (unshaded) - dark (shaded) cycles.
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this time, measurements indicated that recrudescence had

continued to progress in all birds of both tmperature treat-

ment groups but at different rates. There was variation

among the three photoperiod treatment groups in birds kept

at W after six weeks. Birds of group W-20 had testis widths

significantly greater than the testis widths of birds in

groups W-12 and W-16 (ANOVA: Table 2). The testicular

growth responses of birds at C to the three photoperiodic

treatments were not significantly different. It should be

noted that cold temperature did not totally inhibit

recrudescence.

Results of Experiment II indicate that during the first

three weeks of treatment, birds of cold temperature treatment

groups and two of the three warm temperature treatment groups

lost weight (Table 2). This loss supports the idea that

birds were not fully acclimated to cage conditions at the

start of the experiment. A comparison of changes in body

weight during the second three weeks of the experiment

indicates that birds generally gaineLl more weight than they

had lost during the first three weeks of treatment. The C-16

birds constituted the only group that did not fully regain

their weight. The initial and final body weights of group

C-12 were essentially the same and their fat stores decrease
d

slightly. Final body weights and fat stores of birds of

group C-20 did not differ significantly from those of birds

in C-12 and C-16. Birds of W-20 were the only ones that did

not initially lose weight and they gained the most weight
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comparatively during the second three weeks of treatment. This

group also acquired the greatest amount of fat.

The daily activity rhythms of the birds during the six

weeks of Experiment II are characterized by a sharp peak of

activity in the morning, a gradual decline in activity in the

afternoon and then a brief burst of activity just prior to

the offset of light. Again there were definite responses to

light occurring during the dark period indicated by the well-

defined peaks of activity occurring coincident with the addi-

tional hours of light. As in Experiment I, all of the birds

became active during the light interruptions due to the

general disturbance made by those receiving light. The

activity rhythms of birds during the second three weeks of

Experiment II are similar to those during the first three

weeks with the exception of those exhibited by birds of group

W-20 which had the greatest testicular development. In

comparison to birds of other W groups, birds in this group

exhibited greater diurnal activity but, more importantly,

the activity level did not decline radically in the late

afternoon and did not diminish after the offset of the daily

light period. There was a short period of rest in the late

afternoon; however, activity increased quickly just prior to

the completion of the daily light period. It leveled off for

a time, rose again to peak three hours after offset of the

daily photoperiod, and then immediately decreased as the

birds entered a period of rest. This pattern of nocturnal

unrest is similar to that found by Weise (1956) in



photostimulated White-throated Sparrows.



DISCUSSION

Similar to findings in other studies, results of this

investigation indicate that photoperiodism in White-throated

Sparrows involves circadian mechanisms. Seasonal physiolog-

ical and behavioral events are regulated in part by

endogenous (photosensitivity) rhythms which are circadian 
in

nature and synchronized by entraining agents such as the
 daily

light period. Despite the fact that birds of this study

were held under non-stimulatory photoperiodic schedules 
in

regard to total amount of light per day (i.e., less than
 ten

hours), certain physiological and behavioral events (
i.e.,

gonadal growth, subcutaneous fat deposition, and noct
urnal

unrest) were induced in those birds held at W that re
ceived

light 20 hours after the onset of the daily photoperiod.

Light occurring at this time apparently coincided wit
h the

photosensitive (photoinducible) phase of the testicul
ar

photosensitivity rhythm in these birds. Its effect was

additive during the experimental period thus resultin
g in

observable gonadal growth. Light occurring 12 or 16 hours

after onset of the daily photoperiod did not coincide wi
th

the photosensitive phase and consequently did not ind
uce

recrudescence. These results are in accordance with those

from studies carried out in other avian species (Hamner 
1963;

Farner 1964,1965; Menaker and Eskin 1967; Follett and Sh
arp

1969; Turek 1974; Meier 1976; Meier and Ferrell 1978;
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Kumar and Tewary 1982) in which circadian mechanisms were

found to be involved in photoperiodism.

Results of these experiments indicate that environmental

temperature is also an important factor influencing the

timing of certain stages of the avian reproductive cycle.

Cool temperatures slowed gonadal growth in birds in all three

photoperiodic treatment groups. The results of the second

three weeks of Experiment II dramatically illustrate this

point. Although Experiment I and the first three weeks of

Experiment II did not produce significant results, growth of

gonads of birds exposed to cold was not as progressed as those

of birds held at W (Figures 1 and 2). Temperature appears to

be a secondary influence on the timing of testicular growth

within the seasonal cycle. These results are in accordance

with results of previous investigations by Engels and Jenner

(1956) which indicated that while temperature is an important

factor affecting the initiation of seasonal gonadal develop-

ment in birds, photoperiod is the primary factor. Engels

and Jenner reported that after six weeks of treatment, testes

of Juncos exposed to a LD 12:12 and warm (24-29 C) conditions

were approximately four times as large as testes of birds

maintained under a LD 12:12 and either constant cold (4-8 C)

conditions or cold dark periods and warm light periods. In

addition, testes of Juncos in the LD 11:13 warm group were

almost as large as those in a LD 12:12 cold group, and

testes of birds in the LD 11:13 cold group were significantly

larger than those held in warm temperatures and LD 10:14.
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Therefore, the length of the daily light period or the time of

day at which light occurs seems to be a greater limiting

factor than temperature in regard to the rate of

recrudescence. The rate at which testicular growth occurs is

directly related to the daily photoperiod but modifiable by

the environmental temperature.

Mode of action of temperature in modifying photoperiodism

cannot be determined from results of this investigation.

However, one possibility consistant with results of this

study is that temperature might simply retard the expression

of the daily rhythm of photosensitivity. White-throated

Sparrows exposed to cold temperatures (3.8+2 C) did not

exhibit a daily rhythm of testicular growth responsiveness to

light, whereas birds exposed to warm temperatures (27.6+2 C)

did exhibit such a rhythm. Supporting this idea is the fact

that cold temperatures did not totally inhibit the testicular

response to light but simply caused it to occur at a retarded

rate. However, these results also support the possibility

that cold temperatures might inhibit induction in that

induction did not occur in response to C-20 as it did in

W-20. It is apparent from results of this study that temper-

ature does influence circadian mechanisms involved in photo-

periodism,and these possible modes of action need to be

explored further.

Changes in fat stores and body weights observed during

the second three weeks of Experiment II support the findings

concerning gonadal development. In the seasonal cycle of the
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White-throated Sparrow, gonadal development begins as day

length increases in spring. This gonadal development is

associated with the occurrance of prenuptial molt, fattening,

and migration to the breeding grounds. According to Weise

(1963) and Helms(1968), a pronounced increase in fat stores

and body weight occurs in White-throated Sparrows concom-

mitant with development of reproductive organs and a peak is

reached just prior to vernal migration. The extra fat

stored in the spring serves as an energy reserve for use

during migration (Farner et al. 1957, 1961). Although the

actual initiation of fat depostion and body weight gain was

not timed in relation to the stage of gonadal recrudescence

in the present investigation, an overall increase in fat

deposition and body weight that coincided with development of

gonads was observed. Birds in all three warm temperature

treatment groups showed a net gain in body weight and fat

stores during the second three weeks of Experiment II. Birds

of groups C-12 and C-16 showed no net gain in weight and a loss

of stored fat. Birds in the latter group exhibited the least

testicular growth during the test period. Absence of gain in

weight and fat deposits might be due to the fat that lower

temperatures demanded a higher rate of metabolism for

thermoregulation. Thermoregulation, however, does not

account entirely for these results in that birds of group

0-20 gained weight and fat stores increased. All birds had

the same amount of time per day to feed, however, the time of

day at which they fed might also partially account for the
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difference between groups C-12, C-16 and group C-20.

The observations made concerning Experiment I and the

first three weeks of Experiment II indicate that the birds

were not fully acclimated to cage conditions at the start of

the experimental period. There were no significant

differences among the warm or cold temperature treatment

groups for any of the physiological or behavioral parameters

tested. A daily rhythm of testicular photosensitivity was

not yet present at the end of either of these experimental

periods. Losses of body weight and fat stores during

Experiment I and the first three weeks of Experiment II

support the idea that birds were inadequately acclimated to

cage conditions. Changes in body weight and fat stores were

not found to be different among either temperature treatment

group. There were no major conclusions drawn from the

results of these two treatment periods concerning the effect

of temperature on testicular responsiveness to light. The

only conclusion made was that the experimental conditions

were not continued long enough to allow for adaptation to

cages and testicular response to interrupted-night photoperiods.

The daily locomotor activity patterns of the birds in

this study were similar throughout both experimental periods

regardless of the temperature at which they were held.

Nocturnal activity, indicative of migratory disposition, was

not present during Experiment I or the first three weeks of

Experiment II. This fact is not surprising in that body

weight, subcutaneous fat deposition and gonadal development
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had changed little among these birds. Locomotor activity

does not appear to affect Gonadal development, an effect

similar to that noted in previous studies (Farner and

Mewaldt 1955; Bissonnette 1931; Wolfson 1949). Nocturnal

activity, characterized by a second peak of activity shortly

after the offset of lights, was exhibited by individuals of

group W-20. Nocturnal activity did not exceed the diurnal

rate, a result similar to findings reported by Eyster (1954)

in a study of White-throated Sparrows. He also reported

that although the morning peak remained the same, there was

some reduction in diurnal activity during the height of

spring migration. In the present study, not only was the

morning peak higher, but diurnal activity was also higher in

birds exhibiting nocturnal unrest. Evster also found that

the White-throated Sparrow usually has a rest period of one-

half to two hours following the completion of the daily light

period before the onset of nocturnal unrest. In the present

investigation, this period of rest lasted from two to three

hours. In the majority of birds at warm temperature, the

afternoon peak occurred one hour prior to the offset of

light at which time activity decreased to a low point one

hour after offset of light. The activity of group W-20 was

different in that the afternoon peak was reached earlier at

three hours prior to the completion of the daily photoperiod

and the low point occurred at the time of offset of light.

The period of rest shifted two hours in those birds exhibit-

ing nocturnal unrest. While activity did not totally cease
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during these rests, there was a period of about three hours

during which it was declining. The locomotor activity patterns

as well as the fat stores and body weights of the birds of

group W-20 indicate that these birds were in the seasonal

condition of spring migration whereas the birds exposed to

W-12, W-16 or to cold temperatures did not appear to be in

this conditon.

In conclusion, results of this investigation indicate

that the timing of reproduction, migration, and fattening in

White-throated Sparrows is regulated by photoperiod. This

effect of light involves circadian mechanisms that can be

modified by temperature-- thereby  fine tuning the timing of

the expression of seasonal events such as gonadal growth,

subcutaneous fat deposition, and body weight. A daily rhythm

of testicular growth responsiveness to interrupted-night

photoperiods was evident in birds maintained on a LD 9:15

schedule at 27.6+2 C, whereas birds maintained on a LD 9:15

schedule at 3.8+2 C did not show such a rhythm. This

responsiveness to temperature would be ecologically advanta-

geous. If the timing of migration, nesting, and reproduction

is rigidly controlled by photoperiod length, these events

might in certain years be induced when temperatures are not

favorable. In years when cool temperatures coincide with

increasing day length, the cool temperatures might reduce

food availability and require increased energy expenditure

for incubation and feeding of young. If cool temperatures

inhibited testicular responsiveness to increased day lengths,



of temperature on photoperiodism need further
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