that, a =0, b =01, [ = 00. Still the encoding text should result 6 bits only and the encoding
text is 010000. Now, there is an ambiguity for decoding the encoded text. With 0/ it could
either be a or b. But it must be b, because we are using 0/. The remaining zeros (0000)
could be bala, bll or baaaa. Therefore, proper care should be taken while working with
variable length coding.

To prevent the ambiguities while decoding, we need to make sure that encoding
satisfies the prefix rule, that is, no code should be prefix of the other.

s.a=0,b=11,1=10 satisfies the prefix rule

The code or bits which satisfy this rule are represented using tree structure. The
characters are stored at the external nodes, 0 is assigned to left child and 1 is assigned to
right child [Mackenzie, 1980].

4.2 Optimal compression

We need to ensure that the encoded text is short and requires less number of bits.

for example, let us consider a text message:

x = malayalam

Figure 4.1: Encoded Tree structure

From Figure 4.1 and table 4.1, the total number of bits required is 22 and the text

malayalam is represented as following:
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Characters | Frequency | Code | Bits
a 4 010 3
1 2 011 3
m 2 1 1
Y 1 00 2

Table 4.1: Character frequency table for Encoded Tree Structure

encodedText(x) = 1010011010000100110101
Let us suppose that we have a different tree for the same word, see Figure 4.2. From
table 4.2, the total number of bits required is only 19 and the word malayalam is represented

as following:

encodedText(x) = 1000110001000011001

Figure 4.2: Encoded Tree structure — 2

Characters | Frequency | Code | Bits
a 4 00 2
1 2 011 3
m 2 1 1
Y 1 010 3

Table 4.2: Character frequency table for Encoded Tree Structure — 2

Hence, we need a compression function that results less number of bits.
4.3 Huffman Data compression
Huffman compression algorithm is an optimal compression or prefix algorithm
where the frequencies of the letters are used for lossless compression of data. This method
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uses a special technique for representing symbols for each word, resulting in bit strings
representation [Huffman, 1952].
4.3.1 Construction of algorithm

Suppose, for a given text, we need to count the frequency of characters and compute
a tree so that the length of the encoding text is minimum, each character is a node in the
tree. The root is always zero and level numbers are represented using number of bits to
encode a character. If f is the frequency, then f; is the frequency of the k’ character. Here,
1 is the level and [ is the level of the node of k' h character. Therefore, we need to find a tree
which minimizes Y ; fi/; which is known as the total external weighted path length of a
tree.

We consider each node having weight equal to the frequency of the characters. If
there are n number of weights, the frequencies are represented as f1, f2, f3, ..., fu. For these
frequencies, we can build a tree whose external weighted path length is minimum, it is
donated by WEPL(f1, f2, f3, .., f») [Hopcroft and Ullman, 1983].

4.3.2 Huffman Tree

Let us suppose that, an input x is to be compressed. Huffman algorithm calculates
the weights of the tuples in the input. Once this step is achieved, it begins to sum the least
weights of the order at each level. Once the last node or symbol weight is calculated, it
forms a tree and considers the sum of weights at each level as nodes. This tree is assigned
with a bit strings for presentation, left-side of the tree with Os and right-side with 1s.

X = mississippi

The frequencies of x are calculated as follows:

m=1,p=2,i=4,s=4
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Now, the least weights are calculated as follows:

m +p = (1+42) =3, at level 1. See Figure 4.3.

0
m

Figure 4.3: Huffman level 1

Again, it compares the weights with next character in queue and calculates the sum
as follows:
(level 1 +1) =3 +4) =7, at level 2
(level 2+s8)=(7+4)=11, at level 3

Bit strings of Os and 1s are assigned as follows:

Figure 4.4: Huffman Tree

The number of bits required by the word mississippi is calculated from table 4.3.
The total number of bits required is 21.
.. Huffman(mississippi) = 100110011001110110111

Using the fixed-variable length encoding scheme, the word mississippi requires 88
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Characters | Frequency | Code | Bits
m 1 100 3
p 2 101 3
i 4 11 2
S 4 0 1

Table 4.3: Character frequency table of Huffman Tree

bits. From Table 4.3, the Huffman codes require only 21 bits. Hence, it is reduced from 88
bits to 21 bits.
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Chapter 5
NEW SEED CONSTRUCTION

We assume this title is apt as we are going to explain our approach in constructing

message block for the preprocessing stage.
5.1 Base

Before proceeding with the research work, we understood the basic definitions and
requirements of a cryptosystem to produce a cryptographic hash function.
5.1.1 SHA-I as base

After the practical freestart collision in 2015 [Stevens, Karpman, and Peyrin, Stevens
et al.], we decided to work towards find a message that results same message digest and
prove the preprocessing stage of SHA-1. Many brute force words were used to test the
SHA-1 collisions. While the research was on the go, SHA-1 was broken by Dr. Marc
Stevens in collaboration with Google [Stevens et al., 2017]. We had to reiterate of study
and proceeded for constructing a seed (message block) which results a different message
digest when tested with the sample message that produced a collision in SHA-1.

5.2 New Approach

5.2.1 Why Huffman compressed code

It is clearly visible that, most of the cryptanalytic attacks either theoretical or prac-
tical on [[Rivest, 1992], [Stevens, Karpman, and Peyrin, Stevens et al.], [Stevens et al.,
2017]] followed chosen-prefix collision attack to break the compression algorithm. In
[Stevens et al., 2017] describes that the researchers has followed Identical-prefix collision
attack, that is, a prefix is extended with a pair of messages which has close calls to collide

for any suffix. With 26%! SHA-1 calls the messages collided and resulted same hash value.
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Understanding this theory, we first introduced the concept of salt, it is a random data
used as an additional input for defending dictionary attacks or any pre-computed rainbow
attacks [Alexander, 2012]. But we realized that salt cannot protect the data against an
attacker who is after only one data file. Furthermore, with a correctly chosen salt, the
adversary can attack a huge amount of data [Gillies, 2012].Observing [Stevens et al., 2017]
we decided not to proceed with Salt technique and introduced Huffman compressed codes
[see section 4].

With the idea of chosen-prefix attack, we assumed that introducing the bit strings
(Os and 1s) generated by Huffman compression algorithm would be ideal and it will be
harder for the attacker to break the algorithm.

5.3 New Seed Construction

In this section, we explain how the 512-bit message block for preprocessing stage
is constructed. As mentioned in section 5.1, we reused SHA-1 algorithm. For constructing
a message block y in SHA-1 [section 3.6.2], the length is 512-bits or multiples of 512 and
we pad the original message with 1 extra bit, 447 Os and length of the original message (64
bits).

y = message || 1 | 0%7 || 64

In our new seed construction, we removed 1 extra bit and replaced 447 Os with 288

Os and 160-bit message digest of the Huffman codes.
YVseea = message || SHA-1(Huffman) Il 0%38 || 64
If we observe y,..q, the total length of the message block is 512 bits or multiples of

512 bits.
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5.3.1 Steps involved in construction
e For any given message x, we calculate the frequencies of the characters and gen-
erate the Huffman compressed codes, see table 5.1 and Figure 5.1
x = abracadabra

Huffman(x) =0110111 01000101 01101110

Characters | Frequency | Code | Bits
a 5 0 1
c 1 100 3
d 1 101 3
b 2 110 3
r 2 111 3

Table 5.1: Character frequency table of Huffman Tree — seed construction

e Now, we hash the Huffman compressed codes, which results a 160-bit message

digest.
SHA-1(Huffman(x)) = 5SA 08 07 94 A9 D6 40 62 94 1E F2 59 B8 F3 C7 79 52 9E

17 61

Figure 5.1: Huffman Tree — seed construction

o We feed the message block with original message x, SHA-1 of Huffman com-

pressed codes. The padding scheme is the same as SHA-1.
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1. x = abracadabra

2. SHA-1(Huffman(x)) = 5A 08 07 94 A9 D6 40 62 94 1E F2 59 B8 F3 C7 79 52 9E 17

61
3. d=(288-11) mod 512 ~ 277 0’s
4. length1 =64

5. Vseea = X Il SHA-1(Huffman(x)) Il 0>77 Il 64 (Preprocessing Stage)

e The total length of the message block or seed y..q = 512-bits.
e Now, we feed this seed to SHA-1 compression function, which results a 160-bit
message digest.
e Our observation
h(x)seeq = B0 07 94 C1 80 BA ES DB 44 8F 82 CC DE 6C CA 76 A4 D4 2E 93
Universally, if we consider any platform and compute the SHA-1 of abracadabra,
it produces the following as its message digest:
h(x)=0B 8C 31 DD 3A 4C 1E 74 B0 76 4D 5B 51 OF D5 EA AC 00 42 6C
But, our seed construction resulted a different message digest for the same input,
see Figures 5.2 and 17.
Our observations for different words are given in [ section 5.4]
5.4 Observations

We can categorize the above observation into two cases:

1. Case 1: missisppi, nississippi and massassappa have characters with same frequency

and share same Huffman codes, SHA-1 message digest. But, when these outputs are
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inal string was :
abracadabra

59 B8 F3.C7 79 52.9E 17 61

Figure 5.2: Compression function output

Our Observation - B® @7 94 C1 8@ BA E5 DB 44 8F 82 CC DE 6C CA 76 A4 D4 2E 93

Figure 5.3: New Seed construction output — our observation

fed to our seed, it resulted a message digest which is different from respective SHA-1

of these words.

2. Case 2: our aim was to prove that, two different messages with same message di-
gest when fed to our seed should produce different message digests. For this, we
considered the sample message created by Dr. Marc Stevens team in collaboration
with Google see Figures 5.4 and 5.5 (We took screenshot of these observation and up-
dated them as figures due to space management). The messages look similar, but they
are different and share same message digest. When fed to our seed, it successfully

resulted two different message digests
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Word

mississippi

SHA-1 of Word

FE 64 8F C4 59 A6 F6 EF 6C D3 47 BE E3 D4 94 76 62 39 BB B5

Huffman(Word)

100011110111101011010

SHA-1(Huffman)

4530 A9 14 B9 B9 377359 89 A3 2771 A4 92 33 OE BB DB 7F

Our Observation

27 D183 1908 15 OE E8 AF D8 84 55 7C 8F OB 1D E9 96 43 8C

Table 5.2: Observation Table 1

Word nississippi
SHA-1 of Word | E9 529D 02 B8 13 A9 26 1B 8B CE B0 6D 4F 4B 94 DC 63 44 99
Huffman(Word) 100011110111101011010

SHA-1(Huffman)

4530 A9 14 B9 B9 377359 89 A3 2771 A4 92 33 OE BB DB 7F

Our Observation

CB F5B79C 156D C1 CO 1F A6 8F 92 OF 01 C2 E4 2D A8 D1 DE

Table 5.3: Observation Table 2

Word massassappa
SHA-1 of Word | C7 C9 B73C 2E 36 E0 52 8E 48 19 2C 1A 14 94 FE F3 D7 3A 7B
Huffman(Word) 100011110111101011010

SHA-1(Huffman)

4530 A9 14 B9 B9 3773 59 89 A3 2771 A4 92 33 OE BB DB 7F

Our Observation

B5 F279 7E 73 F1 8D C4 7D E1 03 OF 39 56 67 9D A8 AD BE 5C

Table 5.4: Observation Table 3

39




Word

7f46dc93a6b67e013b0292aa1db2560b45ca67d688c 7184b8c4c791f02b3df6
14f86db1690901c56b45c1530afedfb 760389727221 7ad 72 8102490420462
30570fed41398abel 2efSbc942be33542a4802d98b5d70f2a332ec3 7fac35 14

e74ddc0f2cc1a874cd0c78305221566461309789606bd0bi3f98cdal044629al

SHA-1 of Word

3BT62CFTF33934B34D179AE6 A4 CROC AD CCBEB TF 0A

Huffman(Word)

1011100111101101001110100110100001001101010111011011000111110010

1000010111111100011001000100010000100011010111000000110111110101

1110000010100100110110110011210101110111101010111001011111100101

0111101011101010101101100010100100011111110001011000001110011101

0010111010010111110100110101001011010110111101101111001¢10100000

1101010111100000101000100000100011110100100100010011100101011011

1101111110000111000101101011110010111100110010010001101101000011

10111100011110011111000111100110111111100001111211101 10110101100

1000111100001011111110010001011000111110001010000110011101000101

0001001011000001100100000101101001101110110001010001 100010000000

11101100010011100111111111000011011001110101000000111011111110011

10001001000100011000001101010001011100101001010100000000010111000

01101111100011001110101111100111001010101000100100011110111110101

00011111110101011011110001111000001001100001000001101110111101101

00101000111101101011011101101101111111010101001111110101100110001

00101100111101000110100011111113110111011013100011001000010

SHA-1 (Huffman)

S9FACF 6D EF3 89 CE 96 8B A0 ZE A5 BA 14 E6 63 08 26 87 AD

Ohr observation

ASGEOBRET6984ECODE 5363 E9 696599 BEETREBLIEC 7D

Figure 5.4: Google’s sample message 1
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Word

7346dc9166b67e1185029ab621b2560ff%a8 TecaleTiE3bal4c79030c2b3de

18f86db3a00901d3df4 5142 6fedfb3de38e06ac22feThd 72204 Shee (4642

3e570febl141398bb352ef5a0a82be33 1fead 803 To803d 71035 2ed 0323500

ebdddcldecclalfd 700cT82cT7621566044309791406bd0af3 98 cdadbed 62901

SHA-1 of Word

3BT762CFTF55934B34D179AE6 A4 CRBOCADCCEB TF DA

Huffman(Word)

001110100000100111001111010001011001100111011001001101100101010101

111011111010000100001011011001100001011101100000011001111010111011

010011110010100100111111111100100111111100111011011100011101001001

110000111100110100111010101110111110001101101011000110100001010111

101101111001110011011010001001001110010011100101110000011100101100

000001111101010000101110001001101101101100101111011010110011111010

011101100100100100101111100010001011011000111101110000111000011110

111110011000000001110111110110111000001001110010001010111100010011

111010110110110101010000010110100100011111011101000100011000011010

110001001011100010011110001101011010101010010110110110001000000111

111010100011110101111101000111000011010110111110011010101010100001

101100101101001010001011111010000111101110011011010000110011001111

111011000110111111110101001001111001000000110100111011110011011110

001111001110011000010100011001100111101100110010101110010000110100

0101110011101001110111001110001010111010101101000

SHA-1

(Huffman)

8F 58 20 38 C4 0B DC B8 DC 0A B0 30 66 BC 0B 50 57 58 82|9B

Our observation

12047 7F 7D 5583 8DFF 01 CE3001 22 AC 1952 CD 2C 51

Figure 5.5: Google’s sample message 2
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Chapter 6
CONCLUSION

There are always chances for cryptanalytic attacks due to over growing technolog-
ical revolution and can compromise the security of the systems. This study aims to design
a hash algorithm by adding an extra layer, that is, by adding the hash value of Huffman
compressed codes of the original message to the preprocessing stage of SHA-1. We tested
our algorithm for different bruteforce words and Google’s sample messages which broke
SHA-1. The results show that, any message with same original SHA-1 message digest and
messages with same Huffman compressed codes did not collide and resulted different mes-
sage digests. SHA-1 algorithm depends on the length of the original message, whereas,
Our algorithm depends the frequency of the characters of original message as well as the
length of the original message. Hence, at this point of time we conclude that our algorithm

is collision resistant.
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Appendix A
APPENDIX A: SETTING UP VISUAL STUDIO
A.1 Installation guide for Visual Studio Community 2017
The following steps are involved in Installing Visual Studio.
1. Go to https://www.visualstudio.com/downloads/
2. Once you’re on the Microsoft website, click the Blue button to download the Visual
Studio Community 2017, see figure A.1.

Visual Studio Downloads

Visual Studio Visual Studio Visual Studio Visual Studio
Community 2017 Prafessional 2017 Enterprise 2017

How to install offline g

Figure A.1: Visual Studio downloads page

3. Once the installer has downloaded, double-click it to install Visual Studio Com-
munity 2017.
4. Accept the policy and continue to run the installer, see figure A.2.

Figure A.2: Installation policy

5. Select the Packages to be installed on your system, see figure A.3.
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Figure A.3: Installation packages

6. Once the Installation is done, Run the Visual Studio Community 2017.
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Appendix B
APPENDIX B: SHA-1 OF HUFFMAN COMPRESSED CODES
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Figure B.1: SHAI-Header.h.
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Figure B.2: SHA-1 Source.cpp.
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Figure B.3: SHA-1 Source.cpp continuation—1I.
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Figure B.4: SHA-1 Source.cpp continuation—2.
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Figure B.5: SHA-1 Source.cpp continuation-3.
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Figure B.6: SHA-1 Source.cpp continuation—4.
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Figure B.7§ é—luﬁ‘man.h.
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Figure B.8: Huffman.h continuation — 1.
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Figure B.9: Compression.cpp.
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Figure B.10: Compression.cpp continuation — 1.
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Figure B.11: Input.txt.
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Figure B.12: HuffmanCodes.txt.



Appendix C
APPENDIX C: NEW SEED CONSTRUCTION SOURCE
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Figure C.1: NewSeedHeader.cpp.
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Figure C.2: NewSeedSource.cpp.
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Figure C.3: NewSeedSource.cpp continuation—I.
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Figure C.4: NewSeedSoggce. cpp Continuation—2.




1
2
3
4
5
6
7
8
9

Figure C.5: NewSeedSource.cpp Continuation—3.
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Figure C.6: NewSeedSource.cpp Continuation—4.
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Figure C.7: NewSeedSource.cpp Continuation—5.
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Figure C.8: NewSeedMain.cpp.
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Figure C.9: HuffmanSHA linput.txt.
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