
Western Kentucky University
TopSCHOLAR®

Masters Theses & Specialist Projects Graduate School

Spring 2018

Application of Huffman Data Compression
Algorithm in Hashing Computation
Lakshmi Narasimha Devulapalli Venkata,
Western Kentucky University, lakshmi.devulapallivenkata974@topper.wku.edu

Follow this and additional works at: https://digitalcommons.wku.edu/theses

Part of the Digital Communications and Networking Commons, Information Security
Commons, and the Theory and Algorithms Commons

This Thesis is brought to you for free and open access by TopSCHOLAR®. It has been accepted for inclusion in Masters Theses & Specialist Projects by
an authorized administrator of TopSCHOLAR®. For more information, please contact topscholar@wku.edu.

Recommended Citation
Devulapalli Venkata,, Lakshmi Narasimha, "Application of Huffman Data Compression Algorithm in Hashing Computation" (2018).
Masters Theses & Specialist Projects. Paper 2614.
https://digitalcommons.wku.edu/theses/2614

https://digitalcommons.wku.edu?utm_source=digitalcommons.wku.edu%2Ftheses%2F2614&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wku.edu/theses?utm_source=digitalcommons.wku.edu%2Ftheses%2F2614&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wku.edu/Graduate?utm_source=digitalcommons.wku.edu%2Ftheses%2F2614&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wku.edu/theses?utm_source=digitalcommons.wku.edu%2Ftheses%2F2614&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/262?utm_source=digitalcommons.wku.edu%2Ftheses%2F2614&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=digitalcommons.wku.edu%2Ftheses%2F2614&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=digitalcommons.wku.edu%2Ftheses%2F2614&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/151?utm_source=digitalcommons.wku.edu%2Ftheses%2F2614&utm_medium=PDF&utm_campaign=PDFCoverPages

APPLICATION OF HUFFMAN DATA COMPRESSION ALGORITHM IN HASHING
COMPUTATION

A Thesis
Presented to

The Faculty of the School of Engineering and Applied Sciences
Western Kentucky University

Bowling Green, Kentucky

In Partial Fulfillment
Of the Requirements for the Degree

Master of Science

By
Lakshmi N. Devulapalli Venkata

May 2018

DEDICATION

To my mother, father, brother, and friends.

&

To the faculty of the Computer Science Department at Western Kentucky University.

ACKNOWLEDGMENTS

I would like to thank my adivsor, Dr. Mustafa Atici for his enormous support

throughout my masters degree program. It’s been an honor and previlage to work under

his guidance. I truly appreciate his contributions of time, knowledge and funding that

helped me in conducting this research and attending conferences. I can never forget the

first example mississippi for explaining how Huffman Data Compression algorithm works.

His energy and enthusiasm towards research work always motivated me during hard times,

especially when I was stuck in understanding the SHA-1 code. Dr. Atici emails his office

hours before hand so that it won’t be hard to find him at his office. His doors are always

open for students who are struggling in understanding assignments or concepts from lec-

tures. He is understanding and never stopped me in implementing my ideas. No Matter

where I am, I always remember the quality time that I spent working on this research under

his guidance.

Dr. Atici suggested me to step into Artificial Intelligence area after receiving the

feedback of my poster presentation at a conference in March 2018. I might reconsider this

thesis work for my Ph.D to implement the same in AI with his permission and again under

his guidance.

To Dr. Qi Li, Associate professor, Thank you. Dr. Li taught me Data mining, one

of the core subjects trending today. Thank you for your help throughout my course work

and for accepting my request to be one of the thesis committee members.

To Dr. Michael Galloway, Assistant professor. Dr. Galloway taught me Software

Engineering course, his lectures inspired and motivated me to become a Scrum Master.

iv

Thank you Dr. Galloway for your support and accepting my request to be one of the thesis

committee members.

To the Faculty members, office staff of SEAS Department and rest of the Western

Kentucky University faculty, Thank you. You are the reason that I came all the way to this

university and had wonderful memories that I cherish to the rest of my life. I Sincerely

apologize that I cannot thank everyone Individually. Thank you all for having me here. I

truly appreciate it.

I would like to thank my parents for their continuous support throughout my masters

program and special thanks to my roommate, friends and ISA committee, who supported

and motivated me during my hard times. I truly appreciate everything you did.

Finally, I would like to thank SEAS department computer science division, the grad-

uate school and Ogden college for providing financial support during the research work.

Thank you for everything you gave me here at WKU.

v

CONTENTS

1 INTRODUCTION . 1

2 DEFINITIONS . 6

2.1 Message . 6

2.2 Sender and Receiver . 6

2.3 Encryption and Decryption . 6

2.3.1 1-1 Function . 7

2.4 Protocol . 7

2.5 Cryptographic Primitives . 8

2.6 Cryptosystem . 8

2.7 Symmetric-key cryptography . 10

2.7.1 Stream ciphers . 11

2.7.2 Block ciphers . 11

2.8 Public-key cryptography . 12

2.9 Cryptanalysis . 12

3 CRYPTOGRAPHIC HASH FUNCTIONS . 14

3.1 Preimage resistant . 15

3.2 Secondary Preimage resistant . 15

3.3 Collision resistant . 15

3.4 Iterated Hash functions . 16

3.4.1 Outline of Compression function 16

3.5 Merkle—Damgård construction . 18

vi

3.6 Description of SHA-1 . 20

3.6.1 SHA-1 overview . 20

3.6.2 SHA-1 Padding scheme . 20

3.6.3 SHA-1 Compression function . 22

3.6.4 SHA-1 Message Digest computation 24

3.7 Applications of SHA-1 . 26

3.7.1 Data Integrity . 26

3.7.2 Digital Signature . 27

4 HUFFMAN COMPRESSION ALGORITHM 28

4.1 File compression . 28

4.2 Optimal compression . 29

4.3 Huffman Data compression . 30

4.3.1 Construction of algorithm . 31

4.3.2 Huffman Tree . 31

5 NEW SEED CONSTRUCTION . 34

5.1 Base . 34

5.1.1 SHA-1 as base . 34

5.2 New Approach . 34

5.2.1 Why Huffman compressed code 34

5.3 New Seed Construction . 35

5.3.1 Steps involved in construction . 36

5.4 Observations . 37

vii

6 CONCLUSION . 42

REFERENCES . 43

APPENDICES . 47

A APPENDIX A: SETTING UP VISUAL STUDIO 48

A.1 Installation guide for Visual Studio Community 2017 48

B APPENDIX B: SHA-1 OF HUFFMAN COMPRESSED CODES 50

C APPENDIX C: NEW SEED CONSTRUCTION SOURCE 60

viii

LIST OF TABLES

4.1 Character frequency table for Encoded Tree Structure 30

4.2 Character frequency table for Encoded Tree Structure – 2 30

4.3 Character frequency table of Huffman Tree 33

5.1 Character frequency table of Huffman Tree – seed construction 36

5.2 Observation Table 1 . 39

5.3 Observation Table 2 . 39

5.4 Observation Table 3 . 39

ix

LIST OF FIGURES

2.1 Encryption and Decryption . 7

2.2 One-One function from Domain X to Range Y 7

2.3 Encryption and Decryption with key . 9

2.4 Symmetric–key cyrptography . 10

2.5 Stream cipher encryption . 10

2.6 Stream cipher decryption . 11

2.7 Block cipher . 12

2.8 Public-key cryptography . 13

3.1 Domain X with N values and Range Y with M values 14

3.2 Compression function . 17

3.3 Merkle—Damgård construction . 19

3.4 Data Integrity . 26

3.5 Digital Signature . 27

4.1 Encoded Tree structure . 29

4.2 Encoded Tree structure – 2 . 30

4.3 Huffman level 1 . 32

4.4 Huffman Tree . 32

5.1 Huffman Tree – seed construction . 36

5.2 Compression function output . 38

5.3 New Seed construction output – our observation 38

5.4 Google’s sample message 1 . 40

x

5.5 Google’s sample message 2 . 41

A.1 Visual Studio downloads page . 48

A.2 Installation policy . 48

A.3 Installation packages . 49

B.1 SHA1–Header.h. 50

B.2 SHA–1 Source.cpp. 51

B.3 SHA–1 Source.cpp continuation–1. 52

B.4 SHA–1 Source.cpp continuation–2. 53

B.5 SHA–1 Source.cpp continuation–3. 54

B.6 SHA–1 Source.cpp continuation–4. 55

B.7 Huffman.h. 56

B.8 Huffman.h continuation – 1. 57

B.9 Compression.cpp. 58

B.10 Compression.cpp continuation – 1. 59

B.11 Input.txt. 59

B.12 HuffmanCodes.txt. 59

C.1 NewSeedHeader.cpp. 60

C.2 NewSeedSource.cpp. 61

C.3 NewSeedSource.cpp continuation–1. 62

C.4 NewSeedSource.cpp Continuation–2. 63

C.5 NewSeedSource.cpp Continuation–3. 64

C.6 NewSeedSource.cpp Continuation–4. 65

xi

C.7 NewSeedSource.cpp Continuation–5. 66

C.8 NewSeedMain.cpp. 67

C.9 HuffmanSHA1input.txt. 68

xii

APPLICATION OF HUFFMAN DATA COMPRESSION ALGORITHM IN HASHING
COMPUTATION

May 2018Lakshmi N. Devulapalli Venkata 68 Pages

Directed by: Dr. Mustafa Atici, Dr. Qi Li, Dr. Michael Galloway

School of Engineering and Applied Sciences Western Kentucky University

Cryptography is the art of protecting information by encrypting the original mes-

sage into an unreadable format. A cryptographic hash function is a hash function which

takes an arbitrary length of the text message as input and converts that text into a fixed

length of encrypted characters which is infeasible to invert. The values returned by the

hash function are called as the message digest or simply hash values. Because of its versa-

tility, hash functions are used in many applications such as message authentication, digital

signatures, and password hashing [Thomsen and Knudsen, 2005].

The purpose of this study is to apply Huffman data compression algorithm to the

SHA-1 hash function in cryptography. Huffman data compression algorithm is an optimal

compression or prefix algorithm where the frequencies of the letters are used to compress

the data [Huffman, 1952]. An integrated approach is applied to achieve new compressed

hash function by integrating Huffman compressed codes in the core functionality of hashing

computation of the original hash function.

xiii

Chapter 1

INTRODUCTION

In recent years, the Internet has taken over the globe with the technological rev-

olution in many industries as it provides communication between millions of people and

different nations, there will be a huge demand for security to protect the confidentiality of

the information. This can be achieved through cryptography. As we know, cryptography

is derived from ancient Greek words krypts and graphein, meaning hidden writing. If we

observe the traces of ancient history, this art was documented between 1900 and 2000 BC

in ancient Egypt in the form of Hieroglyphs [Hat, 2013].

Another strong evidence that the early civilizations used cryptography is the Arthashas-

tra, which is also known as the science of politics, written by Kautilya between 2nd BC

and 3rd BC for military strategy and communication with spies in hidden codes [Boesche,

2002]. In 100 BC, Roman dictator Julius Caesar used an encrypted form to communicate

with his army generals. This famous method of secret writing was known as Caesar ci-

pher. The algorithm was used to encrypt and decrypt the plaintext message by shifting

each character to 3 places. This algorithm was not secure as the cipher can be broken if

we know the frequency shift of each character. Later in 16th century, A French scientist

named Blaise de Vigenère introduced first auto key (encryption key) ciphers. In this algo-

rithm, a key is repeated several times and a modulo operation is performed on a plaintext to

produce a ciphertext [David, 1999]. However, this algorithm was broken in 19th century,

but the notion of using autokey or encryption key has created new roots for modern age

cryptography. This period was also known for industrial revolutions, scientists designed

electro-mechanical machines in which the motors are responsible for generating ciphertext

1

when the key is set to a value. This was initially used for military purposes, post-World

War II, many cryptographers were attracted by commercial industries with the intention of

securing the data from their competitors [Hat, 2013].

On observing the history, cryptographers stated that security should depend on the

secrecy of a key but not an encryption algorithm. Modern cryptography includes math-

ematical problems which are difficult to solve, and the algorithms are a complex, time-

consuming process for humans to solve and are executed by computers with powerful

hardware devices [Simpson, 1997]. The most important objectives of cryptography are

data integrity, authentication and confidentiality. In Data Integrity, the data cannot be al-

tered when stored in an insecure place or when it is being transmitted through an insecure

channel. Authentication deals with the user identity and confidentiality, the data stored by

an individual can be encrypted in an unreadable format and later it can be decrypted.

Modern cryptography is further divided into different algorithms such as symmetric-

key cryptography, this algorithm refers to an encryption technique where both sender and

receiver share the same key and public-key cryptography, unlike symmetric-key this al-

gorithm uses a public-key and a private-key, though they are different they are related

mathematically. The public-key is designed in such a way that computing a private-key is

infeasible from it, even though they are related [Diffie and Hellman, 1976]. Another branch

of cryptography is the cryptographic hash functions.

These hash functions are considered as a special class in this field as they are de-

signed to be one-way functions, which are not feasible to invert but relatively easy to com-

pute. Hash functions take an arbitrary length of data as input and generate a message digest

(hash values) of fixed length between 128 and 512 bits. These hash values are used in

2

digital signatures to verify the data integrity. If the data is altered, then the hash value is

no longer valid. Though the data is stored in an insecure environment, its integrity can be

checked from time to time by computing the hash value and confirm that it is not changed.

A detailed description about symmetric-key, public-key cryptography and cryptographic

hash functions is mentioned in chapter 2 and chapter 3.

There are many cryptographic hash functions which are broken previously and

some of them are used today in real-world applications. In 1989, Ronal Rivest first in-

troduced us to Message Digest 2 (MD2) produces 128-bit message digest [[networks, net-

works], [Kaliski, 1992]]. He improved on MD2 and developed MD4 [[Rivest, 1990],

[Schneier, 2005]]. In 1991, Security weakness was found in this algorithm which led to

the development of MD5 [Rivest, 1992] (introduced in 1992) and most of the industries

deployed it in their applications. In 1993, National Institute of Standards and Technology

(NIST) introduced SHA-0 [Barker, 1993] very similar to MD5, but it was withdrawn in

a short period by NIST without disclosing the reason and Introduced SHA-1 under FIPS

180-1. This algorithm produces 160-bit message digest when an arbitrary length of mes-

sage less than 264 is given as input [FIPS, 1995].

According to NIST, all these hash functions including SHA-1 share common phe-

nomena, Security Attacks. In 2005, a group of researchers broke the collision resistance

of MD5 hash function [Wang and Yu, 2005]. This incredible work inspired many cryp-

tographers to develop perfect hash functions and cryptanalysts to design algorithms that

can expose the weakness of the hash functions. The same team showed first theoretical

attack on SHA-1, which is widely used after MD5 [Wang, Yin, and Yu, 2005]. Based on

this groundbreaking work, Dr. ir. Marc Stevens and his team demonstrated in [Stevens,

3

2013] at EUROCRYPT 2013 the best collision attack at 261 calls to SHA-1 hash function.

As proof of concept, Karpman demonstrated a 76-round practical collision for SHA-1 in

[Karpman, Peyrin, and Stevens, 2015]. Dr. Steven’s stated that they improvised the start-

from-the-middle approach [Karpman et al., 2015] using [Joux and Peyrin, 2007] auxiliary

paths speed up technique to find first colliding pair for full SHA-1, which led to freestart

collision [Stevens, Karpman, and Peyrin, Stevens et al.]. As we know, the hash functions

are constructed based on Merkle—Damgård paradigm [[Merkle, Charles, et al., 1979],

[Damgård, 1989]], they take message block and chaining value (Initialization vector, IV)

as input to build the hash function by iterating the compression function. In [Stevens, Karp-

man, and Peyrin, Stevens et al.] Dr. Steven’s stated that the attacker can choose the IV for

a freestart collision, they found to IV’s with slight difference (say two bits) and fed them to

the process block. This freestart collision gave a standard basis for full SHA-1 collision and

the same team came up with the first practical collision of SHA-1 in 2017, this attack took

6500 years of single CPU and required around 9 quintillion SHA-1 computations [Stevens,

Bursztein, Karpman, Albertini, and Markov, 2017]. They warned all the industry actors to

migrate to safe standards before any real-time attacks, as SHA-1 is no longer safe to use for

digital signatures [Goodin, 2017]. Even before the first practical collision of SHA-1, Mi-

crosoft announced in 2016 to deprecate and replace SHA-1 by SHA-256 by January 2017

for security reasons to guarantee the SSL durability, even though the Certification Author-

ities (CA) did not recommend any changes. Since then most of the industry actors decided

to agree on not issuing and trusting SHA-1 certificates [tbs internet, 2018]. However, due

to the increased cryptanalytic attacks and computational power, there is always a need for

4

secure hash function. For this very reason, every cryptographer and researcher including

us are striving to develop a secure and perfect hash function.

We started this study by understanding the basic concepts of cryptography and cryp-

tographic hash functions. After studying recent cryptanalytic attacks, we understood that

for any hash function preprocessing stage plays an important role. First we introduced the

concept of salt, that is, adding extra bits to the hash value of the message. Later, we de-

cided to introduced Huffman compressed codes in to preprocessing stage by eliminating

the concept of salt, as adding this does not provide enough security to strengthen the hash

algorithm.

This thesis is organized as following. In chapter 2, we introduced you to the basic

definitions involved in cryptography. In chapter 3, we explain about cryptographic hash

functions, construction of Merkle—Damgård paradigm and SHA-1 hash function and its

applications. Chapter 4 explains about the Huffman compression Algorithm and in chapter

5 we introduce you to our algorithm, that is, the seed construction based on SHA-1 using

the Huffman compressed codes. The remaining chapters are conclusion, appendix, and

references.

5

Chapter 2

DEFINITIONS

2.1 Message

A message M is plaintext used for communication between sender and receiver

and easily readable by humans. This message is of arbitrary length and used as input for

any cryptographic hash functions.

2.2 Sender and Receiver

The two ends of a communication channels are called sender and receiver. Sender

transfers a message to the receiver on the other end of the channel. This sender wants

to transfer the message securely to make sure no attacker reads or modifies the original

message.

2.3 Encryption and Decryption

From 2.1 we stated that a message is plaintext, manipulating this plaintext in such

a way to hide it from the attacker is called encryption (E). This encrypted message is

called ciphertext C . Processing the ciphertext back to original plaintext is called decryption

(D). Let plaintext be denoted by M , manipulated by encryption algorithm E to produce

ciphertext C . This ciphertext can be larger or as same as the M .

∴ E (M) = C

To recover the plaintext M from C , we need to do the reverse process called de-

cryption D on C . Figure 2.1 describes the encryption and decryption process.

∴ D(C) = M

All the encryption and decryption functions must be 1-1 functions.

6

Figure 2.1: Encryption and Decryption

2.3.1 1-1 Function

A function is said to be 1-1(one-one) function, if each element in the range Y is

mapped with at most one element in the domain X [Menezes, Van Oorschot, and Vanstone,

1996]. For example, consider the set X as {a,b,c,d,e} and set Y as {1,2,3,4,5,6}, and

the function from X to Y is shown in Figure 2.2. If f is the function and f : X→Y is 1-

1 function then the image of the function Im(f) = Y, where function f is called bijection

[Schneier, Schneier].

Figure 2.2: One-One function from Domain X to Range Y

2.4 Protocol

Communication systems involving two or more parties to transmit information

through any medium is called a Protocol. If the communication system involves only one

party, then it is called a Procedure. For example, let us suppose that we have two players

Alice and Bob. The purpose of the protocol is to flip a coin, based on the result one of

7

the players will plan of their next move. After choosing the sides, one of the players will

flip the coin. If Alice wins, he decides the next event to do, else Bob makes the decision

[Buchmann, 2013].

Let us consider another example with same players. Imagine, a cellular phone is

acting as medium between the players and they intend to play the same coin flipping game

over the phone. If Alice offers a side to Bob and flips the coin and tell Bob the he lost or won

the game, Bob may disagree with decision as he cannot verify the result. In cryptographic

point of view, this example can be termed as cryptographic protocol or security protocol

[Buchmann, 2013].

2.5 Cryptographic Primitives

Cryptographic primitives are used as basic building blocks by cryptographers to

construct cryptosystem for security purposes. These primitives are designed for a specific

task. For example, digital signatures are one of the primitives widely used. Its task is to

verify the authenticity of the documents.

2.6 Cryptosystem

A Cryptosystem is a package of cryptographic algorithms or combination of cryp-

tographic primitives designed to perform a task guaranteeing security. A typical cryptosys-

tem consists algorithms for key generation, encryption, and decryption. From [Buchmann,

2013], a cryptosystem can be defined as a tuple (M , C , K , E , D) with properties as fol-

lows. M is the set plaintexts, C is the set of ciphertexts, K is the key space and E , D are

set of encryption and decryption functions.

In mathematical terms, a cryptographic algorithm can be termed as a cipher, a func-

tion used for encryption and decryption. If the security of the algorithm depends on the

8

secrecy how it works, it is called a restricted algorithm. This algorithm is considered as

inadequate according to today’s standard and cannot be used by a large group of users.

For example, if one of the individuals leave the group, remaining group members should

switch to a different algorithm. This requires everyone to have their own unique algorithm

and they cannot depend on any hardware or software products, as the attacker can buy the

same product and learn the algorithm. Considering the drawbacks, even today restricted

algorithms are used for low-level security applications. Modern cryptography states that

this problem can be solved using a key (k). This k is used in encryption and decryption

operations [Schneier, Schneier].

∴ E = Ek , where k ∈K and Ek(M) = C for encryption. Similarly, D = Dk, where

k ∈K and Dk(C) = M for decryption.

Figure 2.3: Encryption and Decryption with key

From Figure 2.3, we have Dk(Ek(M)) = M . Some algorithms may use different

keys for encryption and decryption.

∴ E = Eke and Eke(M) = C for encryption, D = Dkd and Dkd(C) = M for decryp-

tion. Therefore, like Figure 2.3 property, we can define Dkd(Eke(M)) = M .

Now, the security of these algorithms does not depend on the algorithm but on the

keys (k or ke, kd).

9

2.7 Symmetric-key cryptography

This algorithm enables a sender and a receiver to share a secret key for communi-

cation, see Figure 2.4. This key, in few cases, can be same for encryption and decryption.

The main requirement for this algorithm to work successfully is maintaining the secrecy of

the key, but this is a major drawback. If an attacker learns about the key and tweaks the

input message, then, the communication channel and message are considered as corrupted.

Ek(M) = C and Dk(C) = M

Figure 2.4: Symmetric–key cyrptography

Figure 2.5: Stream cipher encryption

10

2.7.1 Stream ciphers

Symmetric-key cryptography is divided into stream ciphers and block ciphers. Stream

ciphers processes single bit at a time of a plaintext. Each bit is encrypted with a key which

is passed to key stream generator, which generates key stream. These message bits and key

bits are XORed to produce the ciphertext. The same key must be shared for decryption

where ciphertext bits are XORed with key bits to produce plaintext [Schneier, Schneier],

see Figures 2.5 and 2.6.

Figure 2.6: Stream cipher decryption

2.7.2 Block ciphers

From 2.7.1, stream ciphers consider message bits and key bits together into streams

to produce ciphertexts, whereas in block cipher the message is breakdown in blocks of fixed

length and each block is encrypted using the same key, see Figure 2.7. For example, DES

is a block cipher where blocks of 64 bits are encrypted using 56-bit key.

11

Figure 2.7: Block cipher

2.8 Public-key cryptography

In contrast to symmetric-key cryptography, this algorithm uses two keys, a public-

key and a private-key. The sender whenever transfers a message, he/she uses the public-

key to encrypt the original message. The receiver on the other end of the communication

channel uses a private-key to decrypt the message, see figure. The only advantage here

is, the sender cannot decrypt the message once encrypted and the decryption key at any

given point of time, cannot be calculated from the encryption key. The encryption key (Ek)

is called public-key and decryption key (Dk) is called private-key or secret-key. This

algorithm is called public-key because Ek can be made publicly. Any stranger can access

this public-key to encrypt the original message, but only the receiver with Dk can decrypt

and read the messages [Schneier, 2005]. Ek(M) = C represents, encryption using public-

key and Dk(C) = M is decryption using private key. Again, in this process, there may be an

ambiguity whether the message was received from the original sender as there are chances

for man-in-the-middle to attack. To ensure the security, these messages are digitally signed

using digital signature scheme [see section 3.7.1].

2.9 Cryptanalysis

The goal of cryptography is to protect the information (keep plaintext or the key

secret) from attackers. Cryptanalysis is the science of breaking the cryptosystems (recover

the original message).

12

Figure 2.8: Public-key cryptography

A successful attempt of cryptanalysis may recover the key used for encryption.

It also helps in finding the weakness of a cryptosystem. It gained importance along with

cryptography as it describes whether a system is secure or not. On other hand, cryptanalysts

play a major role in highlighting the weakness of (or different ways to compromise) a

system.

However, Cryptanalysis is the only way to assure that a system is secure, hence it is

considered as an integral part of cryptology.

13

Chapter 3

CRYPTOGRAPHIC HASH FUNCTIONS

In section 2.6 we have seen that encryption system has 5 tuples, whereas in hash

function we have only 4 tuples. The reason is we do not have decryption (D). It is supposed

to be one-way function [Thomsen and Knudsen, 2005]. The four tuples are set of possible

messages (X), finite of set of possible message digests (Y), finite set of possible keys

(K) and finite set of functions (H) such that hk :X→Y for each hk ∈H and k ∈K . Let

us assume that there are N values in X and M values in Y . Therefore, there are M possible

mappings, that is, for each possible input N, there are M possible outputs, see Figure 3.1.

Figure 3.1: Domain X with N values and Range Y with M values

Hence, there are MN possible transformations, from this pool we get to choose any

one function and denote as H X ,Y and the hash function will be one of them. If the

hash function H ⊆H X ,Y , this is called as the hash family or (N, M)-hash family where

we chose one function [Stinson, 2005]. The hash functions have three important properties

which must be satisfied, and these properties are required for the security of the applications

14

which we use in real-time. They are Preimage resistant, Secondary preimage resistant and

Collision resistant.

3.1 Preimage resistant

Preimage property defines one-wayness. Hash function needs to be one-way. If

there is a hash function h and given a message digest, the problem here is to compute the

inverse of h(x). For a given h(x), if we compute the value of x which will lead to the same

hash value, then (x, y) is a valid pair. An efficient algorithm should easily solve this. The

main idea here is the hash function for which the preimage cannot be efficiently solved is

said to be preimage resistant.

3.2 Secondary Preimage resistant

Second preimage defines that, suppose we are provided with hash function h and

an element x, we are supposed to give another value x′ which is not equal to x but leads to

the same message digest y. This property is partially different from preimage. The reason

is, we are provided with a value of x and then we must compute the value of h(x). Now, we

have to find out the value of x′ which is not equal to x but leads to the same hash value. The

real difference here is, suppose an algorithm solves preimage, it is not necessary for it to

solve the second preimage, because, in preimage it is just giving the inverse but in second

preimage problem, we are using the same algorithm. The problem is that we get x which is

equal to the value of x′.

3.3 Collision resistant

It the most important and widely studied property. In this property for a given hash

function, we must result only two values, x and x′ which are not same (x 6= x′) but leads to

same hash value h(x) = h(x′). Therefore, if this solved, say (x, y) is a valid pair then (x′, y)

15

is also a valid pair. If this is not efficiently solvable, then the hash function is said to be

collision resistant.

3.4 Iterated Hash functions

Iterated hash functions deal with a technique called compression which can be used

to compute a hash function with infinite domain. Hash function h constructed by this

technique is called Iterated Hash function. Most hash functions like MD4, MD5, Secure

Hash Algorithms practiced in real-time are iterated hash functions. Here, we consider hash

functions whose inputs and outputs are bit strings. Consider an input message x with bit

strings zeros and ones, the length of this bit string is |x|. Similarly, if we have bit strings x1

and x2, the concatenation can be denoted as x1 || x2 [Stinson, 2005].

3.4.1 Outline of Compression function

Let us suppose that F : {0,1}(m+n)→{0,1}m is a compression function that takes

(m+n) bits as input and produces m bits output, where n ≥ 1. Based on this compression

function, we construct an iterated hash function h. This is achieved in three steps, they are

preprocessing stage, processing stage, and output transformation.

Consider an input string x, which produces output y is divided into sub-blocks such

that each block is divisible by n or equal to n. The last block may or may not be equal to

n, therefore we pad it with extra bits by extending to make it equal to n or multiples of n

denoted as y = y1||y2||y3||...||yk, where |yt | = n for 1≤ t ≤ k. This is called the preprocessing

stage [Stinson, 2005].

In the processing stage, we feed n bits from y and m bits to the compression func-

tion. These m bits are called as Initialization vectors or IV, this results in m bit output say z1.

Now, the second block of n and z1 are fed to the compression function which produces z2.

16

This process continues till kth block which produces zk. Therefore, zk is the h(x), see Figure

3.2. Sometimes, in the output transformation stage, this zk is given an optional transforma-

tion g(zk), which is called h(x). While constructing a hash function, we should ensure that

the preprocessing step is an Injection (one-to-one property). If it is not one-to-one, then it

may be possible to find x 6= x′ so that y = x′ then h(x) = h(x′). Therefore, h would not be a

collision resistant.

Figure 3.2: Compression function

17

3.5 Merkle—Damgård construction

The MD hash function or construction was first described in [[Merkle et al., 1979],

[Damgård, 1989]]. It uses a compression function F : {0,1}(m+n) → {0,1}m (from sec-

tion 3.4.1), which is collision resistant to construct a collision resistant hash function

h:{0,1}∗ → {0,1}m. From [Stinson, 2005] we give brief note about Algorithm 1 which

describes Merkle—Damgård construction.

Let us suppose that x is the message and divided into k blocks in the preprocessing

stage, say x = x1||x2||x3||...||xk. The size of each block |x1| = |x2| = |x3| = ... = |xk−1|

is equal to t-1, unlike the compression function described in 3.4.1 and the size of last

block |xk−1| = t-1-d. To make the last block of size t-1, we add d 0s, where size of d is

0≤ d ≤ t−2. The value k depends on the size of x, denoted as n and d 0s are padded.

∴ k = n+d
t−1 = d n

t−1e

Ideally, we assumed that t ≥ 1, but from Algorithm we consider t ≥ 2 because if t =

1, then the value of the k is undefined. The for-loop i runs from 1 to k-1, here we assign each

xi value to yi, this is the preprocessing step. For the kth block we take xk right padded with

18

d-zeros (0d) and assigned to yk so that, the size of yk is of length t-1. In the next step, we

assign the binary representation of d to yk+1 and padded to the left with zeros so that |yk+1|

is equal to t-1. This is known as MD strengthening, it helps to make the preprocessing step

injective.

In the processing stage, we first consider y1 which has t-1 bits. It is then padded with

(m+1) 0s, therefore the size equals to (m+t) values. These values are fed to the compression

function g1 which gives m bit value. Therefore, we continue the iterative process, that is, gi

obtained in the previous step is concatenated with extra bit 1 again concatenated with yi+1.

The size of this string is (m+t), which is again fed to the compression function to get m bit

values as output. This can be iterated to obtain values like g1,g2, ...gk+1. Therefore, the

final value gk+1 is the hash value, that is h(x). See Figure 3.3

If the compression function is collision resistant, then the hash function is said to be

collision resistant. Hash functions like MD4, MD4, SHA follow this construction method.

Figure 3.3: Merkle—Damgård construction

19

3.6 Description of SHA-1

3.6.1 SHA-1 overview

SHA-1 (Secure Hash Algorithm) is an iterated hash function and successor of MD-

SHA family designed by NIST and first published in 1995. SHA-1 is minor variations of

SHA-0 which was proposed by NIST in 1993. The only difference between SHA-0 and

SHA-1 is the 1-bit rotations in the constructions of word from W16 to W79 [Stinson, 2005].

SHA-1 takes an arbitrary length of input less than 264 bits and produces a 160-bit

message digest or hash value, typically hexadecimal digits. This message digest can be

used as an input for signature algorithms for signing documents or verify the integrity of

a message. It is always preferred to sign the message digest instead of original message

(because the size of the input message is arbitrary, and length of the message digest is

small) to improve the efficiency of the algorithm. The same signature algorithm can be

used to verify the digital signature. Any changes to the message, with high probability

the hash algorithm results a different message digest. SHA-1 is called secure because it is

computationally infeasible to find a message which corresponds to a given message digest

and difficult to find two different messages that results same message digest [FIPS, 1995].

3.6.2 SHA-1 Padding scheme

The purpose of padding scheme is to make the total length of message block 512-

bits which will be fed to the compression function in blocks for computing the message

digest. SHA-1 requires input message of length (typically less than or equal to) 264−1 bits

and binary representation of the original message, denoted by l of length 64 bits. If l is less

than 64 bits , then it is padded on the left side with zeros so that its length l is exactly 64

20

bits [Stinson, 2005]. We perform a modulo operation and concatenate d zeros and extra

1-bit, so that the length of the message block is exactly 512-bits or multiple of 512.

Let us suppose that x is the original message, y is the message block and the length

l is 64 bits. Now, we calculate d using the formula

d← (447−|x|) mod 512

The resultant 512-bit block y is constructed using the above details and denoted as

y = x || 1 || 0d || l

This message block y is divisible by 512. For n blocks, each having 512 bits is

represented as following.

y = x1||x2||x3||...||xn

Let us consider an example, say original message x is hello. We take the ASCII

values of x and convert to binary codes.

ASCII(hello) = (104 101 108 108 111)

Binary codes(ASCII) = (01101000 01100101 01101100 01101100 01101111)

Now, we add extra 1-bit to this binary code.

0110100001100101011011000110110001101111 || 1

The length of message l = 40 without the extra 1-bit, we calculate d for concatenat-

ing zeros.

d = (447 - 40) mod 512∼ 407

Therefore, 407 0s are appended after adding the extra bit, making the total length

448.

0110100001100101011011000110110001101111100000000000000000000000000000

00

21

00

00

00

00

0000000000000000000000000000

The length of the message l = 40, we take the binary code of l and pad with zeros,

to make the length exactly 64-bits.

Binary codes(40) = 00101001

l = 00101001

Now, concatenate l,

0110100001100101011011000110110001101111100000000000000000000000000000

00

00

00

00

00

00

0000000000000000101001

Therefore, the length of the message block y is 512-bits.

3.6.3 SHA-1 Compression function

SHA-1 uses different logical operations which will applied on words, where a word

consists of 32 bits and computes the hash value in 80 rounds.The operations are as follows:

• Bitwise logical operations:

22

X ∧Y = bitwise logical AND of X and Y

X ∨Y = bitwise logical OR of X and Y

X⊕Y = bitwise logical XOR of X and Y

¬X = bitwise logical complement of X

• Integer modulo addition: X + Y = words X and Y represent integers modulo

addition. Here, X and Y are integers where 0≤ X < 232,0≤ Y < 232 and denoted as (X +

Y) mod 232.

• Circular left shift: ROT Ls(X), left shift X by s positions (0≤ s < 31).

• For 80 rounds computations, we define functions from f0 to f79 which operate on

three 32-bit words B, C, D, and results one 32-bit word as output.

ft(B,C,D) =

(B∧C)∨ ((¬B)∧D) if 0≤ t ≤ 19

B⊕C⊕D if 20≤ t ≤ 39

(B∧C)∨ (B∧D)∨ (C∧D) if 40≤ t ≤ 59

B⊕C⊕D if 60≤ t ≤ 79

• Five-word buffers are used in process, these are initialized before processing the

message blocks. They are defined as follows:

1. H0 = 67452301

2. H1 = EFCDAB89

3. H2 = 98BADCFE

4. H3 = 10325476

5. H4 = C3D2E1F0

23

• The first four values are taken from MD4 and MD5 and are represented in big-

endian format [[Maibaum, 2015], [Rivest, 1990]].

• We define a sequence of word constants from K0 to K79 for 80 rounds computa-

tion, defined as follows:

Kt =

5A827999 if 0≤ t ≤ 19

6ED9EBA1 if 20≤ t ≤ 39

8F1BBCDC if 40≤ t ≤ 59

CA62C1D6 if 60≤ t ≤ 79

These constants are represented in hex. It is believed that these round constants are

square roots of
√

2,
√

3,
√

5 and
√

10 respectively [Maibaum, 2015].

3.6.4 SHA-1 Message Digest computation

The hash value or message digest is computed using the padded message described

in section 3.6.2 and involves 80 steps in processing. The first 5-word buffers are denoted

as A, B, C, D, E, and the 80-word sequence are denoted as W(t), where 0 ≤ t ≤ 79. From

3.6.2, the padded message is considered as sequence of n blocks containing 16 * n words

(M(0), M(1), , M(n)) where n > 0 [FIPS, 1995]. The processing is described as

follows:

•M(i) is divided into 16 words (W(0) to W(15)), where i runs from 1 to n.

Mi = W0||W1||W2||W3||...||W15, Wi is a word [Stinson, 2005].

• The words from 16 to 79 are circular left shifted.

Wt = ROT L1(Wt−3⊕Wt−8⊕Wt−14⊕Wt−16)

24

• The initialized 5-buffer words (H0 to H4) are assigned to second 5-word buffers

A, B, C, D, E.

A = H0, B = H1, C = H2, D = H3 and E = H4

• These second 5-word buffers are fed to the 80-round computation (t = 0 to 79)

and we employ a temporary word buffer denoted as temp.

• After 80 rounds of computation, the values of second 5-word buffer are added to

the first 5-word buffers.

∴ H0←H0+A, H1←H1+B, H2←H2+C, H3←H3+D, H4←H4+E

80 rounds computation =

temp← ROT L5(A)+ ft(B,C,D)+E +Wt +Kt

E← D

D←C

C← ROT L30(B)

B← A

A← temp

• In the last step, the final output of the first 5-buffers are concatenated. This is the

final 160-bit message digest or hash value.

SHA-1(x) = H0 || H1 || H2 || H3 || H4

Therefore, the message digest of the original message x is given below:

∴ SHA-1(hello) = AA F4 C6 1D DC C5 E8 A2 DA BE DE 0F 3B 48 2C D9 AE

A9 43 4D

25

3.7 Applications of SHA-1

3.7.1 Data Integrity

Data integrity is one the most important applications of cryptographic hash func-

tions. It verifies the consistency and accuracy of the data stored. Let us suppose that h

is hash function and x is the message. The hash function creates a fingerprint (message

digest) of the data, denoted by y.

∴ y = h(x) (unkeyed hash function)

Assume that y is stored in some secure place. If x is altered to x′ and if we assume

that h(x) 6= h(x′), then the alteration of the data is identified by verifying whether y and y′

are same or not, that is, y 6= y′, where y′ = h(x′).

Figure 3.4: Data Integrity

From Figure 3.4, Assume that the data is transferred through an insecure channel

and the message digest y of the data is passed through a secure channel. If the attacker

tries to modify the data, the user computes the hash value and checks whether it is equal to

26

actual hash value. This verification can be done based on the assurance that the message

digest is not changed.

3.7.2 Digital Signature

From 3.7.1, if the sender transfers the data confidently through an insecure channel

to the receiver, we can assume that both the end users shared a secret key k. Therefore,

instead of h(x) we assume, hk(x).

∴ y = hk(x) (Keyed hash function)

Figure 3.5: Digital Signature

From Figure 3.5, it is assumed that the data is being transferred to receivers end

through an insecure channel. First the data is passed to hash function h, at the same time, it

is signed using senders private-key and then it is transferred through the insecure channel.

Now, the attacker cannot compute the signature because they do not have private-key. To

verify the data, the receiver on other end of the system first applies hash function to the

data received and then verify by decrypting using the public-key. If the hash values match,

then the data is unaltered, otherwise the we can assume that the attacker altered the data.

27

Chapter 4

HUFFMAN COMPRESSION ALGORITHM

4.1 File compression

A text file is usually stored as bits in our system by converting each character to 8-bit

ASCII code. The ASCII encoding is called as fixed-length encoding, where each character

is converted to a fixed number (same number) of bits. If each character uses 8-bits, then

the total number of bits required is 8 times the number of characters. But the main idea is

to reduce the space the required to store the text file [Mackenzie, 1980]. Hence, we need

a compression function which results same output with less number of bits. This achieved

by variable-length encoding, which uses binary codes of different characters with different

lengths. If a character occurs more frequently, we represent it with fewer bits and more

number of bits to characters with low frequency.

Let us consider an example, say x is a text we want to encode.

∴ x = bala

Here, we have only three characters a, b, l for encoding. if we do a fixed-length en-

coding, we need at least two bits for each character. Therefore, we need 8-bits to represent.

Suppose, if we decide to use the following bits for a, b, and l

a = 0, b = 11, l = 10

Then x is encoded as 110100. It takes only 6 bits which is less when compared

to fixed-length encoding. The reason we choose these values for a, b, l is because of the

ambiguity faced by variable length encoding while decoding the text. In any given case,

we want to decode a text uniquely [Hopcroft and Ullman, 1983].

Suppose that, we want to decode 110100, we get our original text x as bala. Assume

28

that, a = 0, b = 01, l = 00. Still the encoding text should result 6 bits only and the encoding

text is 010000. Now, there is an ambiguity for decoding the encoded text. With 01 it could

either be a or b. But it must be b, because we are using 01. The remaining zeros (0000)

could be bala, bll or baaaa. Therefore, proper care should be taken while working with

variable length coding.

To prevent the ambiguities while decoding, we need to make sure that encoding

satisfies the prefix rule, that is, no code should be prefix of the other.

∴ a = 0, b = 11, l = 10 satisfies the prefix rule

The code or bits which satisfy this rule are represented using tree structure. The

characters are stored at the external nodes, 0 is assigned to left child and 1 is assigned to

right child [Mackenzie, 1980].

4.2 Optimal compression

We need to ensure that the encoded text is short and requires less number of bits.

for example, let us consider a text message:

x = malayalam

Figure 4.1: Encoded Tree structure

From Figure 4.1 and table 4.1, the total number of bits required is 22 and the text

malayalam is represented as following:

29

Characters Frequency Code Bits
a 4 010 3
l 2 011 3

m 2 1 1
Y 1 00 2

Table 4.1: Character frequency table for Encoded Tree Structure

encodedText(x) = 1010011010000100110101

Let us suppose that we have a different tree for the same word, see Figure 4.2. From

table 4.2, the total number of bits required is only 19 and the word malayalam is represented

as following:

encodedText(x) = 1000110001000011001

Figure 4.2: Encoded Tree structure – 2

Characters Frequency Code Bits
a 4 00 2
l 2 011 3

m 2 1 1
Y 1 010 3

Table 4.2: Character frequency table for Encoded Tree Structure – 2

Hence, we need a compression function that results less number of bits.

4.3 Huffman Data compression

Huffman compression algorithm is an optimal compression or prefix algorithm

where the frequencies of the letters are used for lossless compression of data. This method

30

uses a special technique for representing symbols for each word, resulting in bit strings

representation [Huffman, 1952].

4.3.1 Construction of algorithm

Suppose, for a given text, we need to count the frequency of characters and compute

a tree so that the length of the encoding text is minimum, each character is a node in the

tree. The root is always zero and level numbers are represented using number of bits to

encode a character. If f is the frequency, then fk is the frequency of the kth character. Here,

l is the level and lk is the level of the node of kth character. Therefore, we need to find a tree

which minimizes ∑k fklk which is known as the total external weighted path length of a

tree.

We consider each node having weight equal to the frequency of the characters. If

there are n number of weights, the frequencies are represented as f1, f2, f3, ..., fn. For these

frequencies, we can build a tree whose external weighted path length is minimum, it is

donated by WEPL(f1, f2, f3, ..., fn) [Hopcroft and Ullman, 1983].

4.3.2 Huffman Tree

Let us suppose that, an input x is to be compressed. Huffman algorithm calculates

the weights of the tuples in the input. Once this step is achieved, it begins to sum the least

weights of the order at each level. Once the last node or symbol weight is calculated, it

forms a tree and considers the sum of weights at each level as nodes. This tree is assigned

with a bit strings for presentation, left-side of the tree with 0s and right-side with 1s.

x = mississippi

The frequencies of x are calculated as follows:

m = 1, p = 2, i = 4, s = 4

31

Now, the least weights are calculated as follows:

m + p = (1+2) = 3, at level 1. See Figure 4.3.

Figure 4.3: Huffman level 1

Again, it compares the weights with next character in queue and calculates the sum

as follows:

(level 1 + i) = (3 + 4) = 7, at level 2

(level 2 + s) = (7 + 4) = 11, at level 3

Bit strings of 0s and 1s are assigned as follows:

Figure 4.4: Huffman Tree

The number of bits required by the word mississippi is calculated from table 4.3.

The total number of bits required is 21.

∴ Huffman(mississippi) = 100110011001110110111

Using the fixed-variable length encoding scheme, the word mississippi requires 88

32

Characters Frequency Code Bits
m 1 100 3
p 2 101 3
i 4 11 2
s 4 0 1

Table 4.3: Character frequency table of Huffman Tree

bits. From Table 4.3, the Huffman codes require only 21 bits. Hence, it is reduced from 88

bits to 21 bits.

33

Chapter 5

NEW SEED CONSTRUCTION

We assume this title is apt as we are going to explain our approach in constructing

message block for the preprocessing stage.

5.1 Base

Before proceeding with the research work, we understood the basic definitions and

requirements of a cryptosystem to produce a cryptographic hash function.

5.1.1 SHA-1 as base

After the practical freestart collision in 2015 [Stevens, Karpman, and Peyrin, Stevens

et al.], we decided to work towards find a message that results same message digest and

prove the preprocessing stage of SHA-1. Many brute force words were used to test the

SHA-1 collisions. While the research was on the go, SHA-1 was broken by Dr. Marc

Stevens in collaboration with Google [Stevens et al., 2017]. We had to reiterate of study

and proceeded for constructing a seed (message block) which results a different message

digest when tested with the sample message that produced a collision in SHA-1.

5.2 New Approach

5.2.1 Why Huffman compressed code

It is clearly visible that, most of the cryptanalytic attacks either theoretical or prac-

tical on [[Rivest, 1992], [Stevens, Karpman, and Peyrin, Stevens et al.], [Stevens et al.,

2017]] followed chosen-prefix collision attack to break the compression algorithm. In

[Stevens et al., 2017] describes that the researchers has followed Identical-prefix collision

attack, that is, a prefix is extended with a pair of messages which has close calls to collide

for any suffix. With 263.1 SHA-1 calls the messages collided and resulted same hash value.

34

Understanding this theory, we first introduced the concept of salt, it is a random data

used as an additional input for defending dictionary attacks or any pre-computed rainbow

attacks [Alexander, 2012]. But we realized that salt cannot protect the data against an

attacker who is after only one data file. Furthermore, with a correctly chosen salt, the

adversary can attack a huge amount of data [Gillies, 2012].Observing [Stevens et al., 2017]

we decided not to proceed with Salt technique and introduced Huffman compressed codes

[see section 4].

With the idea of chosen-prefix attack, we assumed that introducing the bit strings

(0s and 1s) generated by Huffman compression algorithm would be ideal and it will be

harder for the attacker to break the algorithm.

5.3 New Seed Construction

In this section, we explain how the 512-bit message block for preprocessing stage

is constructed. As mentioned in section 5.1, we reused SHA-1 algorithm. For constructing

a message block y in SHA-1 [section 3.6.2], the length is 512-bits or multiples of 512 and

we pad the original message with 1 extra bit, 447 0s and length of the original message (64

bits).

y = message || 1 || 0447 || 64

In our new seed construction, we removed 1 extra bit and replaced 447 0s with 288

0s and 160-bit message digest of the Huffman codes.

yseed = message || SHA-1(Huffman) || 0288 || 64

If we observe yseed , the total length of the message block is 512 bits or multiples of

512 bits.

35

5.3.1 Steps involved in construction

• For any given message x, we calculate the frequencies of the characters and gen-

erate the Huffman compressed codes, see table 5.1 and Figure 5.1

x = abracadabra

Huffman(x) = 0 110 111 0 100 0 101 0 110 111 0

Characters Frequency Code Bits
a 5 0 1
c 1 100 3
d 1 101 3
b 2 110 3
r 2 111 3

Table 5.1: Character frequency table of Huffman Tree – seed construction

• Now, we hash the Huffman compressed codes, which results a 160-bit message

digest.

SHA-1(Huffman(x)) = 5A 08 07 94 A9 D6 40 62 94 1E F2 59 B8 F3 C7 79 52 9E

17 61

Figure 5.1: Huffman Tree – seed construction

• We feed the message block with original message x, SHA-1 of Huffman com-

pressed codes. The padding scheme is the same as SHA-1.

36

1. x = abracadabra

2. SHA-1(Huffman(x)) = 5A 08 07 94 A9 D6 40 62 94 1E F2 59 B8 F3 C7 79 52 9E 17

61

3. d = (288 - 11) mod 512∼ 277 0’s

4. length l = 64

5. yseed = x || SHA-1(Huffman(x)) || 0277 || 64 (Preprocessing Stage)

• The total length of the message block or seed yseed = 512-bits.

• Now, we feed this seed to SHA-1 compression function, which results a 160-bit

message digest.

• Our observation

h(x)seed = B0 07 94 C1 80 BA E5 DB 44 8F 82 CC DE 6C CA 76 A4 D4 2E 93

Universally, if we consider any platform and compute the SHA-1 of abracadabra,

it produces the following as its message digest:

h(x) = 0B 8C 31 DD 3A 4C 1E 74 B0 76 4D 5B 51 0F D5 EA AC 00 42 6C

But, our seed construction resulted a different message digest for the same input,

see Figures 5.2 and 17.

Our observations for different words are given in [section 5.4]

5.4 Observations

We can categorize the above observation into two cases:

1. Case 1: missisppi, nississippi and massassappa have characters with same frequency

and share same Huffman codes, SHA-1 message digest. But, when these outputs are

37

Figure 5.2: Compression function output

Figure 5.3: New Seed construction output – our observation

fed to our seed, it resulted a message digest which is different from respective SHA-1

of these words.

2. Case 2: our aim was to prove that, two different messages with same message di-

gest when fed to our seed should produce different message digests. For this, we

considered the sample message created by Dr. Marc Stevens team in collaboration

with Google see Figures 5.4 and 5.5 (We took screenshot of these observation and up-

dated them as figures due to space management). The messages look similar, but they

are different and share same message digest. When fed to our seed, it successfully

resulted two different message digests

38

Word mississippi
SHA-1 of Word FE 64 8F C4 59 A6 F6 EF 6C D3 47 BE E3 D4 94 76 62 39 BB B5
Huffman(Word) 100011110111101011010

SHA-1(Huffman) 45 30 A9 14 B9 B9 37 73 59 89 A3 27 71 A4 92 33 0E BB DB 7F
Our Observation 27 D1 83 19 08 15 0E E8 AF D8 84 55 7C 8F 0B 1D E9 96 43 8C

Table 5.2: Observation Table 1

Word nississippi
SHA-1 of Word E9 52 9D 02 B8 13 A9 26 1B 8B CE B0 6D 4F 4B 94 DC 63 44 99
Huffman(Word) 100011110111101011010

SHA-1(Huffman) 45 30 A9 14 B9 B9 37 73 59 89 A3 27 71 A4 92 33 0E BB DB 7F
Our Observation CB F5 B7 9C 15 6D C1 C0 1F A6 8F 92 0F 01 C2 E4 2D A8 D1 DE

Table 5.3: Observation Table 2

Word massassappa
SHA-1 of Word C7 C9 B7 3C 2E 36 E0 52 8E 48 19 2C 1A 14 94 FE F3 D7 3A 7B
Huffman(Word) 100011110111101011010

SHA-1(Huffman) 45 30 A9 14 B9 B9 37 73 59 89 A3 27 71 A4 92 33 0E BB DB 7F
Our Observation B5 F2 79 7E 73 F1 8D C4 7D E1 03 0F 39 56 67 9D A8 AD BE 5C

Table 5.4: Observation Table 3

39

Figure 5.4: Google’s sample message 1

40

Figure 5.5: Google’s sample message 2

41

Chapter 6

CONCLUSION

There are always chances for cryptanalytic attacks due to over growing technolog-

ical revolution and can compromise the security of the systems. This study aims to design

a hash algorithm by adding an extra layer, that is, by adding the hash value of Huffman

compressed codes of the original message to the preprocessing stage of SHA-1. We tested

our algorithm for different bruteforce words and Google’s sample messages which broke

SHA-1. The results show that, any message with same original SHA-1 message digest and

messages with same Huffman compressed codes did not collide and resulted different mes-

sage digests. SHA-1 algorithm depends on the length of the original message, whereas,

Our algorithm depends the frequency of the characters of original message as well as the

length of the original message. Hence, at this point of time we conclude that our algorithm

is collision resistant.

42

REFERENCES

Alexander, S. (2012, June). The bug charmer: Passwords matter. http://
bugcharmer.blogspot.com/2012/06/passwords-matter.html.

Barker, E. B. (1993). Secure hash standard (shs). Technical report.

Boesche, R. (2002). The first great political realist: Kautilya and his Arthashastra.
Lexington Books.

Brooks, R. R. (2013). Introduction to computer and network security: Navigating shades
of gray.

Buchmann, J. (2013). Introduction to cryptography. Springer Science & Business Me-
dia.

Damgård, I. B. (1989). A design principle for hash functions. In Conference on the
Theory and Application of Cryptology, pp. 416–427. Springer.

David, K. (1999). Crises of the union. The Codebreakers: The Story of Secret Writing,
217–221.

Diffie, W. and M. E. Hellman (1976). Multiuser cryptographic techniques. In Proceed-
ings of the June 7-10, 1976, national computer conference and exposition, pp. 109–
112. ACM.

Eastlake 3rd, D. and P. Jones (2001). Us secure hash algorithm 1 (sha1). Technical re-
port.

FIPS, P. (1995). 180-1. secure hash standard. National Institute of Standards and Tech-
nology 17, 45.

Gillies (2012, April). passwords - why is using salt more secure? - information security
stack exchange. https://security.stackexchange.com/questions/
14025/why-is-using-salt-more-secure.

Goodin, D. (2017, February). At death’s door for years,
widely used sha1 function is now dead. https://
arstechnica.com/information-technology/2017/02/
at-deaths-door-for-years-widely-used-sha1-function-is-now-dead/.
(Accessed on 03/20/2017).

Hat, R. (2013, August). A brief history of cryptography - red hat customer portal.
https://access.redhat.com/blogs/766093/posts/1976023. (Ac-
cessed on 02/05/2017).

43

http://bugcharmer.blogspot.com/2012/06/passwords-matter.html
http://bugcharmer.blogspot.com/2012/06/passwords-matter.html
https://security.stackexchange.com/questions/14025/why-is-using-salt-more-secure
https://security.stackexchange.com/questions/14025/why-is-using-salt-more-secure
https://arstechnica.com/information-technology/2017/02/at-deaths-door-for-years-widely-used-sha1-function-is-now-dead/
https://arstechnica.com/information-technology/2017/02/at-deaths-door-for-years-widely-used-sha1-function-is-now-dead/
https://arstechnica.com/information-technology/2017/02/at-deaths-door-for-years-widely-used-sha1-function-is-now-dead/
https://access.redhat.com/blogs/766093/posts/1976023

Hopcroft, J. E. and J. D. Ullman (1983). Data structures and algorithms.

Huffman, D. A. (1952). A method for the construction of minimum-redundancy codes.
Proceedings of the IRE 40(9), 1098–1101.

Joux, A. and T. Peyrin (2007). Hash functions and the (amplified) boomerang attack. In
Annual International Cryptology Conference, pp. 244–263. Springer.

Kaliski, B. (1992). The md2 message-digest algorithm.

Karpman, P., T. Peyrin, and M. Stevens (2015). Practical free-start collision attacks on
76-step sha-1. In Annual Cryptology Conference, pp. 623–642. Springer.

Kessler, G. C. (1998). An overview of cryptography. published by Auerbach 22.

Leeuwen, J. (1990). Handbook of theoretical computer science, Volume 1. Elsevier.

Mackenzie, C. E. (1980). Coded-Character Sets: History and Development. Addison-
Wesley Longman Publishing Co., Inc.

Maibaum, J. (2015, June). sha 1 - why initialize sha1 with
specific buffer? - cryptography stack exchange. https:
//crypto.stackexchange.com/questions/10829/
why-initialize-sha1-with-specific-buffer/10857.

Mao, W. (2003). Modern cryptography: theory and practice. Prentice Hall Professional
Technical Reference.

Menezes, A. J., P. C. Van Oorschot, and S. A. Vanstone (1996). Handbook of applied
cryptography. CRC press.

Merkle, R. C. (1989). One way hash functions and des. In Conference on the Theory and
Application of Cryptology, pp. 428–446. Springer.

Merkle, R. C., R. Charles, et al. (1979). Secrecy, authentication, and public key systems.

networks, X. Q99: What are md2, md4, and md5? http://x5.net/faqs/
crypto/q99.html. (Accessed on 02/02/2018).

Paar, C. and J. Pelzl (2009). Understanding cryptography: a textbook for students and
practitioners. Springer Science & Business Media.

Ramsinghani, M. (2016, feb). Innovations in cybersecurity at rsa
2016 techcrunch. https://techcrunch.com/2016/02/29/

44

https://crypto.stackexchange.com/questions/10829/why-initialize-sha1-with-specific-buffer/10857
https://crypto.stackexchange.com/questions/10829/why-initialize-sha1-with-specific-buffer/10857
https://crypto.stackexchange.com/questions/10829/why-initialize-sha1-with-specific-buffer/10857
http://x5.net/faqs/crypto/q99.html
http://x5.net/faqs/crypto/q99.html
https://techcrunch.com/2016/02/29/innovations-in-cybersecurity-at-rsa-2016/
https://techcrunch.com/2016/02/29/innovations-in-cybersecurity-at-rsa-2016/

innovations-in-cybersecurity-at-rsa-2016/. (Accessed on
02/05/2018).

Rivest, R. (1992). The md5 message-digest algorithm.

Rivest, R. L. (1990). Md4 message digest algorithm.

Rogaway, P. and T. Shrimpton (2004). Cryptographic hash-function basics: Definitions,
implications, and separations for preimage resistance, second-preimage resistance,
and collision resistance. In International Workshop on Fast Software Encryption, pp.
371–388. Springer.

Schneier, B. Foundations. Applied Cryptography, Second Edition, 20th Anniversary Edi-
tion, 1–18.

Schneier, B. (2005, February). Cryptanalysis of sha-1 - schneier on secu-
rity. https://www.schneier.com/blog/archives/2005/02/
cryptanalysis_o.html. (Accessed on 02/04/2017).

Simpson, S. (1997). Cryptography defined/brief history. http://www.laits.
utexas.edu/~anorman/BUS.FOR/course.mat/SSim/history.
html. (Accessed on 02/02/2018).

Stevens, M. (2013). New collision attacks on sha-1 based on optimal joint local-collision
analysis. In Annual International Conference on the Theory and Applications of
Cryptographic Techniques, pp. 245–261. Springer.

Stevens, M., E. Bursztein, P. Karpman, A. Albertini, and Y. Markov (2017). The first
collision for full sha-1. IACR Cryptology ePrint Archive 2017, 190.

Stevens, M., P. Karpman, and T. Peyrin. Freestart collision on full sha-1.

Stinson, D. R. (2005). Cryptography: theory and practice. CRC press.

tbs internet (2018, february). Sha1: Depreciation of sha1 algorithm scheduled for
2015, 2016, 2017? https://www.tbs-certificates.co.uk/FAQ/en/
microsoft_depreciation_sha1.html. (Accessed on 02/03/2018).

Thomsen, S. S. and L. R. Knudsen (2005). Cryptographic hash functions. Ph. D. the-
sis, Technical University of DenmarkDanmarks Tekniske Universitet, Department
of Applied Mathematics and Computer ScienceInstitut for Matematik og Computer
Science.

Wang, X., Y. L. Yin, and H. Yu (2005). Finding collisions in the full sha-1. In Annual
international cryptology conference, pp. 17–36. Springer.

45

https://techcrunch.com/2016/02/29/innovations-in-cybersecurity-at-rsa-2016/
https://techcrunch.com/2016/02/29/innovations-in-cybersecurity-at-rsa-2016/
https://www.schneier.com/blog/archives/2005/02/cryptanalysis_o.html
https://www.schneier.com/blog/archives/2005/02/cryptanalysis_o.html
http://www.laits.utexas.edu/~anorman/BUS.FOR/course.mat/SSim/history.html
http://www.laits.utexas.edu/~anorman/BUS.FOR/course.mat/SSim/history.html
http://www.laits.utexas.edu/~anorman/BUS.FOR/course.mat/SSim/history.html
https://www.tbs-certificates.co.uk/FAQ/en/microsoft_depreciation_sha1.html
https://www.tbs-certificates.co.uk/FAQ/en/microsoft_depreciation_sha1.html

Wang, X. and H. Yu (2005). How to break md5 and other hash functions. In Annual
international conference on the theory and applications of cryptographic techniques,
pp. 19–35. Springer.

46

Appendices

47

Appendix A
APPENDIX A: SETTING UP VISUAL STUDIO

A.1 Installation guide for Visual Studio Community 2017
The following steps are involved in Installing Visual Studio.

1. Go to https://www.visualstudio.com/downloads/
2. Once you’re on the Microsoft website, click the Blue button to download the Visual
Studio Community 2017, see figure A.1.

Figure A.1: Visual Studio downloads page

3. Once the installer has downloaded, double-click it to install Visual Studio Com-
munity 2017.
4. Accept the policy and continue to run the installer, see figure A.2.

Figure A.2: Installation policy

5. Select the Packages to be installed on your system, see figure A.3.

48

Figure A.3: Installation packages

6. Once the Installation is done, Run the Visual Studio Community 2017.

49

Appendix B
APPENDIX B: SHA-1 OF HUFFMAN COMPRESSED CODES

1 #pragma once
2/*
3* Header file for sha code
4* reference: US Secure Hash Algorithm 1 by Network working group
5*/
6

7/* This Header will decalre set of integer types having specified
8* widths. Width of an integer type is the numnber of bits used to
9* store its value in a pure binary system.

10*
11* The actual type may use more bits that that. for example, a 28-bit
12* type could store in 32-bit of actual storage.
13*/
14 # i n c l u d e < s t d i n t . h>
15

16/*
17* enum is a user-defined data type that consists of integral constants.
18*/
19 enum
20 {
21 shaOk = 0 ,
22 shaNul l , /* Null pointer parameter */
23 sha Inpu tLong , /* long input data */
24 s h a E r r o r /* called after result */
25 } ;
26

27 # d e f i n e Sha1HashSize 20
28

29/*
30* This structure will hold the context information for the SHA-1 hash
31* operation typedef is a reserved keyword. By defining the typedef,
32* it is assured that all the variables are structure pointer types,
33* or each variable is a pointer type pointing to a structure type.
34*/
35/*
36* uint32_t -----> unsigned 32 bit integer
37* uint8_t -----> unsigned 8 bit integer
38*/
39 t y p e d e f s t r u c t SHA1Context
40 {
41 u i n t 3 2 _ t I n t e r m e d i a t e _ H a s h [Sha1HashSize / 4] ; /* Message Digest */
42

43 u i n t 3 2 _ t Length_Low ; /* Message length in bits */
44 u i n t 3 2 _ t Length_High ; /* Message length in bits */
45 i n t _ l e a s t 1 6 _ t Message_Block_Index ; /* Index into message block array */
46 u i n t 8 _ t Message_Block [6 4] ; /* 512-bit message blocks */
47

48 i n t Computed ; /* Is the digest computed? */
49 i n t C o r r u p t e d ; /* Is the message digest corrupted? */
50 } SHA1Context ; /*is the message digest corrupted ? */
51

52 /*
53 * Function Prototypes
54 */
55 i n t SHA1Reset (SHA1Context *) ;
56 i n t SHA1Input (SHA1Context * , c o n s t u i n t 8 _ t * , unsigned i n t) ;
57 i n t SHA1Result (SHA1Context * ,
58 u i n t 8 _ t Message_Diges t [Sha1HashSize]) ;

Figure B.1: SHA1–Header.h.

50

1/*
2* Description: this file implements the SHA1
3* SHA1 produces 1 160-bit message digest for a given input
4* SHA1 is defined in terms of 32-bit words. This code uses Header.h file
5* to define 32-bit and 8-bit unsined integer types.
6* This code only works with message with length that is a multiple of the size of an
7* 8-bit character
8*/
9 # i n c l u d e "stdafx.h"

10 # i n c l u d e "SHA_1_Header.h"
11

12/*
13* Define the SHA1 circular left shift
14* The circular left shift operation S^n(X), where X is a word and n is an integer
15* with 0 <= n < 32
16* X << n is obtained as follows - discard the left-most n bits of X and then pad the
17* result with n zeros on the right(the result will still be 32-bits).
18* X >> 32- n is obtained by discarding the right-most n bits of X and then padding
19* the result with n zeros on the left. Thus S^n(X) is equivalent to a circular shift
20* of X by n postions to the left.
21*/
22 # d e f i n e S H A 1 C i r c u l a r S h i f t (b i t s , word) \
23 (((word) << (b i t s)) | ((word) >> (32−(b i t s))))
24

25/* Local Function Prototypes */
26 void SHA1PadMessage (SHA1Context *) ;
27 void SHA1ProcessMessageBlock (SHA1Context *) ;
28

29/*
30* SHA1 Reset
31* This function will initialize the SHA1Context in preparation for computing
32* a new SHA1 message digest.
33* It initializes Length_Low, Length_High and Message_block_index to zero
34* Returns SHA1 Error code
35*/
36 i n t SHA1Reset (SHA1Context * c o n t e x t) {
37 i f (! c o n t e x t) {
38 re turn s h a N u l l ;
39 }
40 c o n t e x t −>Length_Low = 0 ;
41 c o n t e x t −>Length_High = 0 ;
42 c o n t e x t −>Message_Block_Index = 0 ;
43

44 c o n t e x t −>I n t e r m e d i a t e _ H a s h [0] = 0 x67452301 ;
45 c o n t e x t −>I n t e r m e d i a t e _ H a s h [1] = 0xEFCDAB89 ;
46 c o n t e x t −>I n t e r m e d i a t e _ H a s h [2] = 0x98BADCFE ;
47 c o n t e x t −>I n t e r m e d i a t e _ H a s h [3] = 0 x10325476 ;
48 c o n t e x t −>I n t e r m e d i a t e _ H a s h [4] = 0xC3D2E1F0 ;
49

50 c o n t e x t −>Computed = 0 ;
51 c o n t e x t −>C o r r u p t e d = 0 ;
52

53 re turn shaOk ;
54 }
55

56/*
57* SHA1Result
58*
59* Description:
60* This function will return the 160-bit message digest into the
61* Message_Digest array provided by the caller.
62* NOTE: The first octet of hash is stored in the 0th element,
63* the last octet of hash in the 19th element.
64*
65* Parameters:
66* context: [in/out]

Figure B.2: SHA–1 Source.cpp.

51

1 * The c o n t e x t t o use t o c a l c u l a t e t h e SHA−1 hash .
2 * Message_Diges t : [o u t]
3 * Where t h e d i g e s t i s r e t u r n e d .
4 *
5 * R e t u r n s :
6 * sha E r r o r Code .
7 *
8 * /
9 i n t SHA1Result (SHA1Context * c o n t e x t ,

10 u i n t 8 _ t Message_Diges t [Sha1HashSize])
11 {
12 i n t i ;
13

14 i f (! c o n t e x t | | ! Message_Diges t)
15 {
16 re turn s h a N u l l ;
17 }
18

19 i f (c o n t e x t −>C o r r u p t e d)
20 {
21 re turn c o n t e x t −>C o r r u p t e d ;
22 }
23

24 i f (! c o n t e x t −>Computed)
25 {
26 SHA1PadMessage (c o n t e x t) ;
27 f o r (i = 0 ; i <64; ++ i)
28 {
29 /* message may be sensitive, clear it out */
30 c o n t e x t −>Message_Block [i] = 0 ;
31 }
32 c o n t e x t −>Length_Low = 0 ; /* and clear length */
33 c o n t e x t −>Length_High = 0 ;
34 c o n t e x t −>Computed = 1 ;
35 }
36

37 f o r (i = 0 ; i < Sha1HashSize ; ++ i)
38 {
39 Message_Diges t [i] = c o n t e x t −>I n t e r m e d i a t e _ H a s h [i >> 2]
40 >> 8 * (3 − (i & 0x03)) ;
41 }
42

43 re turn shaOk ;
44 }
45

46

47/*
48* SHA1 Input
49* Description: This function accepts an array of octects as the next portion of the
50* message
51* message_array is a parameter : An array of Characters representing the next
52* portion of the message
53* length: length of the message in message_array
54* Returns SHA Error code
55* If the number of bits in a message is a multiple of 8, for compactness we can represent
56 *the message in hex.
57* The padded message will contain 16 * n words for some n > 0. The padded message is regarded
58* as a sequence of n blocks M(1) , M(2), first characters (or bits) of the message.
59*/
60 i n t SHA1Input (SHA1Context * c o n t e x t , c o n s t u i n t 8 _ t * message_a r r ay , unsigned l e n g t h) {
61 i f (! l e n g t h) { //condition for length
62 re turn shaOk ;
63 }
64 i f (! c o n t e x t | | ! m e s s a g e _ a r r a y) { //condition for no message array
65 re turn s h a N u l l ;
66 }

Figure B.3: SHA–1 Source.cpp continuation–1.

52

1 i f (c o n t e x t −>Computed) {
2 c o n t e x t −>C o r r u p t e d = s h a E r r o r ; // condition to check corrupted bits
3 re turn s h a E r r o r ;
4 }
5

6 i f (c o n t e x t −>C o r r u p t e d) {
7 re turn c o n t e x t −>C o r r u p t e d ; // condition to check corrupted bits
8 }
9 whi le (l e n g t h−− && ! c o n t e x t −>C o r r u p t e d)

10 {
11 c o n t e x t −>Message_Block [c o n t e x t −>Message_Block_Index ++] = (* m e s s a g e _ a r r a y & 0xFF) ;
12 c o n t e x t −>Length_Low += 8 ;
13 i f (c o n t e x t −>Length_Low == 0) {
14 c o n t e x t −>Length_High ++;
15 i f (c o n t e x t −>Length_High == 0) {
16 /* Message is too long*/
17 c o n t e x t −>C o r r u p t e d = 1 ;
18 }
19 }
20 i f (c o n t e x t −>Message_Block_Index == 64) {
21 SHA1ProcessMessageBlock (c o n t e x t) ;
22 }
23 m e s s a g e _ a r r a y ++;
24 }
25 re turn shaOk ;
26 }
27

28/*
29* SHA1ProcessMessageBlock
30* Description: This function will process the next 512 bits of the message stored
31* in the Message_block array
32* this function has no parameters and returns nothing
33*/
34 void SHA1ProcessMessageBlock (SHA1Context * c o n t e x t) {
35 c o n s t u i n t 3 2 _ t K[] = { /* Constants defined in SHA-1 */
36 0x5A827999 ,
37 0x6ED9EBA1 ,
38 0x8F1BBCDC ,
39 0xCA62C1D6
40 } ;
41

42 i n t t ; /* Loop counter */
43 u i n t 3 2 _ t temp ; /* Temporary word value */
44 u i n t 3 2 _ t W[8 0] ; /* Word sequence */
45 u i n t 3 2 _ t A, B , C , D, E ; /* Word buffers */
46

47 /*
48 * Initialize the first 16 words in the array W
49 * | is a bitwise or, example x |= 8 means x = x | 8
50 */
51 f o r (t = 0 ; t < 1 6 ; t ++)
52 {
53 W[t] = c o n t e x t −>Message_Block [t * 4] << 2 4 ;
54 W[t] | = c o n t e x t −>Message_Block [t * 4 + 1] << 1 6 ;
55 W[t] | = c o n t e x t −>Message_Block [t * 4 + 2] << 8 ;
56 W[t] | = c o n t e x t −>Message_Block [t * 4 + 3] ;
57 }
58

59 f o r (t = 1 6 ; t < 8 0 ; t ++)
60 {
61 W[t] = S H A 1 C i r c u l a r S h i f t (1 , W[t − 3] ^ W[t − 8] ^ W[t − 14] ^ W[t − 1 6]) ;
62 }
63

64 A = c o n t e x t −>I n t e r m e d i a t e _ H a s h [0] ;
65 B = c o n t e x t −>I n t e r m e d i a t e _ H a s h [1] ;

Figure B.4: SHA–1 Source.cpp continuation–2.

53

1

2 C = c o n t e x t −>I n t e r m e d i a t e _ H a s h [2] ;
3 D = c o n t e x t −>I n t e r m e d i a t e _ H a s h [3] ;
4 E = c o n t e x t −>I n t e r m e d i a t e _ H a s h [4] ;
5

6 f o r (t = 0 ; t < 2 0 ; t ++)
7 {
8 temp = S H A 1 C i r c u l a r S h i f t (5 , A) +
9 ((B & C) | ((~B) & D)) + E + W[t] + K [0] ;

10 E = D;
11 D = C ;
12 C = S H A 1 C i r c u l a r S h i f t (3 0 , B) ;
13 B = A;
14 A = temp ;
15 }
16

17 f o r (t = 2 0 ; t < 4 0 ; t ++)
18 {
19 temp = S H A 1 C i r c u l a r S h i f t (5 , A) + (B ^ C ^ D) + E + W[t] + K [1] ;
20 E = D;
21 D = C ;
22 C = S H A 1 C i r c u l a r S h i f t (3 0 , B) ;
23 B = A;
24 A = temp ;
25 }
26

27 f o r (t = 4 0 ; t < 6 0 ; t ++)
28 {
29 temp = S H A 1 C i r c u l a r S h i f t (5 , A) +
30 ((B & C) | (B & D) | (C & D)) + E + W[t] + K [2] ;
31 E = D;
32 D = C ;
33 C = S H A 1 C i r c u l a r S h i f t (3 0 , B) ;
34 B = A;
35 A = temp ;
36 }
37

38 f o r (t = 6 0 ; t < 8 0 ; t ++)
39 {
40 temp = S H A 1 C i r c u l a r S h i f t (5 , A) + (B ^ C ^ D) + E + W[t] + K [3] ;
41 E = D;
42 D = C ;
43 C = S H A 1 C i r c u l a r S h i f t (3 0 , B) ;
44 B = A;
45 A = temp ;
46 }
47

48 c o n t e x t −>I n t e r m e d i a t e _ H a s h [0] += A;
49 c o n t e x t −>I n t e r m e d i a t e _ H a s h [1] += B ;
50 c o n t e x t −>I n t e r m e d i a t e _ H a s h [2] += C ;
51 c o n t e x t −>I n t e r m e d i a t e _ H a s h [3] += D;
52 c o n t e x t −>I n t e r m e d i a t e _ H a s h [4] += E ;
53

54 c o n t e x t −>Message_Block_Index = 0 ;
55 }
56

57/*
58* SHA1PadMessage
59* Description: According to SHA1 standard, the message must be padded to an even
60* 512 bits. The first paddign bit must be a '1'. the last 64 bits represent the
61* length of the original message. All bits in between should be 0.This function
62* will pad the message according to those rules by filling the Message_Block array
63* accordingly. It will also call the ProcessMessageBlock function provided appropriately.
64* When it returns, it can be assumed that the message digest has been computed.
65* Parameters are context and the ProcessMessageBlock function

Figure B.5: SHA–1 Source.cpp continuation–3.

54

1 * r e t u r n s n o t h i n g
2 * I f t h e number o f b i t s i n a message i s a m u l t i p l e o f 8 , f o r compac tne s s we can r e p r e s e n t
3 * t h e message i n hex
4 * /
5 void SHA1PadMessage (SHA1Context * c o n t e x t) {
6 /*
7 * Check to see if the current message block is too small to hold
8 * the initial padding bits and length. If so, we will pad the
9 * block, process it, and then continue padding into a second

10 * block.
11 */
12 i f (c o n t e x t −>Message_Block_Index > 55)
13 {
14 c o n t e x t −>Message_Block [c o n t e x t −>Message_Block_Index ++] = 0x80 ;
15 whi le (c o n t e x t −>Message_Block_Index < 64)
16 {
17 c o n t e x t −>Message_Block [c o n t e x t −>Message_Block_Index ++] = 0 ;
18 }
19

20 SHA1ProcessMessageBlock (c o n t e x t) ;
21

22 whi le (c o n t e x t −>Message_Block_Index < 56)
23 {
24 c o n t e x t −>Message_Block [c o n t e x t −>Message_Block_Index ++] = 0 ;
25 }
26 }
27 e l s e
28 {
29 c o n t e x t −>Message_Block [c o n t e x t −>Message_Block_Index ++] = 0x80 ;
30 whi le (c o n t e x t −>Message_Block_Index < 56)
31 {
32 c o n t e x t −>Message_Block [c o n t e x t −>Message_Block_Index ++] = 0 ;
33 }
34 }
35 /*
36 * Store the message length as the last 8 octets
37 */
38 c o n t e x t −>Message_Block [5 6] = c o n t e x t −>Length_High >> 2 4 ;
39 c o n t e x t −>Message_Block [5 7] = c o n t e x t −>Length_High >> 1 6 ;
40 c o n t e x t −>Message_Block [5 8] = c o n t e x t −>Length_High >> 8 ;
41 c o n t e x t −>Message_Block [5 9] = c o n t e x t −>Length_High ;
42 c o n t e x t −>Message_Block [6 0] = c o n t e x t −>Length_Low >> 2 4 ;
43 c o n t e x t −>Message_Block [6 1] = c o n t e x t −>Length_Low >> 1 6 ;
44 c o n t e x t −>Message_Block [6 2] = c o n t e x t −>Length_Low >> 8 ;
45 c o n t e x t −>Message_Block [6 3] = c o n t e x t −>Length_Low ;
46

47 SHA1ProcessMessageBlock (c o n t e x t) ;
48 }

Figure B.6: SHA–1 Source.cpp continuation–4.

55

1/*
2* Huffman Data Compression Algorithm
3* Reference of code and notes taken from Techie-Delight - Aditya Goel and
4* Dr.Naveen garg's (IIT-Delhi) lecture.
5*/
6

7 # i n c l u d e < i o s t r e a m >
8 # i n c l u d e < f s t r e a m >
9 # i n c l u d e < c s t r i n g >

10 # i n c l u d e <chrono >
11 # i n c l u d e < t h r e a d >
12 # i n c l u d e < s t r i n g >
13 # i n c l u d e <queue >
14 # i n c l u d e <unordered_map >
15 us ing namespace s t d ;
16

17/* Declaring Tree node */
18 s t r u c t t r e e N o d e
19 {
20 char ch ;
21 i n t f r e q ;
22 t r e e N o d e * l e f t , * r i g h t ;
23 } ;
24

25/* getNode function to allocate a new tree node */
26 t r e e N o d e * getNode (char ch , i n t f r e q , t r e e N o d e * l e f t , t r e e N o d e * r i g h t)
27 {
28 t r e e N o d e * node = new t r e e N o d e () ;
29

30 node−>ch = ch ;
31 node−>f r e q = f r e q ;
32 node−> l e f t = l e f t ;
33 node−> r i g h t = r i g h t ;
34

35 re turn node ;
36 }
37

38/* Comparing characters of left and right nodes of tree */
39 s t r u c t comp
40 {
41 bool operator () (t r e e N o d e * l , t r e e N o d e * r)
42 {
43 // Characters with lowest frequency
44 re turn l−>f r e q > r−>f r e q ;
45 }
46 } ;
47

48/* After Calculating the frequencies of the characters, weights are calculated and
49* values are assigned to left and right side of the huffman tree from root node.
50*/
51 void encodeTree (t r e e N o d e * rootNode , s t r i n g s t r ,
52 unordered_map <char , s t r i n g > &huffmanCode)
53 {
54 i f (roo tNode == n u l l p t r)
55 re turn ;
56

57 // found a leaf node
58 i f (! rootNode−> l e f t && ! rootNode−> r i g h t) {
59 huffmanCode [rootNode−>ch] = s t r ;
60 }
61 /* Assign 0' to leftside of the root node and 1's to rightside of the root node */
62 encodeTree (rootNode−> l e f t , s t r + "0" , huffmanCode) ;
63 encodeTree (rootNode−>r i g h t , s t r + "1" , huffmanCode) ;
64 }
65

66/* Frequencies of characters are calculated.
67 * Based on weights they are separated */

Figure B.7: Huffman.h.
56

1 void bu i ldHuf fmanTree (s t r i n g t e x t)
2 {
3 /* Count frequency of appearance of each character
4 * and store it in a map
5 */
6 unordered_map <char , i n t > f r e q ;
7 f o r (char ch : t e x t) {
8 f r e q [ch] + + ;
9 }

10

11 p r i o r i t y _ q u e u e < t r e e N o d e * , v e c t o r < t r e e N o d e * > , comp> pq ;
12

13 f o r (auto p a i r : f r e q) {
14 pq . push (getNode (p a i r . f i r s t , p a i r . second , n u l l p t r , n u l l p t r)) ;
15 }
16

17

18 whi le (pq . s i z e () != 1)
19 {
20 t r e e N o d e * l e f t = pq . t o p () ; pq . pop () ;
21 t r e e N o d e * r i g h t = pq . t o p () ; pq . pop () ;
22

23 i n t sum = l e f t −>f r e q + r i g h t −>f r e q ;
24 pq . push (getNode ('\0' , sum , l e f t , r i g h t)) ;
25 }
26

27 t r e e N o d e * roo tNode = pq . t o p () ;
28

29 unordered_map <char , s t r i n g > huffmanCode ;
30 encodeTree (rootNode , "" , huffmanCode) ; // after assigning 0's and 1's
31

32 c o u t << "Huffman Codes of each character :\n" << '\n' ;
33 f o r (auto p a i r : huffmanCode) {
34 c o u t << p a i r . f i r s t << " " << p a i r . second << '\n' ;
35 }
36

37 c o u t << "\nOriginal message string is :\n" << t e x t << '\n' ;
38 s t r i n g s t r = "" ;
39 f o r (char ch : t e x t) {
40 s t r += huffmanCode [ch] ;
41 }
42

43 /*write the string into output text tile*/
44 o f s t r e a m o u t f i l e ;
45 o u t f i l e . open ("Huffman_Codes.txt" , i o s : : o u t) ;
46 o u t f i l e << s t r ;
47 c o u t << "\nHuffman Compressed Codes of original string:\n" << s t r << '\n' ;
48 }

Figure B.8: Huffman.h continuation – 1.

57

1/**
2* Description: This program generates SHA-1 of Huffman compressed codes.
3*/
4

5 # i n c l u d e "stdafx.h"
6 # i n c l u d e < s t d i o . h>
7 # i n c l u d e < s t r i n g >
8 # i n c l u d e "SHA_1_Header.h"
9 # i n c l u d e "Huffman.h"

10 # i n c l u d e < i o s t r e a m >
11 # i n c l u d e < f s t r e a m >
12 # i n c l u d e < c s t r i n g >
13 # i n c l u d e <chrono >
14 # i n c l u d e < t h r e a d >
15

16 us ing namespace s t d ;
17 us ing namespace s t d : : t h i s _ t h r e a d ;
18 us ing namespace s t d : : ch rono ;
19

20 long i n t r e p e a t c o u n t [1] = { 1 } ;
21

22/* Main function */
23 i n t main () {
24

25 /* Takes input from the text file */
26 s t r i n g i n p u t , l i n e s ;
27 i f s t r e a m i n p u t f i l e ("Input.txt" , i o s : : o u t) ;
28 whi le (g e t l i n e (i n p u t f i l e , l i n e s)) {
29 i n p u t = l i n e s ;
30 }
31 c o n s t char * message = i n p u t . c _ s t r () ;
32

33 /**
34 * Input is passed to the buildHuffmanTree method to generate
35 * Huffman Tree and produces huffman compressed codes
36 */
37 bu i ldHuf fmanTree (message) ;
38

39 /**
40 * Huffman compressed codes are now cosidered as input for
41 * generating SHA-1 of the compressed codes.
42 */
43 s t r i n g t e x t , l i n e ;
44 i f s t r e a m i n f i l e ("Huffman_Codes.txt" , i o s : : i n) ;
45 whi le (g e t l i n e (i n f i l e , l i n e)) {
46 t e x t = l i n e ;
47 }
48 c o n s t char * t e s t a r r a y [] = { t e x t . c _ s t r () } ;
49

50 SHA1Context sha ; // Holds the SHA-1 information
51 i n t i , j , e r r ;
52 u i n t 8 _ t Message_Diges t [2 0] ; // Message Digest
53

54 /* Perform SHA1 operation */
55 f o r (j = 0 ; j < 1 ; j ++) {
56 e r r = SHA1Reset(& sha) ;
57 i f (e r r)
58 {
59 f p r i n t f (s t d e r r , "Error Resetting SHA-1 %d.\n" , e r r) ;
60 break ; /* out of for j loop */
61 }
62

63 f o r (i = 0 ; i < r e p e a t c o u n t [j] ; ++ i)
64 {

Figure B.9: Compression.cpp.

58

1 e r r = SHA1Input (&sha ,
2 (c o n s t unsigned char *) t e s t a r r a y [j] ,
3 s t r l e n (t e s t a r r a y [j])) ;
4 i f (e r r)
5 {
6 f p r i n t f (s t d e r r , "\n SHA-1 input error %d.\n" , e r r) ;
7 break ; /* out of for i loop */
8 }
9 }

10 e r r = SHA1Result (&sha , Message_Diges t) ;
11 i f (e r r)
12 {
13 f p r i n t f (s t d e r r ,
14 "SHA-1 output Error %d, could not compute message digest.\n" ,
15 e r r) ;
16 }
17 e l s e
18 {
19 c o u t << "\nSHA-1 of Huffman Encoded String :\n" ;
20 f o r (i = 0 ; i < 2 0 ; ++ i)
21 {
22 p r i n t f ("%02X " , Message_Diges t [i]) ; /* prints the message digest */
23 }
24 p r i n t f ("\n") ;
25 }
26 }
27 g e t c h a r () ;
28 re turn 0 ;
29 }

Figure B.10: Compression.cpp continuation – 1.

1 m i s s i s s i p p i

Figure B.11: Input.txt.

1 100011110111101011010

Figure B.12: HuffmanCodes.txt.

59

Appendix C
APPENDIX C: NEW SEED CONSTRUCTION SOURCE

1 #pragma once
2/*
3* Header file for sha code
4* reference: US Secure Hash Algorithm 1 by Network working group
5*/
6

7/* This Header will decalre set of integer types having specified
8* widths. Width of an integer type is the numnber of bits used to
9* store its value in a pure binary system.

10*
11* The actual type may use more bits that that. for example, a 28-bit
12* type could store in 32-bit of actual storage.
13*/
14 # i n c l u d e < s t d i n t . h>
15

16/*
17* enum is a user-defined data type that consists of integral constants.
18*/
19 enum
20 {
21 shaOk = 0 ,
22 shaNul l , /* Null pointer parameter */
23 sha Inpu tLong , /* long input data */
24 s h a E r r o r /* called after result */
25 } ;
26

27 # d e f i n e Sha1HashSize 20
28

29/*
30* This structure will hold the context information for the SHA-1 hash
31* operation typedef is a reserved keyword. By defining the typedef,
32* it is assured that all the variables are structure pointer types,
33* or each variable is a pointer type pointing to a structure type.
34*/
35/*
36* uint32_t -----> unsigned 32 bit integer
37* uint8_t -----> unsigned 8 bit integer
38*/
39 t y p e d e f s t r u c t SHA1Context
40 {
41 u i n t 3 2 _ t I n t e r m e d i a t e _ H a s h [Sha1HashSize / 4] ; /* Message Digest */
42

43 u i n t 3 2 _ t Length_Low ; /* Message length in bits */
44 u i n t 3 2 _ t Length_High ; /* Message length in bits */
45 i n t _ l e a s t 1 6 _ t Message_Block_Index ; /* Index into message block array */
46 u i n t 8 _ t Message_Block [6 4] ; /* 512-bit message blocks */
47

48 i n t Computed ; /* Is the digest computed? */
49 i n t C o r r u p t e d ; /* Is the message digest corrupted? */
50 } SHA1Context ; /*is the message digest corrupted ? */
51

52 /*
53 * Function Prototypes
54 */
55 i n t SHA1Reset (SHA1Context *) ;
56 i n t SHA1Input (SHA1Context * , c o n s t u i n t 8 _ t * , unsigned i n t) ;
57 i n t SHA1Result (SHA1Context * ,
58 u i n t 8 _ t Message_Diges t [Sha1HashSize]) ;

Figure C.1: NewSeedHeader.cpp.

60

1 /*
2* Description: this file implements the SHA1
3* SHA1 produces 1 160-bit message digest for a given input
4* SHA1 is defined in terms of 32-bit words. This code uses Header.h file
5* to define 32-bit and 8-bit unsined integer types.
6* This code only works with message with length that is a multiple of the size of an
7* 8-bit character
8*/
9

10 # i n c l u d e "New_Seed_Header.h"
11 # i n c l u d e < i o s t r e a m >
12 # i n c l u d e < v e c t o r >
13 # i n c l u d e < s t r i n g >
14 # i n c l u d e < s s t r e a m >
15 # i n c l u d e < f s t r e a m >
16 # i n c l u d e < c s t r i n g >
17

18 us ing namespace s t d ;
19

20/* Method to assign message block numbers from 36 to 55*/
21 i n t ass ignBlockNumber = 0 ;
22 i n t t e x t (i n t v a l u e) {
23

24 f o r (i n t a = v a l u e + 1 ; a < 5 6 ;) {
25 ass ignBlockNumber = a ;
26 a ++;
27 break ;
28

29 }
30 re turn (ass ignBlockNumber) ;
31 }
32

33/* Dynamic vector holds the string values and
34* Identifies the values by whitespaces in between them.
35* returns the hash values after delimitng.
36*/
37 v e c t o r < s t r i n g > s p l i t (s t r i n g s t r , char d e l i m i t e r) {
38 v e c t o r < s t r i n g > i n p u t H a s h V a l u e ;
39 s t r i n g s t r e a m s s (s t r) ; // Turn the string into a stream.
40 s t r i n g t o k ;
41

42 whi le (g e t l i n e (ss , tok , d e l i m i t e r)) {
43 i n p u t H a s h V a l u e . push_back (t o k) ;
44 }
45

46 re turn i n p u t H a s h V a l u e ;
47 }
48

49

50/*
51* Define the SHA1 circular left shift
52*
53* The circular left shift operation S^n(X), where X is a word and n is an integer
54* with 0 <= n < 32
55*
56* X << n is obtained as follows - discard the left-most n bits of X and then pad the
57* result with n zeros on the right(the result will still be 32-bits).
58*
59* X >> 32- n is obtained by discarding the right-most n bits of X and then padding
60* the result with n zeros on the left. Thus S^n(X) is equivalent to a circular shift
61* of X by n postions to the left.
62*/
63 # d e f i n e S H A 1 C i r c u l a r S h i f t (b i t s , word) \
64 (((word) << (b i t s)) | ((word) >> (32−(b i t s))))

Figure C.2: NewSeedSource.cpp.

61

1/* Local Function Prototypes */
2 void SHA1PadMessage (SHA1Context *) ;
3 void SHA1ProcessMessageBlock (SHA1Context *) ;
4/*
5* SHA1 Reset
6*
7* This function will initialize the SHA1Context in preparation for computing
8* a new SHA1 message digest.
9*

10* It initializes Length_Low, Length_High and Message_block_index to zero
11*
12* Returns SHA1 Error code
13*/
14 i n t SHA1Reset (SHA1Context * c o n t e x t) {
15 i f (! c o n t e x t) {
16 re turn s h a N u l l ;
17 }
18 c o n t e x t −>Length_Low = 0 ;
19 c o n t e x t −>Length_High = 0 ;
20 c o n t e x t −>Message_Block_Index = 0 ;
21

22 c o n t e x t −>I n t e r m e d i a t e _ H a s h [0] = 0 x67452301 ;
23 c o n t e x t −>I n t e r m e d i a t e _ H a s h [1] = 0xEFCDAB89 ;
24 c o n t e x t −>I n t e r m e d i a t e _ H a s h [2] = 0x98BADCFE ;
25 c o n t e x t −>I n t e r m e d i a t e _ H a s h [3] = 0 x10325476 ;
26 c o n t e x t −>I n t e r m e d i a t e _ H a s h [4] = 0xC3D2E1F0 ;
27

28 c o n t e x t −>Computed = 0 ;
29 c o n t e x t −>C o r r u p t e d = 0 ;
30

31 re turn shaOk ;
32 }
33

34/*
35* SHA1Result
36*
37* Description:
38* This function will return the 160-bit message digest into the
39* Message_Digest array provided by the caller.
40* NOTE: The first octet of hash is stored in the 0th element,
41* the last octet of hash in the 19th element.
42*
43* Parameters:
44* context: [in/out]
45* The context to use to calculate the SHA-1 hash.
46* Message_Digest: [out]
47* Where the digest is returned.
48*
49* Returns:
50* sha Error Code.
51*
52*/
53 i n t SHA1Result (SHA1Context * c o n t e x t ,
54 u i n t 8 _ t Message_Diges t [Sha1HashSize])
55 {
56 i n t i ;
57

58 i f (! c o n t e x t | | ! Message_Diges t)
59 {
60 re turn s h a N u l l ;
61 }
62

63 i f (c o n t e x t −>C o r r u p t e d)
64 {
65 re turn c o n t e x t −>C o r r u p t e d ;
66 }

Figure C.3: NewSeedSource.cpp continuation–1.

62

1

2 i f (! c o n t e x t −>Computed)
3 {
4 SHA1PadMessage (c o n t e x t) ;
5 f o r (i = 0 ; i <64; ++ i)
6 {
7

8 /* message may be sensitive, clear it out */
9 c o n t e x t −>Message_Block [i] = 0 ;

10 }
11 c o n t e x t −>Length_Low = 0 ; /* and clear length */
12 c o n t e x t −>Length_High = 0 ;
13 c o n t e x t −>Computed = 1 ;
14 }
15

16 f o r (i = 0 ; i < Sha1HashSize ; ++ i)
17 {
18 Message_Diges t [i] = c o n t e x t −>I n t e r m e d i a t e _ H a s h [i >> 2]
19 >> 8 * (3 − (i & 0x03)) ;
20 }
21

22 re turn shaOk ;
23 }
24

25

26/*
27* SHA1 Input
28* Description: This function accepts an array of octects as the next portion of the
29* message
30

31* message_array is a parameter : An array of Characters representing the next
32* portion of the message
33

34* length: length of the message in message_array
35

36* Returns SHA Error code
37* If the number of bits in a message is a multiple of 8, for compactness we can represent the

↪→message in hex.
38* The padded message will contain 16 * n words for some n > 0. The padded message is regarded as

↪→a sequence of n blocks M(1) , M(2), first characters (or bits) of the message.
39*/
40 i n t SHA1Input (SHA1Context * c o n t e x t , c o n s t u i n t 8 _ t * message_a r r ay , unsigned l e n g t h) {
41 i f (! l e n g t h) { //condition for length
42 re turn shaOk ;
43 }
44 i f (! c o n t e x t | | ! m e s s a g e _ a r r a y) { //condition for no message array
45 re turn s h a N u l l ;
46 }
47 i f (c o n t e x t −>Computed) {
48 c o n t e x t −>C o r r u p t e d = s h a E r r o r ; // condition to check corrupted bits
49 re turn s h a E r r o r ;
50 }
51 i f (c o n t e x t −>C o r r u p t e d) {
52 re turn c o n t e x t −>C o r r u p t e d ; // condition to check corrupted bits
53 }
54 whi le (l e n g t h−− && ! c o n t e x t −>C o r r u p t e d)
55 {
56 c o n t e x t −>Message_Block [c o n t e x t −>Message_Block_Index ++] = (* m e s s a g e _ a r r a y & 0xFF) ;
57 c o n t e x t −>Length_Low += 8 ;
58 i f (c o n t e x t −>Length_Low == 0) {
59 c o n t e x t −>Length_High ++;
60 i f (c o n t e x t −>Length_High == 0) {
61 /* Message is too long*/
62 c o n t e x t −>C o r r u p t e d = 1 ;
63 }
64 }
65 i f (c o n t e x t −>Message_Block_Index == 64) {

Figure C.4: NewSeedSource.cpp Continuation–2.
63

1 SHA1ProcessMessageBlock (c o n t e x t) ;
2 }
3 m e s s a g e _ a r r a y ++;
4 }
5 re turn shaOk ;
6 }
7/*
8* SHA1ProcessMessageBlock
9*

10* Description: This function will process the next 512 bits of the message stored
11* in the Message_block array
12*
13* this function has no parameters and returns nothing
14*/
15 void SHA1ProcessMessageBlock (SHA1Context * c o n t e x t) {
16 c o n s t u i n t 3 2 _ t K[] = { /* Constants defined in SHA-1 */
17 0x5A827999 ,
18 0x6ED9EBA1 ,
19 0x8F1BBCDC ,
20 0xCA62C1D6
21 } ;
22

23 i n t t ; /* Loop counter */
24 u i n t 3 2 _ t temp ; /* Temporary word value */
25 u i n t 3 2 _ t W[8 0] ; /* Word sequence */
26 u i n t 3 2 _ t A, B , C , D, E ; /* Word buffers */
27

28 /*
29 * Initialize the first 16 words in the array W
30 * | is a bitwise or, example x |= 8 means x = x | 8
31 */
32 f o r (t = 0 ; t < 1 6 ; t ++)
33 {
34 W[t] = c o n t e x t −>Message_Block [t * 4] << 2 4 ;
35 W[t] | = c o n t e x t −>Message_Block [t * 4 + 1] << 1 6 ;
36 W[t] | = c o n t e x t −>Message_Block [t * 4 + 2] << 8 ;
37 W[t] | = c o n t e x t −>Message_Block [t * 4 + 3] ;
38 }
39

40 f o r (t = 1 6 ; t < 8 0 ; t ++)
41 {
42 W[t] = S H A 1 C i r c u l a r S h i f t (1 , W[t − 3] ^ W[t − 8] ^ W[t − 14] ^ W[t − 1 6]) ;
43 }
44

45 A = c o n t e x t −>I n t e r m e d i a t e _ H a s h [0] ;
46 B = c o n t e x t −>I n t e r m e d i a t e _ H a s h [1] ;
47 C = c o n t e x t −>I n t e r m e d i a t e _ H a s h [2] ;
48 D = c o n t e x t −>I n t e r m e d i a t e _ H a s h [3] ;
49 E = c o n t e x t −>I n t e r m e d i a t e _ H a s h [4] ;
50

51 f o r (t = 0 ; t < 2 0 ; t ++)
52 {
53 temp = S H A 1 C i r c u l a r S h i f t (5 , A) +
54 ((B & C) | ((~B) & D)) + E + W[t] + K [0] ;
55 E = D;
56 D = C ;
57 C = S H A 1 C i r c u l a r S h i f t (3 0 , B) ;
58 B = A;
59 A = temp ;
60 }
61

62 f o r (t = 2 0 ; t < 4 0 ; t ++)
63 {
64 temp = S H A 1 C i r c u l a r S h i f t (5 , A) + (B ^ C ^ D) + E + W[t] + K [1] ;

Figure C.5: NewSeedSource.cpp Continuation–3.

64

1 E = D;
2 D = C ;
3 C = S H A 1 C i r c u l a r S h i f t (3 0 , B) ;
4 B = A;
5 A = temp ;
6 }
7

8 f o r (t = 4 0 ; t < 6 0 ; t ++)
9 {

10 temp = S H A 1 C i r c u l a r S h i f t (5 , A) +
11 ((B & C) | (B & D) | (C & D)) + E + W[t] + K [2] ;
12 E = D;
13 D = C ;
14 C = S H A 1 C i r c u l a r S h i f t (3 0 , B) ;
15 B = A;
16 A = temp ;
17 }
18

19 f o r (t = 6 0 ; t < 8 0 ; t ++)
20 {
21 temp = S H A 1 C i r c u l a r S h i f t (5 , A) + (B ^ C ^ D) + E + W[t] + K [3] ;
22 E = D;
23 D = C ;
24 C = S H A 1 C i r c u l a r S h i f t (3 0 , B) ;
25 B = A;
26 A = temp ;
27 }
28

29 c o n t e x t −>I n t e r m e d i a t e _ H a s h [0] += A;
30 c o n t e x t −>I n t e r m e d i a t e _ H a s h [1] += B ;
31 c o n t e x t −>I n t e r m e d i a t e _ H a s h [2] += C ;
32 c o n t e x t −>I n t e r m e d i a t e _ H a s h [3] += D;
33 c o n t e x t −>I n t e r m e d i a t e _ H a s h [4] += E ;
34

35 c o n t e x t −>Message_Block_Index = 0 ;
36 }
37

38/*
39* SHA1PadMessage
40

41* Description: According to SHA1 standard, the message must be padded to an even 512 bits.
42* 160-bit hash value of Huffman compressed codes and 288 0's appended.
43* The last 64 bits represent the length of the original message.
44* This function will pad the message according to those rules by filling the Message_Block array

↪→accordingly.
45*
46* It will also call the ProcessMessageBlock function provided appropriately.
47* When it returns, it can be assumed that the message digest has been computed.
48*
49* Parameters are context and the ProcessMessageBlock function
50*
51* returns nothing
52*
53* If the number of bits in a message is a multiple of 8, for compactness we can represent the

↪→message in hex
54*/
55 void SHA1PadMessage (SHA1Context * c o n t e x t) {
56 /*
57 * Check to see if the current message block is too small to hold
58 * the initial padding bits and length. If so, we will pad the
59 * block, process it, and then continue padding into a second
60 * block.
61 */
62 i f (c o n t e x t −>Message_Block_Index > 35)
63 {

Figure C.6: NewSeedSource.cpp Continuation–4.

65

1 whi le (c o n t e x t −>Message_Block_Index < 64)
2 {
3 c o n t e x t −>Message_Block [c o n t e x t −>Message_Block_Index ++] = 0 ;
4 }
5

6 SHA1ProcessMessageBlock (c o n t e x t) ;
7

8 whi le (c o n t e x t −>Message_Block_Index < 36)
9 {

10 c o n t e x t −>Message_Block [c o n t e x t −>Message_Block_Index ++] = 0 ;
11 }
12 }
13 e l s e
14 {
15 whi le (c o n t e x t −>Message_Block_Index < 36)
16 {
17 c o n t e x t −>Message_Block [c o n t e x t −>Message_Block_Index ++] = 0 ;
18 }
19 }
20 /* SHA-1 of Huffman compressed codes are taken as input*/
21 s t r i n g l i n e ;
22 i f s t r e a m i n p u t f i l e ("Huffman_SHA1_input.txt" , i o s : : o u t) ;
23 i f (i n p u t f i l e . i s _ o p e n ())
24 {
25 i n t i n d e x = 0 ;
26 whi le (s t d : : g e t l i n e (i n p u t f i l e , l i n e))
27 {
28 i s t r e a m& g e t l i n e (i n p u t f i l e >> l i n e) ;
29 }
30 }
31

32 i n t blockNumber = 3 5 ;
33 s t r i n g s t a r t i n g N u m b e r = "" ;
34 v e c t o r < s t r i n g > sep = s p l i t (l i n e , ' ') ; //Dynamic vector holds the Hash values from text file.
35 f o r (unsigned i n t i = 0 ; i < sep . s i z e () ; ++ i) {
36 s t a r t i n g N u m b e r = sep [i] ;
37 t e x t (blockNumber) ; // Call Text function
38 blockNumber = ass ignBlockNumber ;
39 i n t num = s t o i (s t a r t i n g N u m b e r , 0 , 16) ; //Convert String to Hexadecimal
40 c o n t e x t −>Message_Block [ass ignBlockNumber] = num ; //Assign hash values values to Blocks 36 to

↪→55.
41 }
42

43 /*
44 * Store the message length as the last 8 octets
45 */
46 c o n t e x t −>Message_Block [5 6] = c o n t e x t −>Length_High >> 2 4 ;
47 c o n t e x t −>Message_Block [5 7] = c o n t e x t −>Length_High >> 1 6 ;
48 c o n t e x t −>Message_Block [5 8] = c o n t e x t −>Length_High >> 8 ;
49 c o n t e x t −>Message_Block [5 9] = c o n t e x t −>Length_High ;
50 c o n t e x t −>Message_Block [6 0] = c o n t e x t −>Length_Low >> 2 4 ;
51 c o n t e x t −>Message_Block [6 1] = c o n t e x t −>Length_Low >> 1 6 ;
52 c o n t e x t −>Message_Block [6 2] = c o n t e x t −>Length_Low >> 8 ;
53 c o n t e x t −>Message_Block [6 3] = c o n t e x t −>Length_Low ;
54

55 SHA1ProcessMessageBlock (c o n t e x t) ;
56 }

Figure C.7: NewSeedSource.cpp Continuation–5.

66

1/*
2* This Program will result our observation
3*/
4 # i n c l u d e < s t d i o . h>
5 # i n c l u d e < s t r i n g . h>
6 # i n c l u d e "New_Seed_Header.h"
7/*
8* Define test patterns
9*/

10 # d e f i n e TEST1 "mississippi"
11//huffman-D5 8B 85 9A 2A C4 44 30 8D 5C 18 19 ED DC A0 77 23 3B B8 2D
12/* an exact multiple of 512 bits */
13 char * t e s t a r r a y [1] =
14 {
15 TEST1
16 } ;
17 long i n t r e p e a t c o u n t [1] = { 1 } ;
18

19/* Main function */
20 i n t main () {
21 SHA1Context sha ;
22 i n t i , j , e r r ;
23 u i n t 8 _ t Message_Diges t [2 0] ;
24

25 /* Perform NewSeed test */
26 f o r (j = 0 ; j < 1 ; ++ j) {
27 e r r = SHA1Reset(& sha) ;
28 i f (e r r)
29 {
30 f p r i n t f (s t d e r r , "SHA1Reset Error %d.\n" , e r r) ;
31 break ; /* out of for j loop */
32 }
33 f o r (i = 0 ; i < r e p e a t c o u n t [j] ; ++ i)
34 {
35 e r r = SHA1Input (&sha ,
36 (c o n s t unsigned char *) t e s t a r r a y [j] ,
37 s t r l e n (t e s t a r r a y [j])) ;
38 i f (e r r)
39 {
40 f p r i n t f (s t d e r r , "SHA1Input Error %d.\n" , e r r) ;
41 break ; /* out of for i loop */
42 }
43 }
44 e r r = SHA1Result (&sha , Message_Diges t) ;
45 i f (e r r)
46 {
47 f p r i n t f (s t d e r r ,
48 "SHA1Result Error %d, could not compute message digest.\n" ,
49 e r r) ;
50 }
51 e l s e
52 {
53 p r i n t f ("Our Observation - ") ;
54 f o r (i = 0 ; i < 2 0 ; ++ i)
55 {
56 p r i n t f ("%02X " , Message_Diges t [i]) ;
57 }
58 p r i n t f ("\n") ;
59 }
60 }
61 g e t c h a r () ;
62 re turn 0 ;
63 }

Figure C.8: NewSeedMain.cpp.

67

1 45 30 A9 14 B9 B9 37 73 59 89 A3 27 71 A4 92 33 0E BB DB 7F

Figure C.9: HuffmanSHA1input.txt.

68

	Western Kentucky University
	TopSCHOLAR®
	Spring 2018

	Application of Huffman Data Compression Algorithm in Hashing Computation
	Lakshmi Narasimha Devulapalli Venkata,
	Recommended Citation

	INTRODUCTION
	DEFINITIONS
	Message
	Sender and Receiver
	Encryption and Decryption
	1-1 Function

	Protocol
	Cryptographic Primitives
	Cryptosystem
	Symmetric-key cryptography
	Stream ciphers
	Block ciphers

	Public-key cryptography
	Cryptanalysis

	Cryptographic Hash Functions
	Preimage resistant
	Secondary Preimage resistant
	Collision resistant
	Iterated Hash functions
	Outline of Compression function

	Merkle—Damgård construction
	Description of SHA-1
	SHA-1 overview
	SHA-1 Padding scheme
	SHA-1 Compression function
	SHA-1 Message Digest computation

	Applications of SHA-1
	Data Integrity
	Digital Signature

	Huffman Compression Algorithm
	File compression
	Optimal compression
	Huffman Data compression
	Construction of algorithm
	Huffman Tree

	New Seed Construction
	Base
	SHA-1 as base

	New Approach
	Why Huffman compressed code

	New Seed Construction
	Steps involved in construction

	Observations

	Conclusion
	REFERENCES
	Appendices
	Appendix A: Setting Up Visual Studio
	Installation guide for Visual Studio Community 2017

	Appendix B: SHA-1 of Huffman Compressed Codes
	Appendix C: New Seed Construction Source

