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AN ALTERNATE SOLUTION TO THE TWO-DIMENSIONAL ISING MODEL

B. Craig Meyers August 1974 18 pages

Directed by: George C. Moore, Douglas L. Humphrey, and Ed S. Dorman

Department of Physics and Astronomy Western Kentucky University

An alternate solution for the two-dimensional Ising model in

a zero external magnetic field is presented. Following Kaufman,

the partition function is written as the trace of a certain matrix

product. The trace can be evaluated by computing the determinant

of a related matrix. The determinant is evaluated by finding the

product of its eigenvalues; in the thermodynamic limit the result

is equivalent to that found by Onsager.

vi



sfr

I. INTRODUCTION

A fundamental question in the axiomatic foundation of statistical

mechanics is: Will statistical mechanics predict a phase transition

for a physically reasonable situation? Mathematically, a phase

transition is said to exist if either the logarithm of the partition

function or one of its derivatives becomes discontinuous. Therefore.

only an analytical expression for the partition function allows one

to determine if a phase transition exists in any given situation.

Under the present formulation of statistical mechanics the

so-called Ising model has received the most attention as a physically

reasonable model which undergoes a phase transition.
1

Ernst Ising,

in his dissertation of 1925, succeeded in calculating the partition

function for a one-dimensional ferromagnetic system. Associated

with each point on a linear chain one may assign a "spin" variable

restricted to the scalar values "up" or "down," each spin interacting

only with its nearest neighbor. Unfortunately, the model does not

undergo a phase transition; it is now known that a phase transition

will not exist for any one-dimensional situation for which the range

of interaction is finite.
2

The two-dimensional model, although

intended to be a simplified model of a ferromagnetic system, is

perhaps more properly equivalent to a model of a binary alloy;

in any case it is the two-dimensional model which exhibits a phase

1
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transition.

There are, at present, two distinct methods for calculating the

parcition function. Historically, an algebraic approach was the first

to yield a solution for the model. In 1941 Kramers and Wannier showed

that the partition function could be represented as the largest eigen-

value of a certain matrix; furthermore, by symmetry arguments, they

were able to locate the transition temperature.
3

These results were

not rigorous; it was Lars Onsager, who, in 1944, rigorously calculated

the partition function in what is now considered one of the most

important papers in theoretical physics.
4

Onsager's solution is

principally based on generating an "operator element" Lie algebra

which is then reduced in dimensionality by a representation in terms

of two-dimensional operators from which the partition function may be

calculated. Although Onsager's result is exact, it is extremely

lengthy and complicated. Various means of simplifying the solution

have been obtained, notably by Kaufman,
5 

who also used an algebraic

approach, and Thompson,
6 

whose solution employs raising and lowering

operators, much like those used in quantum mechanics.

A unique alternative to the algebraic approach employs combin-

atorial mathematics. This formulation is based on a result due to

van der Waerden
7 

who had shown that the problem is equivalent to

counting closed graphs having a certain number of bonds. Kac and

viard,
8 

in a heuristic manner, showed that this method yielded the

partition function as found by Onsager. Hurst and Green,
9 

using

Pffafians, were then able to show the equivalence of the algebraic

and the combinatorial solutions.

A large number of papers have been presented dealing with
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various aspects of the Ising model;
10 

one may therefore be curious

as to their motivation. It is to be pointed out that at the present

time an exact solution does not exist for either the two-dimensional

model in a magnetic field, or for any aspect of the three-dimensional

model. This paper shall present yet another algebraic solution for

the two-dimensional model.



II. THE SOLUTION

The two-dimensional model may be considered as being built on a

rectangular lattice having m rows, numbered from one to m, with n

(i)
columns, labled from one to n. A "spin variable ,Azk ' restricted

to the values +1 and -1 cnly, is associated with the k-th point in

the j-th row. Spins in adjacent rows or columns interact with energies

-I-, 6-) (i)
- Alk 024i

4) (a-4-)
- K

respectively, .1' and K' being coupling constants. For symmetry

Purposes, cyclic boundary conditions are imposed on the model so that

rows one and m and columns one and n are "adjacent:" notationally,

()n÷i)

/4-4k =
(i)

-A4rt+r

( )
.17. ...A.(

The total interaction energy E is:

= L ,c4
CO <

K R+t 
lr K,,u (1)

K kk=1y-!

and the partition function Z for the model is:

(2)

where /4 is the reciprocal of the Boltzmann constant times the

temperature and the summation is taken over a11,A2
K 

-= + 1.

It will be convenient to write the partition function in terms of

certain 2n-dimensional matrices. Since a spin value may be either +1

4
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or -1, it is possible to label components of vectors and matrices

in 2
n 

dimensions with an ordered n-tuple of +1's and -I's. Thus,

for example, with n = 2, the components v(iu) of a vector v are:

vr(+13+1) Nr(+ - Nr(-1)1) i)

It is to be understood that a ii4 without a subscript refers to a

set of spins:

/c4 = At ) tzz • - • ) J4- •

Let S(0) = 1, S(2) = 8(-2) = 0, and for 1.5. k.$ n, define

the matrices S and C byk k

Sk(A4) At') =

k Gaj /44 S (/(x k ,A.411;) TI S(, - ))

with the product over et extending from one to n. The algebra of these

matrices is:

Sz = I

Sa_Cif

Sk = Sk Si

C' 
k

C - C C •J- 

The partition function may be written in terms of these matrices.

Noting that the product of two spins can assume the values +1 and -1

only one has

Cxp / Sic 5it413] (AA') -7-- [I. '5k + Sig+, sivit131(}-t,,te)

[cosh I +-mk,uk+, sinh TAI: g ("tic( -.,44;)

exp 1U,L4),„1"t„ tics (A4,



•

6

obtained by expanding the exponential and using the commutation

properties of the S's. Thus, one may define the matrix

M Cxp 1- 111 Sig Sit +13

having elements,

M (Ail AZ) = p qi

Notice that all elements of this matrix are non-negative.

Similarly, upon making the u_linition

or equivalently,

one finds

-faith K =

(2 5;n4 ZIC) 51#14 K = e- e

( 2 in I, 10'1 costt It €

42 sinh cap K-4 C ,Ze = [I - cir (ja).„4
-K
S (.4 k t IT ca.

g

41( p K,ale -14'141.1 .ç'k
It is now possible to define the matrix

Mz =

with (non-negative) elements

Mzbh,A4.9

K112' ('kJazi

-i/z D1

(2 si.“4 iK) exp K Xhic jtie
iez1

(3)

(4)
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Also,

[mimi] (A).0
,- n/2

5int2 <I ex p ( J,14. ,L4 + ,txkl}

Finally, replacing J and K by /3J' and /3K', respectively, one

may calculate:

NA 7 Of) t t ))
[MI M2] ( /U(I), /u(I)) - -r-r [ mi 2i ,

"10,, be,/.A1

=(2 5inh ZK)

where Z- indicates the sum over the 2n n-tuples of +1's and -1's.

The partition function is then

)2%,112. r— 
YY7

( 5inh 2k) 
I L MI mz]

exp( -PE)

The rather mixed commutation properties of the S's and C's will

prove inconvenient. It will therefore be advantageous to introduce

the Jordan-Wigner transformation, which, for 16 k..c 2n is:

1,1 = 5,
1-73 = cisz - c•C, c sz

r _ Cz 5 = C, C2 53 ri C3 S3c z

•

1-12 = Cz ' • Cit.i  -i et (-2 • Ck
The factor i has been included to maintain hermiticity. The

algebra of these matrices is:

Ir2

r - _ -0001- -

r • r r zk ot

(5)
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It will prove useful to have a knowledge of the trace, not only for

an arbitrary 1' , but also for a product of the rs. In the former, by

using the relations above and noting that the trace of a matrix product

is unchanged by a cyclic permutation of its factors, one has:

( ) =

In a similar fashion, by using the anti-commutativity relation, for

k, one has:

Tr ( r-74,) o

It is also possible to express the C's and S's in terms of the

-matres. For example, by forming the product

S
1
S
2 

r
21'3' 

In general,

5ift 50e41 - i flzk 1-12M+1

and in a like fashion,

C. =

1; r:3 one finds that

The above results enable one to write the matrices M and M
2 

in
1

terms of the r-matrices. First, by (4) it is immediate that

-X12

= (25111h 20 exP -Lk
k=1

There is, however, a difficulty in transforming the matrix M1

due to the boundary conditions, namely, the term Sn
S
1
. From the

definition of gi one has
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where the operator U has been defined by:

= cw
Thus, M1 may be written

= 17417;j.1 I. US ca r; f

Upon introducing projection operators AA, and A.. defined by:

and noting that since U
2 
= I, )14,

z

A.

AL = A_ while Ak A- I,

one has

cx(c. u r 1.7 ) = cosi, r z (,) _s pi

and so

exf, 1;411) z A + cxp ( r; ) ev z

Using this result in M1 
one arrives at the conclusion

+ A_ M;.

with the matrices M1

+ 
and M

1 
being defined as:

M

cce - sZ zi 4

=. 
°LP 17 • i riZci+)

1=/
The partition function (5) may now be written:

Gar:

Z sin 4 2K 11"12

,„

(6)

(7)
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71/
or, since A+ =A+, and A_ =A-, whileA4.A..30,

- Nim/2
= (2 1.071., Z1) [ A+ (4,97'1) + A. ( M 2)

Thus, in place of the term Tr(M1M2)
m
, one must now evaluate two separate

traces in order to compute the partition function.

To this point, all of the calculations are exact. However, the

traces involved are very difficult to evaluate. One can construct a

lengthy argument, whose details contribute little to the present

discussion, which shows that in the thermodynamic limit one obtains

the correct result by evaluating Tr(M1

+
M
2
)
m 
only. The argument is

based on known properties of matrices with non-negative elements.

Th_refore, in place of considering the partition function (8), one

now consid.'rs:

)vth /2

Z. Tr (141t7-tzf"

and it will be this expression which will be discussed in the remainder

of this paper.

Since exp(iliari(;) = (3( ri coshe +i_csinhe), matrices M1
+ 

and M,

may be written in the form: n

(co 511 Tr TT. rzi.( 1-721 egk r-72 i4-.) •m,+

,
mz (cosc„, K 44) rl- rj.,  It Go.

where x = itanh K*, v = -LtariliJ,e ri =-1,and6.=1 otherwise.
A

Therefore,

446i '1
nmi

= [C.OSIA S CO3 k (Z Sirth Zk)J TV TT /113-
117'

(8)
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where, for 1 r n and 0 s..c m-1,

zr-i+ s =

A zr-i +2#1+ 4-ns

rzr

fr + Er

r2 -

42r +Zn +4-ns Qr-t r2r

It is known that the trace of a product of factors linear in the

r's can be expressed in terms of the determinant of an anti-symmetric

matrix.
11,12

In the present case, one has

4tm

Tr Aii zzn(cjet oPz
_..,

Here D, which is 4mn by 4mn, can be partitioned into 4n by 4n blocks.

For 1.rtcm and r < s, the blocks are

Dr, E

while for 1.' j 4n and j < k,

Eii

Eik -Ekz1

Roz =R -

D,5 = - C)51r-

-2"Tb--( A )2
4.1
-znz Tr (eqsAk),

The matrices E and F are explicitly calculated for the case n = 5 and

are listed as Figures 1 and 2, respectively.

Matrix D is readily transformed to block-diagonal form. With D

written in block form and T the unitary matrix

-Y
er. - -rn 

z 
xp

—
[ilik(LI$4)J

›r? )
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010 00 000000 x 0 0 0 0 0 0 0 0

-10000 000000x Y Y000000

0 0 010 0000 00 00 x 0 0 0 00 0

00-100 00000000xyy000 0

0 00001000000000 x 0000

0000-10000000000x y y 00

00000 001000000000 x 0 0

000000-1 0000000000 x y y

0000000001000000000 x

00000 000-10 -y -y 0 0 0 0 0 00

000000000 y 010 00 0 0 00 0

-x -x 0 0 0 0 0 0 0 y -1 0 0 0 0 0 0 0 0 0

0-y 00000000000100000 0

0- -x-x 0 00 00 00 0-10 0 00 00 0

000-y 0000000000010000

0 0 0 -y -x -x 0 0 0 0 0 0 0 0-1 0 0 0 0 0

00000-v 0000000000010 0

0 0 0 0 0 -y -x -x 0 0 0 0 0 0 0 0 -1 0 0 0

0000000-y 00000 0000001

0 0 0 0 0 0 0 -v -x -x 0 0 0 0 0 0 0 0-1 0

Figure 1. Matrix E for n = 5.
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1 1 0 0 0 0 0 0 0 0 0 x 0 0 0 0 0 0 0 0

1 u 0 0 0 0 0 0 0 0 0 x 0 0 0 0 0 0

0 0 1 1 0 0 0 0 0 0 0 0 0 x 0 0 0 0 0 0

0 0 1 u 0 0 0 0 0 0 0 0 0 x y y 0 0 0 0

0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1u000000000x y y 00

0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 x 0 0

0000001u000000000x y y

0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 x

0 0 0 0 0 0 0 0 1 u -y -NT 0 0 0 0 0 0 0 x

0 0 0 0 0 0 0 0 0-y 1 1 0 0 0 0 0 0 0 0

x 0 0 0 0 0 0 0-y 1 v 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0

0 y x 0 0 0 0 0 0 0 0 1 v 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0

000vxx00000000 1 0 0 0 0

0 0 0 0 0 y 0 0 0 0 0 0 0 0 0 1 1 0 0

0 0 0 0 0 y x 0 0 0 0 0 0 0 0 1 v 0 0

0 0 0 0 0 0 y 0 0 0 0 0 0 0 0 0 0 1 1

0 000000yxx0000 0 0 0 0 1 v

Figure 2. Matrix F for n = 5.

2
Here, u = 1 + yand v = 1 + x.
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one computes

O rs = 

2r-1
where S is the Kronecker delta and a

r 
= -z cot Tr.

rs

At this point, the 4mn-dimensional problem has been decomposed

into m, 4n-dimensional problems; that is

cl et D TT Jet D
r=

rurthermore, each of these 4n-dimensional problems can be decomposed

into n, 4-dimensional problems. Let V be the 4n by 4n permutation

matrix which arranges the components of a vector in the order

1,2,2n+1,2n+2,3,4,2n+3, 2n-1,2n,4n-1,4n.

Then, with

I.
II

Dry- E v 'Dr r V E a. r

where E" = V
-1

EV and F" = V
-I
FV, one finds that both E" and F" have

a simple 4 by 4 blc .k structure, namely, for 1$ jtc n

If

Ein

Fj

Frt

Q,

QT, 
E rti I —

r_ Is

= R F 
i

Q) •

rt. 
Q

and all other blocks are zero. Here, explicitly,

0 1 0 X 0 0 0 0

-1 0 0 X 0 0 y v

P =
0 0 0

)

Q =
0 0 0 0

-x -x -1 0 0 0 0
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1 0 x

1 1+y
2

0

(1

0 0 0 1

The matrices E" and F" are shown in Figures 3 and 4, respectively, for

tne case n = 5. Both E" and F" are brought onto block-diagonal form

by the unitary transformation

= 1-1-1‘Z ex p [Trt (2ii- )) 

The result is:

[W-I(E" +Cttr)Wist = LP +at-R (a,+1) 65 Q + (a, -)6;' 
TJ sst

where b
s 
= exp[i 2s-1]

The 4 by 4 determinants are readily evaluated; thus:
E1 . -rn

clet b TT Tr. (1-t 2)(1 -A2-) ( czif [7-2 +j2 ( bs + b5-1)
r=1 s=(

Pt
Finally, using 

Tir sill ( ) ZS-1 Tr
% 2h /

si n

—I— Jen Z ... _idyl z + 
flip' 
Z2" -ern ( cost, ZI cos 1-1 Z K

Min Z 1-z- t szi

— Sink ZS cos / 25-1 - SIP1. zK cos
ki YO ./

which in the limit 1144C? and m40, is equivalent to the Onsager result.
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0000000000 0 0 0 0 0 0 0 0

00000T— X— X— 00X-0 0 0 0 0 0 0 0 0
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1 1 0 x 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1u0x0 0yy0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 -y 0 0

x x 1 v 0 0 0 0 0 0 0 0 0 0 0 0 0 -y 0 0

0 0 0 0 1 1 0 x 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 u Ox 00 y Y 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 y 00xx 1 v 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 1 0 x 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 u 0 x 0 0 y y 0 0 0 0

0 0 0 0 0 y 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 v 0 0 x x 1 v 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 x 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 u 0 x 0 0 y

0 0 0 0 0 0 0 0 0 y 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 x x 1 v 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 x

0 0 -y -y 0 0 0 0 0 0 0 0 0 0 0 0 1 u 0 x

0 0 0 0 0 0 0 0 0 0 0 0 0 v 0 0 0 0 C 1

0 0 0 0 0 0 0 0 0 0 0 0 0 y 0 0 x x 1 v

Figure 4. Matrix F reordered for n = 5.

Here u =
2 2

1 + y and v = 1 + x.
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