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Magnetohydrodynamics in an Open Universe

Oscar L. Norris July-August 1979

Directed by: A. J. Fennelly, T. J. Bohuski, and E. S. Dorman

Department of Physics and Astronomy, Western Kentucky University

A study of magnetohydrodynamics (MHD) in an open universe is

presented. We discuss the data and justification behind our choice

of an open universe for investigation in this thesis, as opposed to

the closed universe theory, which is more appealing in some ways.

We explicitly define all parameters used in the analysis of

magnetohydrodynamic Bianchi Type V cosmologies and outline the

formulation behind them. We then proceed to present a solution to

a Bianchi Type V magnetohydrodynamic cosmology with a diagonal metric.

After that, the results are compared with present observations.

Lastly, we conclude with an assessment of the model and discuss areas

for future work, such as nondiagonal metrics and the role of pertur-

bations of the models in galaxy formation.



CHAPTER I. IUTRODUCTION

Recent Cosmology 

For several years there has been much discussion, arguments,

and even strong disagreements over the question of the origin of

the universe.' Has it always been as it is? Will it be as it is

for an eternity?
2 

Did it start with a big bang
3
or a big whimper?

4

Is it expanding?
5
 If it is, will it continue to expand or will it,

at some point, start collapsing?
6 

Most of these questions have sur-

faced in recent history as our technology and therefore experimental

understanding of natural phenomena has risen exponentially.
7 

But

even with such exponential growth of our understanding, we still

don't know all the answers. A large portion of present theory and

observation support the big bang theory.
3
' 

8-10 
Since we have a

generally accepted idea of how it started, we next ask: is the

universe open or closed?; i.e., will it expand forever or recollapse?

In spite of the appeal of the closed universe,
11
'
12 

the evidence

seems to be in favor of an open universe
13 

as we will discuss shortly.

Other questions concern the isotopy of the universe.
14
 (uniformity

of observations in all directions) and the homogeneity of the universe

(independence of observation on position).
5
'
15
'
16

Friedman Models

The homogeneous Friedman Model of the universe is a very widely

accepted model along with others that have slight modifications,

1



2

(i.e., coordinate transformations) such as the homogeneous and

isotropic Friedman-Robertson-Walker model.

The equation for the shortest line between two points or the

metric of this spatially isotropic and homogeneous model would be

of the form:

ds2 = -dt2 + R2(t)rdx2+E2(x)(d02 + sin2 002)3

This can, and will be, expressed in a new notation
17,18

ds
2 
= -dt

2 
+e 

2a
e
28
i
 no

j
ij

where the a
i 
are a basis of differential forms:

dui = -1/2c jku Aa
k

For the Friedman model B,. = o and e
2a 

R
2
(t) in equation (1)

n a Bianchi type I or flat 3-space model, the metric is:

ds
2 
= -dt

2 
+ R

2
(t) rdx

2 
+ E(x)2(d02 + sin2 odc1,2)3

Or

ds
2 
= -dt

2 
+e 

2a
6..dxdx

j

A Bianchi type IX closed space metric is:

ds
2 
= -dt

2
+ R

2
dx
2 
+ R

2
sin

2
x(d0

2 
+ sin

2 
00

2
)

Or

ds
2 
= -dt

2 
+e 

2a
a
i
a
j

and lastly for a Bianchi type V space, the metric is:

ds
2 
= -dt

2 
+ R

2
dx
2 
+ R

2
sinh

2 
x(d0

2 
+ sin

2 
00

2
)

Or

ds
2 
= -dt

2 
+ e

2a
(dx

2 
+ e

2x
dy
2 
+ e

-2x 2
dZ)

in our new notation and cartesian coordinates.

In type I c
i
jk 

= 0 implies a spatial curvature K = 0 operator,

for type IX c
i
jk 

= c
jk' 

the three dimensional permutation operator

implies K = 1, and for a type V c jk 
= I (where i = j = 2, 3 and

k = 1) implies K = -1.

(1)

(2)

(3)

(4a)

(4b)

(5a)

(3b)

(6a)

(6b)
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For all calculations in this brief review, the cosmological

constant is set to zero. For FRW models, Einstein's field equations

become

d" = 8.RGT" (7)

and the stress-energy tensor is for a perfect fluid

Ti" = (p + P) Ul u') + Pe (8)

where p is the energy density and P is the isoptropic pressure and

111 is the 4-velocity. The contracted Bianchi identifies

3
G =0 (9)

U

where '11 ' is the corvariant. This implies that

= 0 (10)
I I '

which is just the equation of conservation of inertia. The equation

of state is

P = P(P)

The Einstein equations for the metrics (4) - (6) are

3.0.t2
R* = T

00

R . = 0 = T .
oi oi

-2
-6d - 9u - 1/212* = T

k
k

1
0 = T. - 6. T

ij 3 ij kk

a
where R* = -6e

-2
 for K = -1, 0 for K = 0 and 3e-2a/2 for K = +1.

(11)

(12a)

(12b)

(12c)

(12d)

In the equations, (12a) relates expansion to curvature and inertia

density, (12b) confirms that there is no momentum flux (fluid circu-

lation), (12c) is the evolution equation for a, and (12d) confirms

that there are no tracefree stresses in the Friedman models. For

these models, then

and so

0
U
u 
= 6 

u

T° = p, T
k
k 
= 3P

(13)

(14)
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1
For dust P = 0, and for radiation P = -p. The conservation equations

3

are then

3a
Tt-(Pde ) dt 

(1)re
3a
) + r 

1 d 
(e

3a
) = 0

3 dt

If the fluids do not interact (a reasonable assumption over

most of the later history of the universe) then Equation (14) gives

3 4a
p
d
e 

= 
a

o e
3a
o, P

r
e 
4a 

= p
r 

e o
'd

o

where subscript 0 indicates a constant. The parametric solutions

(15)

(16)

can be written to Equation (11) using Equation (15) as

e
a 
= R = 6(1-cos E) + a + C

K = +1 (17a)

t = 6(E- sin E) + a(1-cos E)

9
e
a 
= R = 1/26E- + aE

1 3
t = + tiet-,2

e
a 
= R = 6(cosh E-) + asinh E

t = 6(sinh E-E) + acosh E -1

K=O (17b)

K = -1 (17c)

where 6 = p
do

e
3a
o and a

2 
= p

r 
e
4a
o.

For use in further discussion, we define the following frequently

used quantities:

The Hubble parameter H:

.a
H = i or ---y =

The deceleration parameter q:

'ea 
q = eaH2 =

The density parameter (.2:

_ 87Gp
- To -

and from Einstein's equations S2 can be written as c 2q and

K = H2(ea)2 (ç - I).

In many observational discussions, one uses those parameters.

For the special case of K = 0 (or flat 3-space) 1 = 1 and q = 1/2;

(18)

(19)

(20)
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these are critical values between eventual collapse K = +1 and

perpetual expansion K = -1. p for Q = 1 is frequently written pc

for the "critical density" of Qc =



CHAPTER II. OPEN OR CLOSED UNIVERSE?

Mean Luminosity and Density Enhancement

One school of thought of present day cosmology maintains that

the universe is closed.12 There are several approaches that indicate

the universe is not closed, but open. There are also many papers on

these topics; therefore, there is a reliable conviction that their

methods are valid. An analysis of the mean luminosity density of

galaxies gives critical density SI of less than one.
20

In this method 2. =
G 

where Q
G 

is the contributor to Q from

matter associated with galaxies. Determination of SI
G 

requires the

determination of two parameters: the mean luminosity density in the

universe and a characteristic mass to light M/L ratio. Then

87G
Q_ = 

3 
--- 

L

2 p, M/L
u Ho 

The mean luminosity density pi, can be found via

6 NL*
PL =i Ad3

* 1 1-, * 3
=L and N = wrr 'AO d

(L ) (L ) *(L ) (L )
(-f:4T) d(17) = ff)exp(-L/L* )dan

and is a normalization constant and L* = 3.4 x 
101 -0

L
0 

and

where p

N = number of galaxies in a solid angle A, giving a value of
20

p = 4.7 x 10
7 
L Mpc

-3

There is much discussion about the contribution of halos to the

(21)

(22a)

(22b)

(22c)

characteristic mass to light ratio, which has been studied by Gott

and Turner and determined not to be of extreme importance.
20

An

estimate of M/L = 120 M
0 
/L
0 

seems to be viable.
20

6
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An analysis of perturbations in the Hubble flow induced by

density enhancements of the distribution of matter supports a value

of i2 less than one.
21 

The authors reason as follows: Consider the

evolution of a density perturbation, beginning with a density con-

trast 6p = where y is a function of time. If the condensation

is bound, its Hubble expansion will turn into collapse and y will

grow. If it's unbound, its Hubble flow will only be retarded while

y approaches an asymptotic value. In redshift space (momentum space),

clumps which have not significantly collapsed will be undistorted,

while for a large slowing in the Hubble flow, there will be a large

distortion. Regardless of distortions in redshift space, any density

perturbation in configuration space will also show a density enhance-

ment in redshift space. The enhancement y is a function of S.

Consider two galaxies with spherical polar coordinates

(e l, CZ1/H) and 02, 4)2, CZ2/H), with angular separations Al2.

Then their redshift space separation d
12 

is

d = --- 
12 

2 2 -1/2 
H
0 
Z
2 
+ Z

1 
- 

2Z1Z2 
costa

' 
(23)

12j

which has the projection ct
12 

on the celestial sphere of

C /7 (12)
+ Z2) tan( 2 )

12 = Ho`'l (24)

The angle a between the separation vector d
12 

and the target plane

of the sky at the midpoint between them is (Z1>Z2)

, , (12)
,It 0

-
a = tan )Z1/Z2 - 1) cot( 2 

If the Hubble flow is unperturbed, the mean value of a is a = 390.7.

If H is merely slowed a <320.7, and for a bound region a >320.7.

The density enhancement in any region of redshift space can

be determined given an accurate and large enough sample of redshift data

a i(D) =
1  Ni(< )
D) 

a.
N 

j=1

(25)

(26)



and

(Cal
C(D) = 

47T/Al
ax
)3

N
-1
ND

-3
( Ho )

where N is the number of galaxies brighter then a given minimum

luminosity L A is a solid angle defining a volume in redshift space

to a maximum Z. dij is redshift space separation, Zij is projected

separation, aij is the separation vector angle, and (D) is the

mean density enhancement, and the dij's are a set smaller than or

equal to a maximum D for the i
th 

sample galaxy. Combining Equations

(26) and (27) gives
,N

\\a> (02 = V. 1

If we start from a uniform expansion then

y tan a
I 
= r tan /a

where a
I 

is a/ for an isotropic, undistorted, distribution of

(27)

(28)

(29)

galaxies. This means that

(tan a) = (Gp)1/2 
(30)

which can be related to 2 directly from Equation (20):

8Tr / \2
2 =tan cx,

Sargent and Turner apply their argument (just outlined above in

Equations (23) - (31) using the Uppoala General Catalogue
22 

to

find a present most likely value '2 = 0.07.

Mean Density 

A study of the mean density associated with galaxies by Seldner

and Peebles lends strong support to a values] of less than one.
23

The authors claim as follows: a dimensionless function 
n(r) 

is

estimated, where n(r) is the mean number density of galaxies at a

distance r from an Abell cluster of given richness class
24 

and

( 31)

is the galaxy number density averaged over the region of space surveyed

n(r) 
by Shane-Wintamen.

25
If r is not too small, so . is not greatly

,'n
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different from one, the number density ratio should approximate the

corresponding ratio of mass densities

p (r) n(r)

f P/

the galaxy distribution at r approximates representative

sample of the mass distribution.) At small enough r the clusters

are thought to be in dynamic equilibrium.

n(r) 
One may estimate the function via the following process,

<n)

consider the equation

N(0) =KN) 1 + Wgc(0,D,R)-;
where N(0) is the mean count of galaxies per unit solid angle at

angular distance 0 from an Abell cluster center, averaged over

clusters of a chosen distance R and richness class D. W
gc 

is the

cross-correlation function from Shane and Wintamen.
25 

Place at the

known angular position of each Abell cluster a symetric galaxy

distribution

where
ADR

(32)

(33)

N(°) m<N>ADR°-' < °D 
(34a)

N(0) = 0, 0 > 0
D 

(34b)

is an adjustable amplitude (function of D and R) and add a

uniform background to make up the observed N . This produces a

model W
gc
(0,D,R) that varies as 0

-T
 at small 7) and fluctuates and

drops less rapidly at large 0 due to clusters seen nearby in projection,

both accidentally and correlated. Variations of the amplitude ADR

with distance provides information about the galaxy luminosity function

and the assumption that 
N(r) 

is independent of the absolute magnitude
,N>

down to which one counts (to which one can see). The ADR are well

fitted by the Abell form for the number N(<M) of galaxies brighter than

a given magnitude M:



10*

N(<M)dex [ (M-M*),1 , M<* (35a)

cLdexL(M_M*)3 , /4t. M* (35h)

Ho 
where a = 0.80,5 = 0.10, M* = -18.3 + 5 logh, and h = (100 Km sec-rMpc-1

Now the relationship between surface density (equation (33)) and space

density around the cluster depends om the luminosity function. Using

equation (35) Seldner and Peeble find that

N(r) 
=(Bf

R
) (r

2.4
)

where B = 165h
-2.4

, f
R 

is the richness function,
24 

and 0.5chr<15Mpc.

Changes in the luminosity function that still permit a reasonable

fit to ADR can change B by at most 20%. The mass density in a manner

analagous to the preceeding section can be estimated by

p(r) = 0
2
/(27Gr

2
)

(36)

(37)

where cis the velocity despertion in the line of sight and G is the

gravitational constant. (This is the virial theorem.) Combining

equations (37) and (36) gives

2 . 40,0.4
/3H

2fRB, (38)

where r • = 2h
-1 

Mpc. Using this equation and the data from 12 clusters,j

they find the mean density parameter Q is

= 0.69 (39)

Peculiar Velocity Field 

Study of the peculiar velocity field in the local supercluster
26
'
27

implies that it is not unreasonable to expect Q less than one.
28

Peebles uses a spherical model, the virgo cluster. It is assumed

that the number density of galaxies varies with proper distance d

from the center of the virgo cluster as

N(d) = (N) (1 A/e)

where y 2 and N is the large scale mean density of galaxies.

The parameter A is adjusted to fit the Sandage-Tammam
29 

velocity data.

(40)



I'

Peeble defines a cunction of Q as

f(2) In c(t)]
d In a(t) t=to

where a(t) is the expansion parameter and c(t) is a linear density

contrast function defining the relative increase in density of the

supercluster over the background. More directly f(Q) = c
-1 (dc/dt)

(H)

thus a measure of the logarithmic growth of the density over the

expansion of the model. The peculiar velocity field is given by

HAf a2) 1 
V =

3-y dy -1
d
y-1

Combining equations (40) and (41) N(d) r+ 80/d20-2)J.

Now comparing this to an Abell cluster mean density, Peebles finds

N (d) = N 1 + (700/d
2
)

a'

Because the virgo cluster is considered somewhat less massive than

an Abell cluster, a of 1.0 or 0.1 would give a reasonable value

(43)

here. For the quantitative side, the luminosity function of Shapero
30

is well approximated by the Abell form

N( M) Kdex (1.33M), M<M* (44a)

Kdex (0.33M), MM * (44b)

M*:r -19.0 + 5 logh (44c)

Now h = 0.57 from the data of Sandage and Tammann.
24 

So that M* = -20.2

and the distance of a galaxy with absolute magnitude M* and seen at

apparent magnitude Mo = 13 (cutoff magnitude from galaxy count
30
) Is

D*(M0 = 13) = 43Mpc

so that the angular distribution of galaxies for M<M0 (number per

steradian) is related to space density by

N(0) = c/iXf0c°r2dr4)(r/D*)(1 + (A/dr))

where 0 is the angular distance between the virgo cluster and the

observed galaxy from our view point and r is the proper distance

of the galaxy from us and d is the distance from the observed galaxy

(45)

(46)



12

to the center of the virgo cluster, and

(r/D) = N(<M=M*-51og(r?D)) (47)

Equation (46) can be rewritten

N(0) = Ll + (A/D*Y)I(0,M0)] .14 (48a)

where

I(0 ,M0) ... I .27S-Yx2d4 (x)_] itIc7x2dxcp (xi, (48b)

and where

s
2 
= x

2 
+ (Y/D*)

2 
- 2x(Y/D*)cos 0 (48c)

where

N = 61/) D*31;x2dx0(x) (49)

is the mean number density of galaxies brighter than Mo, the limiting

magnitude. Combining equations (41) and (47) gives

Ni = aniLl + BI1(M0).1

B = F(3-y)c1/i.HD*Yf(pj

where a is a scale factor and A0
i 

is the solid angle subtended by the

ith angle bin at galactitic latitude /bII/ 400, Ii is the integral

in equation (48), and C recalls equation (42). By comparing the values

0 = 1.0 and 0= 0.1 in these calculations to the observational results

of de Vaucoulers and de Vaucoulers
31 

it is seen that neither 0 = 0.1

(50)

or 0 = 1.0 is out of order although the data are closer to 0 = 0.1.

Therefore 0 < 1 is not unreasonable and the universe is at least flat

and probably open.

N-Body Simulations of Galaxy Clustering 

The last model-based method we consider is a mathematically

simulated cosmology, a computer N-body simulation.
32 

The simulation

had two objectives. The first one was to improve present understanding

of the galaxy clustering process and the second objective was to

obtain a value of 0 for a model that fit present day observations.
33



It was found that these observations fit a simulated model with 2 equal

to 0.1 best and not a model that had the value 2 equal to 1.0.
33

The authors simulate a galaxy cluster as a spherical region of

the universe of radius R expanding with velocity R centered on a given

origin, containing 1000 mass points with positions X
i' 

Y Z
i' 

and

velocities X
i'• 

Y
i' 

and Z
i• • 

In the above model, simulated coordinates

analogustorightascensionOv declinationsand radial velocities

V
i 
of the sample galaxies are defined

C. = arctan(Yi/Zi)

(p i =arctan(Y 2 +Z.2)
1/2
/(R - X1)

• • • 
V = (R, X.)(R - X

i
) + Y

i
Y
i 
+ Z

i
Z
i
/ (R-X.)

2 
+ Y12

 
+ Z

i
2

(51)

(52)

(53)

These parameters represent the simulation as it would appear to an

observer on the edge of the sphere at X = R and Y = Z = 0. The area

in the short line of sight to the observer is ignored, i.e., those

observations for which p450. This accounts for about one quarter of

the volume of the sphere.
32

In the real universe, galaxies have a broad distribution of

luminosities; at best, a given sample is magnitude-limited. The

simulated sample is distance-limited, and all simulated galaxies are

taken to have the same luminosity. For uniformly distributed galaxies

in a magnitude-limited sample with a given luminosity function, the

differential probability distribution of galaxies at distance r is given

by

P(r)dr = (3/r(3/2)r
*3
)r

2
Ei(r

2
/r
*2
)dr

c. 
where E(x) = Ix t

-1 
e
-z 

dt is the exponential integral and r* is the

distance at which a galaxy of luminosity L* would have the limiting

apparent magnitude of the sample, and r is the F - function of

probability.

(54)
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One of the most striking differences in the two models simulated

by the authors is the difference in the distribution of the group

masses given by the simple integrated count distribution of group

masses f (N) which is defined by

1
fg(N) = E i Mg(i)

T i=1

where NT is the total number of galaxies in the sample and Mg(M) is

the number of groups with M members.

This distribution gives a much larger spread in group richness

for the model with 2 = 0.1 which fits present observations better

than the distribution that occurs with the model for 2 = 1.
32
'
33

( 55)

In the above models, each mass point represents a galaxy of luminosity

L * (3.4 x 10
10
L
0 

and mass 5 x 10
13
2M
0
). The above simulation con-

cludes that the mean mass to light ratio of groups of galaxies
20 

is

within a factor of 2 of 100 (40/Le) and therefore that distributions

with galaxies contributes -10% of the crucial density required to close

the universe; i.e., 2 = 0.1.
32
'
33 

The simulated models give obser-

vational pictures which fit published data best for 2 = 0.1 models,

and not the models for which 2 = 1.0.

Spectrophotometry and the Hubble Diagram

With the advent of the polamar multichannel spectrometer and its

ability to subtract the sky background accurately, an approach to

cosmology using spectrophotometry of faint cluster galaxies to construct

the Hubble diagram became possible.
34 

After doing the appropriate

spectrophotometric observations over a wide frequency range of faint

galactic clusters, one may construct a Hubble redshift magnitude diagram

just as has been done previously with other data.
35
'
36

The monochromatic flux Fv 
from a source of luminosity 1.,7 at

coordinate distance X is
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Lv(1 + Z)
Fv =  RR2E 

(X 
__
) (1 + Z) (56)

where RR is the scale factor when the radiation is received and

(1 + Z) =(RR/RE) where RE is R at the epoch of emission. For the

case where the cosmological constant and the pressure both vanish, the

model is uniquely specified by Ho, the present Hubble constant, and

go, which were defined in equations (17) and (18) as Ho =(12/R)0 and

qo = (IiR/i2)10 =(4TrGp0)/(3H02) where p o is the present mean matter

density. Coordinates can be chosen such that the scale factor R is

proportional to (C/Ho), the Hubble distance, and the quantity E(X) is

a function of qo and Z only. Let the luminosity distance Lq(Z) be

given by

Lq(Z) = HoRoEciork(Z1 
q

where Lq- Z for small Z. Thenz 

Lq(Z) = + (q, - 1) 1:(1 + 2q Z)11 -

2
oo( + Z)

and

Ho 
2
1 (1 + Z)

Fv =  
47C

2
Lq
2
(Z)(1 + Z)

(57)

(58)

(59)

For the angular diapham used in the study qo = ½ implies a standard

distance ro = 16 Kpc at the redshift of the source.
34 

Thus the diaphragm

radius is

r, H1.r0(1 + Z) 
(60)Y - RE(X) CLq(Z)

The real projected radius if
L (Z)

r = RE(X)y = r  L(Z) (61)

and the observed flux is

F
v 
= 

H02L01/(1 + Z) (62)

4/TC
2
(1 + Z)Lq

2 - a
(Z)I,k

a
(Z)

Where the fact that Lv = Lov(r/rda gi.v4s the luminosity as a power

of the projected diaphragm radius.

For the construction of the Hubble diagram, the authors define
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c the distance modulus, to an additive constant or just "distance"

and the magnitude S, for qo = 11 as

c = 5 log (1+Z)111(Z) + k5(Z) (63)

S = 2.5 log(1 = Z) + VI + k9(Z) (64)

where VI is the approximate intrinsic magnitude and k(Z) is a

smoothed version of the K-correction and is equal to

0.918 tan-1 5.20(Z - 0.340) + 0.970, (the accuracy of the adopted

k-corrector is irrelevant except for its effect on the statistics)
34

also they use the definitions

and

p = My, + 5 log(c/H0) - 5 (66)

where My is the absolute monochromatic magnitude at log Vo = 14.740.0

is called the reduced absolute magnitude. The magnitude S for other

values of qo is

S = p+ c + 2.5(2 - a) log Lq(Z)/L1/2(Z)

+ fa(E)

where cis the distance or distance modulus and p is the reduced

absolute magnitude of equation (66). The distribution function c at a

given S is

(67)

E C* + (68)

where c is the distance a source of absolute magnitude po, observed

at an apparent magnitude S, would have if q = (10 and a correction factor

is ,c1Lq 
_(dfq)-2 (2 dz

(dZ ) ( Lq

and

d2fq

1 go -  dZ
2
) dC

1 = 7 I= got dfq/dZ ) dZ
(69)

/dfq 1. The authors found from their analysis a likely value

of qo to be less than (0). The optical properties are similar to those
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for small redshifts or K = -1. This seems to support an open universe.

However, it was pointed out by Tinsley37 that evolutionary effects on

the data may cause large changes. The authors point out that more

research needs to be done in this area.

Unbound Universe

We draw attention to the compendium of research by Cott, Gunn,

Schramn, and Tinsley.38 The Hubble parameter in their analysis varies

between 30 and 120 Kmsec-1Mpc-1. The age of the universe to is given

by

to = f(2)/H0

1
where f(2) = 2,(0 - 1)

3/2 
eos

-1 
- 1) - - 1)

1/2

for 2 > 1, f(0) = 2/3 for 0 = 1 and for 0 < 1,

f(0) = (1 - 0)-1 - 2/2(1 - 2)-3/2cosh-1(1 - 1)

if 2 = 0 then f(2) = 1 + 71 112. The lower and upper limits of t
o 
are

(70)

determined to be 8 and 18 billion years respectively. From the values

of redshifts of galaxies (Hubble Diagram) the authors determined that

the upper limits qo and 2 are less than 2 and 4 respectively. Their an-

alysis of the uniformity of expansion or deviation from the Hubble

expansion due to density perturbations led to a value of 2 less than

one. Through the analysis of redshifts and magnitudes of individual

galaxies, nearer clusters of galaxies, rich clusters, and the virial

theorem for our galaxy by techniques described in previous sections of

this thesis, they place a best lower limit on the value of 2
* (i.e. the

mass contribution of galaxies alone to the total mass density of the

universe) at about 0.05, rather low.

The origin of galactic interstellar deuterium is also discussed.

The direct spectroscopic measure of deuterium in interstellar space

-5
gives a number ratio of D/H = 1.4 x 10

 
or a mass fraction XD of
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2.0 x 10
-5
. The mass fraction is strongly related to the mean density

3H 2
of matter pc.) where po =  0 go.

4rG

In considering element production it is necessary to consider only

what occurs after the temperature has dropped below -1011degK, since

strong and weak electromagnetic interactions are strong enough to

keep all particles in statistical equilibrium above this temperature.
39

In addition, the photon flux prevents the neutrons and protons from

combining until the photons have been cooled by the expansion to -109degK,

at which time nucleosynthesis can commence.
40

The work-energy relation for a gas total mass-energy density p and

pressure P can be written

P 0w(pV) + - -
C

(71)

where V is an element volume as measured by an observer moving with

the matter39 (this is assuming homogeneity) and serves to relate

temperature T to volume once p(t) and P(t) are specified. Temperature

T is the thermal equilibrium temperature between electrons, baryons,

and photons until the plasma recombines at - 10
9
degK.40 Expansion

rates that are very slow produce few nuclei, since many of the

neutrons have time to decay before element synthesis begins. As

the expansion rate increases, production rises due to the increased

availability of neutrons. With larger expansion rates even deuterium

creation stops.
39

Therefore the mean density and expansion rate are

closely related to the mass fraction of deuterium. For a realistic

estimate the authors chose the deuterium fraction XD = 2.0 x 10-5

to be half the primordial value. To synthesis XD = 4 x 10-5 requires

Po, to equal 4 x 10-31g/cm3. It is shown that this low density is

consistent with the value of Q* as the lower limit of Q and that
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combined with the upper age limit of the universe exerts constraints

such that 2 and Ho should range 0.09 to 0.05 and 49 to 65 km/sec Mpc-1

respectively. Using the most minimal estimates of XD and oo, the

constraints range 0.05 to 0.2 and 47 to 120 km/sec Mpc
-1 

respectively.

There are arguments that deuterium can be produced in large shock-wave

envelopes of massive stars and supernova.40 The authors studied the

production of boron and beryllium in these shock waves because the

energy per nuclear of deuterium in a shock is not well known. The

ratios, B/D and Be/D, are almost independant of shock strengh and are

much greater than the observed abundance ratios, which means that even

if all the observed B and Be are produced in S-N shock, the amount of

D produced is still much less than that observed. Also deuterium is

destroyed by astration more readily than B or Be, so the discrepancy

is enhanced by galactic evolution. Although there are many loopholes,

all of the other strongest arguments taken together point to an open

universe with 2 = 0.06. The data from deuterium production also point

toward a value of cl = 0.06. It is possible to construct an open model

where (1) the deuterium production is consistent with observations,

(2) the mass density of the universe exceeds that known to be in

galaxies, and (3) the age of the universe is consistent with the age

of the elements and the globular clusters. Satisfaction of these

constraints limits 2 to certain values (i.e., 0.05 < 0 < 0.09) and

Ho to a small range 49 < Ho < 65). These constraints imply

an open universe, thus indicating an open model of the universe,

by which present day observations can be explained, is highly probable.38

Anisotropy of the Universe

When isotropy (or uniformity of observation in all directions)

is discussed, the most important datum in existence is the microwave
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background radiation.41 Its remarkable degree of isotropy implies a

high degree of uniformity of the universe back to a redshift of at

least Z = 1000. More recently refernces have been made to elemental

abundance observations. The expansion rate of the universe is affected

by the amount of anisotropy present; the same expansion rate affects

the amount of heavy elements produced, as noted in an earlier section

of this thesis.38 One further datum is the anisotropy of mass

distributions in observations which would have much information about

the microwave background (i.e., gravitational shifts of frequency along

the world-path of a photon.)
42

Much of the discussion of isotropy or anisotropy is dedicated to

the microwave background blackbody radiation, which presently has a

temperature of about 3 degK.43 This background radiation is considered

to be the remnant radiation of the primordial fire-ball of the big-bang

theory. This microwave background radiation has always been thought to

44be highly isotropic and generally is. Silk has hown that the detection

of scale angular variations in the microwave background radiations will

provide a direct means of ultimately vertifying the most viable and

generally accepted class of current theories of galaxy formation.45 In

1977 Snort, Gorenstein, and Muller found an anisotropy in the microwave

background on the order of 1 in 3000. A very small ratio indeed but it is

still significant. The fact that the universe is extremely isotropic now

doesn't mean it was always so to such a degree. Homogeneous and

isotropic configurations are not likely to have occured in the early

ztages of the universe, because of the light curve structure of the

Friedman models and the instability of such isotropic spaces under

perturbations near the singularity.
44 Anisotropic models evolve toward

isotropic configurations during the radiation-dominated era, but a



resisual amount of anisotropy is expected to remain in the background.

With the resisual amount of anisotropy in mind we will assume that the

early universe was anisotropic and will use that as the basis of the

model. We also point out that Snort, Gorenstein, and Muller could

have been incorrect in their analysis of the dipole anisotropy; (i.e.,

the anisotropy was due to the earth moving against the rest frame of

the cosmic background radiation.) There are anisotropic models with

dipole anisotropies.
4

Although it is possible that their analysis is correct, it is

also possible that the anisotropy that the anisotropy that was

detected is the remnant of larger anisotropies of the early history

of the universe predicted previously.
44 The most important mechanism

in reducing the larger anisotropies of the past is neutrino viscosity

at temperature above 10
10
degK, when the freq ency for collusions

between neutrinos and thermal electrons or positrons is comparable to

the expansion rate. Further reductions in anisotropy take place

during the radiation dominated expansion phase. When the temperature

is between 10
10
degK and 10

7
degK, neutrinos are collisionless; and the

anisotropic stresses from the anisotropic momentum distribution in

the neutrino radiation must be taken into account.
43
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CHAPTER III. FORMALISM

Anisotropic Cosmological Models

In the remainder of this paper, ' • ' indicates the time derivative;

) and E J indicate the symetric and antisymetric parts of the
decomposition of a tensor. In iecent years anisotropic cosmologies

have been studied by many researches. Since the advent of Misner's

benchmark paper on anisotropic Bianchi I cosmology in 1968,
43 there

have peen many papers on this topic. Among these are studies of

Bianchi V and X by Matzner 46'47 and by Hawking;48 I, V, VII, and IX

by Collin and Hawking;
14 X by Matzner, Shepley and Warren;49 all types

without fluid flow by Ellis and MacCallum;5° all perfect fluid Bianchi

type with flow by King and Ellis;
4 

and many others too numerous to list.

With these studies as our guide, we proceed to outline our formalism,

drawing mainly on Collins and Hawking:48

One may define three invariant Vector fields EA 
in the surfaces of

homogeneity which are dual to the E
A

A p A
E PER =

then

EA EA )  d + nun
V

where N = -t
//u

is the normal to the surfaces of homogenity. Any

tensor can be expressed in terms of its components with respect to

(72)

(73)

the EA , N and N. If the field is invariant under a group of
u

isametries, the components will be functions of time only. The fluid

22
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flow-vector of matter can be expressed as

= u°n° + UAEAI. (74)

where u° = -ulln and uA = uuEAu. Capitol Latin indices may be raised

and lowered by the matrix gpal and its inverse g (i.e., gAB = gulJEAIJE8AR

and gAB = gEA pE ). •u

The matrix ma), be split into its volume and distortion parts

gAB = e
2a
(e

28

where a and 8
ij 

are functions only of time; 8is a symetrical

trace-free 3 X 3 matrix and e
28
ij is the series c (r!) An

orthonormal basis XY can be defined where X°v1 = -1\1 and

-a, -0i 
= e (e )i_AE

A

We can now define the Ricci rotation coefficients

yti d E
Xu ll u = r 6EXpXu,

giving the variations in XY as it is dragged in a Fermi-transported

frame through spacetime, where r6cy = -rya. This gives that

P uryoe =x II -1X, X + X - !, -IX PX,1) X6 ,Lp ii ii<cPXy
lUf ° E Y./ Y

and

C
E
A 

-E 
A 

=C tE
pilu ...fl i p BC p

where C
BC
A 
= c

BCD 
+ aa6c

A 
- a

A 
and c

BCD 
is the permutation

c B
_AD

operator, and the tensors N and a
B 
are relative tensors in the three-

(75)

(76)

(77)

(78)

(79)

dimensional space. Equation (79) defines an algebra of which the CBC

are the structure functions. The information contained in Equations

(78) and (79) may then be used to find an explicit form of the

rotation coefficients

130 
= -r0ii = a613 + aij
F
ioo 

=-r . = o001

F. .
10:1 ij

(80a)

(Sob)

(80c)
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r
ijk 

= Lie e 
FA
(e e )

HC
C
BC

A
-a( 3) -8) ( -8

GB

rA (A , Ai'Fi"GCHkA 4. 
A/ ' 'Fk"

A 
Gi'llj - 6Fj6Ck5Hij 

(80d)

,., ,where aii = te ik(Se
-6 
)i)k represents the shear of the normals nu 

and

r = (e
f3
) ) does notrepresents the extent to which (eij k i
(e) 

j k

commute with e
B
, which gives a measure of how the normals n

u 
rotate with

respect to a frame fixed in the spatial hypersurfaces. In spacetime

the Riemann curvature tensor is defined by VU - VU = R
ab ba cdba

Uc

where u
a 
is any vector and Va is the covariant derivative. The Ricci

tensor is then defined by contracting R
ca 

= R
cdab.

In the orthonormal

basis the components of the Ricci tensor are

o -
R0 = 3a + 36 + Gijuii (81a)

o A -B -P A .R. =e (e 
ae

-a- 
3+6)BACBC (e )Ci - 

a (e '). C i (81b)1 ij jC AC J
,-

ItrWt+3(12.1(Sti +Oii +Vca + 0 T -T c ) (81c)i
ij ik kj - ik kj

where Rij is the Ricci tensor of the surfaces of homogeneity:

R.. =--e -2c1[2CBCACDAC(e-e)
Di
(e-B)

Dj

-
+CBC 

AC 
C

DE 
(e 

2B)BE 
2(e2B)

DA
(e 
-8 

-8f3)Fj-(e
-28
) ( )L 'CF -e 'Ai

Ac C te-2
)
BEF( 4 (e)+ 2C

AB DE ref3ICi`eS/Dj ' Cj Di

The curvature scalor is

182)

R = 6a + 12(6)2 + aijaii + R
*

(83)

The Einstein tensor is then G = R gABR and the fieldAB AB

equations are Gab = -8nTab when Tab is the energy-momentum tensor. This

leaves the field equations to be

3.2 - + 1/2R* = 871Ta0 (84a)

which gives the inertia density,

e (e 
3c1e)BACBCA(e-9)Ci aij(e 

)jCCACA 
_1= 811-T

oi
(84b)

which gives the momentum density,

+ 3Ctoij + aikTki - Tkjaki+ R13 - ledij = 81Tij - ITkk iji d I (84c)
3 

which gives the trace-free anisotropic stresses, and
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. 2 3
-66 - 9(a) - 

ifij 
- 1/21t* = 8irTkk

which gives the scalor (traces of T
k 
) isotropic pressure.

Geodesics

The parallely transported target vector LP to a geodesic obeys

Ll iuL
X.) 
= O. In components with respect to the orthonormal basis

this gives
14
'
48

oi ilk ioj i 
L3
 
L° LL+FL+PLL+1'.1,1. = 0

jkL 
oj 

Jo

where L° = (LiL1)1/2 for null geodesic and L° = (1 + Liii)1/2 for

timelike geodesics. Equation (85) has a simple form in terms of

components with repsect to the E
A

L
A 
= (0 ) -1 B -2a-20)

CCA LBLDe 
(e 

CD.

L
A 

is nearly constant for a time-like geodesic for which (L1Li)1/2

is small.

Observations

The background radiation can be considered, to a first order

approximation, as coming from a surface of homogeneity in the past

corresponding to the last time the radiation was scattered. The

received temperature, T, in a given direction will be T
R 
= T

E
(1 + Z)

where T
E 

is the temperature of the emitter and Z is its redshift in

that direction, which is given by
14,48

(1 + Z) = 
U KUE 
UleK

where U
R
y 
is the velocity vector of the receiver, U

E
P is the velocity

vector of the matter at the emitting surface, and KP is the target

vector to the null geodesic from the receiver in a given direction.

Now in general

(84d)

(85)

(86)

TR = TE(UR + KRiURi) r(KrjKri)½NF° + KriUEij -I

where K
R
o 

is taken to be minus one and the term (Kr gives the

(87)

(88)
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redshift resulting from the expaasion of the Universe. The time

gives the dipole variation from the present peculiar velocity

of the emitter. Expansion of the equation (88) to first order in

the kinematical quantities is sufficient because the present microwave

background measurements cannot measure higher harmonics (second order

brings in octupole terms). This gives

KEitj 
RiKiaT

R = 
T
E
eclE-aR(1 + KR URi 

Ei 
IK
E 

ijdt) (89)

where the integral gives the quadrupole shear terms (12-hour variations).

The KiU. terms give the dipole (24-hour) variations. We use the normal

shear (3., instead of the true fluid shear.

Fluid Kinematics

The gradients of the fluid velocity U can be expressed in terms

of the expansion 0, the shear E, the vorticity w , and the acceration
Po

A of the flow congruence as

1
Upl i u = Epu + -3-06pu +wpu - ApUu

where a U
u 
=w U

u 
= 0, E = 0 and F

pu Po "(Po) 
w
(Po)

parts of the gradient are defined by

1
=0 - 0 + A

(p
U
u)pu pu 3 pu

0 =
Po (Pllo)

=U A Uip i lui +
Lpuj

Ap =U Up il u

(90)

= 0. The separate

1./hereforanytensorCaa,C00 (C
ccLaBJ

(91b)

- :(899:1)a)c,)

(91d)

andh =g +UU is the projection operator in the observer rest
pu pu p u

space orthogonal to the flow vector U. We normalize U such that

U = -1.

Energy-Momentum Tensor

The energy momentum tensor for the matter will be given by that
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for a viscous fluid

T
m 

= pU U +h p+
PO P u p o P

where p is the inertia density, p is the isotropic pressure, and 7

are the anisotropic viscous stresses. We will use as equation of

(92)

state p = (y - 1)p where the speed of sound as 
is given by a = (y - 1)12.

The viscous stresses are given by 1.

viscous ity.

= -A7 where A is the kinematic
pu pu

The electromagnetic field will be defined by

F = -U- E -, + Is UYH6
1JU [II ''J P tri• 6

where E and Hi are the electric and magnetic fields and ri , is
U Pelv

the four-dimensional permutation symbol. The energy momentum tensor

for the electromagnetic field is

T
EM 

= F 
L 

F 
a 
- 

1.4g. 
F F

iu pa U uu a

If we decompose T according to our representations in the Einstein
pu

equations we get

(93)

(94)

,
T = 61 + PATo 

2 
- p + E

2 
+ H

2 (95a)
oo

Toi = (p + P)U0U1 + UouiikE
j
H
k

(95b)

...2
T
k
k 
= 3p + r. + 

112 
(95c)

1 k
T - =
ij 3 ij k

(p + - J.SijUkUki+ + E.E. - H.H. -
ij

Magnetohydrodynamics

The problem of this thesis is a Magnetohydrodynamic (MHD)

(95d)

cosmology. MHD cosmologies have recently been considered by Tupper,
51

in Bianchi type-I. Dunn and Tupper have studied MHD Bianchi type VI

cosmology with
52 

and without
53 

fluid flows. Tupper has shown how such

cosmologies can constrain the conductivity.
54

Maxwell's equations will be used in the form

Ilu

PO
(96a)

•

•



n
utA0

... 0 (96h)
FuAllp

where the current J = pU nF e (96c)
uu

where p is the free charge density and T) is the ohmic conductivity.

The energy momentum conservation law is

TU il w = 0

from which we take the two natural projections

(97)

Uwe !Iu = 0

pu
hwT
X 

0i l w = 

(98a)

(98b)

Using these and Maxwell's equations we find

+ (U + p)0 = Eli J Ei

and

(p + p)Ai = -111(7ip + VitTrik) - nikiJkBQ

where B
z 
= H

z
 /M with M the magnetic permitivity which we henceforth

set M = 1. For MHD conditions to hold we must have

(1) 1,-) .

(99a)

(99b)

(100a)

(2) p 0 (100b)

(3) E
i 
+ n

ijk
UjH (100c)

(4) J
o 
= 0 (100d)

In reality n is finite so we will use equation (96c) for J subject

to restrictions (2), (3), and (4) above.



CHAPTER IV. A BIANCHI V MHD COSMOLOGY

The Model

We now examine a Bianchi type V anisotropic cosmology. Type V

cosmologies with general fluids have been studied by Matzner,
47

Hawking, Collins Collins and Hawking, and and Bataki 
48

s and Cohen.
 

For

simplicity we choose Sij diagonal. The metric is then

ds
2 
= -dt

2 
+ e

2a
(e

2s1
dx2 + e202 + X)dy + 

2 e23(S + x)
dz
2
)

This means that

and the rotation coefficients are

r
22 

_r
:221 
. 

12
F
2 

= -2e-0e 11-B 

where c
ij 

= A ij

Then

with

C73,L2li L30
47,48

(101)

(102)

(103a)

(103b)r133 r 3 -2e-a-611

(103c)
ijo -F

oji 
= ac3

ij 
+ o

ij

(103d)rioj = Floo = 0

1 *
R* = 

ik 
R

ik 3 

-2a
R
* 
= -6e e

(104a)

(1046)

The field equations are

• (105a)
3a 
-ij

ij 
- 3e

-2a
e
-2Bil 

= 8ffe

G
oi 

= 0 (105b)

29
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87

- 362 - 1/20
ij
0" + e-2cte-2811 = -5-TKk (105c)

+ 36crij = 8n1j (105d)

For simplicity we take the only non zero Faraday tensor components

to be F
23 

# 0 when the fluid is at rest. The fluid flow vector is

o 
chosen U = 6 6 + 

U26u
2 
+ U

3
6
u
3
. Then in the Lorentz force law (or

ii 0 1.1

by the Lorentz transformation) the magnetic field is H' = U0F23 and

the electric field is E3 = F32U
2
, E2 = F

23
U
3
.

For the above me:ric the fluid kinematical quantities are:

• 
acceleration: A

o 
= U

o
U
0 
,

A
1 
= 2e-ae-11(1J2

2 + U32),

A2 = (62 (6 (722)U2
)U0 

(a a22)Uo
U2 
'

A
3 
= (0

3 
+ (a + a33)U3)Uo + (a + a )U U

3
•

expansion: 6 = 3Ct;

shear: Ell = allUo'

E22 = c122110 A2U2,

E33 = 033U0 + A3U3, Z23 = A(2U3),

E
20 1/2(U2 (a 4' °22)u2) A(go)

=1/2(-( 
U+

-30 3 - 
-n 
33

)-U 
3) 

A 
-(3-0);

1 ,
rotation vector: w = (U7A3 - A2U3),

2 
= 2U

3 
e
-a-a11,w 

-a-a
w
3 
= 2U

2
e 11,

Reference triad rotation: = Ur A01 ,

Q03 = UE3A07,

i/23 = UL2A3i .

For MHD to exist the conductivity must be sufficiently large.

Standard kinetic theory techniques give it as a function of temperature

T, electron charge e and mass m by the formula
56

3 e2 
fl 4-3-6-6)7(6.1 x 10-9m )

(106)
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For a hot intergalactic gas, perhaps as a source of the present-day

x-ray background radiation,
58 

the present temperature of a tenuous

intergalactic medium could range 10
10
-10

4
degK hence the conductivity

3mh
would range 10

10 
-10 

o 
---. This is large enough to create MHD conditions

over a long period of the universe's history.

For quasi-steady-state current we have
56

-1 Jk
J
i 
= O 1C JJ JQ = -nF

ipEk

where WET is the electron-ion collision frequency and 0
k 
= eB

k
/M

(107)

is the plasma cyclotron frequency. The second term in equation (107)

is the Hall current term. If 
k
<< the Hall current will be

small. It will be important here in second-order effects.

read

For a steady state current density J. = nEi Maxwell's equations

020F20 _r1F20
(108a)

•30 •F + (a + a
33
)F
30 

= -.F (1.08b)(108b)

23 
+ (2(1 - 3

11)F23  0 (108c)

with the solutions

(109a)
20 -a- 22--f. ndtF

20 
= F e

0
F30 . F 30e-a-833-fndt (109b)

(109c)
0

F
23 

= F0 e-2a + 1.1
23

Where the zero super and subscribts are constants and we recall the

Lorentz transformation F
20 

= F
23

U
3 
+ F U

2 
In an inertial frame

E = U x B.

The energy conservation equation (equation 99a) becomes

= AE. .E.. + n(U2
2 
+ U3

2
)B1

2
ij ij 

+ 3(p +

The first-order momentum density equations (equation 99b) are

(p p)A2 = -U2U°17) + nU21.11
2

(p + p)A3 = -U3U°1i - nU3H12

We take the universe to be filled with nonrelativistic matter

(110a)

(110b)

(110c)
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plus a tenuous hot conducting intergalactic medium since the end of

the radiation era. Then y = 1, so a = 0. So Einstein's equations

read

112.871.1. 
-r 
,_ii 3e-2a-2Bil

(111a)

pU
o
U
2 
= -U

2
H
1
2

(111b)

PIT
o
U
3 
= -U

3
H
1
2

(111c)

.2 87 2 2 
ij - 2-2ae-2B11-2.ei - 3a =T-(E + H ) + Ila

ij
a (111d)

2 2
i
11 
+ 3aa

11 
= 871-11(U

2
2 
+ U

3
2
)/3 - NE - + (E

2
2 
+ E

3
2
)/21 (111e)

11 3 1
2 2.

i
22 

= 87{11(2U
3 

- U2 )13 - AE
22 

+H
1
2
/3+ (E

3
2 
- 2E

2
2
)/31 (111f)

pU
2
U
3 
= AE

23 
+ E

2
E
3 

(111g)

We take the Friedman model to be correct to the zeroth order. We

have e
a 
= (87M/3) (sinh

2
) and B = 0 where 

A.t. 
= e

a
, M = p

R 
(3

R
& - 

8R1dT 

and and u
R 

and a
R▪ are the present values of the density and expansion

respectively as in the unperturbed Robertson-Walker model.
14

We

found in chapter II that pR < 0.1(&R)2. Therefore the zero-order

solution to equation (111a) is in this limit ea = t. This means that

thesolutiontoequations0-1103a 
where A

ij13 13

is a constant matrix. Therefore to this order

B.. = ½A.. (t 2 - t
-2
)

WetakethemagneticfieldsB.as small perturbations to the simplest

(112)

possible anisotropic background. Maxwell's equation gives B
1 
= B

1
0e-2a

by equation (109c). We have as our first order acceleration equation

2 
+ (a + a

22
)11
2 
= nU2

H1 
2
/u (113a)

4 

ij3 + (a + 833)U3 = 1U31112/P (113b)

These have the solution of the form

o 22 + f(n111
2
/p)dt)U

2 
= U

2

3 
= U-

o e 33 - f(nB12/P)dt)

For U. p
o
e
-3a 

and H
I
2 
- H

1
o2
e
-4a 

with n a constant these give

(114a)

(114b)
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o2 o
U
2 
= U

2
o
(t/t

o
)
-1 
(t/t

o
)
(nH

1 
)

u 
o2o

= 
u3 
o
(t/t )

-1
(t/t )

)
3 

We now solve the inertia density equation to see the effect of Joule

heating. Subject to the above solution this equation becomes (by

equation (110a) with the first order approximation Eij = or.)

U2 
2H o2e-4al.

(pe3a). = e3a0A2e-6a
2 1

This has the solution

0-3 -3 r 2 -6 H1 U2 t(2n1.11
o202 o2 o

/P )1t3dt= t + t /OA t n

t4
This integral gives

p 
-1 -3 AA2 -2 -2 U

0- t
2 

(t -t
o 
) + t(2n111

o2
U
2 
o2

Ip
o
)= p t -3

7- 

(115a)

(115b)

(116)

(117)

(118)

In the above discussion the viscosity could have simply included

by replacing aiie
-2a 

with a1je
-3a - 87IXt ▪ We can now analyze the

second order effects beginning with the Reynolds stresses and Maxwell

stresses in the shear equations. We have

II 
= -e-3a1.87re + II )e3adt.

ij ij

This gives from the above solutions that the relevant second-order

Reynolds stresses are

1 
II11 --kat -3(u3 o2(t/to) 

-2(1 + r) ▪ u 
2 ` 
02/t/t0)-2(1 -

= 

H
11 

=

111
02

{(U,
o2
(t/t0)

-2(1 + r) 
+ U2

02
(t/to)

-2(1 - r))/3 24,
3J

R 1 -3 o2 -2(1 + r) 02
(t/t )

-2(1 - r)
7Pot (-1J3 (tit) 

+ 2U
2 0

and

(119)

(120a)

(12Cb)

(120c)

H
o2

{(U2°2(t/to)
-21 - )M r' - 2U3°2(t/to) 

-2(1 + r) 
+ 

1
(120d)= I 

( 
22

where r = nH
1
02

/
p0. The contribution from each of the above quanities

to a1j is
iJ

hR 1 -3 o2 (1 - r))t3ldt,a = - 
1
f&n{- t (U

3 
(t/to)

-2(1 + 
+ U

2
o2
(tit

o
)-2

11 t3 3 o (121a)
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1
318noto2 

({u302(t/to) 
-2(1 + r)

+ U2
02
(t/t

o)-2(1 -
}/3 - 

2
)t

3 
}dt,

IIR 1 o2
'322 -118 

1 
-37-̀-Pt (-U 

(t/t )
-2(1 + r) 

+
3o 3

and
o2

I 1M 
022 = - f87{Iitz:—

-
({U2 (t/to)

o2 -2(1 - r)

t

(121b)

2U2
o2
( 

-2(1 - r) 31
tit())

(121c)

- 2U3
o2
(t/to)

-2(1 + r)1/3 + 1)t
3
ldt, (12Id)

3

where r = ral1
o2

/p
0
. The above intergrals have solutions as follows
o2-2(1 + r) + 1 o22t(-12(_lr-)(1 :) : 1

IIR 87p0 {113 t  
+ u2 1,

(122a)
all - 13,t- to-2(1 4- r)(-1 - 2r) to- 2r)

. o2 -2(1 - 0
, U3

o2
t
-2( 1 + r) 2q2 t '  2IIM -87111

o2
9,n tl,_   i 111 -2(1 + r)

(
_
2 - 2r) to

-2(1 - r),-
2 + 2r)3t3 to (I22b)

U3 t 
o2-2(1 + r) + 1

2U2
o2

t
-2(1 - r) + 1

IIR 87p 
a
22 

_ _   I- +   .,
3t

to
-2(1 + r)

(-1 - 2r) 
-2(1 - r), 

to 
-
( 1 + 2r) (122c)

and
_ alailo2 u3o2t-(1 + r) „_o2t-2(1 + r)

IIM 1
  + i Zn t},, . '  _ "z

s'22
3t
3 {

t
-2(1 + r)

(-2 - 2r) t
-2(1 - r)(2 

+ 2r) (122d)
= niii . o2/ o

where r The second-order momentum density equation is

k
(p + p)A1 = -0 x 13)1 - lk

(123)
TI I I 

Thesecond-ordercurrentJ.is the Hall current J.
H
; this is

-1 J k .
J. 

I 
c .
1-3 

J , which gives
1(

and

3
0
1

uEIj

J
H 
=

3 
-1

J
21

El

Therefore the Lorentz force term in equation (123) vanishes.

The stress divergence term
_ 1k1

ilk is

2XE
1
1e-a-/311 + AE

1 
-

11 10

(124a)

(124b)

(125)

Inserting this in equation (123) above we find an equation of evolution

for A
1
:

A
1 
+ A

1 
6 + a ) IL A

1 
= 2E

11 
e-c4-e 11

11 A 
(126)
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This has the solution

A1 
= A1 - °t-Ie-S11eP 

/2At2 )(All ..43/1 4110/At2
(127)e

This equation is consistent with the definition of AI in the definitions

of the kinematic quantities. Further the Goi = -87Toi and G23 = -8/0123

give consistency conditions. (These are equations (111b) and (111c)

and (111g) G23). These are compatible to all orders of approximation

used in this thesis.

We finally calculate the effects of these perturbations on the

isotropic expansion. We expand equation (111a) via a -4- a 5a with

Oa)
2 

<< 1. Then we have

• 1
(5(31). "

=a"-1 -fc/-cjij 
- 6611e-2a)ij

which is, with the above results for the quantities in brackets

. t ,A2 -6 All , 1 1
(sc)

2 12 t -77 T-7 -E2 ) "

We therefore find the solution

A2 3A11  1 1 
da = - 2).

16t
4 

t2 to
2 

4t

Finally we find for the rotation in these models from the

kinematical quantities' definitions:

w
1 
= -2nU

2
01J
3
0(t/t

o
)
-8

and

1
w
2 
= 2U

3
0(t/t

0
)
-(2 + r) 1

exp(A )),
11 

to
 

t2fl'

1
w
3 
= 2U

2
(3(t/t0)

-2(2 - r)
exp(A11(--7

to t

where r = nH1
o2

/u
0

(128)

(129)

(130)

(131a)

(131b)

(131c)

This completed the examination of the model. We have determined

all the kinematics and dynamics of fluids, fields and geometry. We

can now make numerical estimates based on the observations.

Observations

It is of interest to obtain some numerical estimates of the
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kinematic quantities and present dynamics of the model. The most

accurate global cosmological datum at present is the microwave

blackbody background radiation. In our analysis of this radiation and

the information it carries about the universe we follow the approach

of Collins and Hawking.
14

a
* To first order the temperature measured for the microwave

background received (R) at the present time from the emitting surface

(E) of last scattering of the radiation is

av-o,
T
R 
= T

E
e A {1 dtl

V lI E EV ij

The monopole contribution is simply eaE-aR giving the isotropic

part of TR. The dipole variation (STD is p
i 
R URi 

. - 
Ei 

where the
E 

first part refers to the present tangent geodesic vector (direction

cosine) p
R

and the present flow velocity UR. The second part is for

(132)

those quantities at the emitting surface. The quadupole variation

OT is the integral involving the shearing of the flow from (EO to (R).

For the geodesics in the isotropic background model we have with

Kl = Kcos 0, K2 = K(sin 8)(cos t) and K3 = K(sin 8)(cos 4) that in

the E
A 
frame

= (c) 
(133a)

K = K
o
e
-a (133b)

-
O = 2cot 

1 
B(t-t

o
) + C (133c)

where B is a constant and C = cot Bo. The term P
i 
R URi 

. is then of the

form

T
E
e-aE-aRiU

R2
(sin 8)(cos t) + (sin e)(cosUR3 (134a)

while for P 
E
U
Ei 

we have

-T
E
{1 + cot2(-)eaR-aE}-ii2cot (1)eaE-aR(UR2

cos ¢ + U
R3
sin t)} (134b)

2 2
8

The quadrupole term gives after integration with cot = t and

a,. =
13 13
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T e-az-aR{A fcos 4. 2 2 8 2 sin4 
11 4 ' 

0(sin - -5) +
4cos2

4  IA
-29,n cos 

f 
s
2 
4)+ A

33
sin

2 
(p)(sin2 -

2 2 8`"122"
cos 7

20
tan

2A)IR
3' I E (134c)

The most accurate microwave background temperature anisotropy

measurement to date is that of Smoot et al.
59 

although accurate earlier

measurements have been made scanning different circles in the sky. 
60-64

Smoot et al.
59
find

STD = 1.296 X 10
-3
T
R

and

6T
Q 

.L 3.703 X 10
-4
T
R

i 1/2
These values give for the present velocity UR 

= (U
Ri

U
R 
) of

and for the R.M.S. shear a

a <
a

(135a)

(135b)

U
R 

= 5 X 10
-4 

(136a)

=(11a oii)1/2ij

3.7 X 10-5 (136b)

Then the rotation is, from its dependance on U2 
and U

3 
is, for

w and )
3' 

with Cc = e
-a

w w < 10
-14

rad/yr.
2' 3 -

The shear limits give

< 3.7 X 10
-15

yr
-1

(137)

(138)

so we may use both equations (136) and equations (122a) (122d) to set

limits on H
1
R 

and also check for consistency of the UR 
measurement with

the global shear limits. We find

H
1
R 

< 10
-8

gauss.

Next the Reynold's stresses contribute to aR 
as approximately

0R
R 

- 3
-3a

Pp
R
U
R
2
e
3a
d(e

a
)

which gives

R. ;111uR2e-2aR
a
R

(139)

(140)

(141)
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This means that u
R 
must satisfy

< 1.6 X 10
-31

gm/cm
3

R
(142)

which is what we required in solving the equations initially. Thus,

the solutions are consistent with each other and our numerical estimates

from the data. In fact equation (142) says that n 5 0.1.

Discussion

We have examined a Bianchi V anisotropic spatially homogeneous

cosmological model. Although the metric is diagonal we have introduced

a small magnetic field against the isotropic open Friedman model. The

field direction was chosen orthogonal to the plane in which the

invariant vector fields E2 
and E

3
P lie. The fluid flow vector was

taken to lie in that plane. It and the shear tensor are introduced

as first-order perturbations. To second-order the Joule heating and

effects of Reynolds and Maxwell stresses on the normal shear were

studied. Rotation appeared as a first-order effect and posessed

second-order components. A very important effect was the Lorentz

force contribution to the fluid flow, which strongly accelerated the

component U2 and strongly decelerated the component U3.

The acceleration and deceleration of U2 
and U

3 
assure that the

models do not evolve into a locally rotationally symetric configuration

and that the second-order rotation component w
1 
is not zero although it

decreases rapidly (in fact as t
-8
).

The model is quite reasonable in most aspects. We adopt a low

density open Friedman model as a background consistent with density

parameter 0 = 0.1. In such a model the isotropic expansion goes as

a 
= t. We found the shear evolving as cij 

- A 
o
ij /t

3
e plus second order

Reynolds stresses and Maxwell stresses.
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Numerical estimates from the limits on quadrupole and dipole

anisotropy of the microwave background radiation fixed present values

R R R
of flow U2, U3 - 5 X 10 

R-4
: rotation w2, w3 5 10

-4
rad/yr, wi s 10

-18
rad/yr;

and loij i < 3.7 X 10-15yr-1 with a Hubble parameter Cit - 10-1°yr-1; the

magnetic field H
i
R 
5 10

-8
gauss; and therefore the present value of the

matter density pp 5 1.6 X 10
-31

gm cm
-3 

in good agreement with the

observed condition 2 < 0.1.

So we see that an MUD open universe is a quite reasonable model

of the universe. This model is impc7tant as the observations presently

seem to indicate that the universe is open and plasma processes must

have been importart when the universe was radiation-dominated. In

addition MUD processes would be important if a magnetic field were

present, even in the baryon-dominated era if there were a tenuous

hot intergalactic gas.

This is important as galaxies cannot form in an open univetse

by purely gravitational interactions.
65

In this spirit the near-

isotropy of the universe and the fact that galaxies exist at all seems

a contradiction if the universe is open.
66

It is appealing then to

examine whether MHD processes can affect galaxy formation in an open

universe. Such is possible as the MUD processes induce a local

Bianchi-type breaking curvature change in the fluid dynamics.

For example, consider the fluid flow first. We find

U 

o2

= 
U2 
o
(t/t )1

o)
2 

indicating a body force acceleration. Then in the inertia density

conservation equation the Joule heating contributed the density

perturbation:
o2 o o2 

= 110/2 t
2(nH1 

/p )U2 -3

(143)

(144)
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we can thus build up a large turbulent flow and inertia concentrations

via equations (143)-(144), so long as the conductivity is sufficiently

large. If the temperature is just 10
4
degK it will be 10

3
Mho/M, large

enough to keep growing increasingly. Thus MHD open universe cosmolcirgies

offer an attractive resolution of the dilemma of how to make galaxies .

in a universe that has always been expanding too rapidily to let them

condense out of it.



CHAPTER V. CONCLUSIONS

The results given in the study are very encouraging. The

existence of galaxies and the universe being open seem mutually

exclusive.
65
'
66

Yet galaxies exist and the evidence is strong that

the universe is open. MHD processes might provide the disturbing

mechanism (a "pseudocurvature") to allow clumps to grow to make

galaxy "seeds" against an open background. We have seen that as

long as the conductivity n is large we have strong polynomial growth

of condensations du,

(t/t)2(nHio2 P/ 0)0 

relative to the background density Also the MHD acceleration

will drive the velocity disturbance 0
2 

beyond that for a background

(145)

with magnetic field only U2 by

6U2 o2, o
(tito)nril iP (146)

U2

thus providing a source of turbulence to give density condensations

by viscous decay.

A theorem of Hughston and Jacobs
67 

might spoil this scheme by

showing that magnetic fields are not admissible in Bianchi V cosmologies.

For source-free, diagonal Bianchi V cosmologies with U = U d
o 

their
o q'

theorem is true. But the admission of both source terms in Maxwell's

equations (J1) and a nonzero peculiar velocity ui 
allows the magnetic

field, as discussed in Appendix I.

41
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Finally we have found that MHD processes in these models are

consistent with approaching isotropy in the models as the shear can

presently be quite small as can be any present magnetic field, flow

and rotation. Yet all of these quantities could have been quite large

E .
in the past, approaching GE/&E - wi /aE UE - 1 and H - 10

10
gauss at

large redshifts deep into the radiation era since these quantities go

as (t/t0)
-2 

and thus grow rapidly as we return to the past of the

universe.

Lastly we note that the conductivity n may still be high if a

tenuous hot intergalactic medium exists. The actual form of the

conductivity is n = Ne
2
/muE1 where N is the particle number density

3
and ',3E = 6.1 X 10

-4
N X (300/T)I is the collision frequency.

56

Clearly the temperature T is the major contributor until the magnetic

field drives the cyclotion frequency to be large. But then the Hall

conductivity neB/MuEI will be large and so anomalous Hall currents

will still provide MBD processes.
56

We conclude that more general models of Bianchi V and VII are

worth the effort of their developement following these promising

results.



APPENDIX I

ON THE THEOREM OF HUGHSTON AND JACOBS

Hughston and Jacobs have proven a theorem that diagonal Bianchi

V cosmologies may not possess a magnetic field. However their

theorem is severely restricLed:

1. There are no currents (source-free Maxwell Equations, i.e.,

F 111) = 0).

2. There is no Poynting vector, i.e., c P.
1 ij

E
j
B
k

k

3. There is no electric field, Ei = O.

In our model, with Ui # 0, and a finite conductivity n 0 we have

J # 0, E
i 
= c

ij
0.1iBk # 0, and P

i 
= e

ijk
B
k 
# O. Then Maxwell's

equations retain sufficient freedom that Hi 1 (=3.4/m) is not required

to vanish, just as in the Einstein equations with a diagonal Bianchi

V metric Pi # 0 indtcates U. 0 O. MHD effects thus endow the model
1

with a richer dynamics and imitate the presence of a richer structure

In the geometry.
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