Circulating Inflammatory and Oxidative Stress Responses to Steady-State Moderate-Intensity and High-Intensity Interval Exercise in Mid-Spectrum Chronic Kidney Disease

MATTHEW N. PETERSON1, JEFFREY S. FORSSE1, J. KYLE TAYLOR4, ZACHARIAS PAPADAKIS1, NICHOLAS SCHWEDOCK2, BURRITT W. HESS2, JACKSON O. GRIGGS2, D. CRAWFORD ALLISON3, RON L. WILSON3, KATHRYN DUGAN4, KATHY W. JONES4 KATHLEEN ADAIR1, MITCHELL C. CHOLEWINSKI1 and PETER W. GRANDJEAN (FACSM)1

1Baylor Laboratories for Exercise Science and Technology, Department of Health, Human Performance, and Recreation, Baylor University; Waco, TX; 2Family Health Center, Waco, TX; 3Baylor Scott & White Health, Waco, TX; 4Medical & Clinical Laboratory Sciences, Auburn University-Montgomery, Montgomery, AL 36124

Category: Doctoral

Advisor / Mentor: Grandjean, Peter (peter_grandjean@baylor.edu)

ABSTRACT

Inflammation and oxidative stress can be potent modulators of vascular function. These factors may transiently respond to moderate-intensity steady state exercise (SSE) in a manner that improves post-exercise vascular function in healthy adults. Whether exercise imparts similar effects in adults with Stage 3 or 4 chronic kidney disease (CKD) remains understudied. Moreover, a comparison of SSE and high-intensity interval exercise (HIIE) may add to clinically-relevant findings for improving vascular function in mid-spectrum CKD. PURPOSE: To determine the influence of SSE and a comparable amount of HIIE on post-exercise inflammation and oxidative stress in patients diagnosed with secondary Stage 3 or 4 CKD. METHODS: Twenty participants (n = 6 men; n = 14 women; age 62.0 ± 9.9 yr; weight 80.9 ± 16.2 kg; body fat 37.3 ± 8.5% of weight; VO2max 19.4 ± 4.7 ml/kg/min) completed 30 min of SSE at 65% VO2 reserve or HIIE by treadmill walking (90% and 20% of VO2 reserve in 3:2 min ratio) in a randomized crossover design. Both exercise conditions averaged ~ 65% VO2 reserve. Blood samples were obtained by the same technician under standardized conditions just before, 1hr and 24hrs after exercise. Total antioxidant capacity (TAC), paraoxonase1 (PON1), asymmetric dimethylarginine (ADMA), 3-nitrotyrosine (3NT) and interleukin-6 (IL6) responses were analyzed using 2 (condition) by 3 (sample point) repeated measures ANOVAs. RESULTS: Relative to pre-exercise measures: TAC increased by 4.3% 24hr after exercise (p = 0.012). PON1 was maintained 1hr and elevated by 6.1% 24hr after SSE, but not HIIE (p = 0.035). When corrected for plasma volume shifts, ADMA increased 30 ng/ml at 1hr but was 58 ng/ml lower 24hrs after exercise (p = 0.0006). 3NT and IL6 remained stable in the hours after exercise (p > 0.05). CONCLUSION: Modest inflammatory and oxidative stress marker responses to either SSE and HIIE may contribute to improved vascular function in mid-spectrum CKD.