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AN ANALYSIS OF A NEW PARTIZAN GAME USING COMBINATORIAL TECHNIQUES

James T. Snodgrass III July 1979 40 pages

Directed by: Robert R. Crawford

Department of Mathematics Western Kentucky University

John Horton Conway's combinatorial game theory was applied to a

new partizan game with a complete analysis as the result. Mathematical

values were assigned to the countably infinite number of positions in

the game. Direct computation of the first eight values and extension

via the Principle of Mathematical Induction made the assignments possi-

ble.

Examination of these values (which repeat with period 2) shows

that the game, played on a strip of squares, can be won by the first

player if the strip is of odd length and can be won by the second

player if the strip is of even length. Further examination of the

values leads to a completely general symmetry strategy for the first

and second player wins in the appropriate cases.
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INTRODUCTION

Professor John Horton Conway of Cambridge University has developed

an elegant theory for the analysis of a certain class of combinatorial

games. The intent of this paper is to apply that theory to a new com-

binatorial game and use the resulting analysis to find a winning strat-

egy for the game. A brief introduction to Conway's theory is in order.

Games which lend themselves to this type of analysis are the two-

player variety in which the players have complete information about the

game. Familiar examples are chess, checkers, and tic-tac-toe. A game

is completely determined by the options that the two players, henceforth

called Left and Right, have in that particular game [2, pg. 71]. There

is no element of probability in the games we consider.

There are two broad categories of combinatorial games, the impar-

tial games and the partizan games. Impartial games are those in which

both players have exactly the same options. The game of Nim is a famil-

iar example. Partizan games are games in ',4hich the two players have dif-

ferent options. Chess, for example, is a pactizan game. The theory for

impartial games is older and is described by Cooway [2, Chap. 11]. The

theory for partizan games has been developed largely by Conway. It is

of most interest to us at present.

Since the Left and Right options fix the fate of a particular game

G, we adopt the notation: G = {GL IGR}, where GL is the set of options

available to Left and G
R 

has the corresponding definition for Right.
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The first logical question one asks about any game is How is the

name played? We adopt the normal play convention which prescribes that

Left and Right move alternately until one of the players is unable to

make a legal move on his turn. That player is then the loser [2, og. 71].

There is a more subtle playing convention, the misere play, whereby the

first player unable to make a legal move on his turn is the winner.

The crux of the theory for partizan games lies in assigning values

to all possible positions that might be encountered in playing a game.

It is well to remember at this noint that for G =
L
IG

R
} each of the

attainable positions (any of the Left or Richt options) is a game in it-

self. Now, these values we wish to assign to games should reflect the

advantage that Left has over Right in that game or vice versa.

It is clear that given these values for each of the G
L and G

R
, we

will know the value of G = 
L IGR }. To find the value of a given G

L or

GP is now the problem. This is really no problem since knowing the value

of some G
L or G

R 
reouires only that we know the values of its Left and

Right options. The problem, clearly, is that we need some starting

point. The obvious starting point would be a position in which neither

Left nor Right has any options. This is the game { 1 } which, since it

provides neither Left nor Right with any advantage, is given the value 0

and called the Endgame [2, pg. 72].

Now, we use 0 = { 1 } to inductively define three new games. This

is done by using 0 as Left and Right options. The three new games are

(01 ), { 10), and (010). The convention adopted by Conway is that games

which give Left an advantage will carry positive values, whereas games

in which Right has the advantage will carry negative values. In fact,

we have the more general definition:
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Definition:

1. G is positive if there is a winning strategy for Left.

2. G is negative if there is a winning strategy for Right.

3. G is zero if there is a winning strategy for the second

player.

4. G is fuzzy if there is a winning strateay for the first

player.

We write: G > 0. G < 0, G = 0, and G 11 0, respectively

[2, pg. 73].

Since {01 } gives Left an advantage of one move over Right, we de-

fine {01 } = 1. Since { 10} gives Right the same advantage ever Left

and since in { 10} Right has the same options that Left had in {01 ) and

vice versa, we define f 10) = -1. In fact, if G = {GL1GR}, we define

-G = {-GR1-GL [2, ntl. 73]. Finally, in {010} it is clear that the ad-

vantage goes to the first player. Therefore, (010) is a fuzzy game

which is given the snecial name {010} = *. Notice that 1 and -1 are

numbers and * is not. A game will be a number only if no GL is greater

than or equal to any G.

Now, we could define new games by using 1, -1, and * as Left and

Right options. Clearly the process can be continued ad infinitum. We

return to the question of fixing a value for G = {G1'1GR). When ana-

lyzing a specific game, we will have begun with the 0 position and in-

ductively "climbed the ladder" so that for G, we know values for all the

G
L 

and G
R

RL{G1G}.In G = consider the Left options, GL. If GL1 < GL2, Left

will obviously prefer the move to GL2 since he desires games with large

values. We say that GL1 is dominated by G
L2
. Similarly, considering
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the Right options, G, if G
R
I > GR2, then Right will prefer the move to

GR2 since he likes games with the smallest possible values. Again, we

say GRI is dominated by GR2 [2, pg. 110].

Once more, we focus our attention on the set, GL, of Left options.

Suppose some GLI has a right option, GL I RI, for which the inequality,
L RG 1 < G, holds.

might as well move

that the move from

Since a move to GLIRI would benefit Right, Left

directly to some G
L
I
R1L 

as to move to GLI. We say

G to GLI is reversible through GLI RI [2, pg. 110].

Likewise, suppose that G has some Right option GR1 such that the in-

equality, G
R 1 L > G, holds for some Left option, GRILI, of GRI. Then

we say the move from G to GRI is reversible through GRI L I since Right

might as well move from G to some GRI LI R as to move from G to GRI

[2, pg. 110].

This discussion of dominated and reversible options brings us to:

Theorem:

The following changes do not affect the

1. Deleting any dominated option.

2. If G10 is reversible through GLoRo,

option of G by all the Left options

3. If GRI is reversible through GRILI,

GR1L1R. [2, ng. 110-111, Th. 68]

value of G:

replacing GL0 as a Left

LG 0 P 'I)L of G
LR 

°.

replacing GRI by all the

Therefore, the first step in assigning a value to G (G
L
1G

R 
is to

remove all dominated options and replace all reversible options as pre-

scribed in the theorem above. Now, if this has been done and all the

GL and GR are options such that every GL is strictly less than every

G
R
, then G is a number. In fact, G is the "simplest" number that is

greater than every GL and less than every G
R
, where "simplest" means
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created first with respect to the inductive process described above

[2, rm. 23, pp. 81-82]. If G is not a number, then we merely apply

the above theorem and write G in the resulting form.

The last notion to be discussed is that of the sum of games. Left

and Right play in tne (disjunctive) sum of two games G and H (write

G + H) by choosina one of the component games and making a legal move

in that component. If Left wishes to move in G + H, he may make a move

to G
L 
+ H for some Left option GL of G, or he may move to G + H

L 
for

some Left option HL of H. Likewise, Right's moves in the sum are to

GP + H or to G + H
R 
where G

P 
and H

R 
are Riaht options in G and H, re-

spectively. Hence, G + H = {G
L 
+ H, G + H

L
IG

R 
+ H, G + H

R
}. The value

assigned to a disjunctive sum of games is the sum of the values of the

component games [1, pg. 420].

Remembering the definition of -G, we now have a way to compare two

games, G and H. If G - H = G + (-H), then we say:

1. G > H if G - H is a Left win.

2. G < H if G - H is a Right win.

3. G = H if G - 4 is a second player win.

4. G II H (G is fuzzy aaainst H) if G - H is a first player win.

If G II H, then we say that G and H are not comnarable [2, pp. 78-79].

Let us summarize. If L and R are two sets of games, then

G = {LIP) is a game. Furthermore, all aames are constructed in this

manner. If G = {LIR}, then GL is a typical element of L and is called a

Left option. Likewise, GP is a typical element of R and is called a

Right option. Left may move to any G
L and Right may move to any G

R
;

thus, we write G = {G
L
IG

R
}. We define the sum of two games, G and H, to

be G + H = {GL + H, G + HLIGR + H, G + H
R
}, and the negative of a game
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G = {GL 
16 } is -G = {-GR I-GL) [2, pg. 78].

A consideration of some impartial and partizan games will serve as

an initiation to the analysis of combinatorial games. In narticular,

seeing an application of Conway's theory for partizan games will help us

in analyzing a new partizan game.

As a matter of convention, N will be used to represent the set of

natural numbers.



CHAPTER ONE

The theory for impartial games is an apnropriate place to begin in

looking at some actual games, since it is both older and simpler than

the theory for partizan aames. Certainly the most renowned impartial

game is Nim, a game played with a number of heaps of beans in which a

legal move is to reduce the size of any one of the heaps. Under the

normal play rule, the last player to nick up a bean is the winner.

A very simple, yet elegant theory for impartial games was developed

indenendently by R.P. Sprague and P.M. Grundy. Application of the

Sprague-Grundy theory to Nim is especially enlightening since the theory

elucidates the game of Nim and vice versa.

We will call the value of a Nim heap of size n, *n. Clearly, since

Left or Right may remove from 1 to n of the beans, *n = (*0, *1, ---,

*(n - 1)I"), where the *n are called Nim-numbers or impartial numbers

[2, pg. 122].

The Snraaue-Grundv theory asserts that every impartial game with a

finite number of positions has one of the values *0, *1, *2, --- (that

is, every impartial game is equivalent to a Nim heap of some size); {*a,

*b, *c, ---1"} = *m where in is the least number not appearing in a, b,

c, (m is called the mex or minimal excludent of a, b, c, ---);

a*2 4. *2 4 *2 4. *(2a 2b 4 2c 4 ___) for a, b, c, --- distinct

numbers; and *n + *n = 0 [1, pg. 427]. The four assertions of the

Sprague-Grundy theory allow us to completely analyze the game of Nim.

7
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Since we are dealing with impartial games, we will describe situa-

tions from Left's point of view. We lose no generality in doing so.

In a game of Nim, Left wants to move to a position which has value

*0 = 0, since this is a second player win. Notice that a game of Nim is

just the disjunctive sum of its heaps [2, pg. 122]; so to find its value,

we merely sum the values of the respective heaps. The third and fourth

assertions above tell us how to add those values. If, for instance, we

have heaps of size nl, n2, n
r
, then their values are *nl, *n2, ---

*nr.But,wemaywriteeachn.as n
i 
= 2

a 
+ 2

b 
+ 2

c 
+ ---. When we

have expressed each ni in this form, we have *ni = *( 2
a 
+ 2

b 
+ 2

c 
+

= *2
a 
+ *2

b 
+ *2

c 
+ ---, by assertion three of the Sprague-Grundy theory.

---)

We then simply add the r numbers written in this last form except that

the fourth assertion says that similar powers of 2 cancel in pairs.

This entire process corresponds to writing each of the r numbers in

binary notation and adding them without "carrying." The resulting num-

ber, *m say, is the value of the game of Nim.

Now, for Left to make a winning move on his turu, he merely calcu-

lates the Nim-sum of the heaps and then adjusts one of the summands so

that the resulting Nim-sum will be 0. Left then makes the corresponding

move in the heap whose value was the number he adjusted.

Let us consider a game of Nim with heaps of sizes 3, 4, 8, and 9.

In binary notation, 3, 4, 8, and 9 are 11, 100, 1000, and 1001, respect-

ively. Nim-adding the numbers gives: 11
100
1000
1001
110

Therefore, our game of Nim has the value *6, applying assertion three in

reverse. If it is Left's turn to move, he can make the Nim-sum equal to
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0 only by changing 100 to 10. This corresponds to removing 2 beans from

the heap of 4 to leave 2. Careful examination will show that this analy-

sis leads to a symmetry strategy for playing Nim. If Left found the

Nim-sum of a position to be 0, then his only recourse would be to so

complicate the position that Right would encounter difficulty in deter-

mining the correct move [2, pg. 126].

Let us now ccnsider another impartial game and observe its relation

to Nim as predicted by the Sprague-Grundy theory. The game of Kayles

is played by two skillful bowlers with a number crc rows of tenpins. The

players are just accurate enough to topple any single tenpin or two

adjacent ones, but cannot bowl over pins separated by any greater dis-

tance.

Clearly, any Kayles position is just the disjunctive sum of its rows.

If we let K
n 

be the value of a row of n pins, then a legal move in that

row consists of moving from Kn to Ka + Kb (a + b = n - 1 or n - 2 and

a,b > 0). Consider some Kayles positions:

K
0 

= {1}= *0 = 0

K
1 
=

0
1"} = *1 = *

K2 = fK0,K1 1"1 = f0,* "1 = *2

K3 fK1,K2,K1 + KW} = f*,*2,01"1 = *3

K4 
{K2, K1

 + K1 ,K3' K1 + K2 
I"} = f*2,0,*3I 11 1 = *1 = *

where the values for K
2' 

K
3' 

and K
4 

are found by applying the "mex"

rule. In a similar fashion, we see that K5 = *4, K
6 

= *3, K
7 
= *2,

K
8 

= *1, etc. In general, if the value of K. = *n, we say the Grundy

numberofK.is n. Therefore, the Grundy numbers of the positions K.

i = 1,---,8, are 1, 2, 3, 1, 4, 3, 2, and 1, respectively [2, pg. 127].

In fact, R. K. Guy made the discovery that the values Kn repeat with
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period 12 after n greater than or equal to 72 [2, pg. 128].

Now that we have some familiarity with Kayles, suppose Left and

Right are playing the game and Left is facing the position K3 + K5 + K6

+ K8. From our calculations above, we know that the Grundy numbers of

the component rows are 3, 4, 3, and 1, respectively. Nim-adding these

numbers, we see that *3 + *4 + *3 + *1 = *5. Clearly, Left can make a

winning move by changing *4 to *1. This is readily accomplished by bowl-

ing in the row of 5 pins and toppling the pin on either end. This gives

us a row with value K
4 
= *1.

Now that we have a feel for the theory of impartial games, let us

take a 1,ok at a partizan game. The game to be considered is called Dom-

ineering or Cross-Cram. Dumineering is played on a checkerboard with

dominoes. Left makes a legal move by placing a domino vertically to

cover two adjacent squares. Right makes an analogous move in the horizon-

tal direction. The game is over when either Left or Right cannot place a

domino on the board.

We will determine how values are assigned to positions and see why

some moves are better than others. Remember that the object in Domineer-

ing is to provide oneself with as many moves as possible, while at the

same time depriving one's opponent of as many moves as possible.

The Domineering position in which neither player has a legal move,

[1, has of course value 0. Suppose now that for n = 0, 1, 2, ---, Left

has a move to some position of value n and Right has no moves whatever.

Then, Left has an advantage of n + 1 moves and we have fril} = n + 1 [1,

pg. 420]. Similarly, if Right can move to a position of value -n for n

= 0, 1, 2, ---, then { -n} = -(n + 1).

Consider the following positions in Domineering:
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= {C31} = {01j = 1

Similarly:

= = - -1

) +

since 0 is a dominated option.
1 = {1, 0 I } = {1 I } = 2

We do not have to look too far to find positions in Domineering

which are not numbers. For example, consider the following:

LEI = {e co} .0 1_11.
[Li ratodm 3)= f0, -1 l - {0 ; = 1/2

EP _ (04.0 1m) .
where in the second position we have replaced { 1 ! -1 } with its more

commonly used name. The third position derives its value of 1/2 from

the simplicity theorem.

To play a game of Domineering, Left and Right always want to move in

the fuzzy regions first. The difference between winning and losing also

depends on choosing the correct region to move in. In regions with values

{xly} with x greater than or equal to y (i.e.-fuzzy regions), the player

whose turn it is to move should move in the region with the largest value
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for x - y [2, pg. 424].

With that in mind, suppose Left and Right have been playing Domineer-

ing for quite a while and the checkerboard now looks like the disjunctive

sum:

= {11-1} + 1/2 + (-1) + 2 + {010} + /01-11

= {11-1} + {010} + {01-11 + 3/2

If Left starts, we have the following sequence of moves, assuming

intelligent play: (L) {010) + {01-1} + 5/2

(R) {010} + 3/2

(L) 3/2

We may stop here since a positive value indicates a Left win. If Right be-

gins, we have: (R) {010} + {01-11 + 1/2

(L) {010} + 1/2

(R) 1/2

So, even if Right starts, Left has a winning strategy. This merely says

that the original sum was in Left's favor.

Now, with a bit of the theory of combinatorial games and some examples

behind us, we can look at a new combinatorial game of the partizan variety

and attempt an analysis.



CHAPTER TWO

We now consider a game that Left and Right play on a strip of n

squares, n = 0,1,2,.... Left and Right each have a limitless supply of

colored counters. Left's are either solid black or solid red and Right's

are colored either red/black or black/red. A legal move in this game

consists of placing one of the counters on the strip such that a single

square is covered. The only restriction is that counters placed on

adjacent squares must match colors on their common edge. Note that any

time a counter is played in a strip, the game immediately splits into a

disjunctive sum.

To analyze this game, we need to determine what type of positions

may actually occur. Notice that a counter placed in a square partially

determines the fate of the one or two adjacent squares. For example,

if Left plays a red counter in the first square of a strip, the second

square is reserved either for a red counter played by Left or a red/black

counter played by Right. Likewise, if Right plays a black/red counter

somewhere in the midst of the strip, the square immediately to the left

is reserved for a black counter or a red/black counter, and the square

immediately to the right is reserved either for a red counter or a red/

black counter.

This realization suggests a very useful notational device. We will

use a natural number to represent the number of squares in a strip to-

gether with a letter, R or B, to denote any "tinting." That is, R4B

13



14

would indicate a strip of length four where the leftmost square is "tint-

ed" red (reserved for a red cr red/black counter) and the rightmost square

is tinted black (reserved for a black or red/black counter).

Now it is possible to enumerate what positions are possible for a

strip of length n. We may have: n, Rn, Bn, RnB, BnR, RnR, BnB, nR, or

nB. This gives us nine positions to analyze for a strip of any length,

n. However, though not a perfect symmetry, there is some degree of sym-

metry in this game. For instance, a red-red/black sequence appearing in

a strip is the same as a black-black/red sequence appearing in the same

place. We strongly suspect that there is duplication among the nine cases

listed above. We formalize this in:

Lemma 1:

For a given n N, the only distinct positions in this game

are n, Rn, RnB, and RnR.

Proof:

We show: 1. Rn = Bn = n8 = nR
2. RnB = BnR
3. RnR = BnB

Proof is by induction on n. If n = 1, Rn = Bn = nB = nR

since both Left and Right have a move to zero in any of those games.

Also, R1B = B1R = -1 since Left has no move in either game and Right

can move to zero in both. Finally, RnR = BnB = 1 since Left can

move to zero in both games and Right has no move in either. This

establishes the basis for the induction.

Now, suppose 1-3 hold for all k < m for some m E N. We show

1-3 must hold for m.

1. Consider Rm, Bm, mB, and mR.

A typical Left option of Rm is either RaR + Rb (a + b = m - 1, a,b = 0)
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or RaB + Bb (a + b = m - 1, a > 1, b >0).

Now, RaR + Rb = BaB + Bb, bB + BaB, and bR + RaR, typical Left op-

tions of Bm, mB, and mR, respectively.

Also, RaB + Bb = BaR + Rb, bR + RaB, and bB + BaR, typical Left

options of bm, mB, and mR, respectively.

Hence, every Left option of Rm is a Left option of Bm, mB, and mR.

A typical Left option of Bm must look like BaR + Rb (a + b = m - 1,

a 1,b> 0) or BaB + Bb (a+b=m- 1 and a,b 0).

Now, RaR + Rb RaB + Bb, bR + RaB, and bB + BaR, typical Left op-

tions of Rm, mB, and mR, respectively.

Also, BaB + Bb = RaR + Rb, bB + BaB, and bR + RaR, typical Left op-

tions of Rm, mB, and mR, respectively.

Hence, every Left option of Bm is a Left option of Rm, mB, and mR.

A typical Left option of mB looks like aR + RbB (a + b = m - 1,

a > 0, b > 1) or aB + BbB (a + b = m - 1 and a,b > 0).

Now, aR + RbB = RbB + Ba, BbR + Ra, and aB + BbR, typical Left op-

tions of Rm, Bm, and mR, respectively.

Also, aB + BbB = RbR + Ra, BbB + Ba, and aR + RbR, typical Left

options of Rm, Bm, and mR, respectively.

Hence, every Left option of mB is a Left option of Rm, Bm, and mR.

A typical Left option of mR looks like aR + RbR (a + b = m - 1,

a,b > 0) or aB + BbR (a + b = m - 1, a 0, b > 1).

Now, aR + RbR = RbR + Ra, BbB + Ba, and aB + BbB, typical Left op-

tions of Rm, Bm, and mB, respectively.

Also, aB + BbR = RbB + Ba, BbR + Ra, and aR + RbB, typical Left op-

tions of Rm, Bm, and mB, respectively.

Hence, every Left option of mR is a Left option of Rm, Bm, and mB.
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Hence, we have shown that Rm, Bm, mB, and mR all have the same set

of Left options.

A typical Right option of Rm looks like RaR + Bb (a + b = m - 1,

a,b > 0) or RaB + Rb (a + b = m - 1, a > 1, b > 0).

Now, RaR + Bb = BaB + Rb, bR + BaB, and bB + RaR, typical Right op-

tions of Bra, mB, and mR, respectively.

Also, RaB + kb = BaR + Bb, bB + RaB, and bR + BaR, typical Right op-

tions of Bm, mB, and mR, respectively.

Hence, every Right option of Rm is a Right option of Bm, mB, and mR.

A typical Right option of 8m looks like BaR + Bb (a + b = m - 1,

a 1, b 0) or BaB + Rb (a + b = m - 1, a,b > 0).

Now, BaR + Bb = RaB + Rb, bB + RaB, and bR + BaR, typical Right op-

tions of Rm, mB, and mR, respectively.

Also, BaB + Rb = RaR + Bb, bR + BaB, and bB + RaR, typical Right op-

tions of Rm, mB, and mR, respectively.

A typical Right option of mB looks like aR + BbB (a + b = m - 1,

a,b > 0) or aB + RbB (a + b = in - 1, a > 0, b > I).

Now, aR + BbB = RbR + Ba, BbB + Ra, and aB + RbR, typical Right op-

tions of Rm, Bm, and MK, respectively.

Also, aB + RbB = RbB + Ra, BbR + Ba, and aR + BbR, typical Right op-

tions of Rm, Bm, and mR, respectively.

Hence, every Right option of mB is a Right option of Rm, Bm, and mR.

A typical Right option of mR looks like aR + BbR (a + b = m - 1,

a > 0, b , 1) J. aB + Rb R (a + b = m - 1, a,b > 0).

Now, aR + BbR = RbB + Ra, BbR + Ba, and aB + RbB, typical Right op-

tions of Rm, Bm, and mB, respectively.

Also, aB + RbR = RbR + Ba, BbB + Ra, and aR + BbB, typical Right op-
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tions of Rm, Bm, and mB, respectively.

Hence, every Right option of mR is a Right option of Rm, Bm, and mB.

Hence, Rm, Bm, mB, and mR all have the same set of Right options.

Hence, RIP = Bm = mB = mR and 1 is established.

2. Consider RmB and BmR.

A typical Left option of RmB looks like RaR + RbB (a + b = m - 1

and a > 0, b > 1).

But, RaR + RbB = BaB + BbR, a typical Left option of BmR.

A typical Left option of BmR looks like BaR + RbR (a + b = m - 1,

a > 1, b > 0).

But, BaR + RbR = RbR + RaB, a typical Left option of RmB.

Hence, RmB and BmR have the same set of Left options.

A typical Right option of RmB looks like RaR + BbB (a + b = m - 1,

a,b >0) or RaB + RbB (a + b = m - 1 and a,b > 1).

Now, RaR + BbB = BbB + RaR and RaB + RbB = BaR + BbR, typical Right

options of BmR.

A typical Right option of BmR looks like BaR + BbR (a + b = m - 1,

a,b > 1) or BaB + RbR (a + b = m - 1 and a,b > 0).

Now, BaR + BbR = RaB + RbB and BaB + RbR = RbR + Ba3, typical

Right options of RmB.

Hence, RmB and BmR have the same set of Right options.

Hence, RmB = BmR and 2 is established.

3. Consider RimR and BmB

A typical Left option of RmR looks like RaR + RbR (a + b = m - 1,

a,b > 0) or RaB + BbR (a + b = m - 1 and a,b > 1).

Now, RaR + RbR = BaB + BbB and RaB + BbR = BaR + RbB, typical Left

options of BmB.
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A typical Left option of BmB looks like BaR + RbB (a + b = m - 1,

a,b > 1) or BaB + BbB (a + b = m - 1 and a,b 0).

Now, BaR + RbB = RaB + BbR and BaB + BbB = RaR + RbR, typical

Left options of RmR.

Hence, RmR and BmB have the same set of Left options.

A typical Right option of RmR looks like RaR + BbR (a + b = m - 1

and a > 0, b > 1).

Now, RaR + BbR = BaB + RbB, a typical Right option of BmB.

A typical Right option of BmB looks like BaR + BbB (a + b = m - 1

and a > 1, b > 0).

Now, BaR + BbB = RaB + RbR, a typical Right option of RmR.

Hence, RmR and BmB have the same set of Right options.

Hence, RmR = BmB and 3 is established.

Hence, by induction, we have 1-3 true for all n f N.
Q.E.D.

So, the task of analyzing this game becomes a more reasonable propo-

sition. For any natural number, n, we need only consider strips which

look like n, Rn, RnB, and RnR,

We begin the analysis by directly computing the values of the four

distinct positions of length n, n = 1, 2, 3, and 4. Of course, the

values we are most interested in are the values for the "untinted"

strips of length n. However, to compute these values we must know the

values for the positions Rn, RnB, and RnR. This will become apparent as

the analysis proceeds.

In the analysis of a specific position, we will list Left's options

in the following manner: The options obtained by playing a red counter

in all legal squares moving left to right across the strip will be listed

first. The options obtained by playing a black counter in all legal
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squares moving left to right across the strip will follow. The same con-

vention will be used in listing Right's options with the red/black count-

er being considered first.

We begin the analysis with:

n = 1: 1 = {0 0} *

R1 = {0 0} = *

R16 = f 01 = -1

R1R = {0 1 = 1

n = 2: 2 - {R1 1 R11

= f* *1 = 0

R2 = fR1, R1R, R16 1 61, R1R, R1B1

= {R1, R1R, R1B 1 R1, R1R, R161

= {*, 1, -1 *, 1, -1)

= {1 1 -1) ±1 since * and -1 are dominated options for

Left and * and I are dominated options for Right.

R26 = {R16 1 616}

= {RH 1 MR)

= {-I 1 1} = 0

R2R = {RIR 1 61R}

= {R1R 1 R16}

= {1 I -1} = ±1

n = 3 3 = fR2, 1R + R1 B2, IR + B11

= fR2, R1 + R1 1 R2, R1 + R11

= {±1, * + * ±1, * + *}

= {±1, 0 1 0)

{0 0} = * since tl is a reversible option in either

case.
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R3 = {R2, R1R + R1, R2R, R16 + 61, R26 1 62, R1R + 61, R2R,

R1B + R1, R261

= {R2, R1R + R1, R2R, R16 + R1, R2B 1 R2, R1R + R1, R2R,

R1B + R1, R261

- {1 + * -1 + *} = * + ±1, since -1 + * and 0 are dom-

inated Left options; 1 + * and 0 are dominated Right

options; and tl is reversible in either case. The

last equality follows by definition of * + tl and is

easily verified.

R36 = {Rai, R1R + R1B 1 62B, R1R + B1B, R1B + R161

= {R2B, R1R + R1B 1 R2R. R1R + R1R, R1B + R1B}

= {0, 0 1 ±1, 2, -21

= {0 I -2} since 2 and tl are dominated Right options.

= -1 + tl

R3R = {R2R, R1R + R1R, R1B + B1R 1 B2R, R1R + B1R1

= {R2R, R1R + R1R, R1B + R1B R2B, R1R + R1B1

= {±1, 2, -2 1 0, 0}

= {2 1 0} since ±1 and -2 are dominated Left options.

= 1 + ±1

n = 4 4 = {R3, 1R + R2 1 63, 1R + 62}

= {R3, R1 +R2 1 R3, R1 + R2}

= f* + ±1, * + ±1 1 * + ±1, * + ±11

=0

R4 = fR3, R1R + R2, R2R + R1, R3R, R1B + 62, R26 + Bl, R361

63, R1R + 82, R2R + 61, R3R, R1B + R2, R26 + R1, R361

= fR3, R1R + R2, R2R + R1, R3R, RIB + R2, R26 + R1, R361



At this juncture, there appears to be no particular pattern to the

values that various positions take on, with one exception. The value of

= {1 + ±1, 1 + ±1, -1

R2R + R1B R3R, R1R + R2R, R1B + R2B1

= {-1 + ±1, 1, -1 + ±1 1 1 + +1, 1 + ±1, -11

= fl 1 -1} = ±1 since -1 + ±1 is a dominated Left option

and 1 + ±1 is a dominated Right option.

R4R = {R3R, R1R + R2R, R1B + B2R 1 B3R, R1R + B2R, R2R + B1R)

= {R3R, RJR + R2R, R1B + R26 1 R3B, R1R + R2B, R2R +

-1 + ±1, 1, -1 + ±1}= {1 + ±1, 1 + ±1, -1

f1 + ±1 1 -1 + ±1} = 0 since -1 is a dominated Left

option and 1 is a dominated Right option.

In summary of the analysis to this point, we have shown by direct

computation that:

-1 + ±1, 1, -1 + ±1}

n Rn RnB RnR

1 * * -1 1

2 0 ±1 0 ±1

3 * * + ±1 -1 + ±1 1 + ±1

4 0 0 ±1 0

f1 + ±1 1 -1 + ±1} = 0 since -1 is a dominated Left

option and 1 is a dominated Right option.

In summary of the analysis to this point, we have shown by direct

computation that:

At this juncture, there appears to be no particular pattern to the

values that various positions take on, with one exception. The value of

n Rn RnB RnR

1 * * -1 1

2 0 ±1 0 ±1

3 * * + ±1 -1 + ±1 1 + ±1

4 0 0 ±1 0
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the position we are really interested in, a strip of length n, seems to

be oscillating between * and 0. We continue the analysis by direct com-

putation to see if our suspicions are borne out.

Before proceeding, take notice of some interesting relations in

the preliminary analysis. For a fixed n, the Left options in n and Rn

were essentially the same as the Right options in the same games. Also,

for fixed n, the Left options in RnR were just the Right options in RnB,

and the Right options in RnR were just the Left options in RnB. These

results come as a consequence to Lemma 1. We have:

Corollary 1:

In n and Rn, Right has the same options as Left. The Left

options in RnR are the Right options in RnB and vice versa.

Proof:

A typical Left option of n is aR + Rb (a + b = n - 1, a,b > 0)

and a typical Right option of n is aR + Bb (a + b = n - 1. a,b > 0).

By Lemma 1, aR + Rb = aR + Bb. Hence, the Left and Right options

for n are the same.

A typical Left option of Rn is RaR + Rb (a + b = n - 1, a,b

0) or RaB + Bb (a + b = n - 1, a > 1, b > 0). A typical Right op-

tion of Rn is RaR + Bb (a + b = n - I, a,b > 0) or RaB + Rb

(a + b = n - 1, a > 1, b > 0). By Lemma 1, RaR + Rb = RaR + Bb

and RaB + Bb = RaB + Rb. Hence, the Left and Right options in Rn

are the same.

A typical Left option of RnB is RaR + RbB (a + b = n - 1,

a > 0, b > 1). A typical Right option of RnR is RaR 4- BbR (a + b

= n - 1, a > 0, b > 1). By Lemma 1, RaR + RbB = RaR + BbR. Hence,

the Left options in RnB and the Right options in RnR are the same.
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A typical Right option in RnB is RaR + BbB (a + b = n - 1,

a,b 0) or RaB + RbB (a + b = n - 1, a 1, b 1). A typical

Left option in RnR is RaR + RbR (a + b = n - 1, a,b >0) or RaB

+ BbR (a + b = n - 1, a > 1, b > 1). By Lemma 1, RaR + BbB - RaR

+ RbR and RaB + RbB = RaB + BbR. Hence, the Right options in Rn6

and the Left options in RnR are the same. Q.E.D.

Obviously, the application of this corollary will greatly reduce

the time and pain involved in the direct computation of these positions.

Calculation of the values for n = 1, 2, 3, and 4 was carried out in de-

tail for the purpose of illustration, but we become a little more ex-

pedient in these subsequent calculations:

n = 5: 5 = {R4, 1R + R3, 2R + R2 1 "}

= {R4, R1 + R3, R2 + R2 1 "1

. fp, * + * + l, 11 + ±1 1 "1

= {0, ±1 I ")

= f0 1 0} = * since +1 is a reversible option in either

case.

R5 = {R4, R1R + R3, R2R + R2, R3R + R1, R4R, R1B + B3,

R26 + 62, R36 + 61, R46 1 "1

= {R4, R1R + R3, R2R + R2, R3R + R1, R4R, R1B + R3,

R2B + R2, R36 + R1, R4B 1 "1

= {0, 1 + * + ±1, ±1 + tl, * + 1 + +1, 0, -1 + * + t1,

±1, * + -1 + ±1, +1 "}

= {0, * + 1 + ±1, * + -1 + ±1, t1 1 "1

f* 4, 1 + ±1 1 * + -1 + ±11 = * since ±1 is a reversible

option and the others are dominated in either case.

R5B {R4B, R1R + R3B, R2R + R2B, R3R + R16 1 B46, R1R + 636,
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=

R2R + B2B, R16 + R3B, R26 + R26}

{R46, RIR + R36, R2R + R26, R3R + R16

R3R, R2R + R2R, R16 + R3B, R2B + R26}

R4R, R1R +

= {±1, 1 + -1 + +1, .1, -1 + 1 + t1 1 0, 1 + 1 + ±1,

±1 + ±1, -1 + -1 + ±1, 0}

= {±1 I 0, 2 + ±1, -2 + ±1}

= {±1 I -2 + t11 = -1

R5R = {0, 2 + ±1, -2 + ±1 I ±1}

= {2 + ±1 I 111 = 1

n = 6: 6 = fR5, 1R + R4, 2R + R3 I "1

= {R5, R1 + R4, R2 + R3 I "1

= f*, *, ±1 + * + ±1 I "}

= {* *) = 0

R6 = {R5, R1R + R4, R2R + R3, R3R + R2, R4R + R1, R5R, R16

64, R2B + 63, R36 + 62, R4B + 61, R56 "}

= fR5, R1R + R4, R2R + R3, R3R + R2, R4R + R1, R5R, R16 +

R4, R26 + R3, R36 + R2, R46 + R1, R5B 1 "1

= {*, 1, ±1 + * + ±1, 1 + ±1 + 41, *, 1, -1, * + 11,

-1 + ±1 + ±1, ±1 + *, -1 I "}

= {*, 1, -1, * + +1 "

= {1 I -1} = ±1, removing dominated options.

R6B = {R56, R1R + R46, R2R + R3B, R3R + R26, R4R + R16 I B5B,

R1R + B46, R2R + 636, R16 + R4B, R2B + R3B}

= {R5B, R1R + R4B, R2R + R36, R3R + R2B, R4R + R16 R5R,

R1R + R4R, R2R + R3R, R1B + R46, R2B + R36}

={-1,1 + +1, ±1 + -1 + ±1, 1 + ±1, -1 I 1, 1, ±1 +

1 + ±1, -1 + ±1, -1 + ±1}



{-1, 1 + ±1 I 1, -1 + ±1}

. (1 + +1 -1 + ±11 = 0

R6R = (1, -1 + ±1 I -1, 1 + ±11 = {1 I -1} = ±1

n = 7: 7 = (R6, 1R + R5, 2R + R4, 3R + R3 I "}

= {R6, R1 + R5, R2 + R4, R3 + R3 I "}

= al,* + *, ±1, (* + 41) + ( * 41) „}
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{±1, 0 I ±1, 0} = * since ±l is reversible

R7 = {R6, R1R + R5, R2R + R4, R3R + R3, R4R + R2, R5R + R1,

R6R, RIB + B5, R26 + B4, R36 + B3, R4B + 62, R56 + Bl,

R6B I "1

= fR6, R1R + R5, R2R + R4, R3R + R3, R4R + R2, R5R + R1,

R6R, R1B + R5, R2B + R4, R38 + R3, R46 + R2, R5B + R1,

R6B ")

= {±1, 1 + *, ±1, 1 + ±1 + * + ±1, ±1, * + 1, ±1, -1 +

*, 0, -1 + ±1 + * +±1,±1 + ±1, -1 + *, 0 "}

= {±1, * + 1, * - 1, 0 I "1

= {* + 1 I * - 1} = * + ±1 removing dominated options

and the reversible option, +I.

R7B = iR6B, R1R + R58, R2R + R4B, R3R + R3B, R4R + R2B,

R5R + R1B I B6B, R1R + B5B, R2R + B4B, R3R + 63B,

R1B + R5B, R2B + R4B, R36 + R3B}

= {R6B, R1R + R58, R2R + R4B, R3R + R3B, R4R + R2B,

R5R + R1B I R6R, R1R + R5R, R2R + R4R, R3R + R3R, R1B

+ R56, R2B + R4B, R38 + R361

= {0, 0, ±1 + ±1, 1 + ±1 + -1 + ±1, 0, 1 + -1 I ±1,

2, ±1, 1 + ±1 + 1 + ±1, -2, ±1, -2}

= {0 I ±1, 2, -2} = -1 + ±1 since ±1 and 2 are dominated
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Right options.

R7R = 1-1, 2, -2 1 0) = 1 + ±1 since 41 and -2 are dominated

Left options.

n = 8: 8 = {R7, 1R 4- R6, 2R + R5, 3R + R4 1 "}

= {R7, R1 + R6, R2 + R5, R3 + R4 1 "1

+ 1, * + ±1, * + ±1, * + 11 ! "1

= *+ ±1 1 * + ±11 = 0

R8 = fR7, R1R + R6, R2R + R5, R3R + R4, R4R + R3, R5R + R2,

R6R + R1, R7R, R1B + B6, R28 + B5, R3B + B4, R4B + 83,

R5B + B2, R6B + Bl, R7B ")

= fR7, RJR + R6, R2R + R5, R3R + R4, R4R + R3, R5R + R2,

R6R + R1, R7R, R1B 4 R6, R2B + R5, R3B + R4, R4B + R3,

R5B + R2, R6B + R1, R78 ! "1

±1, 1 + ±1, -1 + ±1, *, -1 + ±1, ±1 + * + tl, -1 + ±1,

*, -1 + ±1 1 "1

= {* + ±1, 1 + ±1, -1 + ±1, * II

= {1 + ±1 1 -1 + ±1) 0

R8B = {R7B, R1R + R6B, R2R + R5B, R3R + R4B, R4R + R3B,

R5R + R28, R6R + RIB B7B, RIP + 868, R2R + B5B,

R3R + B4B, R1B R6B, R2B + R5B, R3B + R4B}

= {R7B, R1R + R6B, R2R + R5B, R3R + R48, R4R + R36,

R5R + R2B, R6R + R1B 1 R7R, R1R + R6R, R2R + R5R,

R3R + R4R, R1B + R6B, R2B + R5B, R3B + R46}

= {-1 + ±1, 1, -1 + ±1, 1 + ±1 + ±1, -1 + ±1, 1, -1 +

±1 1 1 + 1, 1 + ±1, 1 + ±1, 1 + ±1, -1, -1, ±1 +

-1 + ±1}



= f-1 + ±1, 1 1 1 + ±1, -1}

= {1 1 -11 = ±1

R8R = {-1, 1 + ±1 1 -1 + ±1, 11

= {1 + ±1 1 -1 + ±1) = 0

Summarizing:

n Rn RnB RnR

15 * * -1

6 0 ±1 0 ±1

7 * * + ±1 -1 + ±1 + 41

8 0 0 ±1 0
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and we see that this table is identical to the one for n = 1, 2, 3, and

4. Not only are the values for a strip of length n repeating as suspect-

ed, but values for the other positions have also made another cycle. We

intend to prove that this pattern must hold in general.



CHAPTER THREE

The claim at the close of the preceding chapter is that the cycle

established through n = 4 and repeated once through n = 8 is indeed gen-

eral. We offer:

Theorem 1:

For this game, we have the following values:

*

Rn = *

RnB = -1

for n = 4k + I, k = 0, 1, 2, .

RnP = 1

2. n = 0

Rn = +1

for n = 4k + 2, k = 0, 1, 2,

RnB = 0

RnR =

3. n= * for n = 4k + 3, k = 0, 1, 2, ..

Rn = * + ±1

RnB = -1 + ±1

RnR = 1 + ±1

4. n = 0

Rn = 0

for n = 4k + 4, k = 0, 1, 2,

RnB = 21

RnR = 0

Proof is accomplished by applying the strong principle of induction.

28
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The result has been shown for k = 0 and k = 1 (corresponding to n = 1,

---,8) by direct computation. Thus, the basis is established.

We now assume the result holds for all k K, and show that it

must hold for K.

First we examine the options, in general, for n, Rn, RnB, and RnR.

We have:

n = {Ra + Rb, 0 < a,b < n-1, a+b = n-1 I "1 where Right's

options are the same as Left's by Corollary 1.

Rn = {RaR + Rb, 0 < a,b n-1, a+b = n-1; RaB + Rb, 1 , a n-1,

0 < b < n-2, a+b = n-1 I "}

PnB = {RaR + RbB, 0 a , n-2, 1 - b n-1, a+b = n-1 1 RaR + RbR,_ _

0 < a,b K n-1, a+b = n-1; RaB + RbB, 1 a,b n-2, a+b = n-11

RnR = {RnB's Right options 1 RnB's Left options} by Corollary 1.

Note that there are duplicates among the options for particular po-

sitions. For instance, in the Right option set for RnB, R1R + R(n-2)R

is exactly the same as R(n-2)R + R1R. However, the option lists for

each position are exhaustive, and this is all that is necessary for our

purposes.

Now, consider n = 4K + 1. If we look at the options in the four

basic positions, we see that the indices a and b must sum to n - 1 = 4K.

Therefore, a + b _ 0 mod 4. This can happen in four ways:

1. a 0 mod 4 and b 0 mod 4

2. a 1- 1 mod 4 and b 3 mod 4

3. a 7_ 2 mod 4 and b - 2 mod 4

4. a E 3 mod 4 and b 1 mod 4

For all positions of length n = 4k + 1, k > 1, each of these four

instances will occur. For k = 0 and k = 1, we already verified the
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assertions of the theorem.

So, for n: Pa + Rb = 0, tl, 0, or ±1 (corresponding respectively

to 1-4)

Therefore, n = CO, ±1 I 0, ±1} = {0 I 0} = *

for Rn: RaR + Rb = 0, 1 + * + ±1, 0, 1 + * + ±1

RaB + Rb = ±,-1 + * + ±1, ±1, -1 + * + ±1

Therefore, Rn = {0, 1 + * + +1, -1 + * + ±1, ±11"}

= {1 + * + ±1 I -1 + * + ±1} = *

for RnB: RaR + RbB = ±1, ±1, ±1, ±1

RaR + RbR = 0, 2 + ±1, 0, 2 + ti

RaB + RbB = 0, -2 + ±1, 0, -2 + tl

Therefore, RnB = {±1 ! 0, 2 + ±1, -2 + ±1}

= {±1 -2 + ±1} = -1

Also, RnR = CO, 2 + ±1, -2 + ±1 I ±11

= {2 + ±1 ±11 = 1

Suppose now that n = 4K + 2. Then a + b = n - 1 implies a + b 1 mod 4.

Now, this can happen in four ways: 1. a , 0 mod 4 and b E- 1 mod 4

2. a 1 mod 4 and b F 0 mod 4

3. a = 2 mod 4 and b 7 3 mod 4

4. a = 3 mod 4 and b = 2 mod 4

So, for n: Ra + Rb = *, *, *, *

Therefore, n = ' *1 = 0

for Rn: RaR + Rb = *, 1, *,

RaB + Rb = * + ±1, -1, * + ±1, -1

Therefore, Rn = {*, * + ±1, -1, 1 I "} = {1 -1} = ±1

for RnB: RaR + RbB = -1, 1 + ±1, -1, 1 + ±1

RaR + RbR = 1, 1, 1, 1
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RaB + RbB = -1 + 1, -1 + ±1, -1 + -1 +

Therefore, RnB = 1 + tl ! 1, -1 + ±1) = {1 + ±1

!-1 + ±1} = 0

Also, RnR = {l, -1 + ±1 -1, 1 + ±11 = 1 -1} = ±1

If n = 4K + 3, then a + b = n - 1 implies that a + b - 2 mod 4.

Hence, we must have one of: 1. a 0 mod 4 and b 2 mod 4

2. a 1 mod 4 and b 1 mod 4

3. a 2 mod 4 and b 0 mod 4

4. a 3 mod 4 and b : 3 mod 4

So, for n: Ra + Rb = ±1, 0, tl, 0

Therefore, n = f±1, 0 ! ±1, 01 = (0 0} = *

for Rn: RaR + Rb = ±1, * + 1, ±1, * + 1

RaB + Rb = 0, *_l, 0, * - 1

Therefore, Rn = {±1, 0, *- 1, * + 1 I "}

= f* + 1 * - 11 =

for RnB: RaR + RbB = 0, 0, 0, 0

RaR + RbR = ±1, 2, ±1, 2

RaB + RbB = ±1, -2, ±1, -2

Therefore, RnB = f0 ±1, 2, -2} = (0 -2) = -1 + ±1

Also, RnR = f±1, 2, -2 01 = f2 1 01 = 1 + ±1

If n = 4K + 4, then a + b = n - 1 implies that a + b E 3 mod 4.

Hence, we must have one of: 1. a 1 0 mod 4 and b 3 mod 4

2. a 7 1 mod 4 and b E 2 mod 4

3. a 2 mod 4 and b 1 mod 4

4. a 3 mod 4 and b 7 0 mod 4

So, for n: Ra + Rb = * + ±1, * + tl, * + * + ±1

Therefore, n = f* + tl * + ±11 = 0

* + ±1
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for Rn: RaR + Rb = * + tl, 1 + 41, * + 41, 1 + tl

RaB + Rb = *, -1 + 41, *, -1 + .1

Therefore, Rn = {* + .1, 1 + tl, *, -1 + .1 I "

= fl + 41 I -1 + +1} = 0

for RnB: RaR + RbB = -1 + tl, 1, -1 + +1, 1

RaR + RbR = 1 + ±1, 1 + tl, 1 + tl, 1 + 41

RaB + RbB = -1, -1, -1, -I

Therefore, RnB = f-1 + +1, 1 -1, 1 + ±1) = fl -1}

Also, RnR = {-1, 1 + +1 I -1 + 41, = 1 + -1

+ tll = 0

Note that we could assign actual values to the positions of length

4K + 1 because each option of a given one of these positions had length

4k + 1, 4k + 2, 4k + 3, or 4k + 4 for k < K and therefore, by the in-

duction hypothesis, could be assigned an appropriate value.

From that point, it was necessary to consider the four cases in

the order exhibited. That is, obtaining the result for n = 4K + 4 ne-

cessitated having the result for n = 4K + 3 since, for instance, one

Left option of Rn (n = 4K + 4) is Rn' (n' = 4K + 3).

Hence, we have shown that if the result holds for all k < K, then

the result holds for K. Hence, the result holds for all k L N.

Q.E.D.

Now our goal is to learn to actually play the game successfully.

That is, we know from Theorem 1 that any game beginning with a strip of

odd length has value * and is thus a first player win. We would like to

find a winning strategy for the first player. Likewise, any game be-

ginning with a strip of even length has value 0 and is therefore a sec-
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and player win. We would also like to find a winning strategy for the

second player here. That is the problem we tackle in the final chapter.



CHAPTER FOUR

We begin our search for a strategy by considering strips of even

length with Left starting. According to the theorem, this should be a

second player win, so we attempt to find the winning Right reply to any

Left move.

As is true for many combinatorial games, the strategy for this game

is based on symmetry. Right's reply to a Left move will in some sense

restore symmetry to the original position.

Suppose that Left makes his first move by placing a counter of

either color in either one of the end squares. Right will place his

counter in the opposite end and orient it in the following -lanner: If

the resulting strip will have length congruent to 2 mod 4, Right will

color the ends differently, and if the resulting strip will have length

congruent to 0 mod 4, he will color the ends the same. Since we started

with a strip of even length, it is clear that after Left and Right make

their first moves the resulting position will still have even length and

that length will necessarily be congruent to either 0 or 2 mod 4. Right

makes these responses because (from the theorem) RnB = 0 for n E- 2 mod 4

and RnR = 0 for n 0 mod 4.

Now suppose that Left makes his first move in a square other than

one of the ends. The result is a position which looks like Ra + Rb,

a + b = n-1, where n is the length of the original strip. Since n was

even, a is (without loss of generality) less than b. By the theorem,

34
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Rn + Rn = 0 for all n, so Right will make his move in the component Rb

in such a fashion as to cancel Ra. When he has done this, the original

position will be split into three components, two of which have length a.

Hence, the remaining strip must have even length. If that length is con-

gruent to 2 mod 4, Right will place his counter so that the ends of the

enclosed strip are colored differently, and if that length is congruent

to 0 mod 4, Right will place his counter so that the ends have the same

color. These moves lead to positions which have value 0 and are there-

fore winning moves.

So, regardless of Left's beginning move, Right can always make a

winning response.

Now we consider what may happen when Left makes his second move.

If Left moved in one of the end squares on his first move, then his sec-

ond move will be made in either RaR, a 0 mod 4, or RaB, a -7. 2 mod 4.

Before we examine Left's options, note the following equalities which

follow directly from Theorem 1:

1. RnR + RnR = 0, n even

2. RnB + RnB - 0, n even

3. RnR + RnB = 0, n odd

Suppose Left is moving in RaR, a E 0 mod 4. His options are:

1. RcR + RdR, d<c, d even

2. RcR + RdR, d<c, d odd

3. RcB + RdB, d<c, d even

4. RcB + RdB, d<c, d odd, where c + d = a - 1

In each case, Right will cancel the shorter component by applying one of

the equalities listed above. His responses are:

1. RdR + ReB + RdR, e - 2 mod 4
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2. RdB + ReR + RdR, e 0 mod 4

3. RdB + ReB + RdB, e E 2 mod 4

4. RdR + ReR + RdB, e - 0 mod 4,

respectively. Note that each of these moves is a winning move since the

resulting position has value 0.

Now, suppose that Left is making his second move in a position

which looks like RaB, a 2 mod 4. His options are:

1. RcR + RdB, d<c, d even

2. RcR + RdB, d<c, d odd

3. RcB + RdR, d<c, d even

4. RcB + RdR, d-c, d odd where c + d = a - 1.

Again, Right will cancel the component of length d by moving in the

longer component and applying one of the equalities listed above. These

moves are:

1. RdB + ReR + RdB, e E 0 mod 4

2. RdR + ReB + RdB, e E 2 mod 4

3. RdR + ReR + RdR, e E 0 mod 4

4. RdB + ReB + RdR, e 2 mod 4

respectively. Again, each of these moves leads to a position of value 0.

Finally, we consider the cases where Left made his first move in

the interior of the strip. Having discussed Right's first reply, we

know that on his second move Left will be facing: Ra + Ra + RmB, m 7 2

mod 4, or Ra + Ra + RmR, m = 0 mod 4. From the discussion just completed

we know Right's correct reply if Left moves in the component of length m

in either case. Hence, we need only consider Right's response if Left

makes his second move in one of the components of length a.

If Left moves in Ra, he has the following options:
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1. RcR + Rd, c + d = a-1

2. RcB + Rd, c + d = a-1

Right will respond in the other Ra component. He makes the following

responses to 1.: RcR + Rd if c is even and RcB + Rd if c is odd. His

responses to 2. are: RcB + Rd if c is even and RcR + Rd if c is odd.

These are moves to 0 and hence, winning moves for Right.

So, given any second move for Left, Right can always return the

game to a position with value 0. We are now ready to consider what

positions Left has to face on his th.rd move. Careful examination shows

that any position Left may now encounter involves summands for which we

have already developed strategies or else involves one of the partial

sums.

1. RaR + RaR, a even

2. RaB + RaB, a even

3. RaB + RaR, a odd.

Left's options in RaP + RaR, a even, are:

1. RcR + RdR + RaR

2. RcB + RdB + RaR

Since a was even, c and d are necessarily (without loss of generality)

odd and even, respectively. Hence, Right will respond by moving in RaR

to:

1. RcB + RdR

2. RcR + RdB, respectively. These are

moves to 0.

Left's option in RaB + RaB, a even, is: RcR + RdB + RaB, where c

and d are (without loss of generality) odd and even, respectively.

Hence, Right's correct reply is a move in RaB to RcB + RdB.
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Left's options in RaB + RaR, a odd, are:

1. RcR + RdB + RaR

2. RcR + RdR + RaB

3. RcB + RdB + RaB.

Since a is odd and c + d = a-1, we have that c and d are either both even

or both odd. Right will respond in the component of length a each time.

His responses are:

1. RcR + RdB, c and d even
RcB + RdR, c and d odd

2. RcR + RdR, c and d even
RcB + RdB, c and d odd

3. RcB + RdB, c and d even
RcR + RdR, c and d odd.

From this point on, any move Left can make is merely a duplicate of

a move we have already considered. Hence, if Left begins a game on a

strip of even length, Right can always respond to him with a winning

move. Now, it is easy to see that if Right starts a game on an even

strip, the situation is essentially the same as the one just discussed

and Left will always be able to respond with a winning move.

Therefore, we have developed the strategy for the second player win

on a strip of even length. We may now consider the strategy for the

first player win on a strip of odd length.

Suppose a strip is composed of an odd number of squares, say k.

Since Rn + Rn = 0 for any n, it is clear that either Left or Right can

make a winning first move by placing a counter in square (k + 1)/2.

The first player then becomes the second player in the game R(k 1)/2,

+ R(k - 1)/2, a game for which the second player has winning strategy.

Hence, in a strip of odd length, the first player can win by moving in

the middle square and then by following the second player win strategy
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in Rn + Rn.

Three realizations about this strategy are in order. First, we had

to begin at some point (strips of even length, Left starting) and develop

the strategy step by step to make sure that a winning move could always

be made. The remaining details then followed with relatively little ef-

fort. Secondly, past a certain point (the third move) we encountered

only positions for which the strategy had already been worked out. Final-

ly, the entire strategy is predicated on six equalities obtained from

Theorem 1:

1. Rn + Rn = 0 for all n

2. RnB = 0 for n 7 2 mod 4

3. RnR = 0 for n 0 mod 4

4. RnR + RnR = 0 for n even

5. RnB + RnB = 0 for n even

6. RnB + RnR = 0 for n odd
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