
Western Kentucky University
TopSCHOLAR®

Masters Theses & Specialist Projects Graduate School

12-1991

Applications of Artificial Intelligence/Expert
Systems to Sociological Concepts
Darryl Strode
Western Kentucky University

Follow this and additional works at: https://digitalcommons.wku.edu/theses

Part of the Sociology Commons

This Thesis is brought to you for free and open access by TopSCHOLAR®. It has been accepted for inclusion in Masters Theses & Specialist Projects by
an authorized administrator of TopSCHOLAR®. For more information, please contact topscholar@wku.edu.

Recommended Citation
Strode, Darryl, "Applications of Artificial Intelligence/Expert Systems to Sociological Concepts" (1991). Masters Theses & Specialist
Projects. Paper 2877.
https://digitalcommons.wku.edu/theses/2877

https://digitalcommons.wku.edu?utm_source=digitalcommons.wku.edu%2Ftheses%2F2877&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wku.edu/theses?utm_source=digitalcommons.wku.edu%2Ftheses%2F2877&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wku.edu/Graduate?utm_source=digitalcommons.wku.edu%2Ftheses%2F2877&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wku.edu/theses?utm_source=digitalcommons.wku.edu%2Ftheses%2F2877&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/416?utm_source=digitalcommons.wku.edu%2Ftheses%2F2877&utm_medium=PDF&utm_campaign=PDFCoverPages

Strode,

Darryl A.

1991

-

APPLICATIONS OF ARTIFICIAL INTELLIGENCE/EXPERT SYSTEMS
TO SOCIOLOGICAL CONCEPTS

A Thesis

Presented to

the Faculty of the Department of Sociology

Western Kentucky University

Bowling Green, Kentucky

In Partial Fulfillment

of the Requirements for the Degree

Master of Arts

by

Darryl A. Strode

December 1991

4

AUTHORIZATION FOR USE OF THESIS

Permission is hereby

granted to the Western Kentucky University Library to make, or allow to be
made

X1 photocopies, microfilm or other copies of this thesis for appropriate research

for scholarly purposes.

n reserved to the author for the making of any copies of this thesis except

 for brief sections for research or scholarly purposes.

SignL; L)(L

Date:—le_ces.Aer i 99 I

Please place an "X" in the appropriate box.

This form will be filed with the original of the thesis and will control future use of the t
hesis.

Wiat—Proreve peal from ma hada KM 1177/11
-

_

APPLICATIONS OF ARTIFICIAL INTELLIGENCE/EXPERT SYSTEMS
TO SOCIOLOGICAL CONCEPTS

Date Rec._,, en
-) viol"

ft

Director of Th

ne-1.1 36-011e1

/ 9Date Approved S _e_ct.,,,ALLA.) • • /9 • 1

L. YY1.11-,t)
Dean of the Gra ua College

ty,-1

5- 44/

iii

ACKNOWLEDGMENTS

I would like to thank my committee members for their

guidance and helpful suggestions in this project. I would

also like to thank Margaret Cline of Academic Computing and

Research Services for sharing her time and knowledge of

artificial intelligence.

ACKNOWLEDGMENTS

LIST OF FIGURES

ABSTRACT

CHAPTER

I.

IV.

APPENDIX

APPENDIX

APPENDIX

APPENDIX

APPENDIX

APPENDIX

APPENDIX

APPENDIX

APPENDIX

BIBLIOGRAPHY

TABLE OF CONTENTS

Page

iii

Vi

INTRODUCTION 1

REVIEW OF THE LITERATURE 11

EXPERT SYSTEMS 18

APPLICATIONS TO SOCIOLOGY 39

A: Running a VP-Expert Consultation 71

B: TRIADS 73

C: MERTON 75

D: DEES 76

E: LOMEX 77

F: CLASS-EX 79

G: Running a PROLOG Consultation 81

H: Triad Model Using PROLOG 82

I: Program Disks 83

84

iv

Figure

3.1.

3.2.

3.3.

4.1.

4.2. Intransitive Triads

4.3. Rule Base of TRIADS

4.4. Run of TRIADS

4.5. Rule Base of MERTON

LIST OF FIGURES

Page

Frame for the Object "Bicycle" 26

Script of "Restaurant" 28

Semantic Network Representation 30

Transitive Triads with PROLOG Statements 44

with PROLOG Statements 47

52

53

56

58

61

62

66

68

4.6. Run of MERTON

4.7. Rule Base of LOMEX

4.8. Run of LOMEX

4.9. Rule Base of CLASS-EX

4.10. Run of CLASS-EX

vi

APPLICATIONS OF ARTIFICIAL INTELLIGENCE/EXPERT SYSTEMS
TO SOCIOLOGICAL CONCEPTS

Darryl A. Strode December 16, 1991 87 Pages

Directed by: Paul Wozniak, Joan Krenzin, and Steve Groce

Department of Sociology Western Kentucky University

Social scientists are using Al (Artificial Intelligence)

and Expert Systems in a variety of areas. This thesis

explores some applications of "intelligent" programs in the

field of sociology. These applications include modeling

social networks using logic programming and simulating

sociological decision-making using small knowledge-based

systems. PROLOG and VP-Expert are used as development tools.

In this thesis, PROLOG was used for modeling triads.

In this situation, PROLOG was used to define the "actors,"

the relations between them, and rules governing the existence

of transitive and intransitive triads. Users are able to

query the knowledge-base about various aspects of this

situation. In addition, VP-Expert was used to construct some

small knowledge-based systems. These systems deal with

determining whether a triad is transitive or intransitive,

classifying adaptation to anomie (normative confusion),

determining whether a type I or type II error has been made

in the hypothesis testing process, determining a variable's

level of measurement, and classifying individuals on the

basis of socio-economic status.

1

CHAPTER I

INTRODUCTION

The application of artificial intelligence to sociology

is a recent phenomenon. The purpose of this research is to

explore applications of artificial intelligence to

sociological concepts. This has been accomplished by

constructing programs using logic programming techniques to

model social interaction. Some small knowledge-based systems

were also designed that emulate sociological decision making.

The first section of this chapter deals with the history of

artificial intelligence while the second examines current

applications of the technology.

Artificial Intelligence (Al) is a branch of computer

science that deals with the creation of intelligent machines.

It attempts to capture in program form those human thought

processes involved in the solution of complex problems.

Areas of Al research include robotics, natural language

processing (NLP), computer vision, and expert systems.

A Brief History of Al

During World War II, American and British scientists

worked to develop a machine that could handle numerical

computations and codebreaking operations. One of the more

successful efforts was undertaken by the British to break the

German "Enigma" code. This effort was called Project Ultra

and utilized the talents of Alan Turing, a British

mathematician (Mishkoff 1986, pp. 2-4). There was

2

disagreement among the scientists over what type of operators

such a machine should use (Harmon and King 1985, P. 2).

Turing advocated the use of logical operators such as "AND,"

"OR," and "NOT". American scientists decided to use

arithmetic operators as a less expensive option. British

scientists followed suit and over time, a proliferation of

complex calculating machines using numerical operators such

as "+," "-," and ">" emerged. We refer to these machines

today as computers.

A few scientists continued research toward developing

computers that could manipulate non-numerical symbols.

Scientists with this interest, along with psychologists

interested in programs that simulated human behavior, met in

Hanover, New Hampshire, in the summer of 1956. This

gathering was known as the Dartmouth Conference, named after

the local college (Mishkoff 1986). At this conference, the

branch of computer science known as artificial intelligence

was conceived. The name was suggested by Dr. John McCarthy,

a mathematics professor and the conference's primary

organizer.

The question of whether machines could possess

intelligence was first addressed by Alan Turing in his work

"Computing Machinery and Intelligence" (Turing 1950). He

devised a situation called "The Imitation Game." There are

two stages to this game. In the first stage, the game is

played with a man, a woman, and an interrogator. Physically

separated from the other two, the interrogator attempts to

3

determine which is the woman. Communication between the

three is conducted via written communication, preferably

typed on a typewriter, Teletype or similar device. This

makes it harder for the interrogator to distinguish between

the two. During this time, the man tries to fool the

interrogator into believing that he is the woman while the

woman tries to convince the interrogator that she is who she

claims to be. The second stage of Turing's Imitation Game

involves replacing the man with a computer and resuming the

game. If the computer fools the interrogator into thinking

he is conversing with a human, the computer is presumably

displaying intelligence. This has become known as the Turing

Test, in honor of Turing, and has been used as a basis for

determining whether or not a machine is displaying

intelligence (Hofstadter 1979, pp. 594-597).

One program that has fooled many into believing that

they were actually conversing with an intelligent computer is

ELIZA (Mishkoff 1986). This program was created by Joseph

Weizenbaum at the Massachusetts Institute of Technology.

Users can converse with the program as if they were

conversing with a Rogerian psychiatrist. Based on what the

user types in, the program searches through the input string

for a recognizable keyword. Upon finding this keyword, the

program searches through its list of "canned" responses for a

match. It then prints a response often interspersed with

words the user previously typed in.

4

Applications of AI/Expert Systems

Programs created as a result of Al research have been

employed in fields such as medicine, chemistry, geology,

math, and the military. These programs are typically in the

form of expert systems. Expert systems are a product of Al

research begun in the early 1950s. They are programs that

emulate the reasoning process of a human expert solving

problems in a specific area. Expert systems possess

knowledge relating to some problem area and rules that govern

the application of that knowledge. Through the process of

inference, they reach conclusions based on the rules the

system possesses.

Medicine

MYCIN, an expert system for diagnosing infectious blood

diseases, was developed by Edward Shortliffe at Stanford

University (Firebaugh 1988). In addition to providing the

physician with a diagnosis, it can also prescribe the

appropriate medication. MYCIN's knowledge base contains

between 400 and 500 rules. Responsibility for MYCIN's

decisions is the physician's; the program acts only in an

advisory capacity. MYCIN spawned the first expert system

shell EMYCIN (for "Empty MYCIN"). EMYCIN retains MYCIN's

inference engine but not its knowledge base.

Chemistry

In the area of chemical analysis, an expert system

called DENDRAL was developed (Hayes-Roth et al. 1983). It

was created by Edward Feigenbaum at Stanford University.

5

DENDRAL can identify the structure of an unknown parent

compound by analyzing mass spectrographic, nuclear magnetic

resonance, and chemical experiment data. Its performance is

judged superior to that of humans at its task.

Geology

PROSPECTOR, a geological expert system, was designed for

interpreting soil and geological deposit data (Hayes-Roth et

al. 1983). It was created by Richard 0. Duda in 1978.

PROSPECTOR predicted the location of a molybdenum deposit

worth $100 million. Unlike MYCIN and DENDRAL which utilize

rules, PROSPECTOR's knowledge is represented in semantic nets

(a method of representing objects and the relations between

them). It performs at the level of an expert geologist.

Mathematics

Mathematical researchers and physicists regularly use

MACSYMA, a mathematics expert system (Hayes-Roth et al.

1983). Its knowledge base contains hundreds of rules from

experts in applied mathematics. MACSYMA can perform

differential and integral calculus symbolically as well as

simplifying symbolic expressions. In fact, it can perform

over 600 distinct mathematical operations (Firebaugh 1988).

MACSYMA's performance exceeds that of most human experts. It

was developed at MIT in 1968 by Carl Engleman, William

Martin, and Joel Moses.

Military

The Department of Defense is interested in using AT

technology for military applications. The Defense Advanced

6

Research Projects Agency (DARPA) started the Strategic

Computing Program (SCP) in 1983 for this task (McGraw and

McGraw 1985). Texas Instruments Corporation was contracted

to design an expert system for the SCP's Battle Management

Program. It is called FRESH (Force Requirements Expert

System). This system is used in identifying force

requirements and as an aid for the Navy in monitoring fleet

readiness. Texas Instruments has also created an expert

system for F-16 pilots called EPES (Emergency Procedures

Expert System). It was developed as part of SCP's Pilot's

Associate Program. EPES was designed to furnish pilots with

advice during in-flight emergency situations.

The previous examples show how expert systems are used

in the physical sciences and the military. Social scientists

are also starting to use expert systems and Al technology in

fields such as anthropology (e.g., Benfer 1989; Furbee 1989;

Guillet 1989; Kippen and Bel 1989; Read and Behrens 1989),

political science (e.g., Alker and Christensen 1972; Alker et

al. 1980; Banerjee 1986; Schrodt 1988; Thorson and Sylvan

1982), and social work (e.g., Winfield et al. 1986).

Benfer (1989) addresses the problem of individual

differences among experts in creating knowledge-based

systems. He states that these differences can be critical in

understanding variations in observed behavior. Individual

differences may assist in determining a system's outcome.

Knowledge-based systems for land management and selection

among health care choices are presented.

7

Guillet (1989) discusses a rule-based knowledge system

used for native soil management. Information for the system

was obtained from Lan i farmers in the Colca Valley of Peru by

means of a survey. The survey included questions about soil

management practices, soil type, altitude, area, and the

availability of water. Using open-ended questions, further

information was obtained about the farmers' rationales for

their management practices. The combined knowledge was then

formulated into a series of rules for determining what crops

should be planted.

Furbee (1989), studying the same region, describes an

expert system for classifying soils called FAI/SOILS. The

expertise for this system was gleaned from ten Lan i farmers

in the Colca Valley of Peru. FAI/SOILS also makes use of

rules for determining soil type.

Kippen and Bel describe an expert system called the Bol

Processor. This system analyzes the tabla (two piece drum

set) drumming of North Indian musicians. Tabla music is

represented by bols. Bols are a system of syllables which

when strung together form phrases that are "spoken in the

rhythm of the piece they represent" (1989, p. 132). Hence

the name "Bol Processor." The purpose of Kippen and Bel's

research was to determine whether expert systems can help

separate folk models from analytical models (the problem of

ethnographic description). They concluded that expert

systems cannot help in the separation of folk from analytical

statements due to shortcomings in the knowledge acquisition

8

process and suggest a need for automated learning procedures.

Read and Behrens (1989) created an expert system called

BATES (Bisayan Address Term Expert System). This expert

system was created by translating and representing the

cultural knowledge of Philippine Bisayan speakers. BATES is

a rule-based expert system consisting of 43 rules. Read and

Behrens' goal was to explore ways in which expert systems

could be used to express the knowledge of folk systems.

One of the first articles on the application of

artificial intelligence to the social sciences was by Alker

and Christensen (1972). They created a computer model for

simulating United Nations peace-making activities. This

model, called PRECEDENT, was designed to choose among

precedent logics. Artificial intelligence was seen as a

progression from causal modeling. Alker et al. (1980) also

used precedent logics for the resolution of insecurity

dilemmas.

Banerjee (1986) used artificial intelligence for

modeling social structures. His program illustrates how

social structures reproduce using a model of social cognition

and action based on Jean Piaget's cognitive development

theory in psychology. Using PROLOG, Banerjee modeled Theda

Skocpol's analysis of China's sociopolitical structure in the

1930s and O'Donnell's version of Latin American bureaucratic-

authoritarian structure during the 1960s.

Schrodt (1988) discusses the application of Al to

international relations (IR), specifically in modeling social

9

phenomena. He lists three major research focuses in IR/AI:

rule-based systems, historical precedent-based systems, and

natural language systems. Schrodt states that Al has

stimulated the development of "new, testable" theories

involving international behavior. IR/AI models (also called

formal cognitive models) developed in part because of the

limitations of statistical models. Schrodt believes that

since IR/AI models share a common basis in human psychology

and human decision making under adverse conditions, they

approximate traditional IR theories more so than do

statistical models.

Thorson and Sylvan (1982) present an Al program called

JFK/CBA that simulates the decisions made by President John

F. Kennedy during the Cuban Missile Crisis. The program

contains knowledge of the crisis as well as a set of rules

depicting Kennedy's beliefs about the Soviet Union,

diplomacy, and the military. JFK/CBA uses production rules

of the form CONDITION --> ACTION to represent Kennedy's

beliefs. This means if a certain condition is met some

action will be taken. The program makes use of

"counterfactuals," meaning the user can change historical

facts to determine alternative outcomes.

Another social science field where AI/Expert Systems

applications are being explored is social work. Winfield et

al. (1986) discuss a prototype expert system for enuresis

(bedwetting). They believe that expert systems such as this

one can assist social workers by training them in correct

10

procedures and assisting them in complex decision making.

The previous examples show how AI/Expert Systems are

used in areas such as anthropology, political science, and

social work. The next chapter explores some applications of

AI/Expert systems in sociology.

11

CHAPTER II

ARTIFICIAL INTELLIGENCE AND SOCIOLOGY:
A REVIEW OF THE LITERATURE

Social scientists have traditionally used computers for

quantitative analysis utilizing software such as SPSS

(Statistical Package for the Social Sciences), student

exercises, and for word processing tasks. Some are now

exploring applications of Al to sociology. These

applications include theory construction, qualitative data

analysis, and hypothesis formulation.

A leading advocate of using Al in sociology, Dr. Edward

Brent of the University of Missouri at Columbia, has written

extensively on qualitative computing methods and applying Al

programming techniques to the field of sociology (See Brent

1984, 1985, 1986, 1988a, 1988b, 1989a, 1989b; Brent and

Anderson 1990; Brent et al. 1989). Brent (1986) examines the

application of knowledge-based systems to the social

sciences, particularly in modeling Erving Goffman's

dramaturgical perspective in an Al programming language. He

presents knowledge-based systems as an alternative method or

"qualitative formalism" for solving problems that

mathematical techniques cannot handle. Brent constructed a

program called N-ACT written in the PROLOG programming

language. This program consists of passages from Goffman's

The Presentation of Self in Everyday Life (Goffman 1959)

translated into equivalent PROLOG statements. The program

illustrates how artificial intelligence programming methods

12

can assist in the construction of sociological theory. The

user of N-ACT alters elements of the program's knowledge base

to determine what effect that has on the program's

conclusions. Brent (1989a) has dramatically revised this

program and renamed it ERVING (after Erving Goffman). The

revised program teaches students to reason sociologically

from Goffman's dramaturgical perspective. Brent et al.

(1989) have also designed a program to assist in determining

sample size called EX-SAMPLE, and one that aids in the

selection of statistical analyses for research applications

called Statistical Navigator (1989b). Both of these programs

also utilize Al programming techniques and are recognized as

expert systems.

Like Brent, Gilbert and Heath (1985) are also interested

in AI's contribution to sociological theory construction.

Gilbert and Heath suggest that artificial intelligence

possibly has both methodological and substantive

contributions to make to sociology. They support this claim

by pointing out the fact that when a computer program is

written, ideas must be fully developed and difficulties must

be completely resolved (a lesson for sociological theorists).

If these aspects of construction are not addressed, neither

the computer program nor the sociological theory will work

correctly. Using a term popular with computer scientists,

they would both "crash." Gilbert and Heath suggest that

sociologists build and execute computer programs using Al

techniques that can express the ideas of a number of actors

13

in a social situation to determine if the program performs up

to the theoretical expectations of the researcher. If so,

the program would provide support for the researcher's

theory.

Sylvan and Glassner (1985) argue that rationalism is a

better methodology for understanding the social world than

empiricism, which they claim "seeks to manipulate empirical

phenomena through experimental and other methods."

Rationalist theories, however, explain phenomena through

logical possibilities instead of statistical probabilities,

the focus being on combination instead of causality. Sylvan

and Glassner developed a formal model of a rationalist theory

based on the work of Georg Simmel. LOGLISP, a logic

programming language, was used to create this model. LOGLISP

is an acronym for LOGic and LISP. LISP stands for LISt

Processing and is the dominant language used in the United

States for artificial intelligence programming. The goal of

Sylvan and Glassner's project was to use this program to

generate hypotheses through its logical implications,

primarily the deduction of Simmel's (1955) conflict-cohesion

hypothesis itself. Although the program was unable to

generate the general form of the hypothesis, it did produce

more specific versions of it.

Like Sylvan and Glassner, Hinze (1987) argues that

qualitative computing approaches such as artificial

intelligence are more applicable to the study of human

behavior, norms in this case, than of formal statistics. He

14

believes that Al provides a means for studying organizational

structures, both formal and informal, as well as the concepts

of role strain and role ambiguity.

The marriage of Al and sociological theory is not all

roses. According to Wood (1986), designing expert systems

for areas such as medicine and geology is relatively

straightforward. Creating expert systems for social

situations, however, is inherently difficult. Medicine and

geology are physical science fields based on very precise

knowledge. For the most part, sociological theories lack the

predictive power of physical science theories. This is so,

Wood states, because knowledge of why things happen in social

situations as well as what will occur in a given social

situation is less precise than that of other scientific

theories. As a result, sociological knowledge is difficult

to formalize into a system of rules.

Gerson (1985) also holds a pessimistic view of

artificial intelligence. She believes that there is a lot of

hype surrounding AI's possible contribution to qualitative

sociological research. Gerson says that expert systems can

perform limited tasks but cannot meaningfully interpret

things. She attributes this shortcoming to the current state

of the art in Al technology. Gerson believes it will be some

time before Al evolves beyond the stage of "laboratory

curiosity" for sociological researchers.

Another area of application for AT technology is

qualitative data analysis. Drass (1980) describes a program

15

that can be used as an aid in the analysis of qualitative

field data. The program is called LISPQUAL. The program

consists of LISP (an AT programming language) functions to

assist in the qualitative research process. Drass divides

analysis procedures into an interpretive phase and a

mechanical phase. The interpretive phase involves deriving

meaning from research data. The mechanical phase deals with

all procedures that are noninterpretive in nature (e.g.

scanning data for the presence or absence of a symbol or

code). LISPQUAL was designed to handle operations in the

mechanical phase. It does not perform any interpretive

operations. These are left for the researcher.

Drass' program shows how Al can assist the data analysis

process without affecting the nature of the process itself.

It does this by handling the routine, lengthy, mechanical

operations involved in a faster, more accurate manner. This

allows the researcher to spend more time on interpreting the

data instead of coding it.

Along the same lines, Carley (1988) created an expert

system called SKI for use in coding verbal protocols. There

are two steps to this procedure. Verbal data are first coded

using a computer procedure called CODEF. The resulting

knowledge base is then processed by the SKI expert system.

SKI contains knowledge about the sociocultural environment

related to a particular protocol. Using its inference engine

ADDSOC, SKI can make implicit information in the protocol

explicit. In doing this, the system can diagnose and correct

16

errors made by a novice coder. The use of this expert system

increases the reliability and replicability of coded data.

Like Edward Brent, Garson (1986) is also interested in

applying expert systems to the social science research

process. He explored the role of inductive expert systems

generators in the area of political science. An expert

system generator can induce a set of rules from a matrix of

data. Garson constructed a system using the 1st Class expert

system generator, that could explain variance in legislative

satisfaction. His data consisted of factors compiled by

Wayne L. Francis. These factors were "thought to determine

the variance in the extent to which state legislators are

satisfied with legislative outcomes" (Garson 1986, p. 13).

Based on the data, Carson's expert system made the following

conclusions about legislative outcomes:

It is appropriate to have a long
bills and reject many of them.

2. It is inappropriate to have a short
bills and then accept most.

3. If time is short, it is still
is being inundated with bills
chamber.

time to consider

inappropriate if one
from the other

Garson advocates the use of expert systems in

formulating exploratory hypotheses. Social scientists could

then confirm the hypotheses using traditional methods of

analysis.

Taking an entirely different approach, Woolgar (1985) is

concerned with the prospects of an association between

sociology and Al, but advocates viewing Al itself from a

sociological perspective instead of contemplating potential

1. time to consider

17

applications of Al to sociology. He notes that in the

abundant literature on Al, disciplines such as psychology and

philosophy are universally acknowledged while sociology is

rarely mentioned. When it is mentioned, Woolgar

veiled in terms of the "social" realm as opposed

"scientific" world. The emphasis is more on the

says it is

to the

impact of Al

on society than on the contribution of sociology to the

development of Al.

Woolgar's suggestions include developing a sociology of

Al researchers, looking at the products of Al as social

constructions, and viewing intelligent machines as the

subjects of sociological study. He states that the latter

suggestion could utilize standard sociological methods in the

analysis. Woolgar asks "Why not a sociology of machines?"

given that machines with artificial

humans enough "to be treated as the

inquiry" (1985, p. 568).

The information presented in this chapter shows various

applications of artificial intelligence to sociology. The

authors presented here used a variety of Al techniques to

represent sociological knowledge. One of these techniques,

expert systems, will be examined in detail in the next

chapter.

intelligence resemble

subjects of sociological

18

CHAPTER III

EXPERT SYSTEMS

An expert system is a program designed to solve problems

in a specific domain utilizing artificial intelligence

programming techniques. Knowledge for the expert system is

obtained from persons who are considered expert in a

particular field (Levine et al. 1986, p. 21).

Unlike standard programs that use algorithms to solve

problems, expert systems use heuristics (shortcuts or "rules

of thumb") in deriving solutions. Using the algorithmic

method, a user is guaranteed a correct solution. But

heuristics, like human experts, produce satisfactory results

in most cases but not all (Waterman 1986, p. 17). According

to Waterman, expert systems are good for solving problems

that are "typically difficult," "poorly understood," and

unsuitable for mathematical or algorithmic solutions. Hayes-

Roth et al. (1983, p. 5) go further by identifying categories

of problems that expert systems are ideal at solving. These

categories are "interpretation, prediction, diagnosis,

debugging, design, planning, monitoring, repair, instruction,

and control."

Waterman (1986, pp. 12-15) discusses a number of

advantages of expert systems over human experts. First of

all, knowledge contained in expert systems is permanent.

When a human expert dies, his/her knowledge dies also. If

the human expert goes for a long period of time without

19

practicing problem solving ability, his/her proficiency will

decrease. An expert system's knowledge base remains current

regardless of use levels. Another advantage of expert

systems is transferability. It is much easier to transfer

knowledge by copying a program than to educate a human being

to a high level of expertise. Unlike human experts, expert

systems make consistent conclusions in identical situations.

Human experts are susceptible to emotions, fatigue, and

illness which may cause them to make differing or incorrect

decisions under similar circumstances. Perhaps the biggest

advantage of expert systems over human experts is cost. The

expert system is relatively inexpensive in comparison with

human experts who often command high salaries for their

expertise.

Although there are a number of advantages of expert

systems over human experts, Waterman also points out some

disadvantages as well. Perhaps the most serious is that

these systems lack common sense. As ethnomethodologists have

stated, common sense reasoning is something that most of us

take for granted but it is essential for our everyday

operation in society (see Garfinkel 1967; Schutz 1962). Due

to the sheer vastness of this knowledge, its replication in

an expert system would be an incredible feat. Expert systems

are also unable to formulate new rules or modify their

knowledge. In other words, they lack creativity. Unlike

human experts, artificial experts cannot experience sensory

input. The senses, touch, sight, smell, taste, and sound

20

have an impact on many decisions that human beings make.

Finally, human experts can examine everything pertinent to

the situation at hand, but computerized experts focus

exclusively on the problem itself. They are unable to

explore issues that are relevant to, but not a part of, the

problem under consideration.

Architecture of an Expert System

Currently, there is no industry standard for the

development of expert systems. Some are created using high

level Al languages such as LISP or PROLOG. Others are

developed using expert system shells. An expert system shell

is a program with the inference mechanism included.

According to Mishkoff (1986), however, all expert systems

share these three essential components: a knowledge base, an

inference engine, and a user interface.

Knowledge Base

The heart of an expert system is its knowledge base.

The knowledge base is the part of the system that contains

facts and rules necessary for solving a particular problem.

This knowledge can be categorized into two types:

declarative, and procedural. Declarative knowledge is

information pertaining to objects, events, and situations.

It consists of descriptions of and relations between these

items. Procedural knowledge assists the system in

determining an appropriate course of action to take toward

solving a problem.

21

Inference Engine

The second component of an expert system is the

inference engine. It contains the general problem-solving

capabilities of the system. The inference engine is in

charge of running the expert system. In fact, it is

sometimes referred to as the control system. There are two

parts to the inference engine: control, and logic. The

inference engine controls the order in which rules are fired

and resolves conflicts when multiple rules are applicable.

During this process, it continually applies rules to the

knowledge base until it reaches a goal state. As it reaches

each goal, it records all of the rules it uses or "fires" in

solving the problem for future reference.

User Interface

The final component in an expert system is the user

interface. The knowledge contained in the expert system is

virtually useless unless there is some means of gaining

access to it. The user interface provides this access. The

user interface is the communications link between the user

and the system. It also answers user inquiries concerning

the reasoning process of the system.

Knowledge Engineering

Creating a computer system that can produce intelligent

results requires examination of the thought processes or

mental steps that people use when trying to make decisions or

solve problems. The thought processes must be broken down

into a series of steps that can be implemented in a computer

22

program. The computer can then use these same steps in

solving a particular problem (Levine 1986, p. 3). This

process of developing an expert system is known as knowledge

engineering.

The person who develops the system is called a knowledge

engineer. Knowledge engineers attempt to replicate the

behavior of an expert engaged in the solution of a narrowly

defined problem. He/she must be able to identify the

knowledge that the expert uses in solving a particular

problem. In addition to particular facts, the knowledge

engineer must also determine what rules of thumb (heuristics)

the expert uses in solving a problem as well as the

particular inference strategy involved (Harmon and King 1985,

p. 5). A prototype system is then constructed that utilizes

this knowledge toward solving a problem, much as the human

expert would.

The knowledge engineer does not work in a vacuum. The

knowledge engineer may or may not be an expert in the subject

area that the system is developed for. In most cases, the

knowledge engineer works in close consultation with a person

known as a domain expert. The domain expert is generally

considered an expert in his/her field. This person has the

ability to articulate his/her knowledge clearly and is able

to provide efficient solutions to problems within his/her

area of expertise. The knowledge engineer constructs the

expert system by obtaining this knowledge and expertise from

the domain expert and entering it into the expert system.

23

Although this expertise is usually gleaned from experts, it

can also be taken from books and other sources on the subject

area (Waterman 1986, p. 9). After the necessary knowledge has

been accumulated, it must then be organized. In summary,

knowledge engineering involves "extracting, articulating, and

computerizing the expert's knowledge" (Hayes-Roth et al.

1983, p. 12). The process of knowledge engineering assumes

that the performance of an expert lends itself to

computerization. The next task the knowledge engineer must

perform is deciding how the knowledge should be represented

in the expert system.

Knowledge Representation

Before construction of the expert system can take place,

the knowledge engineer must decide how the knowledge should

be structured in the system. This is known as knowledge

representation (Waterman 1986, p. 20). There are a variety

of knowledge representation techniques available for the

knowledge engineer to choose from. These methods are rules,

frames, scripts, and semantic networks.

Rule-Based Systems

Rule-based expert systems are the most popular types of

expert systems in use. In these systems, knowledge is

represented as a series of "production rules" (Mishkoff 1986,

pp. 3-4). The knowledge engineer formalizes the knowledge of

the domain expert into a set of "IF-THEN" rules. These rules

have the following format:

IF "condition" THEN "action"

24

If the condition or premise is satisfied by information

contained within the knowledge base, the rule becomes subject

to being "fired" by the control system. An actual rule looks

something like this:

RULE 1

If it is raining outside,
Then the ground is wet.

This rule seeks to establish whether the ground is wet. If

the premise of this rule, that it is raining outside, is

satisfied, then the system would conclude that the ground is

wet. The system determines whether a particular fact is true

either by searching its database for the information or by

querying the user of the system.

Rules can also contain multiple conditions joined by

either logical "ANDs" or logical "ORs." Consider the

following example:

RULE 2

If it is raining outside, AND
going outside is necessary,

Then an umbrella should be taken.

In Rule 2, the logical AND means that both conditions of the

premise must be true for the conclusion to be true. If the

word "OR" were substituted for "AND" in this case, either of

the conditions, but not necessarily both, would have to be

true for the conclusion to be true.

Unlike traditional programming methods, portions of an

expert system can be easily modified. This can be done by

adding, deleting, or substituting a rule. Extensive

modifications are required to modify a standard program,

25

but changes to an expert system need not affect the structure

of the whole program (Levine et al. 1986, p. 4)

Frame-Based Meth21g

Another method of knowledge representation is the theory

of Frames. This theory was conceived by Marvin Minsky in

1975. Minsky defined a frame as "a data structure for

representing a stereotypical situation" (1975, p. 212).

Knowledge in frames is represented as a network of nodes and

relations between the nodes. A frame is composed of levels.

The top level of the frame contains information that is

always true about the situation. Lower levels of the frame

are composed of slots which are filled with specific

instances or data. Related frames can be linked together to

form a system of frames. Figure 3.1 illustrates a frame of

the object "Bicycle." When one thinks of this object, a

mental picture composed of attributes listed in Figure 3.1

enters the mind. Each of these attributes occupies its own

slot in the frame.

Scripts

Scripts, like Frames, can also represent stereotypical

situations. Scripts are a product of research conducted by

Roger Schank and Robert Abelson at Yale University.

According to Firebaugh (1988, p. 294), scripts are similar to

frames but contain additional information such as the

expected sequence of events in a given situation and the

goals and plans of actors involved. Such stereotypical

situations as going to the doctor's office or to a restaurant

26

Figure 3.1. Frame for the Object "Bicycle" *

Frame: Bicycle

Parts: frame, wheels, tires, pedals, seat, handlebars, gears

Composition of frame: aluminum, steel, composite

Color: any

Size: 24", 26", 28", 30"

Speed: single, three, five, ten, twelve, twenty-one

Type: dirt, racing, mountain, touring

Function: transportation

Brand: Cannondale, Trek, Schwinn

* Note: This is not an exhaustive list.

27

can be represented as scripts. In both cases, we expect a

certain series of events to transpire. For example, when one

goes to a restaurant, one expects certain props to be

present, such as tables, chairs, tableware, dishes, menus,

and, of course, food. Tn addition, one would expect to

encounter people in roles that lead us to believe we are in a

restaurant. These people are the cooks, cashier,

waiter/waitress, busboy, and even other customers. We assume

that a person who goes to a restaurant is hungry and that the

hunger can be relieved by consuming food. We also assume

that upon completion of the meal, one will pay for the food.

All of these events can be represented in the computer as a

series of scripts. Provided with this knowledge of

expectations, a computer can make sense out of incomplete

information and draw conclusions about this scenario. Figure

3.2 highlights a portion of the famous Restaurant Script by

Schank and Abelson (1977, pp. 42-46).

Semantic Networks

Semantic networks are a method of knowledge

representation used to illustrate complex relations between

objects, concepts, or situations (Barr and Feigenbaum 1981,

pp. 180-189). Semantic networks were designed in 1968 by

Ross Quillian as psychological models of human associative

memory. These networks are composed of two components: nodes

and arcs. Nodes are represented graphically as either boxes

or circles. The nodes represent objects, concepts, or

situations. Arcs (also known as links) represent relations

28

Figure 3.2. Script of "Restaurant" by Schank & Abelson *

Script: Restaurant (Coffee Shop)

Props: Tables, Chairs, Menus, Food, Money

Roles: Customer, Waiter, Cook, Cashier, Owner

Conditions for Entry: Customer is hungry.

Customer has money.

Results of Entry: Customer has less money.

Owner has more money.

Customer is no longer hungry.

Customer is pleased. (possibly)

Scene 1: Entering the Restaurant

Customer enters restaurant.

Customer looks at tables.

Customer decides where to sit (no "Wait to be seated"

sign is present).

Customer walks to chosen table. Customer assumes

sitting position.

* This is not a complete set of possibilities.

29

between the nodes. They are depicted graphically as arrows

that link the nodes together. Suppose we wanted to represent

the simple fact: "All tuna are fish." This can be

accomplished by using two nodes -- one labeled "TUNA," the

other "FISH." The nodes are then connected by an arc that is

labeled "isa" to indicate the relation between them.

TUNA isa

Suppose also that this particular tuna is named Charlie. A

third node is added with the label "CHARLIE" as follows:

CHARLIE isa isa

At this point we have established two facts:

1. A tuna is a fish.
2. Charlie is a tuna.

From these two facts, a third can be deduced by following the

"isa" arcs:

3. Charlie is a fish.

This illustrates a feature of semantic networks known as

inheritance. One can go further with this model by adding

properties to the object FISH such as:

1. Fish have scales.
2. Fish have gills.
3. Fish can swim.

This is done by using additional nodes to represent the

properties and links to specify the relations. A complete

model is presented in Figure 3.3. By inheritance, we can

Figure 3.3. Semantic Network Representation

31

ultimately infer from this model that Charlie is a tuna fish

with scales and gills and can swim.

Automated Reasoning

In order for an expert system to reason intelligently,

it must be able to infer new facts from information it

already possesses. Artificial Intelligence has employed the

use of logic in solving problems. By utilizing logic or

rules of inference, Al researchers have been able to automate

the process of symbolic reasoning in the computer. Logic

provides both a means of representing knowledge and a

"formalism for extracting the implications of that

knowledge" (Firebaugh 1988, P. 131).

Firebaugh (1988, pp. 132-135) discusses three types of

logical inference procedures that are used in drawing

conclusions. These are deduction, induction, and abduction.

Deduction

Deduction is the process of reasoning from something

general to something specific. Consider the following

statements:

All sociologists are human.
Emile Durkheim is a sociologist.

From these two statements, a third can be deduced:

Emile Durkheim is a human.

A basic rule of inference utilizing deductive logic is

called modus ponens. The syntax of this rule is:

32

This states that P implies Q and if P is true, then Q is

true. Say P represents the fact that it is raining outside

and that Q means one should carry an umbrella. In this

example, the fact that its raining outside (P) implies that

one should carry an umbrella. Given P, one would, therefore,

conclude Q, that one should carry an umbrella. Rule-based

expert systems use this type of reasoning to derive new facts

that become part of the system's knowledge base.

Induction

The process of induction is the opposite of deduction.

Inductive reasoning involves using a number of facts to

induce a general conclusion. For example, if one observes

that all sociologists who have attended the last three ASA

(American Sociological Association) meetings brought tape

recorders, one could logically infer that all sociologists

who attend ASA meetings bring tape recorders. This may or

may not be the case, however.

Abduction

Abduction is a form of deductive logic that provides

"plausible inferences." Consider the following example:

All successful sociologists have tenure.
Achmed Abu has tenure.

From the available information, one could make the plausible

inference that Achmed Abu is a successful sociologist. Again

this may or may not be true. Achmed Abu might be a

psychologist or a computer scientist, for example. In

addition, Achmed could be one who was awarded tenure but had

not been successful.

33

Constructing Expert Systems

Hayes-Roth et al. (1983, pp. 23-25) identify five major

stages in the construction of expert systems. These stages

are identification, conceptualization, formalization,

implementation, and testing.

Identification

The first step in constructing an expert system is

defining a goal or problem to be solved. After this is

accomplished, concepts and characteristics of the problem are

determined. This stage is known as identification. During

this stage, the knowledge engineer consults books or other

materials to gain familiarity with the subject. Specific

resources necessary for project completion such as time and

computing facilities must be determined. In addition, all

others who will contribute to the development of the system

are identified at this stage.

Conceptualization

In the conceptualization stage the knowledge engineer

and the domain expert work together to formulate concepts and

strategies necessary in solving the problem. Sometimes, the

problem is diagrammed to illustrate graphically these

concepts and how they work together toward solving the

problem. Subgoals are dealt with similarly at this stage.

Formalization

The third stage of expert systems construction is the

formalization stage. In this stage the knowledge engineer

must concentrate on how to represent formally the concepts

34

and strategies formulated in the previous stage. This

involves the selection of an appropriate Al programming

language or expert system development tool. The central task

of this stage is the design of structures to organize the

knowledge.

Implementation

During the implementation stage knowledge formalized in

the previous stage is implemented using one of the knowledge

representation methods. The knowledge engineer can choose

from rules, frames, semantic nets, or scripts. This

reformulated knowledge along with the program's control

structure make up a prototype program that can be executed

and checked for errors.

Testing

The final stage in constructing an expert system is

testing. During this stage the prototype program is

subjected to rigorous testing. This is done to reveal

possible weaknesses or errors in the system. It is a rare

occurrence for a program to execute correctly on the first

attempt. Continuous revision of the rules is performed until

the system performs up to the expectations of the domain

expert. The emphasis in this stage is on validating the

rules that make up the system.

Tools for Expert System Construction

There are a variety of methods for constructing expert

systems. Expert systems may be constructed using Al

programming languages such as LISP or PROLOG. They may also

35

be created by using expert system shells. Unlike programming

languages, expert system shells already have the inference

engine built-in. This decreases development time and allows

the researcher to concentrate more on the problem domain than

on programming. Some commercial expert system shells in use

today include 1st Class Fusion, M.1, Knowledgepro, EXSYS, and

VP-Expert. The advantage of using an Al programming language

over an expert system shell is flexibility. It gives the

researcher control over project development that a

preprogrammed shell cannot deliver.

PROLOG

One of the high-level languages used for expert system

development is PROLOG. PROLOG is an acronym for PROgramming

in LOGic. This language was developed between 1970 and 1972

in France by a team of researchers headed by Alain Colmerauer

(Clocksin and Mellish 1987, p. 221).

Unlike other programming languages which are procedure-

oriented, PROLOG is a descriptive language which is

symbolically oriented. It is used for solving problems that

involve objects and the relations between those objects

(Clocksin and Mellish 1987, p. 1). The following is an

example of a simple PROLOG knowledge-base:

1. student (daryl,wku).
2. student (jane, osu).
3. student (scott,uk).
4. majors_in (daryl,sociology).
5. majors_in (jane,computer_sci).
6. majors_in (scott,medicine).
7. is_healthy(X):-student(X,Y),majors_in(X,medicine)
8. is_wealthy(X):-student(X,Y),majors_in(X,computer_sci)
9. is_wise(X):-student(X,Y),majors_in(X,sociology).

36

The first line of this database asserts the fact that "Daryl

is a student at WKU." The second line asserts that "Jane is

a student at OSU" while the third asserts that "Scott is a

student at UK." Note that the word "student" describes the

relation between the two objects in parentheses. This is

known as predicate calculus. A predicate is defined as

assertions about individuals in relation to themselves and to

other individuals. The predicate is generally expressed as:

predicate (arguments).

The computer accepts these assertions as facts although they

do not necessarily have to be true in the real world. Take

the following example:

president(bozo,usa).

This translates into "Bozo is the president of the U.S.A,"

which everyone knows is false; but the computer accepts it as

fact. Lines four through six of the above database tell what

each student is majoring in. Line four asserts that "Daryl

majors in sociology" while lines five and six assert the

respective majors of Jane and Scott. Lines seven, eight, and

nine differ from the first six in that they state rules

instead of facts. Line seven translates into "A person X,"

where X is a variable that can be instantiated with the name

of any of the students provided that he/she meets the

criteria of the rule, "is healthy if he/she is a student and

he/she majors in medicine." The symbol ":-" means "if" in

PROLOG while the "," represents the word "AND." It should be

noted at this point that PROLOG rules can also contain "ORs"

37

in their logic. An "OR" is represented by the ":" symbol.

If we wish to determine which of the three students in our

database meets the criteria for being healthy, we ask the

computer in the following manner:

?- is healthy(X).

which translates into "Who is healthy?" Note that the

symbol represents a system prompt and is not a part of the

command. After searching its database, the computer will

respond:

X=scott

since Scott is a student and he is majoring in medicine.

Note that both conditions must be satisfied since the logical

operator "AND" was used. At this point, the computer will

continue searching its database to see if anyone else meets

the criteria of the rule. If it finds someone else it will

display his/her name, otherwise it will stop the search and

await the next question. Line eight states that a person is

wealthy if he/she is a student majoring in computer science

while the last states that a person is wise if he/she is a

student majoring in sociology. A user may query the computer

to find out who is wealthy and who is wise by issuing the

commands:

?- is_wealthy(X).
?- is_wise(X).

After initiating another search of its database, the computer

should respond X=jane, and X=daryl respectively. Note that

each PROLOG command must end with a terminator ".". Also

note that if the computer is unsuccesful in its search for an

38

answer to a question, or if a user asks it something that is

not true, it will simply respond "no."

The next chapter shows how these logic programming

techniques can be used for constructing social networks.

39

CHAPTER IV

APPLICATIONS TO SOCIOLOGY

This chapter is divided into two sections. The first

section illustrates, in tutorial fashion, how social

situations, particularly dyads and triads, can be represented

and examined using the Al programming language PROLOG. The

second section presents some expert systems designed for

sociological decision making.

Representing Dyads and Triads using PROLOG

Since PROLOG is designed to solve problems involving

objects and the relations between those objects, sociologists

can use people or groups as the objects of analysis when

constructing a PROLOG program. An obvious application of

PROLOG in sociology is examining social networks composed of

dyads and triads. Instead of representing data structures as

computer scientists do, sociologists can represent complex

social structures with PROLOG.

A dyad is composed of two individuals engaged in social

relations. According to Stark (1985, p. 4) it is the

smallest group of sociological interest. If one member

leaves the relationship, the dyad ceases to exist.

Representing one type of dyad using PROLOG is a

straightforward procedure. The first step that should be

taken is to tell the computer what actors are involved in the

situation. For example, say our initial actors are Alan and

Betty. The PROLOG commands to tell the computer this

40

information are:

person (alan).
person (betty).

These commands tell the computer that Alan and Betty are

persons. Now that the actors have been defined, the

relations between them must be defined. This is done with

the following statements:

likes (alan, betty).
likes (betty, alan).

The first statement asserts the fact that "Alan likes Betty.

Alan's feelings for Betty are unrequited at this point. The

second statement "Betty likes Alan" makes the feeling mutual.

Thus, a dyadic relationship has been formed in the computer's

memory. To tell the computer that the relationship between

Betty and Alan is a dyad, the following PROLOG rule must be

entered:

dyad (A,B) :- person (A), person (B),
likes (A,B), likes (B,A).

This rule says that a dyad exists if A and B are persons and

person A likes person B and person B likes person A. This

rule can be tested by entering the following command

substituting "Alan" for A and "Betty" for B:

?- dyad (alan, betty).

This command is equivalent to the question "Do Alan and Betty

comprise a dyad?" Provided that the previous statements had

been entered, the computer should respond either "yes" or

"true" depending on what version of PROLOG you are using.

Versions available include PROLOG-86, PD (Public Domain)

PROLOG, and Turbo Prolog. If we wanted to know "Who is

41

involved in this situation?", we could enter the command:

?- person (X).

The computer would respond:

X = alan
X = betty.

If we wanted to know "Who likes whom?", we would enter the

command:

?- likes (X,Y).

The computer should respond:

X = alan
Y = betty

X = betty
Y = alan.

When a third member is added, the dyad becomes a triad.

A triad is composed of three persons engaged in social

relations (Caplow 1968; Stark 1985). Suppose we wanted to

add a third member named "Carol" to our current duo. The

first step would be to tell the computer that this third

person exists. This can be done by adding the following

statement to our current knowledge base:

person (carol).

Carol's relations with Alan and Betty must now be

established. The following lines will accomplish this task:

likes (carol, alan).
likes (carol, betty).
likes (alan, carol).
likes (betty, carol).

It isn't necessary for a triad's members to all like each

other as our trio does. The only requirement for a triad to

exist is that its three members engage in social relations.

42

This requirement can be met by adding the following

statement:

engage_in_social_rel (alan, betty, carol).

The final task is telling the computer what constitutes a

triad. A PROLOG rule representing a triad appears as

follows:

triad (A,B,C) :- person (A), person (B), person (C),
engage_in_social_rel (A,B,C).

This rule states that A, B, and C, defined as persons,

comprise a triad if they engage in social relations. To

determine if Alan, Betty, and Carol make up a triad, we would

enter the command:

?- triad (alan, betty, carol).

If all previous statements had been entered correctly,

the computer would respond either "yes" or "true" since Alan,

Betty, and Carol have all been defined as persons and engage

in social relations.

As can be seen, Carol shares a mutual liking with both

Alan and Betty. This is known as a transitive or balanced

triad (Stark 1985, p. 6). It isn't necessary for all members

of a triad to like each other in order for a triad to exist.

This occurs when there are no two members who like each other

and have opposite relations with the third. In other words

"Your friends are my friends" and "Your enemies are my

enemies." For example, if both Betty and Alan, who like each

other, held a mutual dislike for Carol, the triad would still

be balanced. In all, there are four different combinations

of balanced triads. Each of these combinations can be

43

represented as a series of PROLOG statements. They are

presented in Figure 4.1 along with corresponding PROLOG

statements. If any of the four combinations in Figure 4.1

are true, the triad is transitive or balanced. A PROLOG rule

can be created to determine whether a triad is transitive by

combining all possible conditions into one statement.

transitive (A,B,C) :- likes (A,B), likes (B,A),
likes (A,C), likes (C,A),
likes (B,C), likes (C,B);

likes (A,B), likes (B,A),
dislikes (A,C), dislikes (C,A),
dislikes (B,C), dislikes (C,B);

dislikes (A,B), dislikes (B,A),
likes (A,C), likes (C,A),

dislikes (B,C), dislikes (C,B);

dislikes (A,B), dislikes (B,A),
dislikes (A,C), dislikes (C,A),

likes (B,C), likes (C,B).

This rule asserts that persons A, B, and C comprise a

transitive triad if they meet one of the four arrangements

for a transitive triad. To test this rule, consider the

following PROLOG knowledge base:

person (alan).
person (betty).
person (carol).
likes (alan, betty).
likes (betty, alan).
likes (alan, carol).
likes (carol, alan).
likes (betty, carol).
likes (carol, betty).
engage_in_social_rel (alan, betty, carol).
triad (A,B,C) :- person (A), person (B), person (C),

engage_in_social_rel (A,B,C).
transitive (A,B,C) :- likes (A,B), likes (B,A),

likes (A,C), likes (C,A),
likes (B,C), likes (C,B);

44

Figure 4.1. Transitive Triads with PROLOG Statements

A A
/ \ / \

4- / \ + - / \ +
/ \ / \

/ \ / \
/ \ / \
B C B C

+ _

likes (A,B), likes (B,A),
likes (AC), likes (C,A),
likes (B,C), likes (C,B).

dislikes(A,B),dislikes(B,A),
likes(A,C), likes(C,A),

dislikes(B,C),dislikes(C,B).

1 4--

like
dislike 1

A A
/ \ / \

+ / \ - - / \ -
/ \ / \

/ \ / \
/ \ / \

cB C B
- +

likes(A,B), likes(B,A),
dislikes(A,C),dislikes(C,A),
dislikes(B,C),dislikes(C,B).

dislikes(A,B),dislikes(B,A),
dislikes(A,C),dislikes(C,A),

likes(B,C), likes(C,B).

45

likes (A,B), likes
dislikes (AC), dislikes

(B,A),
(C,A),

dislikes (B,C), dislikes (C,B);

dislikes (A,B), dislikes (B,A),
likes (A,C), likes (C,A),

dislikes (B,C), dislikes (C,B);

dislikes (A,B), dislikes (B,A),
dislikes (AC), dislikes (C,A),

likes (B,C), likes (C,B).

If we wanted to know whether Alan, Betty, and Carol make up a

transitive triad, we would enter the command:

?- transitive (alan, betty, carol).

The computer should respond either "yes" or "true." This

happens because Alan, Betty, and Carol meet the conditions

of the first transitive triad arrangement presented in Figure

4.1.

Triads can also be imbalanced or intransitive. This

situation occurs when there are two members of a triad who

like each other but differ on their feelings for the third

member (Stark 1985). This can be illustrated by

following example:

likes (alan, betty).
likes (betty, alan).
likes (alan, carol).
likes (carol, alan).
dislikes (betty, carol).
dislikes (carol, betty).

Here we have Alan and Betty liking each other, and Alan and

Carol liking each other, but Betty and Carol disliking each

other. This arrangement is unstable and will likely break

up. Betty's jealousy over the relations between Alan and

Carol, or Carol's jealousy over the relations between Alan

and Betty may cause either Betty or Carol to break away thus

the

46

disintegrating the triad. As with transitive triads, there

are four arrangements of intransitive triads. They are

presen.:ed in Figure 4.2 along with their PROLOG

representations. The PROLOG rule for an intransitive triad,

taking all four possible arrangements into account, is as

follows:

intransitive (A,B,C) likes (A,B), likes (B,A),
dislikes (A,C), dislikes (C,A),

likes (B,C), likes (C,B);

likes (A,B), likes (B,A),
likes (A,C), likes (C,A),

dislikes (B,C), dislikes (C,B);

dislikes (A,B), dislikes (B,A),
likes (A,C), likes (C,A),
likes (B,C), likes (C,B);

dislikes (A,B), dislikes (B,A),
dislikes (A,C), dislikes (C,A),
dislikes (B,C), dislikes (C,B).

To see how this rule operates, consider the following

knowledge base:

person (alan).
person (betty).
person (carol).
likes (alan, betty).
likes (betty, alan).
likes (alan, carol).
likes (carol, alan).
dislikes (betty, carol).
dislikes (carol, betty).
engage_in_social_rel (alan, betty, carol).
triad (A,B,C) :- person (A), person (B), person (C),

engage_in_social_rel (A,B,C).

transitive (A,B,C) likes (A,B), likes (B,A),
likes (A,C), likes (C,A),
likes (B,C), likes (C,B);

likes (A,B), likes (B,A),
dislikes (A,C), dislikes (C,A),
dislikes (B,C), dislikes (C,B);

47

Figure 4.2. Intransitive Triads with PROLOG Statements

A A
/ \ / \

+ / \ - - / \ +
/ \ / \

/ \ / \
/ \ / \
B C B C

likes(A,B), likes(B,A),
dislikes(A,C),dislikes(C,A),

likes(B,C), likes(C,B).

dislikes(A,B),dislikes(B,A),
likes(A,C), likes(C,A),
likes(B,C), likes(C,B).

1 -4

like

- - dislike 1

A A
/ \ / \

+ / \ + -
/ \ / \

/ \ / \
/ \ / \

cB C B
- -

likes(A,B), likes(B,A),
likes(A,C), likes(C,A),

dislikes(B,C),dislikes(C,B).

dislikes(A,B),dislikes(B,A),
dislikes(A,C),dislikes(C,A),
dislikes(B,C),dislikes(C,B).

48

dislikes (A,B), dislikes (B,A),
likes (A,C), likes (C,A),

dislikes (B,C), dislikes (C,B);

dislikes (A,B), dislikes (B,A),
dislikes (A,C), dislikes (C,A),

likes (B,C), likes (C,B).

intransitive (A,B,C) :- likes (A,B), likes (B,A),
dislikes (A,C), dislikes (C,A),

likes (B,C), likes (C,B);

likes (A,B), likes (B,A),
likes (A,C), likes (C,A),

dislikes (B,C), dislikes (C,B);

dislikes (A,B), dislikes (B,A),
likes (A,C), likes (C,A),
likes (B,C), likes (C,B);

dislikes (A,B), dislikes (B,A),
dislikes (A,C), dislikes (C,A),
dislikes (B,C), dislikes (C,B).

Given the following command:

?- intransitive (alan, betty, carol).

The computer should respond either "yes" or "true" since the

conditions for an intransitive triad are satisfied. If the

computer were asked whether Alan, Betty, and Carol comprised

a transitive triad at this point using the command:

?- transitive (alan, betty, carol).

The computer would respond either "no" or "false" since they

do not presently meet the requirements of a transitive triad.

Using previously discussed techniques, we can predict

the behavior of actors in a number of social situations

provided that all possibilities are included in our model.

In these situations, we can create rules of behavior for the

actors based on what sociological theorists say should happen

in these situations. For example, suppose we create a few

49

actors engaged in an exchange situation. According to social

exchange theorists, everything has a price. They explain

social behavior in terms of how people engage in exchange

relationships for goods and services. Exchange behavior is

based on costs and rewards of alternative courses of action.

People choose the most attractive exchanges to engage in. We

can predict who will exchange with whom in our model by

including knowledge of social exchange theory (in the form of

rules) as part of our knowledge base.

Suppose we wanted to predict which actors in our

knowledge base would become angry if their expectations were

not fulfilled or which ones would be pleased if their

expectations were fulfilled. We can predict this by

representing George Homans' (1974) aggression-approval

proposition using the following PROLOG statements:

/* Homans' aggression-approval proposition */
become(person,angry) :- expectations(person,disappointed).
become(person,pleased) :- expectations(person,fullfilled);

expectations(person,exceeded).
likely_behavior(person,aggressive):- become(person,angry).
likely_behavior(person,approving):-become(person,pleased).

When this information is placed in the computer's knowledge

base, a user can determine what actors within the knowledge

base will become angry and what their likely behavior will

be, given the rules listed above.

Knowledge Based Systems for Sociological Decision Making

In addition to the previous logic programming

applications, some small knowledge-based systems were also

created for this paper. These systems make decisions

utilizing sociological knowledge. The knowledge-based

50

systems presented in this paper deal with determining whether

a triad is transitive or intransitive, classifying adaptation

to anomie (normative confusion), determining whether a type I

or type II error has been made in the hypothesis testing

process, determining a variable's level of measurement, and

classifying individuals on the basis of socio-economic status

(S.E.S).

Selection of a Building Tool

VP-Expert was chosen as the tool for building these

knowledge-based systems. VP-Expert is a rule-based expert

systems shell by Paperback Software International. It runs

on IBM PCs and compatibles with a minimum of 384K RAM and two

disk drives (of which one may be a hard drive). VP-Expert

was chosen because it has a number of attractive features.

They include user support, the use of confidence factors for

uncertain information, English-like rule construction, an

explanation interface, built-in text editor, and the ability

to "chain" multiple knowledge bases.

For my problems, I chose an expert system shell over a

traditional programming language because the shell had a

built-in inference engine. This allowed me to concentrate

more on the problem areas than on programming. VP-Expert

uses a problem-solving method known as "backward chaining."

This means the system's inference engine starts with a goal

variable and proceeds through its series of rules until it

finds a value to assign to it, thus solving the problem.

51

TRIADS

The first expert system uses rules from the previous

PROLOG triad model to determine whether a triad is transitive

or intransitive. This system is known as TRIADS. The rules

for this system are shown in Figure 4.3. A consultation with

the system is shown in Figure 4.4.

The goal of TRIADS is to find a value for the variable

"triad_type." First, the system attempts to satifisfy the

conclusion of RULE 0, that the triad type is transitive. To

do this it must first satifisfy the rules conditions. It

does this by asking "What is the relation between Alan and

Betty?" The user is given the choice of "like" or "dislike."

For the example in Figure 4.4, "like" was chosen for this

question. At this point, the system has determined that

"relation_alan_betty=like." The next question it asks is

"What is the relation between Alan and Carol?" The response

entered for this question was "dislike." The computer knows

it can no longer satisfy all the conditions for RULE 0 at

this point and thus moves on to RULE 1. The computer then

asks the last question "What is the relation between Betty

and Carol?" As shown in Figure 4.4, "dislike" was entered as

the response. Since all of the conditions for RULE 1 are

satisfied at this point, "relation_alan_betty=like,"

"relation alan carol=dislike," and the last condition,

"relation brutus charlie=dislike," the conclusion

"triad_type=transitive" is made and the computer displays

"This triad is transitive."

52

Figure 4.3. Rule Base of TRIADS

RULE 0
IF relation_alan_betty=like AND

relation_alan_carol=like AND
relation_betty_carol=like

THEN triad_type=transitive;

RULE 1
IF relation_alan_betty=like AND

relation_alan_carol=dislike AND
relation_betty_carol=dislike

THEN triad_type=transitive;

RULE 2
IF relation_alan_betty=dislike AND

relation_alan_carol=like AND
relation_betty_carol=dislike

THEN triad_type=transitive;

RULE 3
IF relation_alan_betty=dislike AND

relation_alan_carol=dislike AND
relation_betty_carol=like

THEN triad_type=transitive;

RULE 4
IF relation_alan_betty=like AND

relation_alan_carol=dislike AND
relation_betty_carol=like

THEN triad_type=intransitive;

RULE 5
IF relation_alan_betty=like AND

relation_alan_carol=like AND
relation_betty_carol=dislike

THEN triad_type=intransitive;

RULE 6
IF relation_alan_betty=dislike AND

relation_alan_carol=like AND
relation_betty_carol=like

THEN triad_type=intransitive;

RULE 7
IF relation_alan_betty=dislike AND

relation_alan_carol=dislike AND
relation_betty_carol=dislike

THEN triad_type=intransitive

ELSE triad_type=unknown;

53

Figure 4.4. Run of TRIADS

What is the relation between Alan and Betty?

like dislike

What is the relation between Alan and Carol?

like dislike

What is the relation between Betty and Carol?

like dislike

This triad is transitive.

54

MERTON

The second expert system was designed to determine the

mode of adaptation based on Robert Merton's typology of

individual adaptation to anomie. Merton claims that deviance

results from obstacles present between a culture's goals and

the means for achieving them (Merton 1938, pp. 672-682).

According to Merton, there are five modes of adaptation:

conformity, innovation, ritualism, retreatism, and rebellion.

Conformists accept both the cultural goals and the

institutionalized means for achieving them. This is the most

common form of adaptation. The Scout who follows the

Scouting handbook rules in order to obtain merit badges is a

conformist.

Innovators accept the cultural goals but reject the

approved means for obtaining them. Michael Milken and Ivan

Boesky are examples of innovators. Both sought the goal of

wealth but used illegal means for obtaining it.

Ritualism involves rejecting the cultural goals but

accepting the means. Institutional bureaucrats are prime

examples of ritualists. They become so involved with the red

tape that they lose sight of the goal.

The opposite of conformists, retreatists reject both the

cultural goals and the means for achieving them. Drug

addicts, alcoholics, and cultists are all examples of

retreat ists.

Like retreatism, rebellion is the rejection of both the

cultural goals and the accepted means for achieving them. But

55

unlike retreatism, new goals and means are substituted for

the old ones. Political rebels who seek to overthrow their

present form of government are engaging in rebellion.

Each of these modes can be represented as a rule in a

knowledge base. The resulting knowledge base is presented in

Figure 4.5.

When the system is executed, it knows its goal is to

find a value for classification. Possible values are

conformity, innovation, ritualism, retreatism, and rebellion.

To find a value for classification, the system attempts to

satisfy the first rule in the knowledge base. It first seeks

the value of "goals." Since it cannot determine this value

from information in its knowledge base, the system asks the

user for the value of goals as shown in Figure 4.6. Possible

choices are "accept" and "reject." If "reject" is entered,

the following things occur. First, the system has

established the fact that "goals = reject." The system then

searches through its rules to find an instance where "goals =

reject." It reaches this condition in RULE 2. Rules 0 and I

tested for conditions where goals had to equal "accept."

Since the value of goals is now "reject," we know that the

variable "classification" cannot be "conformity" or

"innovation."

The next condition the system must satisfy for RULE 2 to

fire is "means = accept." Since the system has not yet

established a value for "means," it must ask the user for

this information. Again the options are "accept" and

56

Figure 4.5. Rule Base of MERTON

RULE 0

IF goals = accept AND
means = accept

THEN classification = conformity;

RULE 1

IF goals = accept AND
means = reject

THEN classification = innovation;

RULE 2

IF goals = reject AND
means = accept

THEN classification = ritualism;

RULE 3

IF

THEN

goals = reject AND
means = reject AND
replace goals_and_means = no
classification = retreatism

ELSE classification = rebellion;

57

"reject." When "reject" is entered as the value for "means,"

RULE 2 fails (so we know the value of "classification" isn't

"ritualism"); and the system searches for a rule where the

value for both "goals" and "means" equals "reject." It finds

this situation in RULE 3. At this point, the system has

established two facts: "goals = reject" and "means = reject."

So we know that our answer will either be "retreatism" or

"rebellion." To determine which, the computer tries to

establish a value for "replace_goals_and_means." It does

this by asking, "Are new goals and means substituted for

old?" If "no" is entered, the system will conclude that the

mode of adaptation is retreatism. In the test run, "yes" was

entered to this question. The system thus concluded that

"The mode of adaptation is rebellion," as shown in Figure

4.6. By substituting different values for "goals" and

"means," the system will produce different outcomes. A

complete listing of this

in the appendix.

DEES

program, called MERTON, can be found

DEES (Decision Error Expert System) is an expert system

designed for determining whether a Type I or Type II error

has been made during the hypothesis testing process. A Type

I or alpha error occurs when a true null hypothesis is

rejected (Loether and McTavish 1988, pp. 534-35). This

knowledge can be represented in rule form as follows:

IF null hypothesis = true AND
deciion_made = reject

THEN outcome = Type_I_Error.

58

Figure 4.6. Run of MERTON

What is the value of goals?
accept re ect

What is the value of means?
accept re ect

Are new goals and means substituted for old?
yes no

The mode of adaptation is rebellion.

59

Type II or beta errors occur when one fails to reject a

false null hypothesis. This is represented by the rule:

IF null_hypothesis = false AND
decision_made = fail_to_reject

THEN outcome = Type_II_Error.

There are two other possible outcomes in this decision-

making process. A researcher could fail to reject a true

null hypothesis or reject a false null hypothesis. In both

cases, the researcher would be making a correct decision.

These decisions are represented by the following rules:

IF null_hypothesis = true AND
decision_made = fail_to reject

THEN outcome = correct _decision;

IF null_hypothesis = false AND
decision_made = reject

THEN outcome = correct _decision.

Together, these rules comprise a knowledge-based system

called DEES. This program can be used by sociologists to

teach the concept of Type I and Type II errors to students.

A complete copy of DEES is provided in the appendix.

LOMEX

Another knowledge-based system that can be used for

teaching social research concepts is LOMEX. LOMEX is an

acronym for Level Of Measurement EXpert. It is a system

designed for determining a variable's level of measurement.

There are four traditional levels of measurement used:

nominal, ordinal, interval, and ratio.

Nominal variables have exhaustive, mutually exclusive

categories. Religion is an example of a nominal variable.

Individuals can be classified into religious categories such

60

as Catholic, Jewish, or Protestant. Race, marital status,

and gender are also nominal variables.

Ordinal variables possess the properties of nominal

variables, but they can also be ordered or ranked. For

example, we can rank athletic teams on the basis of scores or

we can rank individuals on the basis of class (such as upper,

middle, and lower).

Cases measured on an interval basis possess all the

attributes of the previous measures, but in addition, cases

or scores can be described in terms of equal units. Examples

of interval variables include IQ and prestige scores.

The ratio level of measurement is similar to the

interval measure, but it has a true zero point. In fact,

ratio is sometimes combined with interval to form one

measure. Examples of ratio variables include income, age,

and educational level (in years).

Rules have been formulated to represent each of the four

levels of measurement. They are presented in Figure 4.7.

Figure 4.8 shows an actual run of LOMEX. The goal of LOMEX

is to find a value for the variable "Level of Measurement."_ _

The system begins by asking "Can cases be classified into

exhaustive, mutually exclusive categories?" For this run,

"yes" was entered. At this point, LOMEX has confirmed the

fact that "categories = yes." It then proceeds to determine

whether the cases can be ordered or ranked by asking "Can

cases be ranked from high to low?" At this point, "no" was

entered. Given this information, the system decides that the

61

Figure 4.7. Rule Base of LOMEX

RULE 1

IF

THEN

RULE 2

IF

THEN

RULE 3

IF

THEN

RULE 4

categories = yes AND
can_be_ranked = yes AND
egual_units = yes AND
zero_point = yes
Level_of_measurement = ratio;

categories = yes AND
can_be_ranked = yes AND
egual_units = yes AND
zero_point = no
Level_of_measurement = interval;

categories = yes AND
can_be_ranked = yes AND
egual_units = no
Level _ of _measurement = ordinal;

IF categories = yes AND
can_be_ranked = no

THEN Level _ of _measurement = nominal

ELSE Level _ of _measurement = unknown;

62

Figure 4.8. Run of LOMEX

Can cases be classified into exhaustive, mutually exclusive
categories?

Y211 no

Can cases be ranked from high to low?

yes

The level of measurement is nominal.

63

level of measurement can't be ratio, interval, or ordinal as

defined in rules one through three. When LOMEX reaches rule

four, both conditions ("categories = yes" and "can_be_ranked

= no") are satisfied and the rule fires. Thus the system

concludes the level of measurement is nominal as shown in

Figure 4.8.

CLASS-EX

The final expert system created for this paper was

CLASS-EX. CLASS-EX (for CLASS EXpert) was designed to

classify individuals according to the socio-economic status

(S.E.S) indicators: income, educational level, and

occupation. The rules it uses to accomplish this task are

loosely based on Coleman and Rainwater's Metropolitan Class

Structure (Coleman and Rainwater 1978). A description of

each class is presented below.

The upper-upper class is known as the "old rich." Their

wealth is primarily derived from investments. Much of the

wealth of the upper-upper class is inherited. Members of

this class tend to be highly educated. Many of them possess

degrees from prestigious Ivy-League colleges, often at the

graduate level. Annual earnings of the upper-upper class are

approximately $100,000 and up. Income figures for this

knowledge base were updated to correspond more closely to

current conditions.

Lower-upper class Americans make as much money or more

than their upper-upper counterparts, but their money is

newer. They are often referred to as the "nouveau riche" or

64

the new rich. People such as Donald Trump would fall into

this category. Members of this class are typically employed

as top professionals and CEOs (Chief Executive Officers) in

the corporate world. They tend to be highly educated, often

at the postgraduate level, and receive that education at good

colleges. As stated previously, lower-upper income is

basically equivalent to upper-upper income.

Upper-middle class Americans are usually employed as

mid-level managers or professionals. Members of this class

have college or more education. Incomes of the upper-middle

class range from $60,000 to $149,999.

Members of the middle class are often employed in

lower-level management positions. They also comprise the

nation's small-business owners, lower-status professionals,

and sales and clerical workers. The education level of

middle-class Americans tends to be high school with some

college. Incomes for this class range from $30,000 to

$59,999 per year.

The working class consists of blue-collar workers and

low-paid sales and clerical workers. Younger members of this

class typically have a high school diploma. Working class

income typically ranges from $13,500 to $59,999 annually.

Among the lowest classes of Americans, members of the

upper-lower class are concentrated in unskilled labor and

service occupations. They have partially completed high

school educations and earn from $13,500 to $29,999 a year.

Below them, at the very bottom of the class structure,

65

is the lower-lower class. Members of this class are often

unemployed and/or on welfare. They typically have

elementary-level education and earn less than $13,500

annually.

This knowledge of social classes has been formulated

into a series of rules. These rules are presented in Figure

4.9. Together these rules comprise the expert system CLASS-

EX. A sample run of CLASS-EX is presented in Figure 4.10. In

it the system has determined that an individual with a sales

position, high school education, and earnings between $13,500

and $29,999 falls into the working class.

CLASS-EX does have some shortcomings, however. As with

any expert system, its reasoning ability is limited to the

amount of knowledge it possesses. If a user were to ask

CLASS-EX what class a small business owner with an income of

$100,000 a year and a high school education fits in, the

system would respond "unknown." Like human experts,

computerized experts do not always know the answer either.

In this case, the computer would respond "unknown" because

its knowledge base lacks information on such an individual.

Since the system is based on the expertise of Coleman and

Rainwater, knowledge about this situation should come from

them. If knowledge from another class expert were placed in

CLASS-EX to handle the previous situation, the expert system

would no longer be based on the knowledge of Coleman and

Rainwater, but on the knowledge of Coleman, Rainwater, and

the third class expert. The complete listing for CLASS-EX

Figure 4.9. Rule Base of CLASS-EX

RULE 0

IF

THEN

RULE 1

IF

THEN

RULE 2

IF

THEN

RULE 3

IF

THEN

RULE 4

66

Occupation = inherited_wealth AND
Education = college_or_more AND
Income = $100000_to $149999 OR
Income = $150000 and up
Social _Class = U-15per_Upper;

Occupation = top_professional OR
Occupation = ceo AND
Education = college_or_more AND
Income = $100000_to_$149999 OR
Income = $150000_and_up
Social _Class = Lower_Upper;

Occupation = middle_professional OR
Occupation = middle_manager AND
Education = college or more AND
Income = $60000 to . 74-9-99 OR
Income = $75000-to-$99999 OR
Income = $1000013_t6 $149999
Social Class = Uppei: Middle;_ Upper_ Middle;

Occupation
Occupation
Occupation
Education = high_school_&_some_college AND
Income = $30000_to_$59999
Social _Class = Middle;

= low level manager OR
= small business owner OR_ _
= sales OR
= clerical AND

IF Occupation = higher_blue_collar OR
Occupation = sales OR
Occupation = clerical AND
Education = high_school AND
Income = $13500 to $29999 OR
Income = $300001to=$59999

THEN Social _Class = Working;

67

Figure 4.9. Rule Base of CLASS-EX (continued)

RULE 5

IF

THEN

RULE 6

IF

THEN

ELSE

Occupation = unskilled_labor OR
Occupation = service AND
Education = some_high_school AND
Income = $13500_to_$29999
Social Class = Upper Lower;_ Upper_ Lower;

= unemployed OR
Occupation = on welfare AND
Education = primary school AND
Income = less than - 13500
Social Class 7-7 Lower Lower_ _

Social _Class = Unknown;

68

Figure 4.10. Run of CLASS-EX

What is the source of your income?

inherited_wealth
middle_professional
small_business_owner
higher_blue_collar
unemployed

top_professional
middle_manager
sales
unskilled_labor
on welfare

What is your educational attainment?

college_or_more high_school/some_col
some_high_school primary_school

What is your income level?

ceo
low_level_manager
clerical
service

high school

$150000 and up $100000 to $149999 $75000 to $99999
$60000_fo_$74999
less than $13500

$30000 to . 59999 $13500 to—$29999

The social class of individual is working.

69

can be found in the appendix.

Conclusion

The programs presented in this paper show how artificial

intelligence and expert systems can be applied to sociology.

The programs can be used as teaching tools for instructing

students on specific concepts in sociology and for learning

the basics of artificial intelligence/expert systems as well.

Using similar techniques, students can construct their own

models of social situations using PROLOG or develop expert

systems for other areas involving sociological decision

making. By modeling social situations and social theories

using logic programming techniques, students learn to think

logically about these situations and theories.

As the field of artificial intelligence advances, so

should its potential applications to sociology. Currently,

sociologists who wish to apply this technology to their field

must acquaint themselves with Al programming techniques.

Although expert systems shell programs ease this burden

somewhat, you must still become a programmer of sorts to reap

the full benefits of the technology.

At this time, there are very few practical applications

of AI/Expert systems to sociology. Expert systems are best

suited for problems with "cookbook" style solutions. Few

problems in sociology fit this description, however. A

number of individuals involved in Al research have been

overly optimistic as to what could be accomplished with it.

This has led to speculation of a truly "thinking" machine --

70

one that goes beyond simple reasoning capability. With

continued progress in the area of artificial intelligence and

computer technology, sociologists may one day be able to

instill the whole of sociological knowledge into an

"intelligent" machine. Afterwards, the sociologist could

conceivably present the machine with any situation of

sociological interest and receive an analysis from a

sociologist's perspective. The machine would be playing the

role of sociologist, in effect. Although much of this is

science fiction now, increased computation speeds, memory

size, and advancements in Al technology may make this science

fact in the distant future. The programs created as part of

my research can be considered as small "stepping stones"

toward such a machine. In the meantime, Al applications to

sociology will probably remain a novelty to most sociological

researchers.

71

APPENDIX A

Running a VP-Expert Consultation

The expert system shell VP-Expert is used for executing

the knowledge based systems presented here. This program

runs on IBM PCs and compatibles. To begin a consultation,

follow these steps:

1. At the appropriate DOS prompt (A> for floppy drives,
C> for hard disks), type "VPX" and press enter.

2. At this point, the title screen and copyright notice
should appear along with a number of options across the
bottom of the screen. This is referred to as the "command
line." Using the cursor control keys on the keyboard, move
the lightbar to the option "FileName" and press enter.

3. VP-Expert will ask you to choose a file at this
point. You may select a file by moving the lightbar over it
and pressing enter or by typing the name of the knowledge
base at the prompt.

4. The name of the knowledge base you have chosen will
appear at the top of the screen after "KBS:". This indicates
the name of the active knowledge base. If you select MERTON
as the desired knowledge base, the message "KBS:MERTON" will
appear at the top of the screen.

5. Choose the "Consult" option to load the rule base
into memory.

6. The chosen knowledge base is then executed by
selecting "Go" on the command line.

7. At this point, a brief introduction to the expert
system will be given and you will be asked to press a key to
begin.

8. After pressing a key, the expert system will ask you
questions so that it can reach a conclusion. You must use
the arrow keys to move the lightbar over your selection and
press enter. Upon pressing enter, an arrow will appear to
the right of your answer to indicate your selection. To move
on, press the "END" key on the keyboard and the next question
will be asked. This process continues until the computer has
enough information to reach a conclusion.

72

APPENDIX A (continued)

9. To execute the knowledge base again at the end of a
consultation, select "Go" on the command line. Choosing
"Quit" returns you to the main menu where you may consult
another knowledge base by changing the filename and choosing
"Consult" or quit VP-Expert by choosing "Quit."

73

APPENDIX B

TRIADS

! TRIADS
! Based on Theodore Caplows work on triad coalitions.
ACTIONS

DISPLAY "TRIADS can determine whether a triad is
transitive or intransitive based on relations among its
members.

Press the SPACEBAR to begin the consultation.-"
CLS
FIND triad type
DISPLAY "This triad is (triad_type).";

RULE 0
IF relation_alan_betty=like AND

relation_alan_carol=like AND
relation_betty_carol=like

THEN triad_type=transitive;

RULE 1
IF relation_alan_betty=like AND

relation_alan_carol=dislike AND
relation_betty_carol=dislike

THEN triad_type=transitive;

RULE 2
IF relation_alan_betty=dislike AND

relation_a]an_carol=like AND
relation_betty_carol=dislike

THEN triad_type=transitive;

RULE 3
IF relation_alan_betty=dislike AND

relation_alan_carol=dislike AND
relation_betty_carol=like

THEN triad_type=transitive;

RULE 4
IF relation_alan_betty=like AND

relation_alan_carol=dislike AND
relation_betty_carol=like

THEN triad_type=intransitive;

RULE 5
IF relation_alan_betty=like AND

relation_alan_carol=like AND
relation_betty_carol=dislike

THEN triad_type=intransitive;

74

APPENDIX B (continued)

RULE 6
IF relation_alan_betty=dislike AND

relation_alan_carol=like AND
relation_betty_carol=like

THEN triad_type=intransitive;

RULE 7
IF relation_alan_betty=dislike AND

relation_alan_carol=dislike AND
relation_betty_carol=dislike

THEN triad_type=intransitive
ELSE triad_type=unknown;

ASK relation alan betty: "What is the relation between Alan
and Betty?";
CHOICES relation_alan_betty: like,dislike;

ASK relation_alan_carol: "What is the relation between Alan
and Carol?";
CHOICES relation_alan_carol: like,dislike;

ASK relation_betty_carol: "What is the relation between Betty
and Carol?";
CHOICES relation_betty_carol: like,dislike;

75

APPENDIX C

MERTON

! MERTON is designed to determine mode of adaptation
! based on Robert Merton's typology of
! individual adaptation to anomie.
ACTIONS

FIND classification
DISPLAY "The mode of adaptation is
(classification).";

RULE 0
IF goals=accept AND

means=accept
THEN classification=conformity;

RULE 1
IF goals=accept AND

means=reject
THEN classification-innovation;

RULE 2
IF goals=reject AND

means=accept
THEN classification=ritualism;

RULE 3
IF goals=reject AND

means=reject AND
replace goals_and_means=no

THEN classification=retreatism
ELSE classification=rebellion;

ASK goals: "What is the value of goals?";
CHOICES goals: accept,reject;

ASK means: "What is the value of means?";
CHOICES means: accept,reject;

ASK replace_goals and_means: "Are new goals and means
substituted for old?";
CHOICES replace_goals_and_means: yes, no;

76

APPENDIX D

DEES

! DEES is an acronym for Decision Error Expert System.
ACTIONS

DISPLAY "DEES can determine if a Type I or Type II
error has been made.

Press the SPACEBAR to begin.-"
CLS
FIND outcome
DISPLAY "A (outcome) has been made.";

RULE 1
IF null_hypothesis=true AND

decision_made=reject
THEN outcome=Type_I_Error;

RULE 2
IF null_hypothesis=true AND

decision_made=fail_to reject
THEN outcome=correct decision;

RULE 3
IF null_hypothesis=false AND

decision_made=reject
THEN cutcome=correct decision;

RULE 4
IF

THEN

null_hypothesis=false AND
decision_made=fail_to_reject
outcome=Type_II_Error;

ASK null hypothesis: "What is the value of the null
hypothesis?";
CHOICES null_hypothesis: true, false;

ASK decision made: "What is the value of the statistical
decision?"; —
CHOICES decision_made: reject, fail_to_reject;

77

APPENDIX E

LOMEX

! LOMEX is an acronym for Level Of Measurment EXpert System.
ACTIONS

DISPLAY "LOMEX can determine the level of
measurment used in the social research
process.

Press the SPACEBAR to start the consultation.-"
CLS
FIND Level_of_measurement
DISPLAY "The level of measurement is
(Level_of_measurement).

Press the SPACEBAR to exit LOMEX.-"
CLS;

RULE 1
IF categories=yes AND

can_be_ranked=yes AND
equal_units=yes AND
zero point=yes

THEN LeveT_of_measurement=ratio;

RULE 2
IF categories=yes AND

can_be_ranked=yes AND
equal_units=yes AND
zero_point=no

THEN Level of measurement=interval;_ _

RULE 3
IF categories=yes AND

can_be_ranked=yes AND
equal_units=no

THEN Level of measurement=ordinal;_ _

RULE 4
IF categories=yes AND

can_be_ranked=no
THEN Level_of_measurement=nominal
ELSE Level of measurement=unknown;_ _

ASK categories: "Can cases be classified into exhaustive,
mutually exclusive categories?";
CHOICES categories: yes,no;

ASK can_be_ranked: "Can cases be ranked from high to low?";
CHOICES can_be_ranked: yes,no;

78

APPENDIX E (continued)

ASK equal units: "Can distance between cases/scores be
described in terms of equal units?";
CHOICES equal_units: yes,no;

ASK zero_point: "Is there a meaningful zero point on the
scale?";
CHOICES zero_point: yes,no;

APPENDIX F

CLASS-EX

! CLASS-EX can determine the social class of an individual
! based on Coleman & Rainwater's Metropolitan
! Class Structure.

ACTIONS

79

DISPLAY "This expert system, CLASSEX, can determine
the social class of an individual based on
Coleman and Rainwater's Metropolitan Class
Structure.

Press the SPACEBAR to start the consultation.-"
CLS
FIND social_class
DISPLAY "The social class of individual is
(social_class).";

RULE 0
IF Occupation=inherited_wealth AND

Education=college_or_more AND
Income=$100000_to $149999 OR
Income=$150000_and_up

THEN social_class=upper_upper;

RULE 1
IF Occupation=top_professional OR

Occupation=ceo AND
Education=college_or more AND
Income=$100000 to $149999 OR
Income=$150000—and_up

THEN social class=13wer upper;_ _

RULE 2
IF Occupation=middle_professional OR

Occupation=middle_manager AND
Education=college or_more AND
1ncome=$60000_to_74999 OR
Income=$75000_to_$99999 OR
Income=$100000_to_$149999

THEN social_class=upper_middle;

RULE 3
IF Occupation=low level manager OR

Occupation=smaIl _ business _owner OR
Occupation=sales OR
Occupation=clerical AND
Education=high school & some _ college AND
Income=$30000 fo $599§9—

THEN social_class=iiid3le;

80

APPENDIX F (continued)

RULE 4
IF Occupation=higher_blue_collar OR

Occupation=sales OR
Occupation=clerical AND
Education=high school AND
Income=$13500_Eo_$29999 OR
Income=$30000_to_$59999

THEN social_class=working;

RULE 5
IF Occupation=unskilled_labor OR

Occupation=service AND
Education=some_high_school AND
Income=$13500_to_$29999

THEN social_class=upper_lower;

RULE 6
IF Occupation=unemployed OR

Occupation=on_welfare AND
Education=primary school AND
Income=less_thanj13500

THEN social class=lower lower

ELSE social class=unknown;

ASK Occupation: "What is the source of your income?";
CHOICES Occupation: inherited_wealth,top_professional,ceo,
middle_professional,middle_manager,low_level_manager,
small business_owner,sales, clerical, higher_blue_collar,
unskiTled_labor, service,unemployed,on_welfare;

ASK Education: "What is your educational attainment?";
CHOICES Education: college_or more,
high_school_&_some_college, high_school,
some high_school,primary_school;

ASK Income: "What is your income level?";
CHOICES Income: $150000_and_up, $100000_to_$149999,
$75000 to $99999, $6000o to $74999, $30000 _ to _ $59999,
$13500—_to—_$29999, less than—$13500;

81

APPENDIX G

Running a PROLOG Consultation

The PROLOG programs for this paper were created by using

a text editor to input commands. A word processor that

writes its output as an ASCII file will also work. The

program used to compile and execute the PROLOG statements was

PD PROLOG. To load PD PROLOG into memory, type "prolog" at

the DOS prompt. To consult a particular file, issue the

following command:

?- consult ('progname').

where "progname" is the name of your program. The program

will compile at this point and will return the "?-" prompt

for your inquiries. If the program is rejected during

compilation, you must leave PD PROLOG and edit your program

using a word processor or other text editor. To leave PD

PROLOG, issue this command:

?- exitsys.

You will be returned to the DOS prompt.

82

APPENDIX H

Triad Model Using PROLOG

person (alan).
person (betty).
person (carol).
likes (alan,betty).
likes (betty,alan).
likes (carol,alan).
likes (carol,betty).
likes (alan,carol).
likes (betty,carol).
engage_in_social_rel (alan,betty,carol).
triad (A,B,C):-person (A), person (B), person (C),

engage_in_social_rel (A,B,C).

transitive (A,B,C) :- likes (A,B), likes (B,A),
likes (A,C), likes (C,A),
likes (B,C), likes (C,B);

likes (A,B), likes (B,A),
dislikes (A,C), dislikes (C,A),
dislikes (B,C), dislikes (C,B);

dislikes (A,B), dislikes (B,A),
likes (A,C), likes (C,A),

dislikes (B,C), dislikes (C,B);

dislikes (A,B), dislikes (B,A),
dislikes (A,C), dislikes (C,A),

likes (B,C), likes (C,B).

intransitive (A,B,C) :- likes (A,B), likes (B,A),
dislikes (A,C), dislikes (C,A),

likes (B,C), likes (C,B);

likes (A,B), likes (B,A),
likes (A,C), likes (C,A),

dislikes (B,C), dislikes (C,B);

dislikes (A,B), dislikes (B,A),
likes (A,C), likes (C,A),
likes (B,C), likes (C,B);

dislikes (A,B), dislikes (B,A),
dislikes (A,C), dislikes (C,A),
dislikes (B,C), dislikes (C,B).

83

APPENDIX I

Program Disks

84

BIBLIOGRAPHY

Alker, Hayward R. Jr. and Cheryl Christensen. 1972. "From
Causal Modelling to Artificial Intelligence: The Evolution
of a U.N. Peace-making Simulation." Pp. 177-224 in
Experimentation and Simulation in Political Science,
edited by Laponce, J.A. and Paul Smoker. Toronto:
University of Toronto Press.

Alker, Hayward R. Jr., James Bennett and Dwain Mef ford. 1980.
"Generalized Precedent Logics for Resolving Insecurity
Dilemmas." International Interactions 7: 165-206.

Banerjee, Sanjoy. 1986. "Reproduction of Social Structures:
An Artificial Intelligence Model." Journal of Conflict
Resolution 30:221-52.

Barr, Avron, and Edward A. Feigenbaum (eds.). 1981. The
Handbook of Artificial Intelligence. Vol 1. Reading MA:
Addison-Wesley.

Benfer, Robert A. 1989. "Individual Differences in Rule Based
Systems of Knowledge with Behavioral Implications."
Anthropological Quarterly 62: 69-81.

Brent, Edward E. 1984. "Qualitative Computing: Approaches and
Issues." Qualitative Sociology 7: 34-60.

 . 1985. "Relational Data Base Structures and Concept
Formation in the Sorial Sciences." Computers and the
Social Sciences 1: 29-49.

 . 1986. "Knowledge-Based Systems: A Qualitative
Formalism." Qualitative Sociology 9: 256-82.

. 1988a. "Is There a Role for Artificial Intelligence
in Sociological Theorizing?" The American Sociologist
19: 158-66.

 . 1988b. "New Approaches to Expert Systems and
Artificial Intelligence Programming." Social Science
Computer Review 6: 569-78.

 . 1989a. "ERVING: A Program to Teach Sociological
Reasoning from the Dramaturgical Perspective." Teaching
Sociology 17: 38-48.

. 1989b. "Designing Social Science Research with
Expert Systems." Anthropological Quarterly 62: 121-30.

86

Harmon, Paul and David King. 1985. Expert Systems. New York:
John Wiley & Sons.

Hayes-Roth, Frederick, Donald A. Waterman, and Douglas B.
Lenat (eds.). 1983. Building Expert Systems. Reading, MA:
Addison-Wesley.

Hinze, Kenneth E. 1987. "Computing in Sociology: Bringing
Back the Balance." Social Science Microcomputer Review 5:
439-51.

Hofstadter, Douglas R. 1979. Godel Escher, Bach: An Eternal
Golden Braid. New York: Basic Books.

Homans, George C. 1974. Social Behavior: Its Elementary
Forms. Revised Edition. New York: Harcourt Brace
Jovanovich.

Kippen, Jim and Bernard Bel. 1989. "Can the Computer Help
Resolve the Problem of Ethnographic Description?"
Anthropological Quarterly 62: 131-44.

Levine, Robert I., Diane E. Drang, and Barry Edelson. 1986.
A Comprehensive Guide to AI and Expert Systems. New York:
McGraw-Hill.

Loether, Herman J. and Donald G. McTavish. 1988. Descriptive
and Inferential Statistics: An Introduction. Boston: Allyn
and Bacon.

McGraw, Bruce A. and Karen L. McGraw. 1985. "Artificial
Intelligence Finds Military Applications." Systems &
Software, August, pp. 79-82.

Merton, Robert K. 1938. "Social Structure and Anomie."
American Sociological Review 3: 672-82.

Minsky, Marvin. 1975. "A Framework for Representing
Knowledge." Pp. 211-77 in The Psychology of Computer
Vision, edited by P. Winston. New York: McGraw Hill.

Mishkoff, Henry C. 1986. Understanding Artificial
Intelligence. Fort Worth, TX: Texas Instruments.

Read, Dwight W. and Clifford Behrens. 1989. "Modeling Folk
Knowledge as Expert Systems." Anthropological Quarterly
62:107-20.

Schank, Roger, and Robert Abelson. 1977. Scripts, Plans
Goals, and Understanding. Hillsdale, NJ: Lawrence
Erlbaum.

87

Schrodt, Philip A. 1988. "Artificial Intelligence and Formal
Models of International Behavior." The American
Sociologist 19:71-85.

Schutz, Alfred. 1962. Collected papers I: The Problem of
Social Reality. The Hague: Martinus Nijhoff.

Simmel, Georg. 1955. Conflict and the Web of Group
Affiliations. New York: Free Press.

Stark, Rodney. 1985. Sociology. Belmont, CA: Wadsworth.

Sylvan, David and Barry Glassner. 1985. A Rationalist
Methodology for the Social Sciences. Oxford, England:
Basil Blackwell.

Thorson, Stuart J. and Donald A. Sylvan. 1982.
"Counterfactuals and the Cuban Missile Crisis."
International Studies Quarterly 26:539-71.

Turing, Alan M. 1950. "Computing Machinery and Intelligence."
Mind 59:433-60.

Waterman, Donald A. 1986. A Guide to Expert Systems.
Reading, MA: Addison-Wesley.

Winfield, M.J., S.K. Toole, R.T. Griffin and P.M. Davies.
1986. "An Expert System Assistant for Human Services
Personnel." Pp. 253-59 in Artificial Intelligence for
Society, edited by Karamjit S. Gill. New York: John Wiley
& Sons.

Wood, Sharon. 1966. "Al and Theories of Social Situations."
Pp. 237-44 in Artificial Intelligence for Society, edited
by Karamjit S. Gill. New York: John Wiley & Sons.

Woolgar, Steve. 1985. "Why not a Sociology of Machines? The
Case of Sociology and Artificial Intelligence."
Sociology 19: 557-72.

	Western Kentucky University
	TopSCHOLAR®
	12-1991

	Applications of Artificial Intelligence/Expert Systems to Sociological Concepts
	Darryl Strode
	Recommended Citation

	tmp.1526654270.pdf.CsIm7

