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I. INTRODUCTION

In the solvent extraction of metal ions, 8-hydroxyquinoline (mol.

wt. 145.15, nip, 75-76°C) which has the trivial name 
Ifoxine" (H0x) is well

known as a sensitive organic analytical extractant. It acts as a bidentate

ligand to form a five-membered chelate ring with many different metal ions,

in the manner illustrated below:

Most studies on oxine as an analytical extractant have been aimed at the

development of efficient separation under equilibrium conditions. (1)

A. HISTORICAL

Honaker and Freiser (2) pointed out that in favorable cases, solvent

extraction techniques can be used to study the rate of fast chelation

reactions occurring in aqueous solution. Many authors (3-10) have studied

the rates of solvent extraction using numerous organic ligands. These

studies have been of a theoretical nature and have determined rate laws,

rate constants and postulated mechanisms for these extractions. As a

consequence of these fundamental rate studies, the suggestion has been

made (11) that knowledge of the rate controlling factor could be used to

effect more selective separation. That is, by optimizing the parameters

1
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controlling the rate of extraction, it should be possible to separate two

metals from each other that would not be separable under equilibrium con-

ditions.

One rate study of interest to this work was done by McClellan and

Freiser (12). They compared relative rates of formation of metal chelates

at room temperature in the aqueous phase. Differences in the rates of

extraction of aqueous solutions of Ni(II), Co(II), Zn(II), and Cd(II)

with dithizone were reported. A recent extraction rate study has been

reported by Colovos, Yokoyama and Freiser (13). By varying ratios of

Ni(II) and ligand concentration, rate constants in aqueous solution of

each stepwise chelation of Ni-phenanthroline and Ni-5-nitrophenanthroline

were determined. For the system of Ni-5-nitrophenanthroline, it was found

that the first stepwise rate constant obtained by the extraction technique

proved to be in fair agreement with the result using the stopped-flow

method.

The first practical application of extraction rate differences was

by Irving, Andrew and Risdon (11). These authors used tae difference in

extraction rates in chloroform to separate the rapidly extracted Hg(II)

dithizonate from the slowly extracted Cu(II) dithizonate. In 1950, Bolomey

and Wish (14) used the marked difference in the

separate Fe(III) from Be(II) with a very dilute

acetone in benzene. McKavney and Freiser found

rate of extraction to

solution of thenoyltrifluoro-

Cr(III) extracted extremely

slowly with acetylacetone except at relatively high pH values (15).

Numerous metals, including Fe(III) and Al(III), were found to form stable

chelates much more rapidly at lower pH values (11) and could be separated

from Cr(III). McClellan and Freiser (16) developed a scheme of se ration

of metal ions based on the relative rates of extraction. The separations

of Zn(II)-Ni(II), Zn(II)-Co(II), and Co(II)-Ni(II) by optimizing the rate-
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controlling parameters were reported. At a pH value of 1, Hines used the

extraction rate differences to successfully separate Ag(I) from Cu(II)

with dithizone in chloroform (17).

B. STATEMENT OF PURPOSE

This study was conducted with metal ion concentrations in the range

of parts per million and used batch extra-Aion techniques to study the

non-equilibrium extraction of Cu(II) and Ni(II) oxinates. Contrary to

other authors, atomic absorption was used exclusively for the analysis of

phases.

The two main areas of investigation in this study were:

1. Kinetics study of extraction of Ni(II) oxinate.

2. Separation of Cu(II) and Ni(II) with oxine based on differences in

rates of extraction.

It was the purpose of this work to study the extraction of Cu(II)

and Ni(II) with oxine in chloroform. This particular pair of elements

was chosen for study for several reasons. One prominent reason was that

these metals form stable complexes with oxine which remain stable upon

extraction with various organic solvents. The extraction curves (pH versus

percent extraction) were found to lie very close together making it impossible

to separate one from the other without the use of masking agents. Another

factor which was important to the undertaking of this extraction rate

study was the fact that the equilibrium behavior of metal oxinates (and

of oxine) distributed between water and various organic solvents had been

previously studied in detail. Fianlly, it was believed that it should be

possible to separate the Cu(II) and Ni(II) ions (and perhaps other as well)

by a non-equilibrium method even though it was not possible to separate

these same two ions by an equilibrium extraction. The present work was



aimed at determining the optimum conditions of pH, oxine concentration,

shaking time and solvent used for the maximum separation of the ion pair,

Cu(II)-Ni(II).



II. EXPERIMENTAL

A. MATFIIIALS

All materials were of analytical reagent grade and were used with-

out further purification unless otherwise noted.

Solvents

Water used in this study was initially deionized by a Barnsted de-

ionizer (Barnsted Co., Boston, Mass.). It is known that water from local

water systems contains organic species (18) not removed by deionizers (19).

Also, the deioniaing process may introduce some organic impurities (20).

Organic compounds, used as a resin in the deionizer, contain donor atoms

such as N, 0, P or S which are capable of coordination with transition

metals. Because the metal ions used in this study were present in trace

concentrations, removal of these organic species, even though they were

present in only trace quantities, was deemed Imperative to prevent possible

interference. The strong oxidizing media of acidic permanganate was found

suitable for digesting organic matter and converting it to carbon dioxide

and water and possible non-volatile ash. The deionized water was further

purified by distillation from an acidic KMnO4 solution. Each charge of

the distillation apparatus contained 5 grams }MnO solution and 15 ma.

concentrated 
H2S04 

in approximately 1.7 1. of water. The distilling appara-

tus used was constructed of Pyrex glass which was acid washed (conc. HC1)

and leached before use. Ground glass connections were ungreased and an

electric mantle was used for heating. To prevent ebullient entrainment

and "carry over" of solids, a column packed with pieces of glass tubing

5
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was positioned directly above the still pot. As the water was distilled

and collected, the still pot was regularly refilled to the 1.7 1. volume

with boiling deionized water. The KMnO4 was normally expended after 4 to

5 refills of the still pot. After the KMnO4 was expended, indicated by the

loss of the purple color of the solution, the still pot was cleaned with

conc. HC1 and recharged.

The distilled water was collected at a rate of 350 to 400 m1. per

hour in a pre-treated Pyrex vessel and stored in Nalgene polyethylene

containers. Atomic absorption was used regularly to test for the presence

of Mn contamination. Such contamination also would have been indicative

of solids "carry over". This uncontaminated deionized-purified water was

used for all aqueous solutions and for rinsing glassware.

Chloroform, A.C.S. Reagent Grade from J. T. Baker Chemical Co., was

used as supplied except for a reductant wash of hydroxylamine hydrochloride.

For economic reasons and to prevent the emptying of quantities of the chlori-

nated hydrocarbon into the local water supply, chloroform, after use, was

stored and later purified as needed. Used chloroform solutions were further

purified and recovered as recommended by Moeller (21) and Bambach and

Burkey (22).

The "used" chloroform solutions were stored in amber bottles. To

stabilize the chloroform, to each storage vessel was added, at the outset

of collection, a volume of undenatured ethanol equal to 0.5% of the total

volume of the vessel. No effort was made at the time of storage to separate

either colloidal water droplets in chloroform-oxine solutions or excess

aqueous phase from extraction samples. A mechanical separation of the

aqueous and organic layers constituted the initial step of the purification

procedure. About one liter of the separated chloroform was then washed

with 200 ml. of water in 2,000 ml. separatory funnel. This chloroform,
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in turn, was washed twice with 100 mi. portions of concentrated sulfuric

acid. If coloration persisted in the chloroform layer, it was washed

with 100 ma. of 1.3 M. aqueous ammonia and then with concentrated sulfuric

acid. The final purification step consisted of a wash with a 0.5% hydroxy-

lamine hydrochloride solution which had been made alkaline to phenol red

with ammonia. After separation from the aqueous phase, the chloroform,

stabilized with 5 ml. of 95% undenatured ethanol, was stored overnight

over calcium oxide powder. Purified chloroform was obtained by decanting

and distilling through an all-glass still. The first portion of the dis-

tillation, about 150 ml., was thrown away and the pure chloroform was

collected at a temperature of 61.5°C. in an amber bottle containing a

volume of absolute undenatured ethanol equivalent to 1% of the capacity of

the bottle. The "used-and-purified" chloroform and reagent grade chloro-

form were both further purified just prior to the preparation of all oxine

solutions.

Carbon tetrachloride, A.C.S. Reagent Grade from J.T. Baker Chemical

Co., was further purified by the distillation through an all-glass still.

The first portion of about 150 ml. of the distillation was thrown away and

the pure carbon tetrachloride was collected at the temperature of 76.5°C.

in an amber bottle.

8 -Hydroxyquinoline

Reagent, A.C.S. grade, 8-hydroxyquinoline, as supplied by Matheson

Coleman & Bell was recrystallized from boiling absolute undenatured ethanol

(23). The reagent purity was checked by means of its melting point. The

melting point of the recrystallized product, after overnight vacuum drying

in a desiccator, was 72°C.

8 -Hydroxyquinoline solutions

The oxine-chloroform solutions were prepared by dissolving the exact
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amount of purified oxine in chloroform. The solutions were freshly pre-

pared before use.

Metal ion solutions

The aqueous metal ion stock solutions were prepared from the hydrated

metal perchlorates. The copper perchlorate (Cu(C10)2.6H20) and the nickel

perchlorate (Ni(C10)2.6H20) were supplied by Alfa Inorganics, Inc., Mass.

Stock solutions were prepared in the range of 10
-2
M. in the respective metal

ions by dissolving the desired amount of the reagent in 500 ml. of water.

By means of atomic absorption spectrophotometry techniques, these stock

solutions were then standardized with metal standard solutions supplied by

Fisher Scientific Co., Inc. Concentrations used in these studies contain-

ing both metal ions were also prepared by dilution from these stock solutions.

B. APPARATUS

Water bath shaker

All extractions were performed in 250 ml. glass bottle having a poly-

ethylene cap and polyethylene liner. The samples were agitated on a mechani-

cal water bath shaker purchased by Eberbach Corp., Ann Arbor, Mich. The

shaker consists of an internal thermostatted heater for controlling of

higher than ambient temperatures. An external electric mantle was used to

stabilize the water bath temperature. The shaker speed can be adjusted up

to about 260 shakes/minute with an 0.5 inch amplitude.

pH meter

A Corning pH meter model 7 was used for pH measurements. This meter

was standardized against reference buffer solutions pH 7 and pH 10 before

each set of measurements.
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Atomic Absoiption Spectrophotometer

A Perkin-Elmer model 303 atomic absorption spectrophotometer was

used as well as the necessary hollow cathode tubes which were purchased

from the Perkin-Elmer Corp.

C. EXPERIMENTAL

The extremely low concentrations (parts per million) of metal ion

and chelating agent used in the study were cause for concern in obtaining

reproducible data. The extraction was performed in a 250 ml. glass bottle

having a polyethylene cap and polyethylene liner. This bottle size was

chosen to fit the shaker stand of the water bath shaker. All extractions

in the study were with phases of equal volume of aqueous and organic solutions

and a total volume per batch extraction of 50 ml. The buffer solution

containing the ion or ions to be investigated was prepared by the addition

of KH2PO4, 1.70 grams in 500 ml. metal ion solution. The pH of the aqueous

phase was adjusted to the desired value by the addition of NaOH and/or

HC10
4 
solution. The ionic strength(I) was kept constant at 0.05M by adding

a sufficient amount of sodium perchlorate.

A 25 ml. amount of aqueous solution was pipetted into the extraction

vessel and thermally equilibrated in the water bath for 15 minutes. A 25 ml.

volumetric flask, containing the oxine solution of the desired concentration

was equilibrated at the same time. To begin an extraction, the sample

extraction vessel and the respective volumetric flask of oxine were taken

from the thermostatted bath. The oxine solution was poured into the ex-

traction vessel containing the aqueous solution. The extraction vessel was

immediately placed in the shaker stand and the shaker started. The shaker

was set at the highest speed of shaking (260 shakes/minute) for all runs

except for those runs used to determine the effect of shaking on rate of
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extraction. From the start to the stop of shaking, time was noted. When

it was stopped, the extraction vessel was allowed to stand 5 minutes to

ensure complete phase separation. The phase or phases to be analyzed were

separated by using clean, dry 25 m1. pipets to draw off approximately 15 ml.

of the desired layer. The samples were delivered into clean, dry 40 ml.

glass bottles fitted with polyethylene cap and liner. The samples were

then analyzed by means of atomic absorption spectrophotometry techniques.

In the extraction rate portion of the study, batch extraction was

also used. A separate batch extraction was used for each time interval in

the same manner as reported by other researchers. All reaction rate measure-

ments were taken at 25°C. except for those extraction experiments used to

determine the temperature effect.

To determine the extraction order, non-stoichiometric batch extractions

were run over a short period of time. Concentrations of oxine and nickel

were separately varied. One concentration was held constant while the other

was varied. The extractions were allowed to proceed to about 20% completion

for obtaining initial rate data.

Additional data for the determination of extraction rate constants

were obtained with the reactants in stoichiometric proportion:

[HOX] = 2[Ni+2]

(1) and the concentration of the metal ion was followed with respect to time.

The pH dependence of the extraction was studied by holding initial concen-

trations of the metal and ligand constant while varying the pH.

D. ANALYSIS OF SAMPTF°

A Perkin-Elmer Model 303 Atomic Absorption Spectrophotometer with

appropriate hollow cathode tubes was used throughout the study for analysis

of both aqueous and organic layers of the extraction systems. The trace
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concentrations employed in the study demanded high precision and sensitivity

for the analysis. The required sensitivity was achieved by use of the

most sensitive spectral lines for the elements studied. Instrumental

parameters such as lamp current, burner height, slit width, fuel and oxidant

ratio and aspiration rate were adjusted for each element to give maximum

sensitivity. Copper and nickel standards were prepared from Certified

Atomic Absorption Standard as supplied by Fisher Scientific Co. The de-

tection limit of both copper and nickel in aqueous solution was 0.1 ppm.

The working standards were prepared to contain the amount of buffer

components identical to the sample being analyzed. This was done to ensure

that bulk matrix effects of buffer components would not affect the analyses

(24). For the analysis of an extraction phase, approximately 15 ml. of

phase to be analyzed was taken as a sample. Samples of standard concentra-

tions inclusive of those anticipated in the samples were aspirated into

the flame and the percentage absorption recorded for each. Fach sample

was then aspirated and the percentage absorption recorded. The percentage

absorption of the standards was determined again to check the reproduci-

bility of the readings. To correct for instrumental drift, the instrument

was zeroed between each standard and sample with a metal free solution,

which was identical to standards and samples in other respects.

The percentages of absorption for standards and samples were converted

to absorbance readings by reference to a standard table. The percentages

of absorption for the standards were averaged for three replicate samples

prior to conversion to absorbance. The absorbances of the standards were

then graphed versus the known concentrations of the standards to prepare

the calibration curve. The curve thus obtained was used to read directly

the concentration of the analyzed samples. A typical calibration curve is

shown in Figure 1.
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Fig. 1. Typical atomic absorption calibration curve
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Problems arose in the analysis of the chloroform phase with atomic

absorption. Several authors have pointed out the reasons for not using

chloroform in atomic absorption, reasons such as the formation of poisonous

combustion products and incomplete combustion in the flame. (25,26,27).

Rains (28), however, claimed chloroform is a satisfactory solvent for use

in atomic absorption. It is the experience of this author that chloroform

is indeed undesirable for use in atomic absorption. The aspiration into the

flame produced a highly unstable flame with intense background radiation.

Consequently, no reproducible analyses could be performed using chloroform

as solvent.

The problems encountered with chloroform as a solvent were circum-

vented by a scheme to use a more suitable solvent in the actual analysis.

Standards were prepared by evaporating 25 ml. of pure oxine solution (iden-

tical solution to that used in the extraction experiment) just to dryness

in a 50 mi. volumetric flask. The evaporation of the chloroform from the

oxine solution was realized by drawing laboratory air through the flask

while heating the flask with water bath setting of approximately 60°C.

The residue was taken up in a small amount of distilled reagent acetone and

the appropriate volumes of aqueous metal standard solutions were added to

yield the desired concentrations. Water was added to those standards

containing lesser amounts of the aqueous method standard so that all stan-

dards had the same percentage water (8% volume-volume) and would have

identical bulk matrix and burning qualities. The standards were then diluted

to the mark with acetone. Samples were prepared by taking exactly 5 ml.

of the organic layer to be analyzed and transier ng it to a 10 ml. volu-

metric flask. The chloroform was evaporated and the residue taken up with

acetone as described above for standards. The loss of nickel by volatili-

zation of their oxinates was assumed to be negligible (29,30). Water was
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added to match the percentage water of the standards and the flasks were

filled to the mark with acetone. This substitution of acetone for chloro-

form gave a stable flame and allowed the reproducible analysis of organic

phase samples.

Replicate samples provided the main criteria for judgement of the

reliability of all analysis. Most analyses were done only on the aqueous

layer. However, in the organic phase analysis described above, both

phases were analyzed. The total concentration of nickel added in the

aqueous layer at the outset of one extraction was 2.0 ppm. At the com-

pletion of the extraction, an average of 2.02 ppm. nickel was found in the

organic layer and undetectable nickel was found in the aqueous layer. The

total of 2.02 ppm. was within experimental error. A further experiment was

run in which the extraction was less than 100% complete. As before, the

total concentration of nickel at the outset of extraction was made 2.0 ppm.

After the extraction was run to a state of partial completion, the average

concentration found in a aqueous layer and organic respectively was found

to be 1.26 ppm. and 0.70 ppm. The total of 1.96 ppm. was also within ex-

perimental error. This provided an additional assurance of the reliability

of the analyses.

Since concentrations of copper in the aqueous phase often ranged

from "nondetectable" to just above the detection limit, it seemed desirable

to check the sensitivity and ability of the instrument to differentiate

between very low concentrations of Cu(II). Concentrations of 0.05 ppm. and

0.1 ppm. were found to be distinguishable from each other.



III. RESULTS AND DISCUSSION

A. PRELIMINARY EXPERIMMTS

Morrison and Freiser (31) reported that the rate of achievement of

equilibrium in solvent extraction depends on two factors:

1. The rate of transfer of the various species from one phase to the

other.

2. The rate of formation of the extractable species.

Early attempts to obtain reliable kinetic data without maintaining

a constant rate of shaker speed failed. The kinetic results could not

be reproduced and the rate of extraction somehow appeared to increase as

the shaker speed increased. Honaker and Freiser (2) found that the rate

of extraction increased quite rapidly as the shaker speed was increased,

up to a maximum value beyond which the increase in agitation had no sig-

nificant effect on the rate of extraction.

A preliminary series of experiments was performed to determine the

effect on th rate of extraction of varying the shaker speed. (see Fig.2)

Alimarin, Zolotov and Bodnya(32) suggested that the extraction of lower

rate of phase mixing could be controlled by "diffusion" or "transfer"

process. When the rate of diffusion exceeds the rate of the chemical

reaction occurring, then the extraction rate is controlled by the rate

of formation of the extractable species. The extraction rate data is

said to be in the "kinetic" region. In this study, to ensure that the

rate of phase mixing reached the "kinetic" region, the agitation rate,

controlled by the shaker speed, was increased until the corresponding

16



17

Fig. 2. Determination of the effect of shaker speed on rate of

extraction
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rate of extraction reached a constant maximum value (a plateau region -

see Fig. 2). All subsequent experiments were performed under conditions

of agitation rate at this corresponding plateau region. These results

obtained for the shaker speed influence on extraction rate are similar to

those obtained by Honaker and Freiser in another extraction rate study.

It was believed that standing tine after agitation might affect the

results of the kinetic study. Preliminary experiments were conducted and

the results showed that no extraction occurred during the standing periods

of 5, 10, and 15 minutes. All the kinetic data obtained in this study

were taken using 5 minues standing time upon extraction.

B. THE EXTRACTION RATE STUDY OF NICKEL OX1NAlh

To collect extraction rate data for the determination of the rate

law, a stoichiometric proportion of oxine and nickel ion concentrations

was used in all runs (initial oxine concentration is twice nickel ion

conc.). Initial concentrations were chosen (while maintaining this two

to one ratio) so as to ensure the formation of extractable nickel oxinate

would proceed up to at least 70% completion in a resonable period of time.

Extraction rate data obtained at temperature 25°C. and 6.0 pH value are

shown in Table 1.

It was found by Stary (1) that nickel ion is extracted into chloro-

form layer in the oxinate form of Ni0x2. The overall stoichiometry of

this chelation can be represented as:

A + 2B

Table 2 contains rate equations which were derived based on stoichiometric

proportions of oxine and nickel ion concentration.



TABLF 1

EXTRACTION DATA FOR NICKELa WITH OXINE

IN CHLOROFORM AT 25°C. AND I = 0.05

20

Time
(hrs.)

Run 1 Run 2

Aqueous Organic Aqueous Organic

0.0 14.7 PM- 0.00 ppm. 15.0 ppm. 0.00 ppm.

0.5 10.1 4.60 12.9 2.10

1.0 9.54 5.16 13.5 1.50

2.0 6.57 8.13 10.1 4.90

3.0 5.18 9.52 7.04 7.96
4.o 4.68 10.0 6.60 8.4o

5.0 3.46 11.2 4.74 10.3

Time Run 3 Run 4
(hrs.)

Aqueous Organic Aqueous Organic

0.0 15.0 ppm. 0.00 ppm. 14.3 ppm. 0.00 ppm.

0.5 13.4 1.60 11.2 3.10

1.0 11.5 3.50 8.55 5.75
2.0 9.70 5.30 7.32 6.98

3.0 7.20 7.80 5.40 8.90
4.o 5.36 9.64 5.13 9.17

5.0 4.94 10.7 4.15 10.2

aOne ppm nickel 1.70 x 10-5M.

bObtained by subtracting aqueous concentration from initial aqueous

concentration.
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TABLE 2

RATE LAW AND RAPP., EQUATIONS

Overall reaction

rate order

Differential Form Integrated Form

,-),

3

-d(A) = K1(A) ln(A)0 = Kit
dt

-d(A) = K
2(A)(B)

77

1 - 1 = 2K 
2tdt

= 2K
2
(A)2

-d(A) = K
3
(A)(B)

2

TATt TAT0

1 - 1 = 8K 
3
t

dt

= 8K
3
(A)3

(A)2 (A)2ot

(A)
t 
and (A)

o 
are the concentrations at time (t) and the initial concen-

trations respectively.
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The extraction rate data were interpreted by graphical means. A

straight line fit was obtained by plotting the reciprocal of the concen-

tration versus time, indicative of overall second order reaction. (see

Fig. 3, 4, 5 and 6). The calculated extraction rate constant (kext.)

which is equal to half of the slope is shown in Table 3. The method of

least squares fit was used in all runs. The t = 0 point, considered to

be the most reliable, was in reasonable agreement with the calculated

intercept.

TABLF 3

CALCULATED EXTRACTION RAlh CONSTANT OF NICKEL WITH

OXINE IN CHLOROFORM AT 25°0., pH 6.0 and I = 0.05

RUN SLOPE(1.M.-imin.-1) I-.
ext.

(1.M. 
-1

min.
-1
)

3

14

36.1

27.0

28.2

31.9

18.1

13.5

14.1

16.0

Average kext. = 15.4 1.M-lmin.-1

Standard Deviation = 1.8 1.M.-imin.-1

To determine reaction order with respect to substances, non-stoichio-

metric batch extractions were run over a short period of tine. Concentra-

tions of oxine and nickel were separately varied. One concentration was

held constant while the other was varied. The initial extraction rate data

are contained in Table 4. The reaction order was calculated by means of the



Van't Hoff equation (33)

log(dx/dt), - log(dx/dt)2
n
a 
-  

lo(A)1 - log(A)2
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where (A)
1 
and (A)2 are two 

different initial concentrations of one component

and dx/dt is the change of corresponding concentration with respect to time.

The average calculated "n" values of oxine and nickel ion concentration

are equal to 1.1 and 0.8 respectively and allow one to conclude that the

extraction is first order with respect to the oxine concentration and first

order with respect to the nickel ion concentration.

TABLE 4

NON-STOICHIOMETRIC EXTRACTION RAM DATA FOR

NICKEL WITH OXINE IN CHLOROFORM AT TEMP. 25°C.

Runa Initial

(Ni
+2
)

Initial Ave. (Ni
+2
) extracted

(H0x) 30 mm. 60 min.

1 6.4x10-5M. 5.0x10-4M. 1.07 ppm. 1.03 ppm.

2 1.3x10
-4

 M. 5.0x10
-4
 M. 1.90 ppm. 2.10 ppm.

3 2.5x10
-4

M. 5.0x10-4  A. 3.10 ppm. 4.22 ppm.

4 2.5x10-4M. 1.0x]0-3M. 6.50 ppm. 7.30 ppm.

a
All extractions at pH = 6.0 and I = 0.05

One ppm. nickel = 1.7x10-5M.



214

Fig. 3. Reciprocal concentration versus time graph for Run 1
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Fig. 4. Reciprocal concentration versus time graph for Run 2
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Fig. 5. Reciprocal concentration versus time graph for Run 3
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Fig. 6. Reciprocal concentration versus time graph for Run 4
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In the preliminary experiments, it was apparent that the extraction

rate varied strongly with the initial hydrogen ion concentration in the

aqueous phase. Stary (1) reported that the extraction equilibrium of

nickel with oxine in chloroform was reached at a low pH value and a low

oxine concentration after several hours. It was also indicated that at

higher pH value, the equilibrium was reached more rapidly. Since it was

proposed by the author to maintain constant hydrogen ion concentration

during the extraction time, it was necessary to employ a buffer solution.

Potassium dihydrogen phosphate with sodium hydroxide were used to prepare

buffer solutions as recommended by Clark and Lubs (35) for the pH range

of 5.80-8.00 values. The extraction rate data at different initial

hydrogen ion concentrations were collected and contained in table 5.

Plots of the reciprocal of concentration versus time yielded a straight

line (see Fig. 7, 8 and 9) and extraction rate constants contained in

Table 6 were determined in the same manner as formerly mentioned.

The variation of extraction rate constants with H
+ 
concentration

can be expressed in mathematics form as:

cc'H-1.)nk
ext.

or k
e = A(H+)nxt.

where A is a constant of variation. A plot of log kexi. versus pH was

used to determine the reaction order with respect to hydrogen ion concen-

tration. (see Fig.10). The straight line plot had a slope of 0.92.
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TABLE 5

EXTRACTION RATE DATA FOR NICKEL WITH OXINE

IN CHLOROFORM AT DIFFERENT pH AND TEMP. 25°C.

Time
(min.)

Aqueous Organic

30

60

90

120

15.0 ppm.

9.64

6.80

5.15

4.48

0.00 ppm.

5.36

8.20

9.85

10.5

Time
(min.)

pH 6.8

Aqueous Organic

0 13.0 ppm.

30 6.93

60 4.50

90 3.51

120 2.88

0.00 ppm.

6.07

8.50

9.49

10.1
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Table 5 (continued)

Tire?. pH 7.2

Aqueous Organic

10

20

40

15.0 ppm.

6.93

4.70

3.33

•

0.00 ppm.

8.07

10.3

11.7

TABLE

CALCULATED EXTRACTION RAlh CONSTANT OF NICKEL WITH

OXINE IN CHLOROFORM AT 25°C. AND VARYING pH

pH Slope

(1.M. ruin.

k
ext.

(1.M71min.-1)

6.0

6.4

6.8

7.2

30.8

78.9

133

423

15.4

39.5

66.7

211
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Fig. 7. Reciprocal concentration versus time graph for pH 6.4 value
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Fig. 8. Reciprocal concentration versus time graph for pH 6.8 value
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Fig. 9. Reciprocal concentration versus time graph for pH 7.2 value
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Fig. 10. Determination of extraction order with respect to hydrogen

ion concentration at temperature 25°C.
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In a study of the ionic strength effect, sodium perchlorate solution

was added quantitatively into aqueous buffer solution. To see a signifi-

cant change in extraction rate, a large change in ionic strength was con-

sidered to be necessary. However, this was not experimentally obtained.

A problem in preparing high ionic strength solutions at these pH values

arose from the precipitating tendency of sodium perchlorate. An ionic

strength of about 0.3 was the highest value that allowed the salt solution

tc be soluble in the aqueous layer in the pH value range of 6-7. The

change of extraction rates due to the addition of salt, reflecting ionic

strength effect, are within the limits of experimental error of the

analytical method.

The nature of the organic solvent also affects the rate of extraction

since it influences the distribution of both the organic ligand and the

extracted metal chelate. If the chelation occurs in the aqueous layer,

as proposed by Freiser and co-workers (2, 32), an organic solvent with a

low distribution coefficient (higher chelating agent concentration in

aqueous layer) would show a faster rate of extraction. If the mechanism is

interfacial, a solvent with a large distribution coefficient (higher

chelating agent concentration in the organic phase) would show a faster

rate. Mottola and Freiser (23) have conducted experiments to determine

distribution constants of oxine in various organic solvents. (see table 7).

The significantly higher value of distribution constant of oxine in chloro-

form compared to carbon tetrachloride was explained by the possible

hydrogen bonding ability of the oxine-chloroform system.

The effect of different distribution constants of oxine, in chloro-

form and carbon tetrachloride, on the extraction rate was determined.

Extraction data using carbon tetrachloride as a solvent is contained in

Table 8. The reciprocal nickel concentration versus time graph as shown
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TABLE 7

THE DISTRIBUTION OF OXINE BETWEEN A SERIES OF HALOGENA1E1) HYDRO-

CARBONS AND THE AQUEOUS PHASE (pH = 6.5-7.0; I = 0.19) AT 25.0°C.

Organic solvent Distribution constant

Dichloromethane 377

Chloroform 433

Carbon tetrachloride 116

Dibromomethane 449

n-Hexane 21.2

TABLE 8

EXTRACTION DATA FOR NICKEL WITH OXINE IN CARBON

TETRACHLORIDE AT pH 6.0 AND 11211P. 25°C.

Time (Nil-2) in

aqueous phase

0 min. 15 ppm.

10 9.24

20 6.30

30 4.90

40 4.20

k
ext. 

= 111 1.M.
-1

min
-1
.
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in Fig. 11, indicative of second order extraction rate of carbon tetra-

chloride as a solvent, shows a 7.2 time faster extraction rate for the

carbon tetrachloride solvent than for the chloroform solvent. The results

of such rate studies lead to the conclusion that the formation of metal

chelate occurs in aqueous phase.

The influence of temperature on the extraction rate was also investi-

gated. Extraction runs of three different temperatures (25, 31 and 37°C.)

were performed. Concentrations of nickel ion of 15 ppm. at pH value 6.0

and oxine of 5x10 
-4M. were used. Experimental data are shown in Table 9.

The rate of extraction increased as temperature increased as expected by

the author. It is believed that temperature may affect the solubility of

the extracted nickel oxinate and of oxine itself. Since the values of

Ka/Kd (dissociation constant/distribution coefficient of oxine) at 31° and

37°C. were not found from the literature, a true energy of activation of

nickel -oxine complex formation in this study could not be obtained.

TABLF 9

EXTRACTION DATA FOR NICKEL WITH OXINE IN

CHLOROFORM AT THREE DIFFERENT TEMPERATURES

Temperature Initial

(Ni+2)

average (Ni+2) ext.

in 2 hrs.

25°C. 15 ppm. 7.80 ppm.

31°C. 15 ppm. 8.13 ppm.

37°C. 15 ppm. 9.80 ppm.
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Fig. 11. Reciprocal concentration versus time graph for extraction

of Ni(II) with oxine in carbon tetrachloride. (for compar-

ison, a part of Fig. 3. is presented)

  Carbon tetrachloride

Chloroform
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Taking into consideration the composition of the compound extracted

and the experimental extraction rate data, a possible process of extraction

may be represented in the form of:

HOx(org) =HOx
(aq) 

(1)

H
+ 
+ Ox

-
H0x(aq) (2)

Ni
+2 

+ Ox
-

Ni(0x)+ (3)

Ni(Ox)+ + Of = Ni(0x)2(aq) (4)

Ni(0x)
2(aq) 

= N1(0x) (5).2(org)

The rate of the entire process is determined by the rate of the slowest

step. The first and last steps can be disregarded as rate controlling

since neither would give rise to a pH dependence. Step 2 can not be the

slowest step; the system was found to be first order with respect to

nickel ion concentration. Furthermore, the extraction rate of copper with

oxine in chloroform proceeded much more rapidly than that of nickel with

oxine in chloroform. If step 4 were the rate-controlling step, a second

order rate dependence upon the concentration of oxine should have been

found. These considerations suggest step 3 as the rate-controlling step.

The expression representing the reaction rate can be derived from

step 3 as:

-d(Ni
+2

)/dt = k(Ni
+2
)(Ox)

= k K
a
(Ni

+2
)(H0x)

aq
(H+)

= k Ka(Ni
+2
)(H0x)

org

d 
(H*) (6)

Where K
a 
and K

d 
are the ionization constant and distribution coefficient

of oxine respectively. When (H+) is maintained constant during the

extraction process the rate equation 6 reduces to:

-d(N1+2)/dt = k
ext.(N1

+2
)(H0x)

org.
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which is in agreement with our experimental results.

It should be noted that the above mentioned extraction process is

similar to a solvent extraction mechanism proposed earlier by Freiser (2).

His kinetic studies of zinc, nickel, cobalt and cadmium with dithizone

were found to be first order with respect to both metal and chelating agent.

It is of interest to compare the results of our study with a similar

extraction rate study of nickel oxinate in chloroform performed by Bodnya

and Alimarin (36). Their study employed working solutions of nickel nitrate

and 0.1 M sodium nitrate but without any buffer components to regulate the

pH of the working solutions. Nickel extractions were performed at a pH

range of 3.3 - 5.0 and the analysis was conducted photometrically in the

form of a complex of Ni(III) with dimethylglyoxime (a solution of iodine

was used as the oxidizing agent). They found the extraction reaction to

be first order in the metal ion and second order in the molecular form of

the reagent (H0x). They stated that a change in the initial pH of the

aqueous phase was found to have little effect upon the rate of extraction

in the pH range they were using. However, their suggested reaction mechanism

leads to a rate dependence upon H
+ 

concentration.

Further work on the role of the buffer component and the nature of

the extraction process as it relates to various pH ranges needs to be done.

An attempt was made to observe the extraction rate of copper with

oxine in chloroform. In this system, even though the copper concentration

was reduced to an extremely low value, the extraction occurred too rapidly

to be studied by the solvent extraction method. Equilibration was found to

be attained in less than five minutes in every run. Consequently, no rate

data on this system will be presented in this report.
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C. SEPARATION OF Cu(II) AND Ni(II) WITH OXD1E

BASED ON DIFFERENCE IN RAPP, OF EXTRACTION

Althoupli studies of the kinetics of extraction of various systems

have been carried out for the last two decades the use of these studies

for practical analytical applications has been minimal. In the selection

of a system for the study of the separation based on the differential

extraction rates, it was desired to find a system in which it was not

possible to separate both metals by simply controlling the equilibrium

conditions. In this respect, the copper-nickel-oxine system was found to

be well suited. These two metals formed stable complexes with oxine which

remained stable upon extraction with many different solvents. Their ex-

traction curves (pH versus percent extraction) were found to lie very close

together thereby preventing simple control of equilibrium conditions to

selectively separate one in the presence of the other (1). Masking agents

possibly could have been employed to effect selective separation but the

method developed here was based on a non-equilibrium approach to extraction.

It was hoped that fundamental rate data could be obtained in this study

and that this could lead to a selective separation of the two metals.

Basolo and Pearson (87) have noted the effect of the three variables

of the charge of the metal ion, the size of the metal ion and the crystal

field stabilization on the rate of exchange of water molecules from the

first coordination sphere of metal ions. McClellan and Freiser (12) have

found that the rate constants of extraction for Zn(II), Ni(II), Co(II) and

Cd(II) parallel the rates of water exchange with three substituted diphenyl-

thiocarbazones. A general mechanism of solvent extraction of metal ion

from aqueous solutions under kinetic conditions was developed by V.V. Formin

(38). Employing this mechanism, the rate of extraction can be shown to

depend on the distribution coefficient and stability constant of the
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extracted compound formed. In our study the rate of extraction of the two

metal oxinates was found to parallel the rate of exchange of water suggest-

ing that the removal of the water molecule from the first coordination

sphere might be involved in the rate determining step.

These aforementioned observations allow for a simple, although not

strict, rule by which relative rates of extraction of metals may sometimes

be predicted qualitatively. In addition to the consideration of the

extraction rate in the actual separation method, the p111/2 (the pH at which

50% of the metal is extracted) must be considered, since it is desired to

effect complete extraction.

At the outset of this separation study, it was necessary to gain some

knowledge of the relative rates of extraction of Cu(II) and Ni(II) exper-

imentally. The experiments to separate Cu(II) from Ni(II) by the variation

of the appropriate kinetic parameters are shown in table 10. All experi-

ments were done at a constant temperature of 25°C and an ionic strength

of 0.05. The initial ion concentrations of Cu(II) and Ni(II) were 3.1 X

10-5m. It was noted by McClellan and Sabel (16) in a similar study that

the initial metal ions concentrations showed no effect on the separation

efficiency.

An examination of the separation data is contained in Table 10.

Table 11 shows the conditions of pH, oxine concentration and extraction

time which give efficient selective separation of Cu(II) and Ni(II). The

use of a different solvent was studied in one experiment using the same

favorable pH, oxine concentration and extraction time found for chloroform

except substituting carbon tetrachloride as the solvent (see table 11).



TABLE 10

SEPARATION DATA OF Cu(II) FROM Ni(II) WITH

OXINE IN CHLOROFORM AT TEMP. 25°C. AND I = 0.05

Shaking tine

(H0x) pH
Time % Ext.

(min.) (Nil-2)
%EXt.
((u4-2)

10-3M.

10-3M.

10-3M.

4.4

4.4

4.4

2.5

5

20

7.50

19.0

37.0

>99

>99

>99

pH

10-3M. 4.0 5 11.0 >99

10-3M. 4.4 F
) 19.0 >99

10-3M. 5.8 5 52.0 >99

Oxine Concentration

10-3M. 5.8 5 52.0 >99

5.0x10-4  M. 5.8 ., 20.1 >99

2.5x10-4  M. 5.8 5 7.0 >99

52
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TABLE 11

SEPARATION DATA OF Cu(II) FROM Ni(II) WITH

OXINE IN TWO SOLVENTS (25°C. AND I = 0.05)

Organic pli (110x) Time % Ext. % Ext.

solvent (min.) (Ni+2) (Cu+2)

CHC1
3

4.2 2.5)(10
-4 

7',7. 3.20 99

CC14 4.2
- .

2.5x10 LIA. 5 48.0 95.8

An attempt was made to observe the separation efficiency of the

ions of Zn(II) and Ni(II) with oxine in chloroform. (see Table 12).

TABLE 12

SEPARATION DATA OF Zn(II) AND Ni(II) WITH MINE

IN CHLOROFORM AT TEMP. 25°C. AND I = 0.05

(Ni +2) (Zn+2) pH (Hay) Time % Ext. % Ext.

(ppm.) (Pim.) (min.) (Ni
+2
) (Zn

+2
)

1.8 2.0 6.0 1x10
-2

M. 5 95.0 98.1

1.8 2.0 6.0 1x10-3M. 5 66.2 88.7

1.8 2.0 6.0 5x10
-4

M. 5 27.5 43.7

The separation was incomplete. This less effective separation could be

explained by noting that the extraction curve, which must be considered

if quantitative extraction is desired, of Ni(II) lies on the acid side of

Zn(II) (1). In a solution containing both zinc and nickel, the pH must

be raised in order to obtain quantitative extraction of zinc. Raising the
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pH increases the extraction rate of Ni(II) correspondingly and causes the

separation cAfficulty.
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IV. SUMMARY

The extraction rate study of the nickel-oxine chloroform system at

25°C indicates first order dependence on both the metal ion concentration

in the aqueous phase and the oxine concentration in chloroform layer.

Negative first order with respect to hydrogen ion concentration was found

in the pH range of 6.0 - 7.2. Extraction rates in carbon tetrachloride are

higher than those in chloroform. This is explained by the higher distri-

bution constant of oxine in carbon tetrachloride compared to that in chloro-

form. A mechanism is given which accounts for the observed reaction

orders.

The separation of copper and nickel ion by a simple, efficient method

utilizing a non-equilibrium extraction has been demonstrated. The method

is reliant on the much faster extraction rate for Cu(II), than for Ni(II),

with oxine in chloroform at 25°C. A system of 2.5 x 10
-4

M. oxine, pH 4.2

and 5 minutes extraction time appears to optimize the efficiency of the

separation. Using these conditions, the method of differential rates sep-

arates the metals virtually quantitatively. Of the copper originally in the

aqueous layer, more than 99% is extracted into the organic layer. Only 3.2%

of the nickel originally in the aqueous layer is extracted into the organic

layer. This separation efficiency compares well with that of other separ-

ations in other systems based on differential extraction rates.
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