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Given the proper equations and the appropriate set of selection rules,

a computer can be programmed to simulate the spectrum of a molecule. This

study deals with the rotational spectrum of a symmetric top molecule. The

program itself was written in several subroutine blocks. By doing this

the computing time was reduced by 70% over similar programs.

The program can be used to simulate the spectrum of a molecule if the

transition polarization type and the rotational constants are known. How-

ever, if the type of transition polarization or constants is unknown, the

program can be used as a tool for data determination.
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INTRODUCTION

The purpose of this work has been to write a more efficient program

to simulate the rotational spectrum of a symmetric top molecule. Sub-

routines are used to divide the program into sections which will permit

more efficient operation. Subroutines were written for two different

polarization bands, parallel and perpendicular--and for six different

plot types.

The program is useful as an informational device for giving data on

the excited state of a molecule and also as a teaching tool.
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I. THEORETICAL

A. Classification of Symmetric Top Molecules

1. Symmetry

A symmetric top molecule can be identified in two ways. One is

by its symmetry operations. If a molecule has symmetry of Cn where

n > 3, that is, a molecule with an axis of three-fold or greater symmetry,

it is a symmetric top molecule. Secondly, a symmetric top molecule can

also be defined by its moments of inertia, identified as:

2
= . m.r
1 i Eqn. (1)

where r
i 

is the distance of the i
th 

particle from the center of mass of

the molecule. A molecule has three moments of inertia, corresponding to

three mutually perpendicular axes, A, B, C, passing through the center of

mass. A symmetric top molecule has two equal moments of inertia and one

unique moment of inertia. Those molecules with I
A 

< I
B 
= I

C 
are called

prolate symmetric tops and those with I
A 
= I

B 
< I

c 
are called oblate

symmetric tops. (See Fig. I)
(1)

2. Inertial Constants

There are inertial constants called rotational constants designated

A, B, C, corresponding to each of these moments of inertia.

A= 8Tr2
I 

B = 2 C = 2
IA 

87 I
B 

87
Eqn. (2)

These constants are used in calculating the rotational energy of the

molecule.

2
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Figure 1. Examples of Symmetric Top Molecule

I
A 
# I

B 
= I

C

(a) Prolate Symmetric Top IA < IB = Ic

(5) Oblate Symmetric Top I
A 
= I

B 
< I

C
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There are molecules which have two equal moments of inertia but

do not meet the symmetry requirements of a three-fold or higher axis of

rotational symmetry. These "accidental" symmetric top molecules are less

important than molecules that meet the symmetry requirements since they

are rarely encountered.

B. Energy Levels

Figure 2 represnets a typical potential energy curve for two

electronic states of a molecule.
(2)

In general, the potential energy

curve for each electronic state of a molecule has a different shape and,

in the case of stable states, there is a minimum in the curve at the equi-

librium bond distance.

As a result of the relatively large difference in their energies,

a transition between two different electronic states usually falls in the

visible or ultraviolet regions. The spectrum consists of a group of

bands resulting from transitions between various vibrational levels.

Unver high resolution each band in the vapor shows a rotational structure

caused by transitions between the individual rotational levels associated

with each vibrational level.(3)

by:

The rotational energy of a rigid symmetric top molecule is given

F(J,K) = BJ(J+1) + (A-B)K
2 

+ 2AcK Eqn. (3)

J is the total angular momentum quantum number and K is the component of

the total angular momentum, (J) on the unique axis (top axis). The value

of J must be greater than or equal to K. J can assume the values of:

J = K, K + 1, K + 2, . . .; for K = 0, 1, 2, 3 . . . A and Bare the

rotational constants as defined above and the constant (zeta) is the

angular momentum (vibrational or electronic) in addition to the angular

momentum about the unique axis.
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Figure 2. Vibrational and Rotational Structure in an Electronic Transition.

The rotational levels associated with a typical vibrational

level in each electronic state are shown on an expanded energy

scale at the right. The lower state is assumed to be the ground

state.
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The term ±-2A1K gives a splitting of the energy levels which increase

linearly with increasing K. The (-) sign in this term applies when the

vibrational angular momentum has the same direction as the rotational

angular momentum, whereas the (+) sign applies if they are in directions

opposite to one another.
(4)
 For convenience we shall distinguish the two

levels as +1 and -1. levels. A schematic energy-level diagram is given in

Figure 2. Each level is double degenerate because of the two possible

directions of K, i.e. "clockwise" or "counterclockwise" direction.(5)

The energy level diagrams of prolate and oblate symmetric top

molecules are different. Figure 3a represents the energy level diagram

of a prolate symmetric top molecule, 
(6)

that is, one with IA < IB

Figure 36 is the energy level diagram for an oblate symmetric top

(I
A 
= I

B 
< I ). For a rigid rotor, the energy spacing for the lines can

be written as BJ(J+1) and the degeneracy as (2J+1). The number 2J+1

arises from the states with angular momentum components of J, J-1, J-2. .

0, -1, -2 . -J times h/27 that would appear if an external field were

applied. The energy level pattern and degeneracy are shown in Figure 4.(7)

C. Boltzman Distribution

The population of a specific state with energy E. compared to

that of the lower state with energy Fo can be calculated from the Boltzman

distribution:

(C E ) /ktN=Ne i o Eqn. (4)

In view of the 2J + 1 degeneracy described above, the Boltzman distri-

bution expression tor the population of a rotational energy level is:

(c. - 0)/kt Eqn. (5)
N = (2J+1)N

o
e
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Figure 3. The rotational energy-level patterns for (a) prolate and

(b) oblate symmetric top molecule.



(g)

8



12

Figure 4. A representation of the energy-level of a molecule. The

multiplicity of each rotational level is indicated by the

number of levels that would appear if the degeneracy were

removed.
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D. Selection Rules

For a vibration to be IR-active, its motion must cause a change

in the dipole moment. When the molecule is excited, the change in the

dipole moment may be either parallel or perpendicular to the top axis of

symmetry.
(8)
 (See Figure 5).

If the change in the dipole moment (transition moment) is parallel

to the top axis, the rotational quantum numbers for the excited state

are found from the follawing set of selection rules:

AK = 0, AJ = 0, ±1 for KOO Eqn. (6)

AK = 0, AJ = tl for K=0 Eqn. (7)

and if the change in dipole is perpendicular to the top axis, the selection

rules are:

K = ±1, AJ = 0, +1 Eqn. (8)

If the transition moment has a component both in the direction of

and perpendicular to the top axis, as would be expected for an accident-

ally symmetric top, both sets of transitions may occur.(9)

Figure 6 shows the possible transitions between a ground state

and an excited state for a prolate symmetric top molecule.
(10)

E. Rotational Spectrum

The excited state values and the excited state energy level for

J and K can be obtained from the ground state by using the various selection

rules. (See Equation 3). Once this energy has been calculated, the

frequency of a transition can be calculated as the difference in the

energy between the excited state and the ground state.

v = F(J',K')-F(J",K") Eqn. (9)

Here J' and K' represent the excited state values of J and K and J" and K"

represent the ground state values.
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Figure 5. Vibrations of symmetric top molecules that leads to (a) parallel

absorption bands (b) perpendicular absorption bands.
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Figure 6. The energy levels of a prolate symmetric top molecule and

the possible transitions.
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Neglecting distortions, the difference between the excited state

energy and ground state energy is equal to 
2B(J+1).(11) 

This formula

represents a simple series of equi-distant lines. The quantum number K

drops out entirely and the spectrum is the same as would be obtained for

one value of K only, that is, the various sets of levels lie vertically

above one another (12)as shown in Figure 8.

Figure 7 illustrates the transitions giving rise to each line in

the 
spectrum.(13) 

The separation of successive lines is 2B. If this

transition is measured, the moment of inertia about an axis perpendicular

to the symmetry axis can be calculated from Equation 2.

A complete rotational spectrum is obtained by superimposing all

the "sub-bands" on one another. The sub-bands for a parallel transition

can be seen in Figure 8. In a parallel transition, only levels of the

same K value, that is--levels in the same vertical column, can combine

with each other. (See Figure 6.) One row shows a sub-band with three

simple branches, designated P, Q, 
R.(14) 

(See Equation 5 for selection

rules.) The Q branch, corresponding to AJ = 0 is missing in the first

line of Figure 8 because of the restriction that if K = 0 then AJ can

assume only the values '1. Also, because of the restriction that J > K

more and more lines are missing from the sub-bands as K increases.

The spacing of the lines in the P and R branches is 2B. This is

determined by the moment of inertia about an axis perpendicular to the

top 
axis.(15) 

This is exactly true only for a rigid molecule if B 1=B"

and A'=A", where A" and B" are ground state A and B; A' and B' are the

excited state A and B. In this case, all the lines of the Q branch will

coincide.
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Figure 7. Rotational energy levels.
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Figure 8. Sub-bands of a Parallel Band and Complete Parallel Band of a

Symmetric Top Molecule.

The sub-bands of (a) are directly superimposed in (b). In

both (a) and (b) a slight difference between A'-B' and A"-B"

is assumed.
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Generally, there is an interaction between rotation and vibration,

causing a slight difference in A' and A" and B' and B". Because of this,

the lines of the P and R branches in each sub-band will no longer be equi-

distant but will converge and the lines of the Q branch will no longer

coincide exactly, although in general they will not be 
resolved.(16)

Also, as can be seen in Figure 8b, the sub-bands no longer coincide exactly.

The spectrum of a molecule which undergoes a perpendicular tran-

sition consists of two sub-bands, each with three branches. The sub-band

corresponding to AK = +1 is identified as R form branches and the sub-bands

corresponding to AK = -1 as P form branches. The branches arising from

the various values of AJ are the same as before. AJ = -1, P-branch;

AJ = 0, Q-branch; AJ = 1, the R-branch.

Figure 
9(17) 

shows a schematic energy-level diagram of the sub-

bands of a perpendicular transition. From the diagram it can be seen that,

as in a parallel band, there is an increasing number of lines missing near

the origin of the sub-bands as K increases. In a perpendicular band there

is no zero gap between the two branches.

F. Intensity of a Transition

The intensity of a line can be calculated by a formula derived

by Honl and 
London.(18) 

The intensity of a given transition in an

absorption band is proportional to the product

I = CA v g
(E)/kt

. 
jk

Eqn. (10)

where C is a constant independent of J and K but is dependent on the

vibrational transition; gjk is a statistical weight factor. It assumes

the value 2J+1 for K = 0 and 2(2J+1) for K 0. v is the frequency cal-

culated as the difference in excited state energy and ground state energy

(Equation 3). The exponential represents the fraction of the molecules
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Figure 9. Sub-bands of a perpendicular band.
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in the level from which the transition originates (the Boltzman factor).

The factor A
jk 

is represented by a set of equations which give the

inherent strength of the transition. These equations are given in

(19)
Table I. In each factor the values of J and K are ground state

values.
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for AJ = +1

AJ = 0

AJ = 1

for AJ = +1

AJ = 0

AJ = -1

TABLE 1

Honl-London Intensity Factors

Parallel Transition

(J+1)
2 
- K

2
A_ -
-KJ (J+1) (2J+1)

A
KJ 

=
J(J+1)
K
2

AK -
J J(2J+1)

J
2 
- K

2

Perpendicular Transition

(J+2±K)0+1±K)
AKJ = (J+1)(2J+1)

AKJ -
(J+1-±K)(J±K)

J(J+1)

(J-1±K)(J±K)
Au - 

J(2J+1)

For KO and AK=+1

the values given by

the above formula

have to be multiplied

by 2. This latter fact

compensates for the fact

that the statistical

weight for K=0 is only

half of the weight

for KO.

For perpendicular rules the upper sign refers to AK=+1, the lower to

AK=-1. In both cases K and J refer to the lower state.



II. EXPERIMENTAL

The program written in this research was formulated in Fortran IV

language and run on an IBM 370-165 computer. The program was divided into

a main program with several subroutines in an effort to cut down on computer

time and space. Two subroutines were written for the different polari-

zations, parallel and perpendicular bands. The subroutines are written

and called in a manner such that only one polarization subroutine need

be placed in the deck during any specific run, thus cutting down the

number of cards that must be compiled. Subroutines were also written for

several different plot types; linear display, log display, log-squared

display, log-log display and exponential display. As before, the program

is arranged so that only the cards for the plot type desired must be

compiled.

Basically the program proceeds by the following format. (See

Figure 10 for a flow chart). A test is performed to determined if the

molecule is an oblate or prolate top molecule. J and K are initialized at

the beginning of a loop. The ground state energy is calculated by use of

Equation 3.

F(J,K) = BJ(J+1) + (A-B)
2 

± 2AcK Eqn. (3)

A Boltzman factor is calculated using this ground state energy. Next,

the subroutine for band polarization is called. In the subroutine the

excited state values as a function of J and K are calculated, depending on

the type of transition. (See Equations 6 and 7 for selection rules). In

the respective subroutines the appropriate Honl-London line strengths are

29
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calculated. (See Table 1). Next, the excited state energy is calculated.

The frequency is calculated using Equation 9 as the difference between

the excited state energy and the ground state energy. Finally, the inten-

sity of the transition is calculated. Line intensities are taken as the

product of the line strength, Boltzman factor and statistical weight

applicable to each transition, and the line is then spread out. The con-

tour is divided into a number of boxes, and each of these boxes is indexed.

The intensity of the transition falling in a box can then be indexed by

the box number and added to those already stored there. The process is

applied to every possible transition for the ground state. Control is

then returned to the main program. The program then locates the line

frequency between a given maximum and minimum. Control is transferred to

a subroutine for the plot type. Once the plot type is determined, control

is again returned to the main program. All calculations being completed,

the program now scales the intensity between a given maximum and minimum

and the contour is printed by the computer.



31

Figure 10. Flow Chart for the final program.
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III. RESULTS

The original program used in this work was written by Pearson. 
(20)

It included large portions which were not used in all simulations but were

read and compiled, resulting in increased computing time. The primary ob-

jective of this research was to write a program from which could be

obtained an acceptable contour and at the same time eliminate those portions

which were not necessary for the spectrum under study. It was anticipated

that by writing the program into subroutines, computing time could be

significantly reduced. By eliminating unneeded calculations and by writing

into separate subroutine blocks those portions not used in a particular

contour simulation, the computing time was reduced 70 percent.

In order to substantiate that the program written in the research

correctly produces the spectrum of a molecule, contours simulated with

this program were compared to contours reported in the literature by

(22)
Duncan and and Pearson.

Duncan reported the spectrum of boron triflouride. The constants

used by him and used in this work are given in Table 2, and comparison

spectra are shown in Figures 11 and 12. Figure 11 gives the contour simu-

lated in this research and an observed spectrum of BF3. Figure 12 compares

contours produced by this work and those by Duncan and Pearson.

Comparison was made with the rotational contour of the perpen-

dicular band of deutrated ethane done by Pearson. (See Figures 12, 13

and 14 and Table 3). The spectrum has the appearance of a parallel band.

However, as pointed out by Pearson, no set of constants could be made to

give the correct contour when parallel selection rules were used.(23)

33
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Figure 11. BF
3 
spectrum (a) observed (b) calculated





Figure 12. BF
3 

Spectrum (a) Duncan's work

(b) Pearson's work

(c) this work
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Table 2 gives the constants used to produce the ethane d6 
contour.

In Figures 13 and 14 a comparison between this work, Pearson's work and

an observed spectrum can be seen.
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Constants

A

B*

r

*B= C

TABLE 2

Rotational Constants for BF3

Ground State Excited State

0.17635

0.35270

0.17575

0.35150

+0.81

TABLE 3

Ground and Excited State Constants for

Ethane d
6

Constant Ground State Excited State

A 1.3416 cm
-1

1.3300 cm
-1

B* 0.45973 cm
-1

.46366 cm
-1

C 0.32388

*B= C



Figure 13. C2D6 spectrum (a) observed

(b) calculated from this work





Figure 14. C
2
D
6 

Spectrum (a) observed

(b) Pearson's work

(c) this work





The comparison with previous calculations shown in Figures 11

through 14 attests to the validity of the contours produced by this pro-

gram. The usefulness of the program is not limited only to contour simu-

lation. It can be used to substantiate experimental data. The contour

program can be used in this manner to confirm such things as the type of

polarization of the transition and the geometry of the excited and ground

electronic states of the molecule. For the spectrum to be correctly

produced, the proper selection rules and inertial constants must be used.

Once these have been determined the comparison with experimental data is

possible.

The program also has possible use as an instructional tool for

observing the effects of changing such variables as the type of polari-

zation transition. Contours could be produced for different temperatures

and used in classroom discussion. A third possible instructional use

could be to ascertain what effect changing the geometry would have on the

contour, i.e. changing the moment of inertia due to assumed changes on

bond lengths and/or bond angles.

44
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A. Program

DIMENSION Z(50000), V(200), TITLE(100) $ DIMENSION G(1000) $

100 FORMAT(3F10.5) $ 1 FORMAT(5HSMAX=,F10.5,10X,5HSMIN-,F10.5) $

2 FORMAT(3F10.7,3E10.3,F10.5) $ 3 FORMAT(3F10.3,2F10.5,2F10.3) $

4 FORMAT(815,F10.5) $ 5 FORMAT(19A4,//) $ 6 FORMAT(4A1, 19A4) $

7 F0RMAT(23H GROUND STATE CONSTANTS) $ 8 FORMAT(3H A=,F8.5,4H B=,F8.5,

4H C=F8.5,6H DK = 3E10.3,16H DJK =,E10.3,6H DJ = E10.3,8H

ZETA = 1F10.5//) $ 9 FORMAT(23HEXCITED STATE CONSTANTS/) $ 10 FORMAT

(8H FVIB =, F10.3,12H INTERVAL =,F10.5,14H LINE WIDTH =,F 110.5, 8H

TEMP =,F10.3,9H DELTA =,F7.5,11H DELTA K =,I1,17H JMX =,13///) $

11 FORMAT( 1E10.3,1F8.2,2X,102A1) $ 12 FORMAT(1PE10.3,10X102A1) $

13 FORMAT(1H2, 1X) $ 14 FORMAT(15HDLINEAR DISPLAY) $ 15 FORMAT

(12HDLOG DISPLAY) $ 16FORMAT(20HDLOG SQUARED DISPLAY) $ 17 FORMAT

(16HDLOG-L0G DISPLAY) $ 18 FORMAT(20HDEXPONENTIAL DISPLAY) $ 19

FORMAT(1H1,//////////////) $ 20 FORMAT(23H FREE INTERNAL ROTATION//)

$ 21 FORMAT(6X,3HJ",6X,2H49,6X,3hK",6X,2HK',6X,4HKI",6X,3HKI',16X,

2H V,6X,5HBLZMN,10X,4HAINT,10X,4HFREQ/) $ 22 FORMAT(F9.1,F8.1,F9.1,

F8.1,F10.1,F9.1,F8.1,F12.5,2F16.5) $ C $ READ INPUT DATA $ 23 READ

(5,4)NSETS $ 24 READ(5,6)KSTAR,KZERO,KDOT,KBLANK,(TITLE(I),=I,19) $

25 READ(5,2)A,B,C,DK,DJK,DJ $ 26 READ(5,2)AE,BE,CE,DKE,DJKE,DJE,ZETA

$ 27 READ(5,3)FVIB,FMN,FMX,DF,W,T,XXI $ 28 READ(5,4)ISWE,ISWO,JSWE,

JSWO,JMX,JDEL,KDEL,KSEL,DELTA $ 29 READ(5,4)ISIG5,ISIG6,INRO $ 30

WRITE(6,5)(TITLE(I),I=L,19) $ C $ WRITE INPUT DATA $ 31 WRITE(6,7)

$ 32 WRITE(6,8)A,B,C,DK,DJK,DJ WRITE(6,9) $ 33 WRITE(6,8)AE,BE,CE,

DKE,DJKE,DJE,ZETA $ 34 WRITE(6,10)FVIB,DF,W,T,DELTA,KSEL,JMX $ C $

CLEARING STORAGE SPACE $ DO 35 I = 1,200 $ 35V(I)=0.0 $ D0361=1,50000

$ 36 Z(I)=0.0 $ DO 37 1=1,100 $ 37 TITLE(I)=0.00 $ C $ GAUSSIAN
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LINE SHAPE (NORMALIZED) $ NDF=((FMX-FMN)/DF+1.) $ XIN=(.91*W/DF)

$ IN=XIN $ FMN=FMN-0.5*DF $ SUM=1. $ D0431=1,IN $ AB=(IN-I+1)

$ 43 SUM=2.*EXP(-2.77*AB*AB*DF*DF/(W*W)+SUM $ V(IN+1)=1./SUM $

NDFW=IN+IN+1 $ D050I=1,IN $ AB=(IN-I+1) $ V(I)=EXP(-2.77*AB*AB*DF*

DF/(W*W))/SUM $ I1=NDFW-I+1 $ 50 V(I1)=V(I) $ XSWE=ISWE $ XSWE=

ISWO $ KSWE= 1.375 $ XSWO= 1.000 $ C PROLATE OR PBLATE TOP $

IF(A-B)54,52,54 $ 52 BBAR=(C-B) $ G0T055 $ 54 BBAR=(A-B) $ 55

IF(AE-BE)59,56,59 $ 56 BBARE=(CE-BE) $ AA=CE $ GOT060 $ 59

BBARE=(AE-BE) $ AA=AE $ C CYCLE FOR J $ 60 CONTINUE $ C CYCLE

FOR K $ 64 DO 174M=1,JMX S K=M-1 $ XK=K $ N=K+1 69 DO 173JJ=N,

JMX $ J=JJ-1 $ IF (J.EQ.0) GOTO 173 $ XJ=J $ IF (K)174,74,76 $

74 SWFK=XSWE $ GO TO 80 $ 76 DDT=K/3 $ LLL=DDT $ IF(LLL.EQ.DDT)

GO TO 79 $ 77 SWEK=XSWE+XSWE $ GO TO 80 $ 79 SWEK= XSWO + XSWO $

80 IF((J+1)/2-J/2) 81,81,82 $ 81 SWEJ= JSWE $ GO TO 83 $ 82 SWEJ=

JSWO $ 83 SWF=SWEJ*SWEK $ C GROUND STATE JANDK STORED $ XJ1=

XJ*XJ+XJ $ XJ2=XJ1*XJ1 $ XK1=XK*XK $ FREQ1=B*XJ*(XJ+1)+(A-B)

*XX*XX-4(J*XJ2-DJK*XJ1*XKl-DK*XKl*XKl $ BLZMN= EXP((-FRE01*1.43846)/T)

$ CALL BANDS (J,K,FREQ1,SWF,BLZMN,BBARE,AA,ZETA, $ ODJKE,DKE,FMN,DF,

IN,NDF,NDFW,I,XJ,XK,Z,V,DJE,BE,FVIB) $ 172 CONTINUE $ 173 CONTINUE

$ 174 CONTINUE $ 175 CONTINUE $ C PARAMETERS FOR CONTOUR $ 181

RFMN=FMN $ D0254NDX=1,ISIG6 $ IF(NDX.EQ.L.)GOT0178 $ WRITE(6,19)

$ 178 SMAX=Z(1) $ SMIN=SMAX $ D0180 I=1,NDF $ SMAX=AMAX1(Z(I),

SMAX) $ 180 SMIN=AMIN1(Z(I),SMIN) $ 186 FMN=RFMN-9.5*DF $ ICNT=10

$ IF(SMIN-1.)187,187,188 $ 187 SMIN=1. $ 188 IF(SMAX/SM1N-XXI)190,

190,189 $ 189 SMIN=SMAX?XXI $ 190 CONTINUE $ CALL PRINT(SMAX,

SMIN,YMAX,YMIN) $ 210 G0TO(211,213,215),ISIG6 $ 211 X=100. $G0T0216

$ 213 X=200. $ GOT0216 $ 215 X=300. $ 216 SCALE=(X-1.)/(YMAX-YMIN)

$ ZER0=(X-SCALE*YMAX) $ D02531=1,NDF $ 219 IF(Z(I)-1.)235,235,220 $
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220 GOTO(221,223,225,228,230),ISIG5 $ 221 Y=Z(I) $ GO TO 232

223 Y=ALOG(Z(I)) $ GO TO 232 $ 225 E=ALOG(Z(I)) $ Y=E*E $ GO

TO 232 $ 228 IF(Z(I)-3.)235,235,229 $ 229 Y=ALOG(ALOG(Z(I))) $

GO TO 232 $ 230 IF(Z(I)-SMIN) 235,235,231 $ 231 Y=EXP((Z(I)-

SMIN)/(SMAX-SMIN)) $ C LINEAR SCALING BETWEEN 1 AND X $ 232 NNN=

(SCALE*Y+ZER0+0.5) $ C PLOTTING $ ISIG2=1 $ IF(NNN)235,235,237

$ 235 NNN=1 $ G0T0242 $ 237 D024011=1,3 $ 238 IF(NNN-100)241,

241,239 $ 239 NNN=NNN-100 $ 240 ISIG2=ISIG2+1 $ 241 GOTO(242,244,

246),ISIG2 $ 242 KKK=KDOT $ MMM=1 $ G0T0247 $ 244 KKK=KZERO $

MMM=2 $ G0T0247 $ 246 KKK=KSTAR $ MMM=3 $ 247 IF(ICNT-10)252,

248,248 $ 248 ICNT=0 $ FMN=FMN+10.*DF $ IF(MMM.NE.NDX)NNN=1 $

250 WRITE(6,11)Z(I),FMN,KDOT,(KBLAND,J=1,NNN),KKK $ G0T0253 $ 252

IF(MMM.NE.NDX)NNN=1 $ WRITE(6,12)(Z(I),KDOT,(KBLANK,J=1,NNN),KKK $

253 ICNT=ICNT+1 $ 254 CONTINUE $ NSETS=NSETS-1 $ IF(NSETS)258,258,

256 $ 256 WRITE(6,13) $ GOT024 $ 258 STOP $ END $

BANDS

SUBROUTINE BANDS(J,K,FREQ1,SWF,BLZMN,BBARE,AA,ZETA, $ ODJKE,DKE,

FMN,DF,IN,NDF,NDFW,I,XJ,XK,Z,V,DJE,BE,FVIB) $ DIMENSIONZ(50000),

V(200),TITLE(100) $ 15 DO 175 14=1,3,2 $ C PERPENDICULAR BANDS $

25 KE=K+2-I4 $ 26 IF (KE.LT.0) GO TO 170 $ 27 XKE=KE $ 30 DO

174N-=1,3 $ 35 JE=J+N-2 $ IF(KE.GT.JE) GO TO 174 $ 40 XJE=JE

$ IF(KE=K)50,175,90 $ 50 FREQ=2*AA*ZETA*XKE $ 55 IF(JE-J)60,70,

80 $ 60 AKJ=((XJ+XK-1.)*(XJ+XK))/XJ $ 65 GOTO 130 $ 70 AKJ=

((XJ-XK+1.)*(XJ+XK)*2.*XJ+1))/(XJ*XJ+XJ) $ 75 GOTO 130 $ 80 AKJ=

((XJ-XK+2.)*(XJ-XK+L.))/(XJ-1.) $ 85 GOTO 130 $ 90 FREQ=-2.*AA*

ZETA*XKE $ 95 IF(JE-J)100,110,120 $ 100 AKJ=((XJ-XK-1.)*(XJ-XK))/

XJ $ 105 GOTO 130 $ 110 AKJ=((XJ+XK-1.)*(XJ-XK)*(2.*XJ+1.))/

(XJ*XJ+XJ) $ 115 GOTO 130 $ 120 AKJ=((XJ+XK+2.)*(XJ+XK+1.))/

(XJ+1.) $ C EXCITED STATE FREQ. $ 130 XJE1=XJE*XJE+XJE $
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XJE2=XJE1*XJE1 $ XKE1=KKE*XICE $ FREQ2=BE*XJE1+BBARE*XKE1-DJE*XJE2-

DJKE*XJEl*XKE1 $ 1-DKE*XKE1*XKE1+FREQ $ DELF=FREQ2-FREQ1+FVIB

C LOCATION OF LINR IN CONTOUR $ 140 I1=((DELF-FMN)/DF+1.) $ C

ADD TO CONTOUR $ 145 IF (I1-IN)174,174,149 $ 149 CONTINUE $ 150

IF(11-NDF+IN)155,155,170 $ 155 DO 165I=1,NDFW $ 160 12= 11+1-IN-1

$ 165 Z(I2)=Z(I2)+SWF*AKJ*V(I)*BLZMN $ 170 CONTINUE $ 174 CONTINUE

$ 175 CONTINUE $ 180 RETURN $ END $

PRINT

SUBROUTINE PRINT(SMAX,SMIN,YMAX,YMIN) $ YMAX=SMAX $ YMIN=SM1N $

RETURN $ END.
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