Differences in Lower-Extremity Kinematics Among Female Collegiate Soccer and Volleyball Players

Marisa J. Christensen, Dustin Malandra, Anjuli Gairola. Cabrini University, Radnor, PA

Joint angles and leg stiffness play a role in an athlete’s Reactive Strength Index (RSI), which is a measure that can be used to determine an athlete’s ability to produce force or explosiveness over a short period of time. **PURPOSE:** To evaluate the differences in RSI, knee joint angular displacement (KD), and ankle joint angular displacement (AD) among soccer and volleyball female athletes during a landing task. **METHODS:** A total of 14 healthy, NCAA Division III female athletes (19.79 ± 1.12 years) volunteered for this study. The subjects jumped over a hurdle with subsequent maximal vertical jump (using Vertec). The maximal vertical jump landing was video recorded and analyzed using Hudl technique app. A one-way ANOVA was used to determine differences among soccer and volleyball athletes for RSI, KD, and AD. **RESULTS:** RSI was significantly higher in soccer (1.78±0.39 vs. 1.32±0.23, \(p<.05\)). There were no significant differences observed between soccer and volleyball athletes for KD (30.12°±12.55° vs. 37°±18.52°, \(p=.422\)) and AD (40.37°±6.5° vs. 43.83°± 9.02°, \(p=.419\)). **CONCLUSION:** There is an observable difference in ground force attenuation strategies by sport. Future studies should explore lower-extremity absorption strategies using bigger sample size, NCAA Division I or II athletes, and comparing genders during sport-specific tasks. Further investigation may examine landing angles in both the frontal and sagittal planes.