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A comparison of the reliability of three pattern recognition classi-

fiers has been made using data having a great amount of variation. The

basic concepts of the Linear Learning Machine, the K Nearest Neighbor

Classifier, and the Potential Function Classifier are presented. Pre-

diction of whether a student would pass or fail freshmen Chemistry 120

was made, based on various test results. The Linear Learning Machine

was found to be an unworkable classifier for this kind of data. Both

the Potential Function Classifier and the K Nearest Neighbor classifier

were acceptable with the Potential Function Classifier being generally

a better classifier.



I. INTRODUCTION

Pattern Recognition is the technique of using automatic procedures

to classify samples of data into discrete categories based on the simi-

larities they exhibit to known groups of samples. The power of this

technique is demonstrated in its ease of application to extremely diffi-

cult and sometimes unsolvable problems. It is now being routinely applied

to problems which were formerly considered to be approachable only by

humans.

Research in this area has been stimulated by the promise this

technique holds. The perfection of such machines will not only allow

for better man-machine interfacing but also will allow their substi-

tution for humans in the performance of routine information processing

tasks; tasks that computers will be able to perform more quickly,

accurately, safely, and inexpensively than humans.

Considerable research has been done in the theory and methods of

pattern recognition
(1-12) 

and it has been applied with considerable suc-

cess to the classification of various types of spectral data, i.e.,

mass spectra(13-16), NMR spectra(17,18), Infrared spectra (19,
20), 

etc.

However, few applications have been made on data which shows considerable

overlap of categories and variation of data within each category. This

paper will deal with such an application and the various attempts to

improve the technique.
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II. HISTORICAL

Initial efforts in the study of automatic pattern recognition may

be traced back to the early 1950's when the digital computer first became

a readily-available information processing tool. These early attempts

were quite limited in scope due to their simplicity. In the late 1950's

studies of perception by the human brain and the similarities of computers

and the brain led to a better model for information, storage and organi-

zation. The major approaches at this time to the pattern recognition

problem were based primarily upon statistical decision theory and thresh-

old logic principles. With the advent of larger, more powerful and more

efficient computers the research in pattern recognition system design

gained momentum. The need for more efficient communication between man

and machine became evident as computers were applied to more systems.

Research to this time had been in the domain of applied mathematicians,

statisticians, and computer-oriented engineers.

According to Shoenfeld and DeVoe
(21)

, the first chemical application

of pattern recognition was made in 1964 when Tal'roze used it in the

identification of organic substances from their mass spectral lines.

Activity picked up in the late 1960's and early 1970's with most of the

work being done in the various areas of spectroscopy. Most of the work

in this area has been done by several researchers: T. L. Isenhour,

University of North Carolina; P. C. Jurs, Pennsylvania State University;

B. R. Kowalski, University of Washington; C. F. Bender and S. L. Grotch,

UCRL, Livermore; C. W. Wilkins, University of Nebraska; and others.
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Recent literature surveys and reviews demonstrate the great variety of

(21-26)applications possible with pattern recognition.

At present, work is being done to compare different pattern recog-

nition systems and to improve their versatility and accuracy, to reduce

computer usage time, and to develop even better pattern recognition

techniques.



III. THEORETICAL

Pattern recognition is an important category in the much broader

field of artificial intelligence. It can be said that the ultimate

goal of artificial intelligence is to construct machines that will

perform the same functions as the human brain but at a faster rate and

with a greater degree of reliability. Because of the many approaches

that can be taken to it, pattern recognition itself is a quite broad

field. Numerous articles and books have been published dealing with

the statistics and theory of the pattern recognition 
system.(1-12)

Basically there are two approaches to developing the pattern recog-

nition system--parametric and nonparametric. Parametric methods assume

that the probability density functions are known or can be estimated.

Bayes strategies are employed in the learning nad decision process.

This approach is useful for some kinds of data but for chemical data

it is, in most cases, impractical. Most sets of chemical data are only

partially complete so little can be known or even assumed about the under-

lying statistical distributions of the data. Thus a parametric approach

is not possible.

The nonparametric approach has the advantage of being totally

emperical, that is, it needs to make no assumptions about any kind of

relationship between a set of data points and a category. This allows

it to be applied to both simple and very complex data with equal ease.

A simplified block diagram of a pattern recognition system is

shown in Figure 1. There are two problems the pattern recognition system

4
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must deal with as emphasized by the two blocks--feature extraction and

classification. The feature selection block may be further broken down

into three subunits as shown in Figure 2: the transducer, the feature

selector, and the preprocessor.

The transducer has the function of transforming raw data into a

form compatable with the language of the classification device. Typically

the transducer is an Analog-to-Digital Converter to convert the analog

data signal into a digital signal which can be utilized by the computer

the classifier is using.

Feature selection deals with the decision of what measurements to

take from the input data. Usually this decision is rather subjective

and is dependent on practical matters such as cost, availability, etc.

There is little general theory on what measurements to take, hut the

approach usually taken to determine the contribution a measurement makes

to the accuracy of a classification is to leave it out and note the

change in accuracy of the classification.

Interrelated with the feature selector is the preprocessing unit.

Together they aid the classifier in making a classification. Preprocess-

ing includes algebraic transformations such as squaring, extraction of

roots, and taking of logs and changes in variables through transforms

such as the Fourier transform. Preprocessing is quite useful for the

following two reasons: first, it can spread the clusters of data points

of categories further apart thus making classification easier and, second,

it can reduce the dimensionality of the data by discarding dimensions

deemed expendable or by combining two or more dimensions in some way.

The advantage of dimensionality reduction will be seen later when the

calculation made by the classifier during a classification process is
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examined. The preprocessing of data has received considerable attention

but as of yet no definite procedures for this operation have been defined

since it is not completely independent of the classifier.

After the operation of the feature extractor on the raw data it may

be represented as an N-dimensional vector

X

-
1
x,

x i

x 
n

These N-dimensional "pattern" vectors can be represented as a point in

an N-dimensional hyperspace. Figure 3 illustrates pattern vectors in a

two-dimensional pattern space. Suppose that there are two or more cate-

gories of pattern vectors represented in the pattern space. The task of

the classifier is to assign each pattern vector or point in the hyper-

space to its proper class. This can be accomplished by the partition

of the hyperspace into mutually exclusive regions with each region

corresponding to a particular pattern class. The classifier defines

the decision surface between the regions of the hyperspace. Numerous

classifiers have been presented in the literature(3) but generally

they are modifications or combinations of the following three: the

Linear Learning Machine, the K-Nearest Neighbor classifier, and the

Potential Function Classifier.
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FIGURE 3. PATTERN VECTORS IN A TWO DIMENSIONAL PATTERN SPACE
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THE LINEAR LEARNING MACHINE

The linear learning machine
(24) 

is a binary pattern classifier which

defines the decision surface between two pattern classes by repeatedly

correcting the orientation of the decision surface until all patterns

of a training set are classified correctly. The principal decision

making of the linear learning machine is performed by the Threshold Logic

Unit (TLU). The TLU's used are capable of placing a pattern in one of

two classes. The original pattern vector is represented as X. The TLU

implements a plane of the same dimensionality as the patterns which will

separate the data into the two classes. Since it is very convenient to

have the decision surface pass through the origin of the hyperspace (it

becomes simplier mathematically), all of the original vectors are augmented

with an N + 1 component to give a new vector. Hence,

and

X =

•••••,

x
n
n+1

Now an N + 1 dimensional hyperplane which passes through the origin

may be used to separate the pattern sets. A convenient way to deter-

mine whether a point lies on one side of the hyperplane or the other
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is to use a vector normal to the plane at the origin. This vector,

called the weight vector (W), defines the locus of points which make

up the hyperplane separating the two classes. Because W is perpendic-

ular to the plane, the dot product of W with any pattern vector (Y)

will determine on which side of the plane the pattern vector lies.

S =W cos()

Where 0 is the angle between the two vectors. IWI and IYI are always

positive, so for

-900<0<900 cos9>0

and s > 0

900>8>2700 cose<0

and s < 0

Thus for pattern vectors less than 90° from W (and thereby on one side

of the plane) the dot product is always positive, while for patterns

on the other side of the plane the dot product is always negative.

Another form of the dot product is

S =W•Y=w - . . .
lv'l ' 

- 
272 wnyn 

+ w
n + lYn+1-

This type of computation is quite easy for the digital computer. One

can arbitrarily assign the positive side of the hyperplane as category

one and the negative side as category two. A block diagram illustration

of the Threshold Logic Unit is shown in Figure 4.

To develop a decision maker for a given classification, a training

set of pattern vectors, for which the correct categories are known,

is presented to the classifier one at a time, and whenever a misclassi-

fication occurs, a correction process (negative feedback) is applied

to the weight vector. This process continues until all patterns of the

training set are correctly classified or it is determined that the
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patterns will not result in training in which case the computer termi-

nates the training after a certain number of feedbacks. Figure 5 gives

a flow diagram of this process. One of the simplest and most effective

feedback methods to date is to move the decision hyperplane along the

perpendicular axis between the misclassified point and the plane, so

that after the correction it is the same distance on the correct side

of the point as it was previously on the incorrect side. This movement

is accomplished by adding an appropriate multiple of the pattern vec-

tor (Y) to the weight vector. Thus

W • Y. = s
1

where s has the incorrect sign for classifiying Y. Therefore, weight

vector, W', is desired such that

1

by combining a fraction, c. of Y
i 
with W.

W I = W + c Y.
1

By combining the above equation we can get the new weight vector, W',

from the equation

w' = w -  2 s
Y..Y.
1 1

Y.
1

This method of classification works well on a pattern space where the

categories are easily linearly separablc;but when they are not, the

classifier begins to use excessive computer time with no results other

than the assumption that the categories are linearly inseparable.

(It cannot be proven that two categories are linearly inseparable until

the computer performs an infinite number of feedbacks.)

Some of the problems associated with linear inseparability may

be overcome by the addition of a "width" parameter
(28) 

to the linear

learning machine. This parameter creates a null region in the case of
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linearly separable categories and defines a region of overlap containing

the subset of the inseparable data in the case of linearly inseparable

categories. By changing the value of this parameter, a confidence value

may be obtained for that particular classifier. This parameter is

illustrated by Figure 6.

A major advantage of the linear learning machine is that once the

values of the weight vector have been determined the task of classi-

fying unknown patterns can be accomplished on a simple calculator.

THE K NEAREST NEIGHBOR CLASSIFIER

The K Nearest Neighbor (KNN) classifier
(18) 

is quite simple both in

conception and in computation which is one of its advantages. An unknown

pattern is classified according to the majority vote of its K Nearest

Neighbors in the N-dimensional space. Its nearest neighbors will be

members of a training set whose categories are known. Computationally,

all that is required is to compute the distances between the unknown

pattern vector and all of the pattern vectors in the training set. The

KNN classifier is a multicategory classifier. Any number of categories

can be represented in the training set and the unknown pattern will still

be classified according to the majority vote. The nearer neighbors are

weighted to have a larger vote than those farther away. The KNN classi-

fier is also nonlinear which allows it to classify patterns such as those

represented in Figure 7. The reason for this is that the Euclidean

distance in an N-dimensional space between point i and j,

D.. 1:E1 (x. - x.
1-i ik j

k=1
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is a nonlinear function of the features. Many studies have been made

on the KNN classifier to give it a firm statistical foundation and it

is generally accepted as a standard by which other classifiers are judged.

There is no training required for the KNN classifier but it sometimes

uses a great amount of computer time to do the computations necessary to

make a decision.

THE POTENTIAL FUNCTION CLASSIFIER

The Potential Function Classifier (PFC)
(27) 

is also a quite simple

classifier which, as the KNN classifier, requires no training. To

visualize the PFC one can consider each point in a hyperspace as having

a positive or negative charge with each point having its awn potential

field. One can find a zero potential surface in the hyperspace between

the two categories of positive and negative charges. This zero potential

surface is the decision surface of the classifier. Figure 8 shows a 040-

dimensional potential function decision surface. Computationally, the

decision process involves the evaluation of the following equation:

n+1
n-1M = sgn( P(D .) W . - P(D .) W . + T)

j=1
+1,3 +1,3 

j=1 
-1,j -1,3

where is the Euclidean distance from the unknown patternD+1,i
vector to the j th pattern vector in the positive

category of the training set.

is the Euclidean distance from the unknown pattern

vector to the j th pattern vector in the negative

category of the training set.

P(D)

W+1,j

is a scalar quantity which can be either positive,

negative, or zero.

is some function of the distance.

is a weight factor for the positive distances.

is a weight factor for the negative distances.



4
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MEASUREMENT ONE

FIGURE 8. DECISION SURFACE OF A POTENTIAL FUNCTION CLASSIFIER
IN A TWO DIMENSIONAL SPACE.
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The PFC as presented here can only be applied to two category systems.

It is somewhat more reliable than the KNN classifier and usually re-

quires less computer usage time.



IV. EXPERIMENTAL

To test the different pattern recognition techniques a totally

different kind of data was chosen than that utilized by other researchers

to date. It has been desired for some time to find a better way to

utalize the data available on students, i.e., ACT scores, Toledo scores,

High School Grade Point Averages, etc., to advise them on taking Chem-

istry 120. Since other methods have met with only limited success it

seemed likely that the emperical approach of pattern recognition should

yield better results. Three hundred and forty-five sets of data were

taken over a period from 1971 to 1975. The following information was

taken on each student: ACT composite score, ACT English score, ACT math

score, ACT natural sciences score, Toledo composite score, Toledo math

score, Toledo chemistry score, High School Grade Point Average, and the

number of hours taken during that semester. This information was obtained

from the Chemistry Department and the Registrar's Office at Western Kentucky

University.

The different classifiers tested were the Linear Learning Machine,

the Nearest Neighbor Classifier, and the Potential Function Classifier.

Both the Linear Learning Machine and the KNN Classifier have been used

quite often in chemical applications but little has been done with the

Potential Function Classifier. Programs of each of the classifiers are

contained in the appendices of this paper.

A PDP-11/45 computer was utilized for this work.

21



V. DISCUSSION AND RESULTS

Several preprocessing techniques were tried with the raw data scores

and the best was found to be that of scaling the scores from 0 to 1 and

then squaring the scaled quantity. The effect of this is to spread the

two categories farther apart to make classification easier.

Several attempts were made to classify the data using the linear

learning machine classifier but in all attempts the training routine was

unable to achieve convergence. A width parameter was included to allow

the training routine to be completed but it was found that a majority of

the data lay in the region of overlap making any classification attempts

with the resulting weight vector useless. It was concluded that the

linear learning machine classifier was not able to operate effectively on

this kind of data.

The next attempt at classifying the data was made with the K Near-

est Neighbor Classifier. Since the KNN Classifier does not require a

training routine, this problem is eliminated. Again 300 patterns were

taken as the training set and prediction was attempted on the remaining

45. Since the KNN Classifier can be a multicategory classifier just as

easily as it can be a binary classifier, attempts were made at predicting

both the letter grade and whether a student would pass or fail. The

results of this were reasonable (averaging 80%) for the pass-fail

predictions but were quite poor (about 35%) for predicting the letter

grade.

With the KNN Classifier it is easy to vary the number of neighbors

which participate in the voting for the category of the unknown pattern.

22
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Therefore classifications were made while varying the value of k (the

number of nearest neighbors) and keeping the training and prediction

sets the same. The results of this are shown in Table 1 and Figure 9.

The best k value was found to be in the range of 10 to 15. It is ex-

pected that the optimum k value will vary depending on the kind of data

the classifier operates on.

To determine the dependence of the predictability on the training

set size, a series of classifications were made while varying the

training set size. The prediction set was the same for each classi-

fication attempt. The results of this are shown in Table 2 and Figure 10.

The results show that the performance of the classifier improves with

increasing training set size, thus if more data were available, the

quality of the classifier would improve. However, a larger training

set means longer calculations and more computer usage time which could

lead to prohibitive costs.

The Potential Function Classifier was next tested with the data set.

The training and prediction sets were set up as before. The positive

and negative weight factors were obtained by considering the number of

patterns in each category in the training set and assigning weight factors

to give each category an equal weight. Tests were run to determine the

best function of the Euclidean distance. The results of this are shown

in Table 3 and Figure 11. This function will vary for each different

application of the PFC but for this application the best results were

obtained with P(D) equal to D
-15

.

A determination of the effect of training set size on the PFC

was also made. The KNN Classifier was also tested on the same train-

ing and prediction set to give a comparison of the two classifiers.
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The results of these tests are given in Table 4 and Figure 12. In this

test the predictability of the PFC was slightly better than that of the

KNN Classifier.

Since all the available data was being used, the only other test

that could be made along the line of changing the training set and

prediction set was to reshuffle the data cards. Both the PFC's and

KNN Classifier's predictability varied considerably with the reshuffling

of the data. Results of both varied from 60 to 85-90% with the PFC

generally doing slightly better than the KNN. This variation demonstrates

the variation in the data which made it impossible to distinguish good

from bad data in most cases.
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TABLE I. THE DEPENDENCE OF PREDICTABILITY ON
THE NUMBER OF NEAREST NEIGHBORS(K).

VALUE OF
K

% CORRECT PREDICTION
OF PASS/FAIL

% CORRECT PREDICTION
OF LETTER GRADE

1 84.45 35.56

5 82.23 35.56

1;) 86.67 40.00

15 84.45 48.89

21) 84.45 42.23
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TABLE 2. THE DEPENDENCE OF PREDICTABILITY
ON TRAINING SET SIZE.

NUMBER OF PATTERNS
IN TRAINING SET

% CORRECT PREDICTION
OF PASS/FAIL

% CORRECT PREDICTION

OF LETTERGRADE

,
50 71.12 33.34

100 73.34 22.23

150 68.89 28.89

200 73.34 35.56

250 75.56 35.56

300 80.00 37.78
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TABLE 3. DEPENDENCE OF PREDICTABILITY ON
THE FUNCTION OF THE EUCLIDEAN DISTANCE.

P(D1=
% CORRECT PREDICTION

OF PASS/FAIL

D
9

D
4

D

D
-1

D
-4

D
-9

D
-12

D
-15

-20
D

42.22

44.44

46.67

60.00

60.00

71.11

73.33

77.78

77.78
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TABLE 4. THE DEPENDENCE OF PREDICTABILITY
ON TRAINING SET SIZE

NUMBER OF PATTERNS
IN TRAINING SET

% CORRECT PREDICTION
OF PASS/FAIL

PFC KNN

50 88.88 51.12

100 88.88 62.23

150 88.88 75.56

200 86.67 77.78

250 91.11 86.67

300 88.88 82.23
_
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VI. CONCLUSION

Other research into the application of various pattern recognition

techniques has been confined to the type of data that does not have a

great deal of variation. Prior comparisons have been made on data that

has been artificially generated or that has been shown to give accept-

able results in all types of classifiers. The data used in this appli-

cation is dependent on a great many factors and consequently there is

a large amount of variation in the data in each category. It is

impossiblc in most cases to distinguish what would be considered good

data from that which would be considered bad.

On good data the KNN Classifier and the PFC have been shown to be

about equal in reliability with both being much better than the Linear

Learning Machine. In this application, a good example of acting on

poor data, the Linear Learning Machine is not a workable classifier;

the KNN and PFC Classifiers are acceptable with the PFC being somewhat

better than the KNN Classifier.

As would be expected, the predictability of both the KNN and PFC

Classifiers would improve with a larger training set. The value of k

for the KNN Classifier optimizes because as k is increased there is

first an increasing number of nearest neighbors of the correct cate-

gory voting for the category of the unknown, then as k gets even larger,

it begins encompassing a large portion of the training set, not just

the nearby neighbors. It would be extremely difficult to find an

optimum expression for P(D) for the PFC as there are a great many
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possibilities to consider. Also the predictability of the classifiers

would be expected to improve if the number of data points in each pattern

was increased.

The value of the pattern recognition methods lies in their ease of

application to all kinds of data and the reliability which they can

achieve. Further research must be directed in the area of feature ex-

traction as there are many improvements to be made there, such as finding

the best method of separating the categories in the pattern space. The

next possible step in this direction would be the on-line use of pattern

recognition to speed up analysis of data in all areas of science.



APPENDIX A

The Linear Learning Machine Program

The Linear Learning Machine program presented here was designed

after a model presented by Jurs and Isenhour.
(8)
 It employs a width

parameter which can be set equal to a negative number to create a region

of overlap. (D in line 22 of the program is the width parameter.)

The data used by the program is taken from a previously created data

file. After the training routine the computer prints out the calculated

weight vector and the number of feedbacks required to achieve conver-

gence. It then goes into the prediction routine where it prints out

each pattern it misclassifies. At the end of the prediction routine

the number of patterns misclassified are totaled. Should convergence

not be achieved during the training routine the program will print out

the word "nonconvergent" and print out the weight vector that was calcu-

lated to that point. The computer language used is BASIC PLUS.

8 Z=0
10 T%=345
12 DIM W(11),V(345)
14 OPEN 'DATA.ED1' AS FILE #4
16 DIM 1/4,P(345,11)
18 W1=.1
20 N%=9
22 D=-.001
24 R%=300
50 FOR I%=1 TO N7 + 1
55 W(I7)=W1
57 IF I% +2=Z THEN W(I%)=0
60 NEXT I%
65 FOR I%=1 to R%
70 V(I%)=I%
75 NEXT I%
85 F%=0
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90 U7=0
95 Y%=0
100 IF U% > 0 GOTO 110
105 U%=R%
107 H=1
110 FOR X%=1 TO U%
115 I%=V(X%)
120 P(I%,N%=3)=1
125 S=W(N%+1)
130 FOR J%=1 TO N%
132 IF J%+2=Z THEN J70=J%+1
135 S=S+P(I%,J%+2)*W(J%)
140 NEXT J%
145 IF P(I%,2) > 1 GOTO 155
150 IF S+D > 0 GOTO 170 ELSE 235
155 IF S-D > 0 GOTO 235
160 C=2*(D-S)
165 GOTO 175
170 C=2*(-D-S)
175 Q=1
180 FOR J%=1 TO N%
182 IF J%+2=Z THEN J%=J%+1
185 Q=Q+P(I%,J%+2)**2
190 NEXT J%
195 C=C/Q
200 FOR J7=1 TO N%
202 IF J%+2=Z THEN J%=J%+1
205 W(J%)=W(J%)+C*P(I%,J%+2)
210 NEXT J%
212 W(N%+1)=W(N%+1)+C
215 X3=1
216 H=0
220 IF X3=0 GOTO 235
225 Y%=Y%+1
230 V(Y%)=I%
235 NEXT X%
240 U%=Y%
242 IF U%=0 GOTO 260
245 F%=F%+1
250 IF F% > 1000 GOTO 510
255 GOTO 95
260 PRINT F%
265 F1=F1+F%
270 IF 11=1 GOTO 280
275 GOTO 65
280 PRINT "TOTAL FEEDBACKS=", Fl
285 FRINT "WEIGHT FACTORS"
290 MAT PRINT W
400 A%=0
405 FOR I%=1 TO T%
410 L=W(N%+1)
415 FORJ%=1 TO N%
417 IF J%+2=Z THEN J%=J%+1
420 L=L+W(J7,*P(I%,J70+2)
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425 NEXT J%
427 D=0
430 IF P(I%,2) > 1 GOTO 440
435 IF L+D > 0 GOTO 450 ELSE GOTO 470
440 IF L-D > 0 GOTO 470
450 PRINT P(I%,1), "MISSED",L,P(I%,2)
455 A%=A%+1
470 NEXT I%
475 PRINT "TOTAL MISCLASSIFIED=",A%
480 CLOSE #4
500 STOP
510 PRINT "NONCONVERGENT"
520 PRINT "WEIGHT FACTORS???"
530 MATPRINT W
550 STOP
600 END



APPENDIX B

The K Nearest Neighbor Classifier Program

This program for the K Nearest Neighbor Classifier also uses data

from a previously created data file. The number of nearest neighbors

is changed by changing the value of N in line 25 of the program. When-

ever a pattern is misclassified its number is printed out along with

how it was classified and its true class. At the end of the program

a tally is given of the number of patterns missed.

10 E=1
15 P=300
20 Q=345
25 N=15
30 M=5
32 DIM W(345,11),S(25),T(25),C(5),D(5)
35 OPEN 'DATA.ED1' AS FILE #3
40 DIM #3, G(345,11)
41 FOR I=1 TO 345
42 FOR J=1 TO 11
43 W(I,J)=G(I,J)
44 NEXT J
45 NEXT I
46 CLOSE #3
50 U=0
51 A=0
53 FOR I=P+1 TO Q
55 FOR J=1 TO M
57 S(J)=10000
59 NEXT J
60 FOR K=E TO P
65 R=0
70 FOR J=3 TO 11
75 R=R+04(I,J)-W(K,J))**2
80 NEXT J
83 H=K
85 FOR J=1 TO N
90 IF R > S(J) GOTO 115
92 V=S(J)
93 L=T(J)
95 S(J)=R
100 T(J)=H
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105 R=V
110 H=L
115 NEXT J
120 NEXT K
121 FOR K=1 TO M
122 C(K)=0
123 NEXT K
125 FOR J=1 TO N
130 X=T(J)
135 FOR K=1 to M
140 IF W(X,2) <> K-1 GOTO 145
142 C(K)=C(K)+1/S(J)
143 D(K)=X
145 NEXT K
150 NEXT J
170 B=0
175 FOR K+1 TO M
180 IF C(K) < B GOTO 200
185 B=C(K)
190 Y=D(K)
200 NEXT K
210 IF W(Y,2)=W(I,2) GOTO 225
211 GOTO 215 IF W(Y,2) > 1 IF W(I,2) > 1
212 GOTO 215 IF W(Y,2) < 2 IF W(I,2) < 2
213 A=A+1
215 PRINT W(I,1), "MISSED",W(I,2),W(Y,2),W(Y,1)
220 U=U+1
225 NEXT I
230 PRINT "TOTAL MISSED",U,"% MISSED",U?(Q-P)
235 PRINT MISSED ON PASS/FAIL BASIS,A
236 PRINT "% MISSED ON PASS/FAIL BASIS, A/(Q-P)
300 STOP
400 END



APPENDIX C

The Potential Function Classifier Program

The Potential Function Classifier performs very similar to the

way the KNN Classifier does. The scalar quantity is given in line

20 as T. The quantities W and V in lines 30 and 40 are the weight

factors for the positive and negative distances respectively. The

function of the distance is given in line 250 by F.

10 U%=300
12 X%=1
15 L%=345
20 T=0
30 W=1
40 V=2.6319
50 OPEN 'DATA.ED1' AS FILE #3
52 DIM #3, W(345,11)
55 DIM A(345,11),B(11)
60 FOR I=1 TO 345
63 FOR J=1 TO 11
65 A(1,J)=W(I,J)
67 NE= J
70 NEXT I
75 CLOSE #3
90 E%=0
100 FOR K%=U%+1 TO L%
110 FOR I%=3 TO 11
120 B(I%)=A(KLI70)
130 NEXT I%
170 P=0
180 M=0
190 FOR I%=X% TO U%
200 D=0
210 FOR J%=3 TO 11
220 D=D+(A(I%,=-8(J%))**2
230 NEXT J%
240 D=SORT(D)
250 F=1/D**15
260 IF A(I%,2) > 1 GOTO 290
270 M=M+F*V
280 GOT 300
290 P=P+F*W
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300 NEXT I%
320 S=SGN(P-M+T)
400 IF A(K%,2) > 1 THEN R=1 ELSE R=-1
410 IF R=S GOTO 440
420 PRINT A(K%,1),R,S
430 E%=E%+1
440 NEXT K%
450 PRINT "TOTAL MISSED",E%
455 Y=L%*U%*E%
456 7,=(Y/(L%*U%))*100
460 PRINT "% CORRECT",Z
500 STOP
600 END
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