Effects of Two Multi-ingredient Pre-workout Supplements on $\text{VO}_2\text{peak}$ in Healthy Recreationally Active Males
Alicia L. Kjellsen¹, Brian J. Martin¹, Matthew E. Darnell¹, Meaghan E. Beckner¹, Alexis A. Pihoker¹, Kim Beals¹, Shawn D. Flanagan¹, Mita Lovalekar¹, Paul J. Arciero, FACSM², and Bradley C. Nindl, FACSM¹. ¹University of Pittsburgh, Pittsburgh, PA, ²Skidmore College, Saratoga Springs, NY

Multi-ingredient pre-workout supplements (MIPS) are used to improve aerobic and anaerobic performance, however numerous formulations on the market pose many questions about their effectiveness. **PURPOSE:** To assess effects of two MIPS, one with beta alanine and caffeine (BAC) and one without (NBAC) compared to placebo (PLA) on peak oxygen uptake ($\text{VO}_2\text{peak}$), peak heart rate ($\text{HR}_{\text{peak}}$), peak power output (PPO), and lactate. **METHODS:** Recreationally active males (N= 14, 24.6 ± 5.0 y, 179.2 ± 5.9 cm, 84.3 ± 14.3 kg) participated in a randomized, counterbalanced, double blind, placebo-controlled cross-over study. During the first visit DEXA was used to assess body composition and subjects were familiarized to testing procedures. While controlling for diet and exercise, subjects returned for three experimental trials, separated by ≥7 days. The testing sessions included a series of anaerobic performance tests prior to assessing $\text{VO}_2\text{peak}$. Participants cycled for 2 min at 50 Watts (W) before resistance increased by 30 W/min until volitional fatigue. Respiratory gases were collected using a metabolic cart. $\text{HR}_{\text{peak}}$ and PPO were recorded as well as lactate at 2-min post exercise. Separate repeated measures ANOVA were used to assess differences in $\text{VO}_2\text{peak}$, $\text{HR}_{\text{peak}}$, PPO, and lactate within subjects, between the three experimental trials, followed by Bonferroni adjusted pairwise comparisons as needed. **RESULTS:** There was a main effect of treatment on $\text{VO}_2\text{peak}$ ($p = 0.048$; BAC: 42.46 ± 8.73, NBAC: 41.14 ± 9.01, PLA: 40.66 ± 8.59) but none of the post hoc pairwise comparisons were statistically significant. There was no effect of treatment on PPO ($p = 0.875$). There was a main effect of treatment on $\text{HR}_{\text{peak}}$ ($p < 0.001$; BAC: 181 ± 6, NBAC: 176 ± 7, PLA: 175 ± 8), with difference between BAC vs PLA ($p = 0.008$), BAC vs NBAC ($p = 0.002$) but not for NBAC vs PLA ($p = 0.050$). There was main effect of treatment on lactate ($p = 0.003$; BAC: 11.3 ± 2.7, NBAC: 9.8 ± 2.4, PLA: 9.5 ± 2.6), with difference between BAC vs PLA ($p = 0.016$), BAC vs NBAC ($p = 0.031$) but not for NBAC vs PLA ($p = 1.0$). **CONCLUSION:** Preliminary data suggest BAC leads to increased $\text{HR}_{\text{peak}}$ and post-exercise lactate when compared to PLA or NBAC. These findings may be explained by the stimulatory effect of BAC or a higher intensity that is not yet apparent statistically in PPO or $\text{VO}_2\text{peak}$.

Supported by an industry sponsored grant through Isagenix International LLC