
Western Kentucky University
TopSCHOLAR®

Masters Theses & Specialist Projects Graduate School

Summer 2018

Laser-Induced Recoverable Surface Patterning on
Ni50Ti50 Shape Memory Alloys
Saidjafarzoda Ilhom
Western Kentucky University, saidjafarzoda.ilhom056@topper.wku.edu

Follow this and additional works at: https://digitalcommons.wku.edu/theses

Part of the Condensed Matter Physics Commons, Engineering Physics Commons, Optics
Commons, and the Plasma and Beam Physics Commons

This Thesis is brought to you for free and open access by TopSCHOLAR®. It has been accepted for inclusion in Masters Theses & Specialist Projects by
an authorized administrator of TopSCHOLAR®. For more information, please contact topscholar@wku.edu.

Recommended Citation
Ilhom, Saidjafarzoda, "Laser-Induced Recoverable Surface Patterning on Ni50Ti50 Shape Memory Alloys" (2018). Masters Theses &
Specialist Projects. Paper 3052.
https://digitalcommons.wku.edu/theses/3052

https://digitalcommons.wku.edu?utm_source=digitalcommons.wku.edu%2Ftheses%2F3052&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wku.edu/theses?utm_source=digitalcommons.wku.edu%2Ftheses%2F3052&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wku.edu/Graduate?utm_source=digitalcommons.wku.edu%2Ftheses%2F3052&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wku.edu/theses?utm_source=digitalcommons.wku.edu%2Ftheses%2F3052&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/197?utm_source=digitalcommons.wku.edu%2Ftheses%2F3052&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/200?utm_source=digitalcommons.wku.edu%2Ftheses%2F3052&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/204?utm_source=digitalcommons.wku.edu%2Ftheses%2F3052&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/204?utm_source=digitalcommons.wku.edu%2Ftheses%2F3052&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/205?utm_source=digitalcommons.wku.edu%2Ftheses%2F3052&utm_medium=PDF&utm_campaign=PDFCoverPages


A Thesis 

Presented to 

The Department of Physics and Astronomy 

Western Kentucky University 

Bowling Green, Kentucky 

In Partial Fulfillment 

Of the Requirements for the Degree 

Master of Science 

By 

Saidjafarzoda Ilhom 

August 2018 

LASER-INDUCED RECOVERABLE SURFACE PATTERNING ON Ni50Ti50 SHAPE 

MEMORY ALLOYS 



LASER-INDUCED RECOVERABLE SURFACE PATTERNING ON Ni50Ti50 SHAPE 

MEMORY ALLOYS 



  

 

 

 

I would like to dedicate this thesis to my parents who have always given me the support 

and courage to reach for the stars and chase my dreams. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

iv 

 

ACKNOWLEDGMENTS 

Firstly, I would like to express my sincere gratitude to my advisor Dr. Ali Oguz Er for 

the continuous support of my master study and research, for his patience, motivation, 

and immense knowledge. His supervision helped me in all the time of research and 

writing of this thesis. I am also so grateful to Dr. Harper and Dr. Sajjad for taking their 

valuable time to serve on my thesis committee. Also, I sincerely appreciate my fellow 

labmates dedicating their time helping me during the experiments. Finally, I would like 

to acknowledge the financial support of NASA, Kentucky EPSCoR, and Kentucky 

Science and Engineering Foundation (KSEF) without which this work would not have 

been possible. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

v 

 

CONTENTS 

ABSTRACT                   vi  

Chapter 1. INTRODUCTION……………………………………….……………...1 

1.1.Shape memory alloys (SMAs)…………………………..………………….1 

1.2. Laser-assisted surface patterning…………………………………………..3 

1.3. Laser matter interaction…………………………………………………....4 

1.4. Surface patterning on shape memory alloys (SMAs)……………………...8 

Chapter 2. Materials and Methods…………………………………………………11 

2.1 Materials………………………….………………………………….…….11 

2.2 Laser-direct scribing……………………………………………………….12 

2.3 Laser-assisted imprinting with preselected templates ……………………..13 

Chapter 3. Results and Discussion………………………………………………...15 

3.1. Laser direct-scribing……………………………………………………....15 

i. Characterization of direct-scribed NiTi shape memory alloy…………..15 

ii. Eulerian model for the laser absorption on NiTi………………………20 

3.2.  Laser-assisted imprinting with preselected templates……………………24 

i. Laser-assisted imprinting of aluminum and gold thin foils……………24 

ii. Laser-assisted imprinting of NiTi shape memory alloys………………26 

iii. Simulation of laser absorption on Copper surface……………………..29 

CONCLUSION…………………………………………………………………….31 

APPENDIX A: Sample preparation……………………………………………….33 

APPENDIX B: ND:YAG laser operation…………………………………………43 

Literature cited…………………………………………………………………….49 



vi 

LASER-INDUCED RECOVERABLE SURFACE PATTERNING ON Ni50Ti50 SHAPE 

MEMORY ALLOYS 

Saidjafarzoda Ilhom      August 2018         54 Pages 

Directed by: Ali Oguz Er, Doug Harper, and Muhammad Sajjad 

Department of Physics and Astronomy           Western Kentucky University 

Shape memory alloys (SMAs) are a unique class of smart materials exhibiting 

extraordinary properties with a wide range of applications in engineering, biomedical, and 

aerospace technologies. In this study, an advanced, efficient, low-cost, and highly scalable 

laser-assisted imprinting method with low environmental impact to create thermally 

controllable surface patterns is reported. Two different imprinting methods were carried 

out mainly on Ni50Ti50 (at. %) SMAs by using a nanosecond pulsed Nd:YAG laser 

operating at 1064 nm wavelength and 10 Hz frequency. First, laser pulses at selected 

fluences were directly focused on the NiTi surface, which generated pressure pulses of up 

to a few gigapascal (GPa), and thus created micro-indents. Second, a suitable transparent 

overlay serving as a confining medium, a sacrificial layer, and a mesh grid was placed on 

the NiTi sample, whereafter the laser was focused through the confinement medium, 

ablating the sacrificial layer to create plasma and pressure, and thus pushing and 

transferring the grid pattern onto the sample. Scanning electron microscope (SEM) and 

laser profiler images show that surface patterns with tailorable sizes and high fidelity 

could be obtained. The depth of the patterns was shown to increase and later level off with 

the increase in laser power and irradiation time. Upon heating, the depth profile of the 

imprinted SMA surfaces changed where the maximum depth recovery ratio of 30 % was 

observed. Recovery ratio decreased and saturated at about 15 % when the number of 

pulses were increased. A numerical simulation of the laser irradiation process was 
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performed showing that considerably high pressure and temperature could be generated 

depending on the laser fluence. The stress wave closely followed the rise time of the laser 

pulse to its peak value and followed by the rapid attenuation and dispersion of the stress 

through the sample. 
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CHAPTER 1 

INTRODUCTION 

1.1.      Shape memory alloys  

In the current era of technological revolution, the development of smart, adaptive, 

and multi-functional systems is of great importance. However, the increased need for 

actuators and sensors in these systems results in undesirable outcomes such as increase in 

weight and volume of the corresponding system components [1]. Particularly, in the 

automotive and aerospace sectors where the increase in weight leads to higher fuel 

consumption, it is crucial to come up with novel ideas that overcome the above-mentioned 

downsides.  

Shape memory alloys (SMAs), a unique class of smart materials that have the 

ability to return to their previous shapes with temperature or magnetic field, are playing a 

growing role in the development of mini-actuators and micro-electromechanical systems 

(MEMS) [1-6], automotive [7-9], aerospace [10-13] and biomedical [14-18] industries. 

The first discovery of the shape memory alloy dates back to 1932 by Arne Olander; 

however, it only became more attractive to research community in 1962 when William 

Buehler and Frederick Wang of Naval Ordnance Laboratory found out the shape memory 

effect (SME) in a Ni-Ti alloy, generally called ‘nitinol’ (combination of Ni-Ti and Naval 

Ordnance Laboratory) [19, 20].  Furthermore, other low-cost and commercially available 

SMAs are Fe-Mn-Si, Cu-Zn-Al, Cu-Al-Ni, Ni-Ti-Hf, Ni-Ti-Pd, Ni-Mn-Ga, and so forth. 

Among these, iron-based and copper-based SMAs are not widely utilized in industry due 

to their instability, brittleness, and poor thermo-mechanical performance [21, 22]. 

Whereas, most practical applications prefer NiTi-based SMAs due to their remarkable 
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corrosion resistance, biological compatibility, superelasticity, superior ductility, and large 

transformation strain (10%) making them suitable for biomedical devices, actuators, 

sensors, dampers, sealing elements, couplers, and electrical components [23, 24].  

The mechanism behind the shape memory effect in such materials mainly resides 

in a direct solid-to-solid phase change between the higher temperature phase, austenite 

and the lower temperature phases twinned and de-twinned martensite upon applying a 

stress or temperature as illustrated in Figure 1.1, or a magnetic field in the case of magnetic 

shape memory alloys. Basically, at lower temperatures SMAs are in the twinned 

martensite phase, a monoclinic crystal structure with multiple possible martensite 

variants. When a stress is applied, these highly displacive domains reorient into the de-

twinned phase, also called stress-induced martensite transformation, which results in large 

macroscopic inelastic strain, and thus retained shape change. Once the sample is heated 

to a certain temperature the stress-induced martensite variants thermoelectrically 

Figure 1.1. Schematic showing the shape memory effect due to phase 

transformations. 
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rearrange to the higher temperature austenite phase, generally a cubic crystal structure 

leading to the shape recovery. Next, when the material cools down in the absence of an 

external stress, the martensite domains reorganize themselves back to the martensite phase 

in a self-accommodating way via twinning, which compensates for the elastic strains 

generated around the martensite variants, and thus resulting in no further observable 

macro-structural shape changes [25-28]. 

1.2.      Laser-assisted surface patterning 

Micro/nanoscale patterning onto metallic components has gained great importance 

in aerospace, microelectronics, and biomedical sectors [29-32]. Currently, existing 

lithography-related routes, such as nanoimprint [33-35] and step and flash imprint [36, 

37] have been extensively employed to achieve sub-micron/nanoimprints, but are limited 

to only polymeric materials. Moreover, these methods suffer from several drawbacks such 

as high cost, complex procedures, low reproducibility and throughput, and adverse 

environmental effects [38, 39]. Alternatively, lasers have opened new means to fabricate 

such periodic structures not only on polymers but also on ceramics and metals in a wide 

range of industries [39-42]. Surface patterning by lasers is flexible, environmentally 

friendly, remote and contact-free, precise, scalable, and does not involve any heating or 

etching processes [39, 43]. Examples of laser patterning techniques include laser shock 

peening and laser direct-write (also known as laser scribing), and laser shock forming [44-

50]. In laser shock peening a high energy laser beam is directed onto an ablative layer 

placed between material and dielectric medium, which serves as a tamping medium for 

the laser generated shock wave [51]. Consequently, the shock wave leads to a high 

compressive residual stress due to severe plastic deformation, which has been reported to 
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significantly increase the fatigue life of materials used in a broad range of industrial 

applications [52-56]. Similarly, in laser-assisted direct-write, a high power laser pulse 

directly interacts with materials in a thin layer of material [47, 57]. Consequently, laser 

pulses induce high amplitude plasma pressure (>1 GPa) in a short duration (usually on the 

order of 10-9 seconds) that creates a strong shock wave, and form three-dimensional 

structures [26].  

1.3.      Laser matter interaction 

Understanding the underlying physical phenomena taking place during laser 

interaction with the matter is worth considering to better grasp the mechanisms of laser-

assisted material processing so as to develop the most accurate tools and techniques for 

particular application requirements. The mechanism of laser interaction with materials is 

rather a complex physical phenomenon that involves several processes, such as 

photothermal, photochemical, hydrodynamical, and ultrafast laser interaction depending 

on the length of the laser pulse [58-60]. Photothermal process occurs when the pulse width 

is longer (on the order of nanoseconds) than the electron-phonon relaxation time and the 

electron heat conduction time, the time after which the electrons and lattice are at thermal 

equilibrium. During this process the laser is mainly absorbed by the free electrons via 

inverse Bremsstrahlung interaction heating up the lattice, and thus melting and vaporizing 

the target as well as resulting in various undesired consequences such as large heat 

affected zones, severe melting of laser processed areas, surface debris, surface ripples due 

to shock-stresses, and micro-cracks, Figure 1.2(a) [58]. Conversely, ultrafast laser 

interactions happen when the laser pulse width is shorter than the electron-phonon energy 

relaxation time, where the interaction is considered as non-thermal and involves various 
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physical phenomena, such as electronic excitation and ionization, non-thermal melting, 

and electron-lattice heating [29, 61]. In particular, in the material processing using 

femtosecond pulses where the pulse width is on the orders of 10-15 seconds, significantly 

smaller than the electron-phonon coupling time (~10-12 seconds), the process is completely 

non-thermal that offers a wide range of unique advantages over the conventional thermal 

laser processing that typically employs nanosecond and longer pulses [29, 62, 63]. Due to 

better spatial concentration of ultrashort pulses compared to nanosecond ones, they 

decrease the required laser power for ablation, increase the thermal gradient in the target, 

and increase the energy coupling to initiate direct solid-to-vapor transition, and thus 

suppress thermal diffusion and prevent undesired heat affected zones and surface debris 

formations, Figure 1.2(b) [29]. However, depending on the purpose and type of specific 

applications, each of these processing routes has their own advantages and disadvantages. 

Figure 1.2. (a) Effects of material processing using longer and (b) ultrashort laser. 

pulses. 
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For instance, for the applications where residual heat and stress is necessary in modifying 

the microstructural properties of materials during laser treating, photothermal laser 

processing becomes handier; while, ultrafast laser techniques come into play in 

applications where the laser processing requires extremely high precision and accuracy. 

Photochemical process, yet another laser matter interaction mechanism, takes place when 

the laser energy is directly absorbed by the chemical bonds leading to bond fragmentation, 

but this mechanism generally requires sufficiently high laser photon energy to be able to 

photochemically break the bonds [64]. Finally, hydrodynamical process takes place when 

transient melting occurs on the surface leading to bulk material, droplet, and particulates 

being formed and expelled from the target [26].  

In the subsequent laser processing stages, the ablated material forms a plasma 

plume as follows. The mean free path of visible and near infrared laser radiation in metals 

is on the order of a few nanometers, so the laser pulse of sufficient energy is initially 

absorbed predominantly by a very thin layer of material. Due to rapid energy deposition 

Figure 1.3. Plasma plume formation during laser interaction with the material. 
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time, thermal diffusion of energy is only limited to at most a few nanometers in the 

interaction zone, which leads to a sharp temperature gradient in penetration depth heating 

and vaporizing the material, Figure 1.3(b)-(c). Consequently, the vaporized material is 

ionized by the subsequent laser pulses and transformed into a plasma plume, Figure 1.3(d) 

[47, 57]. This plasma is highly luminous, forward-directed, and transient in nature. The 

properties of laser-produced plasma, such as degree of ionization and temperature of 

plasma species, can evolve quickly and strongly and depend on various parameters such 

as the laser wavelength, energy density, repetition rate, pulse duration, spot size on target, 

target composition, and surface quality [65, 66]. The as-generated plasma continues to 

strongly absorb the laser energy where the temperature of the plasma rises extremely 

rapidly, on the orders of 1011 Kelvin/second, which is thought to occur due to inverse-

Bremsstrahlung absorption of the laser radiation. The principle of inverse-Bremsstrahlung 

absorption is that when enough photon energy is incident through a volume of atoms, it 

excites the atoms within that volume to the extent that they are stripped of their electrons 

and become ionized, and thus form plasma [26, 58, 67]. Since the material experiences a 

phase transformation from solid to vapor, a pressure (shock) wave is generated that 

propagates through the depth of the sample, Figure 1.4(a) [57]. An analogy to better 

visualize this process can be thought of as the plasma being the fuel combustion from the 

rocket exhaust and the shock-wave being the generated thrust that propels the rocket. 

Next, the energy is redistributed between the energy of plume and shock waves during 

expansion which is usually around 100 ns [58, 67]. Furthermore, when an additional 

transparent overlay is used, enhanced pressures (4-10 times higher) on the material surface 

could be achieved and gas breakdown loss be prevented, Figure 1.4(b) [43, 47]. When the 
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magnitude of the primary shock-wave front of the laser exceeds the dynamic yield strength 

of the material, termed as the Hugoniot Elastic Limit (HEL), it plastically deforms the 

microstructure and creates added dislocations in the material until the shock-wave 

attenuates below HEL [68]. It should be noted that while SMAs don’t appear to exhibit a 

HEL like other metals, the amount of deformation depends on the pressure [69]. 

Therefore, it is important to estimate the peak pressure which can be found by [68] 

𝑃 (𝐺𝑃𝑎) = 0.01[
𝑍(𝑔𝑐𝑚−2𝑠−1)𝐼0(𝐺𝑊/𝑐𝑚2)𝛿

2𝛿 + 3
]1/2 

where Io is the incident laser power density, P is the pressure, and Z is the reduced acoustic 

impedance between a target and medium, and δ is the efficiency of plasma material 

interaction. 

1.4.     Surface patterning on shape memory alloys (SMAs) 

Recently, morphing at micro and macro scales on shape memory alloys has 

attracted considerable interest [11]. Indentation-induced shape memory effect and 

superelasticity on such compounds have been previously observed under complex loading 

conditions [70-72]. Specifically, shallow spherical indents in austenite NiTi specimen 

Figure 1.4. Shock wave generation due to (a) unconfined (b) confined plasma. 
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were shown to fully recover upon unloading, but indents in martensite could only partially 

recover upon unloading while additional recovery occurred upon heating to the austenite 

phase [73]. Moreover, experimental indentation testing under spherical indenter revealed 

a “self-healing” effect and reversible protrusions upon thermal cycling [30, 74]. Thermal 

cycling on SMAs which may be repeated indefinitely, results in a ‘bumpy’ and a flat 

surface, where the geometry of the protrusion primarily depends on the processing 

parameters and material properties [75, 76]. As an alternative, laser-assisted surface 

patterning on SMAs will also generate such controllable surfaces in a remote and 

contactless way, with much precise modification of the surface by rather having more 

accurate energy deposition than conventional indentation techniques. In addition, shape 

memory alloys can produce very high actuation strain (8% uniaxial strain), stress (~400 

MPa) and work output (~10 MJ/m3) as a result of reversible martensitic phase 

transformations [23]. Consequently, such properties together with smart controllable 

surface features might have favorable outcomes in the aerodynamics of moving objects 

since the surface roughness and texture can drastically alter the characteristics of turbulent 

flow, and thus the drag and friction forces exerted on the surface of the moving objects 

[77, 78]. Indeed, it has been reported that the “riblets” on the shark skin can reduce the 

wall shearing stress or wall friction up to 10% while many other surface structures are 

known to increase friction and drag force [79, 80]. For micro-morphing, shape memory 

surfaces can be produced by embedding patterned SMAs into aircraft structure and 

forming “hybrid structures” [81, 82]. The temperature change (e.g. triggered by electrical 

current) will activate SMAs and the surface geometry will change upon phase 

transformation where transformed surfaces could generate very different drag or friction 
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forces that can be optimized for aircraft operation.  

A recent study has shown that patterned microindents can be generated on the 

surface of NiTi SMA by laser-assisted imprinting in a relatively easier and faster way 

rather than etching-related patterning techniques when the laser beam is focused on 

preselected pattern on the target material [39]. Although laser-assisted imprinting (mask 

is used between material and dielectric media in this technique) was shown to be 

promising in creating active surfaces [39], the effects of laser parameters as well as 

material properties on the indent geometry and shape recovery properties have not been 

investigated in detail. In this study, we have employed two relatively different routes to 

create micro-patterns on NiTi shape memory alloys. In the first method, which we have 

named as the laser-direct scribing, we create micro-patterns by directly focusing the laser 

onto the NiTi SMA surface without placing any sacrificial layer and confinement medium 

in between. However, in the second technique, which we have termed as the laser-assisted 

imprinting with preselected templates, we have used a sacrificial layer and a confinement 

medium to imprint the outline of these predefined templates on the NiTi shape memory 

alloys. Next, we have analyzed the changes in depth of the generated patterns on NiTi 

SMAs with respect to the laser power density and irradiation time. We have also explored 

these laser parameters’ effects on the indents’ shape memory behavior of NiTi SMAs of 

laser direct-write method and reported optimum conditions to generate patterns with the 

highest shape recovery ratio. Numerical simulation of shock wave evolution and 

propagation was also performed to better understand the underlying laser-induced shock 

waves [83, 84]. 
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CHAPTER 2 

MATERIALS AND METHODS 

2.1.  Materials 

Vacuum induction melted Ni50Ti50 (at. %) shape memory alloys were cut into 

circular plates with a diameter of 10 mm and thickness of 1 mm by electrical-discharge 

machining method. The surface roughness of the samples were reduced to 0.05 μm in five 

steps by using Buehler EcoMet 250 Grinder-Polisher with an AutoMet 250 Power head. 

Transformation temperatures were determined by using a Perkin-Elmer Pyris 1 

differential scanning calorimeter (DSC). The martensite and austenite start and finish 

temperatures (Ms, Mf, As, and Af, respectively) are 78 °C, 45 °C, 85 °C and 122 °C for 

the these samples and they will be referred as 1 mm thick NiTi samples . Moreover, 25 

μm thick nitinol foil (Alfa Aesar 47169, flat annealed, pickled surface), which has an 

approximate austenite finish temperature of 45 °C was also obtained to examine the effects 

of laser-assisted patterning on thinner NiTi SMA. In addition, commercially available 

aluminum foil (Reynolds Wrap (Heavy Duty)) was utilized for both pattering and also as 

a sacrificial layer. An industrial graphite dry lubricant spray (Blaster) was also used as an 

ablative layer at certain parts of the experiments that will be explicitly mentioned in the 

text when pertinent. Pre-cleaned micro slides (Sargent-Welch) were utilized as the 

confinement medium. The laser in our lab that was used for all of the patterning 

experiments is a nanosecond Nd:YAG pulsed laser Continuum Surelite II. Laser has a 

fundamental wavelength of 1064 nm, pulse width of 5 nanosecond, 10 Hz repetition rate 

and Gaussian shape with 6 mm diameter of unfocused beam (measured at 1/e2). 
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2.2. Laser-direct scribing  

  A typical experimental setup for the laser direct-scribing route of shape memory 

alloys can be seen in Figure 2.2.1. Direct-scribing was performed by ablating the 1 mm 

thick NiTi samples’ surface with the focused laser beam at the repetition rate of 10 Hz 

with the fluences between 0.18 - 0.71 J/cm2 calculated at the unfocused spot size of 6 mm 

from 10 to 160 pulses. Laser energy was held constant and a lens of 5 cm was used to 

focus the laser beam on NiTi surface translated by a motorized stage. Morphological 

properties were investigated by VHX-1000 Digital Microscope (Keyence) and the 

recovery depth measurements were analyzed by the laser profiler (Zygo, NewView 7300). 

In order to examine the spot size effect, an aspheric focusing lens of 5 cm and a convex 

lens of 20 cm (Thorlabs) were used. To observe the recovery effect of the samples, initial 

depths at room temperature were measured. Then, each sample was placed onto a heating 

stage (Marlow Industries, Inc. TG12-8L) where the temperature monitored by a pyrometer 

reached up to 160° C and the resulting depth changes were compared. 

Figure 2.2.1. A typical experimental setup for laser direct scribing of SMAs. 
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2.3. Laser-assisted imprinting with preselected templates 

Laser imrpinting using mesh grid templates as a mask was carried out in two 

different ways. First, a thin griphite layer of approximately 15 μm was sprayed on the 1 

mm thick NiTi sample to increase the pressure and to protect the material from damage 

caused by ablation and melting. Next, on top of the graphite layer, a copper grid (SPI 

Supplies) was used as both an ablative material and punch, and a piece of BK7 glass was 

used to confine the plasma generated by the nanosecond laser, Figure 2.3.1(a). Hereafter, 

this method will be referred as ‘method M1’ throughout the text. In the second route, 

which is specifically more convenient for the patterning of thinner (a couple of micron 

thick) samples, the sample is initially placed on a glass, then the mesh grid is laid onto the 

sample. But, at this time a thin aluminum foil (Reynolds) is used as an ablative layer on 

top of mesh grid, which is then covered by another piece of glass serving as a confinement 

Figure 2.3.1 Experimental setups for the laser-assisted imprinting using predefined 

mesh templates. 
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medium, Figure 2.3.1(b). This second method will be referred as ‘method M2’ hereafter. 

Next, samples prepared were irradiated by selected laser fluences with the focused beam 

diameter of 3 mm. The expansion of plasma created on the ablative layer is confined by 

confinement medium, mainly glass, pushes the grid onto the surface. This highly dynamic 

force creates plastic deformation on the surface leading a surface pattern which is similar 

to the hole of the copper grid. After the irradiation, copper grid was peeled off and the 

graphite layer was washed off by acetone for the samples patterned via the first method, 

‘method M1’. However, there was no need of washing the samples patterned via the 

second route of ‘method M2’, since the ablation mainly takes place on the first aluminum 

sacrificial layer leaving the surface of the patterned sample undamaged and clean. 

Morphological properties of the surface were investigated by SEM (Jeol 6510LV) and the 

light microscope (Keyence VHX500F). Laser parameters were adjusted to optimize the 

protrusion heights. 
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CHAPTER 3 

RESULTS AND DISCUSSIONS 

3.1. Laser direct-scribing  

i.  Laser direct-scribing and characterization of NiTi shape memory alloys 

            In general, laser processing parameters include substrate temperature, background 

gas pressure, laser wavelength, pulse width, repetition rate, and fluence. Among these, 

laser fluence is an important parameter to obtain effective material removal and stress 

creation on a surface since different mechanisms come in to play depending on the value 

of the fluence. For instance, laser heating with fluence below the ablation threshold can 

lead to many temperature dependent processes such as reorganizing the crystal structure, 

enhancing diffusion rates, and sintering of porous material [85]. Once the fluence is above 

the ablation threshold, the formation of transient pools of molten material on the surface 

can be observed and material will be ejected [86]. In nanosecond laser ablation, ablation 

is considered as conventional equilibrium evaporation and thermal ablation. The laser is 

absorbed by the target and it heats up the lattice, which will then melt and vaporize the 

target. A portion of the vaporized material will then be ionized by the high incident beam 

via the inverse bremsstrahlung effect inside the penetration depth. The material will then 

form a forward directed plasma plume that moves away due to Coulomb repulsion and 

recoil from the target, which in turn induces a shock-wave pushing the target surface, and 

thus creating an indent [47, 58, 67]. By adjusting the laser fluence carefully, the 

microstructure and surface properties of the SMAs can be tailored. Figure 3.1.1 is the 

three-dimensional (3D) laser profiler image of such an indent generated with the laser 

fluence of 0.35 J/cm2. Achieving a high laser ablation efficiency is of paramount 
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importance to achieve a reasonable amount of material removal and stress creation on the 

sample. Normally, the laser energy density slightly higher than the ablation threshold 

results in efficient material removal and ablation depth. If applied laser energy density is 

below the threshold, no material will be removed. Conversely, in the case of applying an 

excess amount of energy, only the energy required for material removal will be used while 

the remaining energy will be dissipated as a heat. This excess heat will cause unwanted 

debris, cracking, melting, and stress in the surrounding material. This phenomena, also 

known as heat affected zone (HAZ), is one of the disadvantages of the laser material 

removal and it mainly depends on the laser pulse duration and wavelength [87]. In fact, 

the recast layer profiled in red color around the indent in Figure 3.1.1 is one of the 

consequences of HAZ. Nonetheless, the nanosecond laser pulses separated by several tens 

of nanosecond have been shown to improve material removal rate up to 10 times and 

create less HAZs compared to microsecond and longer laser pulses [88]. Alternatively, 

patterning with lasers having smaller pulse width, such as picosecond and femtosecond 

Figure 3.1.1. 3D plot of the as-created indent at 0.35 J/cm2 by the laser direct-scribing 

of NiTi SMAs. 
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generally result in no HAZs at all because of their non-thermal ablative nature. However, 

this might not be practical for creating recoverable patterns on SMAs. Since the residual 

heat that might have crucial effect on the shape recovery effect of the as-created patterns, 

lacks in the ultrashort laser imprinting, and thus may result in lower recovery rates, which 

still needs further investigation. 

In order to study the effects of the laser fluence on the recovery of the patterned 

SMAs, first laser profilometer depth measurements were recorded. Figure 3.1.2 shows the 

maximum depth of patterns after laser imprinting with fluences ranging from 0.18 J/cm2 

to 0.71 J/cm2 from 10 to 160 pulses. A laser fluence of 0.18 J/cm2 produced a depth of 

~10 μm after 10 pulses of irradiation and ~50 μm after 80 pulses. In general, the depth 

increased with increase in energy and duration. At 10 pulses irradiation, the depth 

increased slightly with increasing laser power. Increasing the laser fluence increases the 

kinetic energy of the particles being ejected from the target where the maximum depth of 

Figure 3.1.2. Depth of indents as a function of laser fluence and number of pulses. 
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around 70 μm was obtained with 0.71 J/cm2 and 160 pulses. The laser energy transmission 

in target material is mainly governed by Beer-Lambert’s law and above the ablation 

threshold, thickness or volume of material removed per pulse typically shows a 

logarithmic increase with fluence according to this law given by [86]:  

𝐼 = 𝐼𝑜exp (−𝛼𝑧) 

where I is laser intensity at a distance z from surface, I0 is the laser intensity at the top 

surface, and α is the absorption coefficient that is wavelength dependent. Indeed, the 

increase trend in depth of scribed indents, as illustrated in Figure 3.1.2, follows the Beer-

Lambert’s law, initially sharp increase and later level off, which would be more evident 

if the data for lower laser fluences was also considered.  

In order to determine the recovery of as-patterned SMA surfaces, samples were 

heated to 160 °C and their depth profile and maximum depths were measured, as shown 

in Figure 3.1.3. Linear depth profiles were measured at 4 different positions to get better 

reliability. Upon the determination of maximum indent depth at 160 °C, the recovery rate 

Figure 3.1.3. Shape recovery effect for indents created at two different laser fluences. 
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(the difference in depth between hot and cold states divided by the cold state) was 

calculated as a functions of laser fluence and duration, as shown in Figure 3.1.4. 

Basically, at room temperature, laser direct-scribing generates stress on the 

sample, which results in stress-induced martensite reorientation. Upon heating, reoriented 

martensite transforms back to austenite, resulting in a shape change. The direction and 

amount of the shape change highly depends on the factors, such as type, direction, volume 

fraction of reoriented martensite variants, amount of plastic deformation, and direction 

and magnitude of internal stress [89, 90]. Thus, the depth recovery of the patterns is 

observed due to the transformation of reoriented martensite variants to austenite upon 

heating. The amount of laser fluence, one of the critical parameters to influence the 

abovementioned factors, has to be optimized to get the best recovery rate, since an applied 

stress above a certain level may cause a decrease or even not produce any shape memory 

Figure 3.1.4. Recovery ratio with respect to the laser fluence and number of pulses. 
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effect [69, 91], as shown in Figure 3.1.3 for the laser fluence of 0.04 J/cm2. A recovery of 

more than 30% was obtained when the laser fluence was 0.18 J/cm2 and irradiation time 

was 1 second with total 10 pulses. The recovery ratio decreased to 20% when the sample 

was irradiated for two seconds (20 pulses). Further decrease in the recovery was observed 

for 4 seconds (40 pulses). In general, recovery decreased with time, which could be 

attributed to the surface damage caused by preceding pulses. When laser fluence is 

increased to 0.27 J/cm2, average recovery decreased substantially. Laser energy density 

above 0.27 J/cm2 resulted in constant recovery of about 15%. It is not fully clear of why 

the recovery ratio decrease at 0.27 J/cm2 but it might be attributed to the amount of created 

pressure that will affect the plastic deformation. It should be noted that shape memory 

properties are highly internal stress and plastic deformation dependent [89, 90]. Moreover, 

the amount of plastic deformation and internal stresses depend on the size and temperature 

profile of the affected zone of imprinting process. The annihilation of plastic strain and 

internal stresses will increase with the exposure of the material to higher temperatures and 

longer times that might have led to decreased shape recovery. 

ii. Eulerian model for the laser absorption on NiTi 

It is well known that lasers can produce high temperature and high pressure when 

absorbed by a material. In most of the practical applications, it is critical to determine the 

heat transfer mechanism for accuracy of laser processing. To better understand the 

pressure propagation inside shape memory alloys, a numerical simulation of pressure 

evolution in shape memory alloys irradiated by a focused nanosecond pulsed laser was 

conducted using the fifth-order weighted essentially non-oscillatory finite volume method 

[92, 93] coupled with a Mie-Gruneisen model [94]. 
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In the Eulerian setting, the governing equations in two dimensions can be written 

as a system of conservation laws [94] 

𝜕𝑈

𝜕𝑡
+

𝜕𝐹

𝜕𝑥
+

𝜕𝐺

𝜕𝑦
= 𝑆 

where the vector of conserved quantities 𝑈, convective fluxes 𝐹 and 𝐺, as well as the 

source term 𝑆 are 

𝑈 =

[
 
 
 
 
 
 

𝜌
𝜌𝑢
𝜌𝑣
𝐸
𝑠𝑥𝑥

𝑠𝑦𝑦

𝑠𝑥𝑦]
 
 
 
 
 
 

, 𝐹 =

[
 
 
 
 
 
 

𝜌𝑢

𝜌𝑢2 + 𝑃 − 𝑠𝑥𝑥

𝜌𝑢𝑣 − 𝑠𝑥𝑦

𝑢(𝐸 + 𝑃) − 𝑢𝑠𝑥𝑥 − 𝑣𝑠𝑥𝑦

𝑢𝑠𝑥𝑥

𝑢𝑠𝑦𝑦

𝑢𝑠𝑥𝑦 ]
 
 
 
 
 
 

, 𝐺 =

[
 
 
 
 
 
 
 

𝜌𝑣
𝜌𝑢𝑣 − 𝑠𝑥𝑦

𝜌𝑣2 + 𝑃 − 𝑠𝑦𝑦

𝑣(𝐸 + 𝑃) − 𝑢𝑠𝑥𝑦 − 𝑣𝑠𝑦𝑦

𝑣𝑠𝑥𝑥

𝑣𝑠𝑦𝑦

𝑣𝑠𝑥𝑦 ]
 
 
 
 
 
 
 

, 𝑆 =

[
 
 
 
 
 
 

0
0
0
𝑄

𝜑𝑥𝑥

𝜑𝑦𝑦

𝜑𝑥𝑦]
 
 
 
 
 
 

 

In the above equations, 𝐸 = 𝜌(𝑒 + (𝑢2 + 𝑣2)/2) is the total energy per unit volume 

where 𝑒 is the internal energy per unit mass, 𝜌 is the material density, 𝑢 and 𝑣 are the 

velocity components, 𝑠𝑥𝑥 , 𝑠𝑦𝑦, 𝑠𝑥𝑦 are the deviatoric stresses, and 𝑃 is the pressure which 

is obtained from Mie-Gruneisen equation of state model [94] 

𝑃 = 𝑃0 +
𝑐0

2𝜌0𝜌(𝜌 − 𝜌0)

[𝜌 − 𝑠0(𝜌 − 𝜌0)]2
+ Γ0𝜌0 [𝑒 − 𝑒0 −

1

2
(

𝑐0(𝜌 − 𝜌0)

𝜌 − 𝑠0(𝜌 − 𝜌0)
)
2

] 

where 𝑠0 and Γ0 are Gruneisen constants and 𝑃0, 𝜌0, 𝑒0 and 𝑐0 are initial pressure, density, 

internal energy and sound velocity, respectively. The bulk speed of velocity can be 

computed by 

𝑐0 = √𝑢𝑙
2 −

4

3
𝑢𝑠

2 

where 𝑢𝑙 is the longitudinal speed of sound and 𝑢𝑠 is the shear speed of sound for the 

material. The parameters in the source term are 
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𝜑𝑥𝑥 = 𝑠𝑥𝑥Σ + 2Ω𝑠𝑥𝑦 + 2𝐺0 (
𝜕𝑢

𝜕𝑥
−

1

3
Σ) 

𝜑𝑦𝑦 = 𝑠𝑦𝑦Σ − 2Ω𝑠𝑥𝑦 + 2𝐺0 (
𝜕𝑣

𝜕𝑦
−

1

3
Σ) 

𝜑𝑥𝑦 = 𝑠𝑥𝑦Σ + 2Ω(𝑠𝑦𝑦 − 𝑠𝑥𝑥) + 𝐺0 (
𝜕𝑢

𝜕𝑦
+

𝜕𝑣

𝜕𝑥
) 

where 𝐺0 is shear modulus. The dilatation and spin terms can be written as 

Σ =
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
 

Ω =
1

2
(
𝜕𝑢

𝜕𝑦
−

𝜕𝑣

𝜕𝑥
) 

where we use standard central difference schemes to compute derivatives in these terms. 

The stress terms are modified according to a simple radial return algorithm using the von 

Mises yield criterion. If the von Mises condition meets (i.e., 𝑞 ≥ 𝑌0), then the deviatoric 

stresses can be modified as [48, 95] 

𝑠𝑥𝑥 = 𝑠𝑥𝑥𝑌0/𝑞 

𝑠𝑦𝑦 = 𝑠𝑦𝑦𝑌0/𝑞 

𝑠𝑥𝑦 = 𝑠𝑥𝑦𝑌0/𝑞 

where 𝑌0 refers to the yield stress and 𝑞 is given by 

𝑞 = √3(𝑠𝑥𝑥
2 + 𝑠𝑦𝑦

2 + 𝑠𝑥𝑦
2 + 𝑠𝑥𝑥𝑠𝑦𝑦). 

The material’s data for NiTi are [96]; 𝜌0 = 6.42 g/cm3, 𝑌0 = 560 MPa,  𝐺0 = 83 GPa, 

𝑢𝑙 = 5360 m/s, and 𝑢𝑠 = 1800 m/s. Therefore, the bulk velocity of the sound is 4940 

m/s, which has been used to determine the computational time step according to the 
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Courant–Friedrichs–Lewy criterion. The Gruneisen paramaters are Γ0 = 1.497  and 𝑠0 =

1.249.  

Finally, the absorption of laser energy is modeled by the volumetric heat source 

term for the energy equation [48, 95] 

𝑄 = 𝐼0(1 − 𝑅)𝛼𝑒
(−𝛼(𝑦𝑠−𝑦)−

(𝑥−𝑥𝑠)
2

𝑟0
2 −

𝑡2

𝑡0
2)

 

where 𝐼0, 𝑅, 𝛼, 𝑡0 and 𝑟0 are laser energy intensity, reflectance, absorption coefficient, 

pulse width and the beam radius, respectively.  Here, (𝑥𝑠, 𝑦𝑠) is the surface coordinates of 

the laser beam center and 𝑧 = 𝑦𝑠 − 𝑦 measures the depth from the surface as usually 

described by Beer’s law. Using the refraction and extinction coefficients for nitinol, we 

estimate 𝑅 = 0.7 and the absorption coefficient 𝛼 = 5.817 × 107 m-1. In our simulations, 

the computational domain size is 400 m x 200 m, and the center of laser radius is 

located at 𝑥𝑠 = 0,  𝑦𝑠 = 200 m. Initial condition is 𝑃0 = 0.1 MPa and we impose 

transmissive boundary conditions. 

Our simulation results show that pressure is strongly dependent on the value of 

total incident laser energy density and the threshold value for pure heat conduction. The 

shock wave closely follows the laser pulse profile which is an initially sharp increase 

followed by exponential decay, as shown in Figure 3.2(a). This figure illustrates the 

surface pressure evolution computed at (𝑥𝑠 , 𝑦𝑠) for the intensity values between 𝐼0= 

1.4x1016 W/m2 and 5.6x1016 W/m2. The hydrostatic pressure of 300 MPa could be 

generated when laser power of 1.4x1016 W/m2 (0.18 J/cm2) is used. The peak pressure 

value increased with laser energy density. Figure 3.2(b) shows the propagation of 

hydrostatic pressure for 0.18 J/cm2 laser energy density. It can be seen that pressure reach 
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peak value at around 5 ns and it propagates through the medium with decreasing amplitude 

reaching almost third of its original value after 20 ns. Further simulations can also be used 

to determine stress/strain evolution and shock wave propagation. 

3.2       Laser-assisted imprinting with preselected templates 

i. Laser-assisted imprinting of aluminum and gold thin foils 

As a proof of concept, initially aluminum and gold thin foils were patterned via 

laser-assisted imprinting with different mesh grid templates. Figure 3.2.1 shows 

successful imprinting of hexagonal copper grid onto aluminum sample with a single pulse 

at the laser fluence of 6.4 J/cm2. Aluminum samples have smooth surface after imprinting. 

The hexagonal grid has 698 lines/inch, hole width of 29 μm, pitch width of 37 μm and bar 

width of 8 μm with diameter of 3 mm. After irradiation, patterned surface is visible with 

optical microscope and scanning electron microscope (SEM). These patterns were 

generated under the outlined area of copper grid which shows the ablation of the copper 

Figure 3.2. (a) Stress-wave evolution as a function of laser fluence and (b) stress-

wave propagation inside NiTi for the laser fluence of 0.18 J/cm2. 

 

(a) (b) 
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and due to the punch of the copper grid onto the sample. Figure 3.2.1(a) shows uniform 

patterns could be created over larger area of the sample. Figure 3.2.1(b) is a close up 

micrograph of the patterned region demonstrating that resulting pattern has very high 

fidelity. These topography images show that patterning of the pre-determined template is 

highly scalable where size and shape of the template allows precise control. Figures 

3.2.1(c)-(d) show another patterning on the aluminum sample with fine square copper 

grids. The fine square grid has 2000 lines/inch, pitch width of 12.5 μm, hole width 7.5 

μm, and bar width of 5 μm with diameter of 3 mm. Figure 3.2.2 shows patterning on the 

gold thin foil with nickel square grids. Nickel square grid has 600 lines/inch, pitch width 

of 42 μm, hole width 30 μm, and bar width of 16-10 μm, thickness of 20±3 μm with the 

Figure 3.2.1. (a)-(b) Hexagonal and (c)-(d) square patterns created on aluminum 

with the laser fluence of 6.2 J/cm2. 

(a) (b) 

(c) (d) 
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diameter of 3 mm. It is evident that any geometry of the grids can be readily transferred 

onto several types of metallic alloys with very high precision. The laser beam can be 

scanned over the surface to produce the desired pattern at a larger scale. By changing the 

number of pulses at each point and laser fluence, depth of the pattern can be controlled 

precisely.  

ii. Laser-assisted imprinting of NiTi shape memory alloys 

Figure 3.2.3 shows the patterning on the 25 μm thick NiTi foil with 7.1 J/cm2 laser 

fluence using the nickel mesh grid having the same dimensions as the one used in 

patterning the gold thin foil shown in Figure 3.2.2. It should be noted that the sample  

preparation of aluminum, gold, and the NiTi thin foil presented heretofore was performed 

by the ‘method M2’ where the mesh grid is placed in between the ablative layer and the 

sample to be patterned, demonstrated more in detail in Appendix A2. Figure 3.2.4 shows 

the patterning on the 1 mm thick NiTi sample when 2 J/cm2 is used. The square grid has 

300 lines/inch, hole width 58 μm, pitch width of 83 μm, and bar width of 25 μm with 

diameter of 3 mm and thickness of 20±3 μm. However, this sample was prepared by the 

‘method M1’ (details in Appendix A1) where initially a thin graphite ablative layer is 

Figure 3.2.2. Square patterns on gold foil generated with the laser fluence of 2.8 J/cm2. 
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sprayed on the NiTi specimen and then the mesh grid is placed on it. These results indicate 

that patterns obtained on the samples prepared by the ‘method M2’ have relatively clean 

and undamaged surface microstructure, as well as the generated protrusions have sharp 

and well-defined edges, as evidenced from the SEM images shown above. One 

explanation to this could be that, since the laser-matter interaction and plasma formation 

primarily takes place on the ablative layer, aluminum thin foil in these cases, the sample 

to be patterned is kept from being directly exposed to laser beam, and thus avoid any 

possible damage that could result from the laser power. Consequently, the plasma formed 

on the aluminum ablative layer leads to the shock-wave generation that pushes the 

underlying mesh grid and creates such well-defined patterns. On the other hand, patterns 

generated on the samples prepared via the ‘method M1’, shown in Figure 3.2.4, reveal 

some melting and splashing of material along the protrusion edges. This could be due to 

the NiTi sample being indirectly exposed to the laser beam even though it is covered with 

a thin graphite ablative layer. All of the patterns were obtained with a single laser pulse, 

unless stated otherwise. Figure 3.2.5(a) shows the line scan of the patterned surface 

Figure 3.2.3. Square patterns on NiTi foil generated with the laser fluence of 7.1 J/cm2. 
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obtained with 2 J/cm2. The average depth of the indent is around 1.5 μm. As expected, 

patterns that were generated on the surface have the similar dimensions as the copper grid.  

In order to investigate and find the optimum laser parameters to achieve the highest 

and the smoothest patterns with high recovery ratio, patterns with different depths were 

obtained by changing laser energy between 1.3-3.2 J/cm2. Figure 3.2.5(b) shows the 

change of the patterns’ depth generated with respect to the laser fluence. These depth 

measurements are the average depth of 8 different points from 3 separate samples being 

irradiated by 1.3-3.2 J/cm2 laser power. The depth increases when the laser fluence 

increases. After around 2.65 J/cm2, depth of the patterns is leveled off. Increasing the laser 

fluence increases the kinetic energy of the particles being ejected from the target. It is well 

known that above the ablation threshold, thickness or volume of material removed per 

pulse typically shows a logarithmic increase with fluence according to the Beer-Lambert 

law [86]. The trend in depth of the as-created patterns with respect to the laser fluence, in 

Figure 3.2.4. Square patterns generated on NiTi shape memory alloy with 2 J/cm2 

laser fluence. 
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Figure 3.2.5(b), is a clear evidence of this law. The laser energy as a control parameter is 

known to significantly influence the morphology of patterns and to cause changes in the 

microstructure. Laser energy was shown to play an important role for surface patterning. 

Patterns generated on NiTi SMAs will allow to create controllable surface by temperature 

change (e.g. triggered by electrical current) which will activate SMAs and surface 

geometry will change upon phase transformation. Thus, transformed surfaces could 

generate very different drag or friction forces that can be optimized for aircraft operation. 

Further analysis is needed to find the optimum laser properties for recovery of the patterns 

and the influence of the shapes of the created patterns on friction and drag reduction. 

iii. Simulation of laser absorption on Copper surface 

Since in the laser-assisted imprinting with preselected templates an ablative layer 

and a mesh grid is placed on NiTi, the laser primarily interacts with the mesh grid, and 

thus the shock wave generation mainly takes place on the template grids, such as the 

copper mesh grid. Hence, to better understand the pressure generation and its propagation, 

Figure 3.2.5. (a) 1D linear depth profile of square patterns obtained at 2 J/cm2 and 

(b) depth of patterns as a function of laser fluence on NiTi shape memory alloy 

(a) (b) 
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a numerical simulation of pressure evolution in copper irradiated by a nanosecond pulsed 

laser (1064 nm wavelength, 10 Hz, 2 J/cm2, 3 mm beam diameter, 5 ns pulse width) were 

conducted using the fifth-order weighted essentially non-oscillatory finite volume method 

[92, 93] coupled with a Mie-Gruneisen model [94]. The energy flux due to the laser 

irradiation is modeled as a volumetric heat source in the energy equation. Beer’s law with 

a Gaussian distribution describes the absorption of laser energy 

𝑄(𝑥, 𝑦, 𝑡) = 𝐼0(1 − 𝑅)𝛼𝑒
(−𝛼(𝑦𝑠−𝑦)−

(𝑥−𝑥𝑠)
2

𝑟0
2 −

𝑡2

𝑡0
2)

 

where (𝑥𝑠, 𝑦𝑠) is the surface coordinates of the laser beam center and 𝑧 = 𝑦𝑠 − 𝑦 measures 

the depth from the surface. Here, 𝐼0, 𝑅, 𝛼, 𝑡0 and 𝑟0 are laser energy intensity, reflectance, 

absorption coefficient, pulse width and the beam radius, respectively. In this study, the 

absorption coefficient is 8.3 × 107 m-1 and the energy transferred by radiation is not 

considered. Figure 3.2.6 illustrates the surface pressure and temperature evolution 

Figure 3.2.6. Pressure and temperature evolution on copper for the 

laser fluence of 2 J/cm2. 
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computed at (𝑥𝑠, 𝑦𝑠) for 2 J/cm2. Our simulation results show that pressure is strongly 

dependent on the value of total incident laser energy density and the peak pressure value 

increased with laser energy density. The hydrostatic pressure of > 8 GPa and temperature 

of > 6000 K could be generated when laser energy intensity of 2 J/cm2 laser pulse is used. 

 

CONCLUSION 

Overall, two different, low cost, relatively fast, and highly scalable laser-assisted 

imprinting techniques for micro-patterning of metallic alloys, in particular NiTi shape 

memory alloys were reported. As a proof of concept, having patterned aluminum and gold 

with the hexagonal and fine square templates, it was also shown that almost any 

geometrical pattern with very high fidelity could be generated on a relatively wide array 

of alloys. Shape recovery of the as-generated patterns by the laser direct-scribing of the 

NiTi SMA was realized. The depth of the patterns for Ni50Ti50 samples were shown to 

increase with laser energy density. The recovery measurement shows that more than 30% 

recovery could be obtained when a 0.18 J/cm2 laser fluence is used. Our results prove that 

indentation with laser shock-wave is an effective technique and a strong candidate to 

replace nanoindentation to obtain higher shape memory effect ratios. Laser energy was 

shown to play an important role for surface patterning. Controlling the thickness of the 

depth by varying the laser parameters is a unique feature of laser-assisted shock wave 

imprinting. In addition, no heating or etching is required in this technique. Unlike the most 

direct imprinting techniques which require high pressure which in turn results in damage 

to the sample, this technique can produce patterns without damaging the work-piece. It is 

relatively easy to have scalable product and expected to be a competitive technique for 
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advanced manufacturing. Also, numerical simulations were conducted to better 

understand the mechanism behind shock wave propagation and heat wave evolution on 

the surface as well as inside the material which agrees with experimental values. 
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 APPENDIX A: SAMPLE PREPARATION   

A1. Sample preparation of ‘method M1’ 

 

 This method utilizes thin graphite layer as an ablative layer. 

  

1. Take the NiTi sample and place it over a paper towel as show in Figure A1.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

2. Next, take the Graphite spray (Blister) and shake it to make the solution 

uniform, then spray starting from left to right (in the direction of arrow shown 

below) for once. This results in approximately 10-15 μm thick layer of 

graphite. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A1.2 

NiTi SMA sample, with graphite layer 

Figure A1.1 

1 cm diameter 

NiTi SMA sample 
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3. Place as many mesh grids the sample can accommodate like shown in Figure 

A1.2, in this case shown for three mesh grids on the graphite sprayed NiTi 

sample. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4. Cautiously take the sample (Figure A1.3) and place it over a piece of scotch-

tape, shown in Figure A1.4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A1.3 

Figure A1.4 
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5. Cut a transparent piece of glass (pre-cleaned micro slides from Sargent-Welch) 

in this case to approximately 2x2 cm square. Clean the surface of the cut glass 

using acetone and kimwipes (Kimtech). Place the piece onto another piece of 

scotch-tape, as in Figure A1.5. This glass will serve as the confinement 

medium. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6. Flip over the part prepared in step 5 and using a sharp blade (or similar cutting 

tool) cut and peel off the portion of the scotch-tape that will cover the part of 

the sample to be patterned, as shown in Figure A1.6. This is the part where the 

laser beam will be incident upon the sample. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A1.5 

Figure A1.6 
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7. Next, take the piece prepared in step 6, the sticky part facing the sample, bring 

it slowly down to the piece prepared in step 4. Firmly stick both parts to each 

other as shown in Figure A1.7 making sure that the mesh grids are still in place. 

This is the final step of preparing the sample via ‘method M1’. The sample is 

ready to be taken to patterning. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A1.7 

Figure A1.8. Sample preparation of ‘method M1’ 
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A2. Sample preparation of ‘method M2’ 

 

This method utilizes thin aluminum foil (Reynolds) as an ablative layer. 

Preparation of both any thin foil samples and 1 mm thick NiTi samples is demonstrated 

simultaneously.  

  

1. If the sample to be patterned is of thin foil form, cut it into smaller pieces as 

shown in Figure A2.1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2. Next, place the smaller cut thin samples on a piece of glass (pre-cleaned micro 

slides from Sargent-Welch) in this case to approximately 2x2 cm square, this 

will serve as the base for the thin foil samples, in Figure A2.2. No need to place 

the 1 mm thick samples, since they are thick enough to stay undeformed during 

preparation. 

 

 

 

 

 

 

 

Figure A2.1 

1 cm in diameter NiTi 

SMA sample 

Thin foil samples cut into 

smaller pieces 
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3. Place as many mesh grids the samples can accommodate like shown in Figure 

A2.3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4. Next, take smaller cut thin aluminum foils (the same size as the smaller cut 

thin foil samples in step 1) and cautiously bring them onto the samples with 

mesh grids on, as in Figure 2.4. These pieces will serve as the ablative layer. 

 

 

Figure A2.2 

Figure A2.3 
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5. Place the pieces prepared in step 6 onto a piece of scotch-tape, as in Figure 

A4.5. This glass will serve as the confinement medium. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6. Cut a transparent piece of glass (pre-cleaned micro slides from Sargent-Welch) 

in this case to approximately 2x2 cm square. Clean the surface of the cut glass 

using acetone and kimwipes (Kimtech). Place the piece onto another piece of 

scotch-tape, as in Figure A2.6. This glass will serve as the confinement 

medium. 

Figure A2.5 

Figure A2.4 
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7. Flip over the part prepared in step 6 and using a sharp blade (or similar cutting 

instrument) cut and peel off the portion of the scotch-tape that will cover the 

part of the sample to be patterned, as shown in Figure A2.7. This is the part 

where the laser beam will be incident upon the sample. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

8. Before taking the pieces prepared in step 7, it is better to discharge them. What 

was observed during the preparation that the piece in step 7 statically charges 

up and once taken to put over the prepared samples (in step 5) the glass and 

the scotch tape pulls the thin aluminum ablative layer, mesh grids, and even 

the thin foil samples away from their places completely messing up with the 

samples. The way it is discharged is as follows: Aluminum foil is randomly 

cut into small pieces and the confinement layer glass piece (from step 7) is 

brought to close proximity of these pieces where it will attract the cut 

aluminum parts, as shown in Figure A2.8. Then the stuck pieces are removed 

Figure A2.6 

Figure A2.7 
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Figure A2.9 

using a tweezers and this step is repeated until the confinement glass piece no 

longer attracts the aluminum cutouts.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

9. Next, take the pieces prepared in 8, the sticky part facing the sample, bring it 

slowly down to the pieces prepared in step 5. Firmly stick both parts to each 

other as shown in Figure A2.9 making sure that the ablative aluminum and 

mesh grids are still in place. This is the final step of preparing the sample via 

‘method M2’. The sample is ready to be taken to patterning. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A2.8 
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Figure A2.10. Sample preparation of ‘method M2’ 
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APPENDIX B: Nd:YAG LASER OPERATION 

Make sure that there is enough cooling water inside chiller located at the side of 

the laser main controller unit (big box on wheels). Once every month, water level must be 

checked.  

Turn ON Procedure: 

1. Before turning ON the laser everyone in the lab must be wearing laser eye protection 

goggles. 

2. Turn the laser ON by rotating the key-switch counter-clockwise until the key is 

horizontal (Figure B1). Immediately after the key switch is rotated to ‘I’ position, the LED 

screen will run through a three set of 3 digit numbers. These numbers “A1A2A3, B1B2B3, 

C1C2C3” in the order they appear on LED make up the number of shots the laser has been 

shooting since the last reset. The pump light tube of the laser must be changed after 

30,000,000 shots.   

Figure B1. Initial turn on procedure of a laser. 
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3. Allow about 10-15 seconds for the start of coolant system (water flow). Then the water 

flow will start. 

4. All shutters must be in closed state. Shutter light on the laser controller must be off and 

the shutter on the front of the laser head must be closed. 

 

 

 

 

 

 

Figure B2. Shutter on the laser head (left) and the shutter button on laser controller 

(right). 

5. Pressing the SELECT button on the laser controller multiple times lets one to toggle 

between different settings of the laser. One is the Q-switch and it is activated when the 

light led corresponding to it is lit. The Q-switch can be adjusted to a desired value using 

UP and DOWN buttons. Decreasing the Q-switch will increase the energy. However, 

changing the Q-Switch more than 10 units may change the beam properties (e.g. pulse 

duration, beam shape etc.). The value of Q-switch is set based on the experiment one does, 

for the most of the laser patterning experiments in this thesis it was set to 225. 
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6. By default the frequency of laser beam is 10 Hz. In this experiment, frequency does not 

need to be changed. However, if different value is needed, the SELECT button is pressed 

until the screen reads f10 and it is changed to the desired value using the UP and DOWN 

buttons  

5. Next, the START button which is located near the shutter button on the laser controller 

should be pressed. The light will turn on and blink, laser will start and there will be 

continuous clicking sound. 

6. Next, the following steps should be done to start the laser in either continuous pulse 

(P01) or single (manual) shot (P00) mode. Press the select button until the P01 reading 

appears on the screen of the laser controller (Figure B3). If this is the case, it means the 

laser is operating in continuous pulse mode. 

Figure B3. Summary of the procedure for single shot mode, a) press the SELECT button 

multiple times until b) P01 appears, c) press the single shot button once, d) P01 will 

change into P00. 

 

Single shot 

cable 
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7. To change the laser from the continuous pulse operation mode to manual single shot 

mode, the button on the single shot cable should be pressed once, it will change the P01 

to P00 (Figure B3). The mode P00 is the single shot (manual) control mode. It is always 

safer to start the laser on P00 mode. 

6. About 15 minutes should be allowed for the laser to warm up and stabilize. 

7. STOP! Make sure that everyone wearing safety googles.  

8. Open the shutter at the front of the laser by sliding it to the left (Figure B4). 

 

Figure B4. Opening the shutter on the front of the laser. 

9. STOP! Follow the expected path of the laser beams to make sure it is safe and the laser 

does not hit the equipment in the lab (e.g. computer monitor, spectrometer etc.). 

11. To adjust the energy of the laser use the halfwave plate and polarizer (Figure B5). 

Energy can be adjusted by rotating the halfwave plate. Rotation of halfwave plate in a 
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certain direction will decrease the energy for one of the beams while increasing the other 

one.  

12. Beam will be split into two components by a polarizer in the direction of the initial 

beam and to the perpendicular to that direction. Block the unused beam from the one side 

of the polarizer with a beam dump (Figure B5). 

 

Figure B5. 

13. Put the power meter to the other side of the polarizer that is going to be used. Adjust 

the height of the power meter so that the laser hits to the center. 

14. After making sure that it is safe, open the shutter by pressing shutter button which is 

located on the controller of the laser (Figure B2). Light of the shutter button will be on. 

15. Now the laser is on and it is controlled by a single shot button (P00 mode). Press the 

button once to release single laser beam, press and hold the button for 5 seconds to have 

continuous laser beams coming in a frequency that have been set before (P01 mode). 
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15. Adjust the energy of the laser to the desired value by rotating halfwave plate to either 

counter-clockwise or clockwise.  

16. After adjusting the energy, press the single shot button to stop the laser (P00 mode). 

Align the laser to hit the target.  

17. When the setup is ready and the laser is aligned properly, press and hold the single 

shot button to start the experiment. 

Turn OFF Procedure: 

1. Press the single shot button to stop the laser (P00 mode) (3cd). 

2. Turn off the shutter by pressing the SHUTTER button on the laser controller. The 

shutter light should turn off. 

3. Close the shutter on the front of the laser by sliding it to the right. 

4. Press the SELECT button multiple times until the P00 screen appears. 

5. Change P00 to P01 using UP button on the laser controller. 

6. Press the START/STOP button to stop the laser. Continuous clicking sound should 

disappear. 

7. Rotate the key switch clockwise to turn off the laser. 

8. Cover the optics with plastic bags to prevent dust formation. 
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