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Recommendation Systems or Recommender Systems have become widely 

popular due to surge of information at present time and consumer centric environment. 

Researchers have looked into a wide range of recommendation systems leveraging a wide 

range of algorithms. This study investigates three popular recommendation systems in 

existence, Collaborative Filtering, Content-Based Filtering, and Hybrid recommendation 

system. The famous MovieLens dataset was utilized for the purpose of this study. The 

evaluation looked into both quantitative and qualitative aspects of the recommendation 

systems. We found that from both the perspectives, the hybrid recommendation system 

performs comparatively better than standalone Collaborative Filtering or Content-Based 

Filtering recommendation system. 
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Chapter 1. Introduction 
 

In the present digital world, we all come across Recommendation System (RS) in 

most aspects. This chapter studies the origin of Recommendation Systems and what it does. 

The different categories are discussed in detail and the examples for each category gives a 

better overview and understanding. An empirical analysis has been conducted to compare 

the different types of recommendation systems and conclusions manifest which is the better 

one. Also, at the end of the chapter, we will see the organization of the thesis and what is 

included in each of the coming chapters.  

1.1 The Origin of Recommendation Systems 

 

Since early civilization times, people have always depended on recommendations 

for every large or small decision. Whether it’s an opinion (recommendation) coming from 

an experienced person or when more than two or three people recommend the same, the 

person is most likely to take their opinion. In the current internet era, recommendation 

systems came into existence rooted by the same idea as above. Recommendation Systems 

are tools that provide recommendations to the end-users based on their likes or based on 

the likes of the similar users. This divides the recommendation systems into two main 

categories: Content-Based Filtering Recommendation Systems and Collaborative Filtering 

Recommendation Systems. We will see each of these categories in the next sections. These 

divisions fall under similarity-measure-based approaches while now we have moved to 

more sophisticated approaches like Machine learning and Deep learning.  

With the encouraging success of recommendation systems in e-commerce, movies, 

music, books and news recommendations, now it has become widespread across other 
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fields like tourism, banking amongst others. Some of the popular sites that use 

recommendation engines are shown in Table 1. 

Table 1. Some Popular Sites that Use Recommendation System 

 

Site What is recommended? 

Amazon Consumer Product 

Netflix Movies and TV Series 

Facebook Friend Suggestion 

CareerBuilder Jobs 

YouTube Videos 

Tinder Dates 

 

 With the recent trend of an ever-increasing big data, it gave way to analyzing large 

datasets and implementing recommendation systems. Let us understand what a 

recommendation system does and how it works? 

1.2 What Does A Recommendation System Do? 

 

By the definition in [1] “A recommender system or a recommendation system is a 

subclass of information filtering system that seeks to predict the 'rating' or 'preference' a 

user would give to an item”. And once a prediction has been made, according to the results 

of the predictions recommendations or suggestions are provided to the user. As simple as 

this sounds, there is a lot more that goes into how this exactly works, and we can see that 

in our next section.  
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1.3 How Does A Recommendation System Work? 

The primary objective of a Recommendation System is to build an objective function 

or a mathematical model for the end-users and the specific items. This objective function 

should be able to measure the usefulness of the item for the user. This results in a 

Recommendation System and by optimizing the objective function we can obtain a better 

Recommendation System. Figure 1 shows the objective function. And in order to build 

this system, we first collect the user data. The data can be collected explicitly or implicitly. 

Implicit data could be gathered from order history, click on certain items or the number of 

times a song is listened to while the explicit data is obtained from ratings and feedback 

from the users. 

Figure 1. Objective Function of a Recommendation System 
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The three main steps in building a Recommendation System are: loading and 

formatting the data, calculating the similarity between the users or between the items and 

predicting the unknown ratings for the users. As discussed earlier, the data can be collected 

explicitly or implicitly, and the recommendation system turns out to be more optimized 

with an increase in the available data. This data can be stored either in NoSQL format for 

unstructured data or as SQL tables for structured data. In the latest technology, the cloud 

is used to store the data and can be easily retrieved. Data will be formatted: in most cases, 

the user-item sets are converted into a matrix known as ratings matrix. Here the end-users 

are represented by rows while the products are represented by columns, each cell value 

points to the ratings given to the product by a particular user.  

However, we should understand that not every user would have liked or rated every 

movie (product). So essentially this matrix is a very sparse matrix and now the question 

arises how do we find the missing values? Here is where we would use different similarity 

measures to find the missing values. Once the similarity is obtained between users or 

products, the unknown ratings can be predicted. For example, let us say we want to predict 

the ratings given by Abbey for the Product 1, we will find the similarity between Abbey 

and all the other users who are most similar to him. And on finding the top N users similar 

to Abbey, we will calculate the rating Abbey might have given to the product she hasn’t 

rated. These steps can be repeated for each user in the data set.  To calculate the unknown 

ratings, there are several methods and we can use something as simple as calculating the 

average of all the ratings for that product given by similar users. This explains the basis 

behind the working of recommendation systems.                                                                                                      
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1.4 Types of Recommendation Systems 

 

There are several ways to build a Recommendation System and these approaches 

are divided according to the needs of the application. Though there are several types of 

Recommendation Systems, they are mainly categorized into three types: Collaborative 

Filtering, Content-Based Filtering, and Hybrid Recommendation Systems. In this section, 

let us have a look at each of these types. 

1.4.1 Collaborative Filtering Recommendation System 

 

From the technology aspect, the recommenders are moving from Machine learning 

approaches to more advanced Neural Network and Deep Learning approaches. The idea of 

a Collaborative Filtering is very simple; given the ratings of a user, find all the users similar 

to the active user who had similar preferences in the past and then make predictions 

regarding all unknown products that the active user has not rated but are being rated in their 

neighborhood while considering the preferences or tastes of neighbors. We first calculate 

how similar the other users are to the active user and then unrated items from the user 

community are recommended to the user following predictions. Here the active user is the 

person to whom the system is serving recommendations. In these types of systems, the 

main actors are the users and the product information such as ratings, rankings and liking 

towards the product. Figure 2 represents Collaborative Filtering Based Recommendation 

System. 
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Figure 2. Collaborative Filtering based Recommendation System 

 

There are two main flavors in Collaborative Filtering: User-based Collaborative 

Filtering (UBCF) as seen in Figure 3 and Item-based Collaborative Filtering (IBCF) 

denoted by Figure 4. As the names suggest, similarities are measured between users and in 

the former and items in the latter. The basic concept behind these RS is that if a user likes 

a certain item, he is most likely to like a similar item and if two users are similar, they’re 

most likely to have a common interest. In UBCF, the similarities are calculated between 

users and the unrated items are recommended to a similar user. In IBCF, the similarities 

between items are calculated and the unrated similar item is recommended to the active 

user. 
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Figure 3. User Based Collaborative Filtering (UBCF) 

 

 

Figure 4. Item Based Collaborative Filtering (IBCF) 

 

For Collaborative Filtering, we will require a collection of users who have 

interacted with the application, the item information and each users’ ratings of items. There 

is no requirement for detailed information about the items in Collaborative Filtering and 

hence it can be an easy start. However, this kind faces a cold-start problem while 

recommending to new users who do not have any rating information.  
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1.4.2 Content-Based Filtering Recommendation System 

 

Figure 5 depicts building a Content-Based Filtering Recommendation Systems 

which involve three main steps: Generating content information for products, generating 

user profiles and preferences relative to the features of the product, and generating 

recommendations and predicting a list of items that the user might like. In the Item-Profile 

generation, the features of the product are extracted that represent the product. These 

features can be structured or unstructured data. For example, in the case of movies, an item 

profile for each movie can consist of different types of genres. This is carried out by 

creating a matrix with items as rows and genre as columns. Binary representation is used 

to show if the movie belongs to a certain genre (denoted by 1) or if it does not (denoted by 

0). In the User Profile Generation step, a preference matrix is built matching the product 

content and the user profile and item profile are compared and calculate the similarity 

between them. The cold start problem is easily handled. 
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Figure 5. Content-Based Filtering Recommendation System 

 

1.4.3 Hybrid Recommendation System 

 

Hybrid recommendation systems came into existence due to the limitations of each 

of the previous kinds. Hence there have been several strategies to combine Collaborative 

Filtering and Content-Based Filtering and is called Hybrid Recommender Engine as shown 

in Figure 6. Amongst the various approaches used, weighted method is the most common. 

In the beginning, the combination of the recommendation results is obtained from each and 

equal weights are distributed to each of these results and gradually the weights are adjusted 

after evaluating the responses from the users to the recommendations. Feature Combination 

method is another popular approach where the User profile from Content-Based Filtering 
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is combined with user-item ratings information and a new strategy is considered to build a 

Hybrid Recommendation System. 

 

Figure 6. Hybrid Recommendation System 

 

1.5 Overview 

 

In this thesis, different experimental results are obtained showing the performance 

of different types of recommendation systems. In Chapter 1, we saw what an RS does and 

it’s working. Chapter 2 discusses the concepts necessary to implement the recommendation 

systems. In Chapter 3, we elaborate the evaluation techniques and metrics that we have 

used for the experiments. Chapter 4, describes all some prominent works in this area. The 

dataset, methodology and the results are analyzed in Chapter 5. We then make the 

conclusion and finish with future work in Chapter 6.  
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Chapter 2. Background 
 

2.1 Collaborative Filtering Based Method 

 

Collaborative recommender systems are one of the most commonly used systems 

at present, just like Content-Based Filtering recommender systems. According to the 

definition from [2], “Collaborative Filtering (CF) is the predictive process behind 

recommendation engines. Recommendation engines analyze information about users with 

similar tastes to assess the probability that a target individual will enjoy something, such 

as a video, a book or a product”. Collaborative Filtering is also known as social filtering. 

As we have already seen in chapter one, the first step in carrying out Collaborative Filtering 

to predict the unknown ratings of the users and these predictions are based on users’ 

historical behaviors; specifically, users’ preference for a set of items using the past 

experiences. Collaborative recommender systems can differ from each other in the way a 

rating is defined. They can be binary, focused on the shift in opinion over time, model or 

memory-based. There are several approaches to Collaborative Filtering in which the role 

changes depending on the approach. 

A couple of very basic algorithms that can be used for Collaborative Filtering are 

NormalPredictor and BaselineOnly. NormalPredictor algorithm predicts a random rating 

based on the distribution of the training set, which is assumed to be normal. BaselineOnly 

algorithm predicts the baseline estimate for a given user and item. 

There are also multiple k-NN based algorithms. k-NN is a non-parametric, lazy 

learning method. It uses a database in which the data points are separated into several 

clusters to make inferences for new samples. k-NN does not make any assumptions on the 
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underlying data distribution but it relies on item feature similarity. For example, when k-

NN makes inference about a movie, k-NN will calculate the “distance” between the target 

movie and every other movie in its database, then it ranks its distances and returns the top 

k nearest neighbor movies as the most similar movie recommendations. There are 

variations of this algorithm that consider mean ratings or z-score normalization of each 

user.  

Next, there are Matrix Factorization-based algorithms like Singular Value 

Decomposition (SVD), Singular Value Decomposition with an implicit rating and Non-

negative Matrix Factorization. SVD algorithm is equivalent to Probabilistic Matrix 

Factorization. In this work, we use the SVD algorithm.  

In the following algorithm (Figure 7), matrix of interactions is factorized into two 

small matrices one for users and one for items with a certain number of latent components 

(typically several hundred).  
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Figure 7. Matrix Factorization Based Recommendation Algorithm 

 

The (u,i) rating is obtained by multiplying these two small matrices. There are 

several approaches to how to decompose matrices and train them. The one showed above 

is a simple gradient descent technique. The error can be minimized by Stochastic Gradient 

Descent, Alternating Least Squares or Coordinate Descent Algorithm. There are also SVD 

based approaches, where the ranking matrix is decomposed into three matrices. 

SVD is a matrix factorization technique that is usually used to reduce the number 

of features of a data set by reducing space dimensions from N to K where K < N. For 

recommendation systems, however, we are only interested in the matrix factorization part 

keeping the same dimensionality. The matrix factorization is done on the user-item ratings 

matrix. From a high level, matrix factorization can be thought of as finding 2 matrices 

whose product is the original matrix. 



  

14 

 

Each item can be represented by a vector ‘qi’. Similarly, each user can be 

represented by a vector ‘pu’ such that the dot product of those 2 vectors is the expected 

rating.   

                  𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑟𝑎𝑡𝑖𝑛𝑔 =  𝑟̂𝑢𝑖 =  𝑞𝑖
𝑇𝑝𝑢                    (1) 

‘qi’and ‘pu’ can be found in such a way that the square error difference between their dot 

product and the known rating in the user-item matrix is minimum. 

                  𝑚𝑖𝑛𝑖𝑚𝑢𝑚 (𝑝, 𝑞) ∑  (𝑟̂𝑢𝑖−𝑞𝑖
𝑇𝑝𝑢)2

(𝑢,𝑖) ∈𝐾          (2) 

For our model to be able to generalize well and not over-fit the training set, we introduce 

a penalty term to our minimization equation. This is represented by a regularization factor 

λ multiplied by the square sum of the magnitudes of user and item vectors. 

𝑚𝑖𝑛𝑖𝑚𝑢𝑚 (𝑝, 𝑞) ∑  (𝑟̂𝑢𝑖−𝑞𝑖
𝑇𝑝𝑢)2 +  𝜆(𝑢,𝑖) ∈𝐾  (||𝑞𝑖

2|| + ||𝑝𝑢
2||)           (3) 

To illustrate the usefulness of this factor imagine we have an extreme case where a 

low rating given by a user to a movie with no other rating from this user. The algorithm 

will minimize the error by giving ‘qi’ a large value. This will cause all ratings from this 

user to other movies to be very low. This is intuitively wrong. By adding the magnitude of 

the vectors to the equation, giving vectors large value will minimize the equation and thus 

such situations will be avoided (more here). 

To reduce the error between the predicted and actual value, the algorithm makes 

use of some characteristics of the dataset. In particular, for each user-item (u, i) pair we can 

extract 3 parameters. µ which is the average ratings of all items, ‘bi’ which is the average 
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rating of item i minus µ and ‘bu’ which is the average rating given by user u minus µ which 

makes the expected rating: 

         𝑟̂𝑢𝑖 =  𝑞𝑖
𝑇𝑝𝑢 +  𝜇 + 𝑏𝑖 +  𝑏𝑢                       (4) 

Thus, the final equation to minimize is: 

                             𝑚𝑖𝑛𝑖𝑚𝑢𝑚 (𝑝, 𝑞, 𝑏𝑖, 𝑏𝑢) ∑  (𝑟̂𝑢𝑖 − 𝑞𝑖
𝑇𝑝𝑢 −  𝜇 − 𝑏𝑖 −  𝑏𝑢)2 +(𝑢,𝑖) ∈𝐾

 𝜆  (||𝑞𝑖
2|| +  ||𝑝𝑢

2|| +  𝑏𝑖
2 +  𝑏𝑢

2)                                                                             (5) 

The above equation is minimized using a stochastic gradient descent algorithm. 

From a high-level perspective, SGD starts by giving the parameters of the equation we are 

trying to minimize initial values and then iterating to reduce the error between the predicted 

and the actual value each time correcting the previous value by a small factor. This 

algorithm uses a factor called learning rate γ which determines the ratio of the old value 

and the newly computed value after each iteration. Practically, when using high γ one might 

skip the optimal solution whereas when using low γ values a lot of iterations are needed to 

reach optimal value. 

2.1.1 User Based Collaborative Filtering (UBCF) 

 

 The nearest neighbor approach reveals that selecting all the users’ rating 

information is not the most feasible solution. Hence, we use only top-N similar users’ 

information and make predictions which increase the accuracy of the model. In UBCF, the 

recommendations are generated by considering the preferences in the users’ neighborhood. 

It can be done in two steps: 

1. Identify similar users based on similar user preferences 
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2. Recommend new items to an active user based on the ratings given by the similar 

users 

  In a simple example, if the user Ashley has rated ‘Star Wars’ and ‘The Empire 

Strikes Back’ movies with five stars and if the user Bob has rated ‘Star Wars’ with five 

stars too, then it is mostly liked for Ashley and Bob to be similar to each other and hence 

we can recommend the movie ‘The Empire Strikes Back’ to Bob. This similarity is 

measured using different methods which are discussed in the next chapter.    

2.1.2 Item Based Collaborative Filtering (IBCF) 

 

 The recommendations are created relative to the neighborhood of items. Unlike 

UBCF, we first find similarities between items and then recommend non-rated items that 

are similar to the items the active user has rated in the past. IBCF is constructed in two 

steps: 

1. Calculate the item similarity based on the item preferences 

2. Find the top similar items to the non-rated items by the active user  

Let us assume that the similarity between Toy Story and Aladdin is calculated and 

they happen to be very similar, now when a new user likes either of these movies, the other 

movie can be recommended to the user. Hence, we eliminate the cold-start problem in 

IBCF which is an issue that is usually faced in UBCF. So, this kind of RS fails to 

recommend to the first-time users whose information is not available in the system.  
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 Experiments are conducted for each of the collaborative based filtering methods 

with two different similarity measures and the results are obtained to prove which 

Collaborative Filtering method is better.  

2.2 Content-Based Filtering Method 

 

The content of an item can be a very abstract thing and therefore gives us a lot of 

options in terms of variable that we can use. For example, for a movie we can consider the 

genre, the cast, the director/directors, the movie review, etc. We can choose just one or a 

combination of these to use in our algorithm. 

Once we select the features that we want to use, we need to transform all this data 

into a Vector Space Model, an algebraic representation of text documents. This is usually 

done using a Bag of Words model, that represents documents ignoring the order of the 

words. In this model, each document looks like a bag containing some words. Therefore, 

this method allows word modeling based on dictionaries, where each bag contains a few 

words from the dictionary. 

TF-IDF representation is a specific implementation of a Bag of Words. This model 

combines how important is the word in the document (local importance), with how 

important is the word in the corpus (global importance). Information retrieval systems have 

been using the concepts of Term Frequency (TF) and Inverse Document Frequency (IDF) 

for quite long and now Content-Based Filtering recommenders are also making use of 

them. They can be used to find out the relative importance of a something like a document 

or movie. Another important concept here is the similarity measure that can tell how similar 
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items are with respect to each other. Cosine Similarity is one of the popular ones in this 

aspect. 

2.2.1 Vectors 

 

The fundamental idea is to convert the texts or words into a vector and represent in 

a vector space model.  

2.2.2 TF – IDF 

 

TF- IDF stands for Term Frequency and Inverse Document Frequency.TF-IDF 

helps in evaluating the importance of a word in a document. 

2.2.2.1 TF — Term Frequency 

 

TF is represented in the below and it says how frequent the term ‘t’ occurs in 

document d.  

           (𝑓𝑡,𝑑 =  ∑ 𝑓(𝑡, 𝑑)𝑡𝜖𝑑 )                   (6) 

In order to ascertain how frequent, the term/word appears in the document and also 

to represent the document in vector form, the following steps can be followed. Step 1 is to 

create a dictionary of words (also known as bag of words) present in the whole document 

space. Some common words also called as stop words e.g. the, of, a, an, is etc. are ignored 

in this process since these words are quite common and are not of any help in choosing 

important words. 

In our recommendation system, we deal with movie genres. Let us consider a 

couple of movie genres which are ‘Romantic | Drama | Historical’ and ‘Sci-Fi | Animation 

| Drama’. So G1 is one document, G2 is the other document. Together G1 and G2 make up 
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the document space. So, these can be written as: G1 — Romantic Drama Historical, G2 — 

Sci-Fi Animation Drama. Now creating an index of these words: 1. Romantic 2. Drama 3. 

Historical 4. Sci-Fi 5. Animation. Step 2 is forming the vector. The Term Frequency helps 

us to identify how many times the term or word appears in a document but there is also an 

inherent problem, TF gives more importance to words/terms occurring frequently while 

ignoring the importance of rare words/terms. This is not an ideal situation as rare words 

contain more importance or signal. This problem is resolved by IDF. 

Sometimes a word/term might occur more frequently in longer documents than 

shorter ones; hence Term Frequency normalization is carried out. 

                      𝑇𝐹𝑛  =  
(𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑖𝑚𝑒𝑠 𝑡𝑒𝑟𝑚 𝑡 𝑎𝑝𝑝𝑒𝑎𝑟𝑠 𝑖𝑛 𝑎 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡)

(𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑒𝑟𝑚𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡)
                       (7) 

where n represents normalized. 

2.2.2.2 IDF - Inverse Document Frequency  

 

Formally IDF is defined as: 

                   𝐼𝐷𝐹 (𝑡, 𝐷) = log
𝑁

|{𝑑𝜖𝐷:𝑡𝜖𝑑}|
                                            (8) 

Where, N is the total number of documents in the collection also known as the 

cardinality of document space.  

|{𝑑𝜖𝐷: 𝑡𝜖𝑑}| is the number of documents where the term t is present.  

A simpler definition of IDF can be: 

                   𝐼𝐷𝐹 =  𝑙𝑜𝑔 
(𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠)

(𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑒𝑟𝑚𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡)
   (9) 

Now let’s take an example from our own dictionary or bag of words and calculate 

the IDFs.  
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We had 5 terms or words which are as follows: 1. Romantic 2. Drama 3. Historical 

4. Sci-Fi 5. Animation and our documents were: G1 — Romantic Drama Historical, G2 — 

Sci-Fi Animation Drama 

Now IDF (w1) = log 
2

1
;  IDF (w2) = log 

2

2
 ; IDF (w3) = log 

2

1
; IDF (w4) = log 

2

1
;   

IDF (w5) = log 
2

1
                  

Here, natural logarithm being taken and w1, … , w5 denotes words/terms. We then again 

get a vector as follows: (0.30, 0, 0.30, 0.30, 0.30) 

2.2.2.3 TF-IDF Weight 

 

Now the final step would be to get the TF-IDF weight. The TF vector and IDF 

vector are converted into a matrix. 

Then TF-IDF weight is represented as: 

                        𝑇𝐹 − 𝐼𝐷𝐹 𝑊𝑒𝑖𝑔ℎ𝑡 =  𝑇𝐹 (𝑡, 𝑑)  ∗  𝐼𝐷𝐹(𝑡, 𝐷)   (10) 

 

2.2.3 Similarity Measures 

 

 The similarity measures can be represented on a plot, with each user (or item) 

denoted by the coordinates. The distance between the two coordinates gives the similarity 

between them. Lesser the distance, the greater will be the similarity. The first step is to find 

similar users (or items) and these similarities are calculated by the ratings given by the 

users. Amongst the most common approaches, we have used the following: Cosine 

similarity. 
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2.2.3.1 Cosine Similarity 

 

Cosine similarity calculates [3] the distance between two n-dimensional vectors by 

the angle between them in the vector space. When this is applied to RS, we consider the 

item (or user) to be the n-dimensional vector and the similarity between the two as the 

angle between them. The smaller the angle, the more similar are the items (or users).  

Let’s consider a two-dimensional vector to start with. The dot product between two 

vectors is equal to the projection of one of them on the other. Therefore, the dot product 

between two identical vectors (i.e. with identical components) is equal to their squared 

module, while if the two are perpendicular (i.e. they do not share any directions), the dot 

product is zero. Generally, for n-dimensional vectors, the dot product can be calculated as 

shown below. 

𝑢 . 𝑣 =  [ 𝑢1 𝑢2    ⋯ 𝑢𝑛 ]   [

𝑣1

𝑣2

⋮
𝑣𝑛

] =  𝑢1𝑣1 + 𝑢2𝑣2 + ⋯ + 𝑢𝑛𝑣𝑛 =  ∑ 𝑢𝑖

𝑛

𝑖=1
𝑣𝑖         (11) 

The dot product is important when defining the similarity, as it is directly connected 

to it. The definition of similarity between two vectors u and v is, in fact, the ratio between 

their dot product and the product of their magnitudes. 

                       𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 = cos(𝜃) =  
𝑢 .  𝑣

||𝑢|| ||𝑣||
=  

∑ 𝑢𝑖
𝑛
𝑖=1 𝑣𝑖 

√∑ 𝑢𝑖
2𝑛

𝑖=1  √∑ 𝑣𝑖
2𝑛

𝑖=1

                             (12) 

By applying the definition of similarity, this will be in fact equal to 1 if the two 

vectors are identical, and it will be 0 if the two are orthogonal. In other words, the similarity 

is a number bounded between 0 and 1 that tells us how much the two vectors are similar. 
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Chapter 3. Evaluation Criterion 
 

Now, we will introduce different techniques that evaluate whether the model 

overfits or underfits. The ultimate goal for any model is to perform well for any future data. 

So, how do we go about this? The dataset that is used is divided into two sections: training 

and test. The training data is used to train the model while test data is used to evaluate it. 

In an ideal situation, we segregate the dataset in the ratio 8:2 with 80% of training and 20% 

is used for test. Letting the data to be distributed non-linearly and fitting it with a linear 

model can lead the data to be underfitting and this model does not work well with training 

data. Meanwhile, overfitting performs well with training data but performs badly with test 

data. Here model fits well over the data distribution area. Some of the evaluation methods 

we have used are as follows: 

3.1 Cross Validation  

 

Cross-validation is a statistical method used to estimate the skill of machine 

learning models. Two types of cross-validation can be distinguished: exhaustive and non-

exhaustive cross-validation. Exhaustive cross-validation includes leave-one-out and leave-

p-out cross-validation. On the other hand, non-exhaustive cross-validation includes k-fold 

cross-validation, Holdout method and Repeated random sub-sampling validation. In this 

thesis, we have used k-fold cross-validation. 

The procedure has a single parameter called k that refers to the number of groups 

that a given data sample is to be split into. As such, the procedure is often called k-fold 

cross-validation. When a specific value for k is chosen, it may be used in place of k in the 

reference to the model, such as k =10 becoming 10-fold cross-validation. 
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Cross-validation is primarily used in applied machine learning to estimate the skill 

of a machine learning model on unseen data. That is, to use a limited sample in order to 

estimate how the model is expected to perform in general when used to make predictions 

on data not used during the training of the model. It is a popular method because it is simple 

to understand and because it generally results in a less biased or less optimistic estimate of 

the model skill than other methods, such as a simple train/test split. 

The general procedure is as follows: 

• Shuffle the dataset randomly. 

• Split the dataset into k groups 

• For each unique group: 

o Take the group as a hold out or test data set 

o Take the remaining groups as a training data set 

o Fit a model on the training set and evaluate it on the test set 

o Retain the evaluation score and discard the model 

• Summarize the skill of the model using the sample of model evaluation scores 

Importantly, each observation in the data sample is assigned to an individual group 

and stays in that group for the duration of the procedure. This means that each sample is 

given the opportunity to be used in the hold out set 1 time and used to train the model k-1 

times. 

3.2 Root Mean Square Error (RMSE) 

 

RMSE is a standard way to measure the error of a model in predicting quantitative 

data. Formally it is defined as follows: 
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                             𝑅𝑀𝑆𝐸 =  √∑
(𝑦̂𝑖− 𝑦𝑖)2

𝑛
𝑛
𝑖=1                                                                    (13) 

Here, 𝑦̂1, 𝑦̂2, … , 𝑦̂𝑛 are predicted values. 

𝑦1, 𝑦2, … , 𝑦𝑛 are observed values. 

𝑛 is number of observations 

The division by n under the square root in RMSE allows us to estimate the standard 

deviation σ of the error for a typical single observation rather than some kind of “total 

error”. By dividing by n, we keep this measure of error consistent as we move from a small 

collection of observations to a larger collection (it just becomes more accurate as we 

increase the number of observations). To phrase it another way, RMSE is a good way to 

answer the question: “How far off should we expect our model to be on its next prediction?” 

RMSE is a good measure to use if we want to estimate the standard deviation σ of 

a typical observed value from our model’s prediction, assuming that our observed data can 

be decomposed as: 

𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑣𝑎𝑙𝑢𝑒

= 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒

+ 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑎𝑏𝑙𝑦 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑑 𝑟𝑎𝑛𝑑𝑜𝑚 𝑛𝑜𝑖𝑠𝑒 𝑤𝑖𝑡ℎ 𝑚𝑒𝑎𝑛 𝑧𝑒𝑟𝑜   (14) 

The random noise here could be anything that our model does not capture (e.g., 

unknown variables that might influence the observed values). If the noise is small, as 

estimated by RMSE, this generally means our model is good at predicting our observed 

data, and if RMSE is large, this generally means our model is failing to account for 

important features underlying our data. 
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3.3 Mean Absolute Error (MAE) 

 

MAE is one of the many metrics for summarizing and assessing the quality of a 

machine learning model. Here, error refers to the subtraction of Predicted value from 

Actual Value as below. 

 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝐸𝑟𝑟𝑜𝑟 =  𝐴𝑐𝑡𝑢𝑎𝑙 𝑉𝑎𝑙𝑢𝑒 −  𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑉𝑎𝑙𝑢𝑒                 (15) 

This prediction error is taking for each record after which we convert all error to 

positive. This is achieved by taking Absolute value for each error as below: 

   𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝐸𝑟𝑟𝑜𝑟 →  |𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝐸𝑟𝑟𝑜𝑟|      (16) 

Finally, we calculate the mean for all recorded absolute errors (Average sum of all 

absolute errors). 

                                     𝑀𝐴𝐸 =  
∑ |𝑦𝑖− 𝑥𝑖|𝑛

𝑖=1

𝑛
                                                                  (17) 

Here, 𝑦𝑖 is the predicted value, 𝑥𝑖 is the actual value and 𝑛 is the number of 

observations.  

3.4 Qualitative and Quantitative Analysis 

 

The comparison among the different systems in this study has two distinct aspects. 

The quantitative aspect relies on metrics like RMSE and MAE that were described in the 

previous subsections. But the qualitative aspect relies on the quality of the recommendation 

and we evaluate it by eyeballing the generated recommendation.   
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Chapter 4. Literature Survey 
 

Recommender systems have the capability to provide users with customized and 

tailored recommendations. Thus, it resolves the issue of information overload that plagues 

the users at the modern age. Recently, various approaches for building recommendation 

systems have been developed, which can utilize either Collaborative Filtering, Content-

Based Filtering or hybrid filtering [4], [5], [6], [7].  

Collaborative Filtering technique has reached a certain maturity and is one of the 

most commonly implemented systems. A multitude of different application areas has 

adopted Collaborative Filtering based recommendation systems. One of them is 

GroupLens, a news-based architecture that assists users to locate articles from huge news 

databases using collaborative methods [8]. Amazon improved its recommendation system 

by implementing topic diversification algorithms [9].  

On the other hand, Content-Based Filtering techniques focus finding the similarities 

between content properties and user characteristics. Content-Based Filtering techniques 

normally base their predictions on user’s information, and they ignore contributions from 

other users as with the case of collaborative techniques [10]. Letizia predicts the pages that 

a user may be interested in by tracing his movements though the sites and thus uses 

Content-Based Filtering method [11].  

Despite the widespread success of these two filtering techniques, they have several 

limitations. While Content-Based Filtering techniques have issues like limited content 

analysis, overspecialization and sparsity of data [8], collaborative approaches have issues 

like cold-start, sparsity, and scalability. These issues make it difficult to use these systems 
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in live production. Hybrid filtering, using the combination of two or more filtering 

techniques in different ways to increase the performance and accuracy of recommender 

systems has thus been proposed to alleviate these issues. [12], [13]. These hybrid systems 

try to leverage the strength of each method without sacrificing any capability due to 

inherent weakness [14]. 
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Chapter 5. Experiments 
 

5.1 Dataset 

 

We used ‘MovieLens 1M Dataset’ [15] for our analysis.  The dataset contains 

1,000,209 anonymous ratings of approximately 3,900 movies made by 6,040 MovieLens 

users who joined MovieLens in 2000. We used two files in particular, namely ratings and 

movies.  The ratings file contained 4 fields. They are UserID, MovieID, Rating and 

Timestamp. 

• UserIDs range between 1 and 6040  

• MovieIDs range between 1 and 3952 

• Ratings are made on a 5-star scale (whole-star ratings only) 

• Timestamp is represented in seconds since the epoch 

• Each user has at least 20 ratings.  

The movies file contained 3 fields. They are MovieID, Title and Genres 

• Titles are identical to titles provided by the IMDB (including year of release) 

• Genres are pipe-separated and are selected from the following genres: Action, 

Adventure, Animation, Children's, Comedy, Crime, Documentary, Drama, 

Fantasy, Film-Noir, Horror, Musical, Mystery, Romance, Sci-Fi, Thriller, War, 

Western 

We performed some initial exploratory analysis on the datasets. Figure 8 illustrates 

the histogram of average ratings given by the users. We can see this plot approximates a 

normal distribution with a left heavy tail. Most users’ average ratings fall between 3.5 and 

4.  
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Figure 8. Histogram of Users’ Average Ratings 

Figure 9 illustrates the histogram of average ratings that items got. This plot also 

approximates a normal distribution with a left heavy tail. However, in this case, the values 

are more spread out. Most items have been rated between 3 to 4.  

 

Figure 9. Histogram of Items’ Average Ratings 
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Figure 10 shows the histogram of ratings. It is consistent with the previous two 

plots as we see that the most frequent ratings are 4 and 3 respectively.  

 

Figure 10. Histogram of Ratings 

Figure 11 and Figure 12 illustrates the histogram of items rated by users and users 

who rated items. As expected from these two plots, most users rate very few items.  

 

Figure 11. Histogram of Items Rated by Users 
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Figure 12. Histogram of Users who rated Items 

 

We also generated a word cloud of the genres of the movies. A word cloud is a 

visual representation of text data, typically used to depict particular words where the 

importance of each word is shown with font size or color. This format is useful for quickly 

perceiving the most prominent terms to determine its relative prominence. Figure 13 shows 

some of the most popular genres. As we can see in the word cloud drama and comedy are 

the most common ones.  

 

Figure 13. Most Popular Genres 
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5.2 Methodology 

 

5.2.1 Collaborative Filtering Based Recommendation 

 

We used SVD and 5-fold cross-validation for our Collaborative Filtering methods. 

As the end goal of the recommendation system is to recommend a particular number of 

movies to the users, we also devised a method to output the top 20 recommendations for a 

particular user.  

5.2.2 Content-Based Filtering Recommendation 

 

We used cosine similarity and TF-IDF on movie genres for Content-Based Filtering 

and used Cosine similarity to measure the similarity between items and once again figured 

out top 20 recommendations for a particular user.   

5.2.3 Hybrid Recommendation 

 

The input to our hybrid recommendation system is a user id and movie name. At 

the first stage, the system uses Content-Based Filtering method to figure out the most 

similar movies to that one. And in the next stage, it uses Collaborative Filtering to assign 

an estimated rating to those movies. And then we filter out the top ones and recommend 

them to the user.  
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5.3 Result Analysis 

 

5.3.1 Quantitative Analysis 

 

We first take a look at the comparison of RMSE and MAE errors between a 

Collaborative Filtering based and Hybrid system. Content-Based Filtering method has only 

a qualitative property and therefore we’ll cover it in the next subsection.   

Here we choose top-recommended movies by both systems for 10 users and 

calculate RMSE errors for each system for comparison. From the RMSE plot for 10 users 

in Figure 14, we see that the hybrid system has comparatively lower RMSE overall. The 

average RMSE plot in Figure 15 also shows the superiority of the hybrid system. 

 

Figure 14. RMSE of Collaborative Filtering Based and Hybrid Recommendation System 
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Figure 15. Average RMSE of Collaborative Filtering Based and Hybrid Recommendation 

System 

 

We then do the same evaluation for MAE and from Figure 16 and Figure 17 see 

that the hybrid recommendation system has comparatively lower MAE, i.e., better 

accuracy. 

 

Figure 16. MAE of Collaborative Filtering Based and Hybrid Recommendation System 
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Figure 17. Average MAE of Collaborative Filtering Based and Hybrid Recommendation 

System 

 

Next, we consider 5 batches of users with each batch containing 5 users for whom 

we do the same test. We calculated the RMSE of these sets of users and the comparison 

shows Hybrid system performs comparatively better. The plot in Figure 18 shows the 

RMSE values. Figure 19 shows the average RMSE of Collaborative Filtering and Hybrid 

Recommendation System. We did the same for MAE with 5 sets of user groups that is 

shown in Figure 20. Hybrid system came on top here too. Figure 21 shows the average 

MAE of Collaborative Filtering and Hybrid Recommendation System.  
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Figure 18. RMSE of Collaborative Filtering Based and Hybrid Recommendation System 

for 5 sets of users 

 

 

Figure 19. Average RMSE of Collaborative Filtering Based and Hybrid Recommendation 

System for 5 sets of users 
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Figure 20. MAE of Collaborative Filtering Based and Hybrid Recommendation System 

for 5 sets of users 

 

 

Figure 21. Average MAE of Collaborative Filtering Based and Hybrid Recommendation 

System for 5 sets of users 
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5.3.2 Qualitative Analysis 

 

From Table 2 we see that Collaborative Filtering can tell us the movies that a user 

is likely to rate higher. But it has no way of recommending similar movies to a particular 

one tailored for the specific user. As we can from the genre’s column, the genres are all 

over the places. Here, we consider User 1 and recommend the top 20 movies he is likely to 

rate high.   

Table 2. Top 20 Recommended Movies for a Particular User by Collaborative Filtering 

Based Recommendation System 

 

 

On the other hand, a Content-Based Filtering recommendation system has the 

option to find us the most similar movies to a given one as seen in Table 3, but it has no 

intuition into whether a user will like it or not. Here, we consider Movie Name: Toy Story 
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(1995) with Movie ID 1 and recommend the top 20 movies which are similar to the movie, 

Toy Story.  

Table 3. Top 20 Recommended Movies for a Particular Movie by Content-Based 

Filtering Recommendation System 

 

 

A hybrid system gives us the best of both worlds. Table 4 shows that it can 

recommend similar movies to a particular one that the user is most likely to rate high.  Here, 

we consider User ID 1, Movie Toy Story (1995) with Movie ID 1 and recommend top 20 

movies which are similar to Toy Story and the movies which are likely to be rated high by 

the User 1.  
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Table 4. Top 20 Recommended Movies for a Particular User and Movie by Hybrid 

Recommendation System 

 

 

Therefore, we can conclude that from both qualitative and quantitative perspective, 

a hybrid recommendation system performs comparatively better than standalone 

Collaborative Filtering or Content-Based Filtering recommendation system.  
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Chapter 6. Conclusions And Future Work 
 

In this study, we have explored different recommendation systems including 

Collaborative Filtering, Content-Based Filtering and Hybrid recommendation system using 

the well-known MovieLens dataset. We performed a qualitative and quantitative analysis 

using the dataset and doing so we compared these three recommendation systems. 

Conducting a mixed analysis of quantitative and qualitative manner comes from the need 

that Content-Based Filtering systems can’t be easily quantified. Also, for a system like 

movie recommendation system the qualitative approach holds much importance. That is 

why we devised our own evaluation method along with traditional approach. We found out 

that in both the cases a hybrid recommendation system performs comparatively better.   

There are opportunities for further analysis following the footsteps of this work. 

For example, we did not consider any demographic based information about the user in the 

recommendation system. However, considering this can add another layer of refinement in 

the hybrid recommendation system. Also, we considered only genre in Content-Based 

Filtering recommendation, but one can look into cast and crew and reviews of the movies 

for further similarity. Furthermore, a comparison among different Collaborative Filtering 

based methods and similarity measures may be interesting.  
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APPENDIX 
 

The code can be accessed through the following GitHub link: 

www.github.com/AshwiniLokesh/Recommendation_System
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