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Substrate-borne vibrations, or biotremors, are utilized by vertebrates found in 

unique environments because biotremors are an effective way to transmit signals through 

dense media. Previous studies have shown that veiled chameleons (Chamaeleo 

calyptratus) are able to produce biotremors via specialized neck muscles. I hypothesized 

that during courtship and/or breeding, the veiled chameleon, a tree-dwelling species, 

would communicate with biotremors through branches. Additionally, I hypothesized that 

female call characteristics would differ between reproductive condition (i.e., receptive 

and non-receptive), while male call characteristics would differ between behavioral 

contexts (i.e., territorial vs. courtship). Chameleons were paired (one male, one female) 

and placed on a wooden dowel to create an optimal setting for reproductive behavior, and 

the biotremors produced by each chameleon were recorded with accelerometers and 

characterized by the type of call (hoot or rumble), duration (s), and dominant frequency 

(Hz). Linear mixed-effect models and ANOVAs were used to analyze the effect that 

variables such as sex, receptivity of the female, snout-vent length (SVL), and behavioral 

context had on the biotremors being produced. Both receptivity of females and SVL had 

an effect on female hoot and rumble frequencies, while receptivity of females had an 

effect on the duration of female rumbles. Additionally, behavioral context affected male 
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hoot frequency. These results reflect how females could be able to advertise receptivity 

utlilizing biotremors. While males could potentially communicate their presence to 

females or competing males within range. 



1 

INTRODUCTION 

Whether detecting prey, avoiding predators, or identifying and attracting potential 

mates, animals utilize multiple modes of communication to survive. In a functional 

communication system, a signaler conveys information (signal) to a receiver, resulting in 

a physiological or behavioral change in the recipient (Otte, 1974; Dawkins and Krebs, 

1978; Markl, 1983; Endler, 1993; Bradbury and Vehrencamp, 2011). Otte (1974) defines 

signals as “behavioral, physiological, or morphological characteristics fashioned or 

maintained by natural selection because they convey information to other organisms”. 

The most common types of signals fall under the categories of auditory, visual, and 

chemical communication. Some auditory communication functions as a warning to alert 

conspecifics about predators, like the ‘chirt’ of the Carolina wren (Thryothorus 

ludovicianus) (Morton and Shalter, 1977). The horned frog (Ceratophrys ornate) 

curls/twitches its middle three toes on one or both hind feet to mimic a moving worm 

when encountering potential prey; this type of deceitful visual communication is termed 

‘pedal luring’ (Hödl and Amézquita, 2001). Communication also plays a role in mating 

contexts, such as the ether extracts emitted by virgin queen honeybees (Apis mellifera L.) 

in order to attract potential drones during mating flights (Gary, 1962).  

Each form of communication consists of costs and benefits to the species that 

utilize them (Endler, 1993; Seyfarth and Cheney, 2003; Römer et al., 2010). For example, 

male túngara frogs (Physalemus pustulosus) ‘whine’ in order to attract females and deter 

competing males (Ryan, 1980; Seyfarth and Cheney, 2003). However, when the male 

frogs add a ‘chuck’ to the whine, it not only makes them more attractive to the females, 

but also makes it easier for predatory bats to locate them (Rand and Ryan, 1981; Seyfarth 
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and Cheney, 2003). Similarly, the male sharp-tailed grouse (Tympanuchus phasianellus) 

must compete with other males in visual displays to court females, but these same 

displays also attract predatory eagles (Bradbury and Vehrencamp, 2011). In both 

examples, there is both sexual selective and natural selective pressures working against 

one another as a cost/benefit trade-off within these communication systems. 

One form of communication that has received very little attention within 

vertebrates, despite being relatively common in other groups like insects, is vibrational 

communication, or biotremors (for exceptions, see Hartline, 1971; Barnett et al., 1999; 

Christensen et al., 2012; Laslie, 2018; Tegge, 2018). Hill and Wessel (2016) define 

biotremology as the study of communication by substrate-borne vibrations, which are 

detected by specialized perception organs that measure the oscillations at a boundary 

between media. The mechanisms necessary to receive and translate information conveyed 

through substrate-borne vibrations are widely present in vertebrates and arthropods (Hill, 

2009). It has been estimated that at least 150,000 species of insects use vibrational 

signaling as their exclusive communication method (Virant-Doberlet and Cokl, 2004; 

Cocroft and Rodríguez, 2005; Cocroft et al., 2006). One benefit of utilizing vibrations is 

that the signal can only be detected by individuals that are on or in close proximity to the 

substrate along which the signal was sent (Barnett et al., 1999; Cocroft and Rodríguez, 

2005), which makes eavesdropping less likely. However, there are still ways for an 

unintended receiver to intercept a message. For example, the egg parasitoid (Telenomus 

podisi) is able to detect and orient themselves towards vibrations produced by female 

brown stink bugs (Euschistus heros) during sexual communication (Laumann et al., 

2007). Most vibrational communication studies are based on insects and other arthropods, 
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yet there are some studies demonstrating vibrational communication in reptiles (Hartline, 

1971; Barnett et al., 1999; Christensen et al., 2012).   

Chameleons are a monophyletic group of reptiles originating from East Africa 

(Nečas, 1999; Tolley and Herrel, 2013). Of the chameleon species described, 55% can be 

found in Africa, 44% in Madagascar, and the remaining species can be found in Asia and 

Europe (Tollet and Herrel, 2013). Chameleons inhabit a wide range of environments, 

from open-canopy habitats such as savanna, grassland, and woodland, to closed-canopy 

habitats, or forests (Tolley and Herrel, 2013). While the Chamaeleonidae display a vast 

amount of diversity across species, there are many unique features all chameleons 

possess that set them apart from other lizards. These features include forcep-like feet, a 

prehensile tail, independently moving, turreted eyes, and a ballistic tongue capable of 

grasping prey (Mates, 1978; Nečas, 1999; Tolley and Herrel, 2013; Huskey, 2017). 

Chameleons primarily communicate through the use of visual cues due to their skin 

color-changing ability (Tolley and Herrel, 2013). Specialized skin cells called 

‘chromatophores’ are the mechanism by which they can send these visual signals. There 

are four broad categories of color change responses in chameleons: temperature, light, 

physiological state, and sensory input (Tolley and Herrel, 2013). Color changing due to 

physiological state is perhaps the most relevant to this project, as female chameleons are 

able to communicate their reproductive status via color patterns (Kelso and Verrel, 2002; 

Tolley and Herrel, 2013).   

Visual communication is a critical function of courtship and breeding in the veiled 

chameleon, Chamaeleo calyptratus. When approached by a male, a receptive female will 

maintain a light green background skin color, while exhibiting faint blue spots along her 
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dorsal surface (Annis, 1995; Kelso and Verrel, 2002). Non-receptive females will 

typically darken their background coloration to black or brown when approached by a 

male, highlighting orange and blue spots on their dorsal surface (Annis, 1995). In 

addition to coloration, female veiled chameleons communicate their sexual status via 

movement behaviors. For example, a non-receptive female will demonstrate aggressive 

behaviors (e.g., rocking back and forth, gaping, or hissing), while receptive females will 

typically remain stationary when approached by a potential mate (Kelso and Verrel, 

2002; Pimm et al., 2014). Upon approaching females, males will initiate courtship with a 

‘lateral display’ in which they will display bright colors and compress their body laterally 

in front of the female (Kelso and Verrel, 2002). Then, depending on female reproductive 

status, the male will approach the female from the side or behind and exhibit more 

copulatory behaviors, such as a head roll, chin rub, head butt, or a vibration, which are 

dependent on reproductive status as well (see Kelso and Verrel, 2002).  

 In addition to visual cues, veiled chameleons have also been reported to 

communicate with biotremors during courtship interactions (Barnett et al., 1999). Barnett 

et al. (1999) found that male veiled chameleons did not produce vibrations when alone 

but did produce vibrations when introduced to a female. The mean frequencies of these 

vibrations ranged from 50-149 Hz (Barnett et al., 1999). Tegge (2018) determined that 

during the production of biotremors, four hyoid muscles were being activated: Mm. 

mandibulohyoideus, M. levator scapulae, M. sternohyoideus superficialis, and M. 

sternohyoideus profundus. During the contraction of these muscles, the gular pouch, 

located between these muscles, is hypothesized to already be inflated and act as a 

‘resonator’ to amplify the vibrations produced (Tegge, 2018; Huskey et al., 2020). C. 
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calyptratus have been observed to produce biotremors for both intra- and interspecific 

interactions in numerous behavioral contexts including alarm calls, territorial aggression, 

and mating (Barnett et al., 1999; Laslie, 2018; Tegge, 2018).  

The purpose of this study is to investigate the vibratory signals used by veiled 

chameleons while communicating during courtship and breeding. The specific questions 

addressed in this study are: (1) Is there reciprocal calling between male and female veiled 

chameleons during courtship and breeding? (2) If so, do the call characteristics differ 

between non-receptive and receptive females? And (3) Do the male call characteristics 

differ between behavioral contexts (e.g., territorial vs. courtship)? Determining how call 

characteristics vary in different situations (i.e., reproductive status or behavioral context) 

will aid in understanding this novel form of communication and its function in C. 

calyptratus.  
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MATERIALS AND METHODS 

Chameleon care and husbandry 

Ten adult Chamaeleo calyptratus (five females, five males) were used in this 

study (Table 1). The chameleons were commercially sourced from LLL Reptile, Inc. and 

Backwater Reptiles, Inc. and maintained in accordance with specifications set by Nečas 

(2004).  

Each chameleon was housed individually in a wire mesh enclosure. Larger males 

(snout-vent length greater than 175 mm) were kept in 61 × 61 × 122 cm enclosures, while 

all other individuals were kept in 46 × 46 × 92 cm enclosures. In order to prevent 

territorial aggression and reduce stress, the cages were separated adjacently with opaque 

barriers. Enclosures were equipped with foliage and 60-watt ceramic heat and UVB 

lamps powered on a 12:12 light-dark cycle. Continuous drip systems were placed on top 

of each enclosure and the chameleons were misted daily to maintain hydration. 

Chameleons were fed 5-7 gut-loaded crickets (Acheta domesticus) every other day. In 

order to maintain an optimal environment, the temperature in the room was kept at 24°C 

and the humidity at 50% or higher using a Levoit (6L) humidifier.  

Experimental and video analysis procedures  

All protocols were compliant with guidelines established by the Institutional 

Animal Care and Use Committee (IACUC) of Western Kentucky University (Animal 

Welfare Assurance #A3448-01). 

For each trial, one male and one female chameleon were placed onto a wooden 

dowel (77 cm length, 1.0 cm diameter) inside an experimental chamber composed of a 

wooden box (47 × 94 × 54 cm) with a Plexiglas front panel and a closed top (Figure 1). 
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Vibrations were recorded using PCB Piezotronics, Inc. accelerometers (Model 394C06), 

mounted on each individuals’ casque with PCB Piezotronics, Inc. petro wax (Model 

080A24; see Figure 2). The vibrations produced by each chameleon were recorded using 

Video DAQ Acquisition and Analysis software designed using LabVIEW (created in 

LabVIEW by Dr. Doug Harper, WKU Physics Department). 

Each trial was conducted in a sound dampening room (SE 2000 Sound Isolation 

Enclosure, WhisperRoom, Inc.). Recordings began once both the male and female 

chameleons were placed into the enclosure and accelerometers were attached to their 

casques.. Vibrations from both animals and video were recorded simultaneously in order 

to match visual behaviors with the calls being produced, and to later characterize the 

female in each trial as receptive or not, and to determine whether copulation occurred. 

Recordings were stopped either after copulation had occurred, or after approximately ten 

minutes if the female was non-receptive.  

In order to determine the effects that behavioral context had on male call 

characteristics, male territorial calls recorded in a previous study (Laslie, 2018) were 

utilized for data analysis. Territorial trials differed, as there was a Plexiglas insert that 

separated the experimental chamber into two. The insert contained a hole, allowing the 

use of a single dowel. An opaque fabric barrier was placed in front of the Plexiglas insert 

prior to the placement of the two individuals. Each male was placed on either side of the 

chamber, with wired accelerometers attached to each of their casques. Five minutes after 

recording had begun, the opaque fabric barrier was removed so each individual was able 

to see the other. All calls were characterized the same as in this study. The calls produced 
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by the males, subsequent to the barrier removal, were used in the data analysis part of this 

study.  

Data analysis  

The LabVIEW Video DAQ Analysis Software was used to analyze video and 

vibration data simultaneously (Figure 3, 4) as well as to export each recording to a .wav 

file in order to characterize each individual biotremor using Audacity software (version 

2.3.2). Each .wav file was played-back twice, once for the male accelerometer recording 

and once for the female, in order to characterize each biotremor produced. The following 

was documented for each biotremor: onset time (to later determine reciprocal call 

latency), duration (s), dominant frequency (Hz), and the type of call produced (hoot or 

rumble). The dominant frequency was measured using the dominant peak in the power 

spectra that were calculated using a 1024 point Fast Fourier Transform (FFT) with a 

Hanning window. Hoots were easily distinguishable with a characteristic tonal “hoot”-

like sound, while rumbles were less obvious with a lower frequency sound similar to a cat 

purring.  

Statistical analysis 

Linear mixed effect models were generated using the lme4 (Bates et al., 2015) 

and lmerTest (Kuznetsova et al., 2017) packages in R, in order to compare biotremor 

characteristics. Duration and dominant frequency were used as the response variables. 

Because hoots typically had a shorter duration and higher frequency than rumbles, 

separate models were used for each type of biotremor. The individual chameleon was set 

as a random effect, as multiple calls were produced by the same individuals. Snout-vent 

length (SVL) was also incorporated into these models as a covariate, to determine 

whether size had an effect on the variation in the response variables. Receptivity of the 
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female was used as a fixed effect to address the question of whether or not female call 

characteristics differ between non-receptive and receptive females.  

The same process was employed to answer the question of male call 

characteristics differing with behavioral context. Male only data from this study was 

pooled with previously recorded data from eight male-male territorial trials (N=168) 

consisting of three individuals (Laslie, 2018). Linear models were created as mentioned 

above, with behavioral context set as the fixed effect rather than receptivity of the female. 

SVL was not used as a covariate for this dataset, as there were inconsistencies with the 

measurements from the previous trials.  

Courtship trials were also analyzed to determine whether or not reciprocal calling 

occurred. Reciprocal calling was considered to occur when inter-call intervals between 

individuals took place within a 20-second period. This time frame was selected based on 

the observation of a clear unimodal distribution in delays between calls (Figure 5). That 

is, the majority of calls from both individuals either occurred within 20 seconds.  

Linear mixed effect models were also used to determine if call rate (number of 

calls/trial) differed based on whether or not copulation had occurred in the trial. 

Copulation was considered to have occurred if the male mounted the female at any point 

during the trial. The linear models were created with duration and dominant frequency as 

response variables, copulation or no copulation as the fixed effect, and individuals as 

random effects.  
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RESULTS 

A total of 1,052 calls were recorded from 37 male-female courtship trials. The 

two main types of calls were single hoots and rumbles (Figure 6), comprising 62.93% 

and 31.84% of calls, respectively. Mean duration (s) and mean dominant frequency (Hz) 

of each call type varied across individuals (Table 2) with some individuals (e.g., F2) 

producing higher frequency hoots than others (e.g., F5). Some individuals also produced 

longer calls than others (e.g., M5 produced longer rumbles than M1). Additionally, four 

different combinations of hoots and rumbles were recorded. All combination calls were 

continuous, with one call leading to another call. These combinations consisted of double 

hoots (0.57%), rumble-hoot-rumbles (0.57%), rumble-hoots (1.71%), and hoot-rumbles 

(2.38%). Because the combination calls only made up approximately 5% of total call 

density, only single hoots and rumbles were used for analysis.  

Trials were categorized by receptivity of the female, with 22 consisting of 

receptive females and 15 with non-receptive females. Reciprocal calling between male 

and female C. calyptratus, which was defined as inter-call intervals under 20 seconds, 

occurred in 14 of the 37 trials (Table 3). The average latency between male and female 

calls was 6.92 s (SD=6.12). The percentage of reciprocal calls within these trials ranged 

from 1.22%-35.29%.  

Of the 22 trials with receptive females, 15 consisted of copulation, or mounting. 

Barplots of the mean call rates (Figure 7A, 7B) indicated that there was a much larger 

amount of standard error when one of the individuals, F2, was included compared to 

when she was excluded from the data (Figure 7C, 7D). The linear mixed effect model for 

the male-female pooled dataset was repeated with the same dataset excluding F2. Call 
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rate did significantly differ with copulation (F1,70.2=6.5, p=0.013) (Table 4A, Table 5A). 

Trials with copulation consisted of a higher call rate (mean=51.6) than trials without 

copulation occurring (mean=12.6). Conversely, in trials excluding F2, call rate did not 

differ significantly with copulation (F1,58=0.67, p=0.418) (Table 4B, Table 5B). There is a 

higher amount of variation in the model with F2, than the model without F2 (Table 5A, 

5B). Some of the variation in the model with F2 is attributable to knowing the identity of 

each chameleon, however, almost all of the variation in the model without F2 is 

explained by the individual term (Table 5A, 5B). 

Hoots and rumbles were analyzed separately in females since these calls differ 

both in duration and frequency (Laslie, 2018). Female hoot frequency differed 

significantly with both receptivity of the female (F1,421=4.1, p=0.043) and SVL 

(F1,421=18.5, p < 0.001) (Table 6A, Table 7A). The mean dominant hoot frequency in 

receptive females (mean=225.3 Hz) was significantly higher in than that of non-receptive 

females (mean=137.8 Hz). There is a negative relationship between hoot frequency and 

SVL in receptive individuals, however, size does not have an effect on hoot frequency in 

non-receptive individuals (Figure 8). There was a high amount of variation in the model 

(Table 7A), none of which was contributable to the identitiy of each chameleon. Hoot 

duration in females was not affected by receptivity or SVL. Female rumble duration was 

significantly longer (F1,210.99=30.4, p<0.001) in trials with non-receptive females 

(mean=1.633 s) than in trials with receptive females (mean=0.901 s; Table 6B, Table 7B). 

Rumble frequency of females differed with the interaction between receptivity of females 

and SVL (F1,209=7.0, p=0.009; Table 6C, Table 7C). Rumble frequency was higher when 

females were non-receptive (mean=129.6 Hz) than when females were receptive 
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(mean=92.8 Hz). An interaction plot between female rumble frequency and size indicates 

a positive relationship between in receptive individuals, and a negative relationship 

between the two variables in non-receptive individuals (Figure 9). 

 Behavioral context had no effect on hoot duration; however, it did affect hoot 

frequency (F1,135.4=10.9, p=0.001). Dominant frequency of male hoots was higher in 

courtship trials (mean=133.5 Hz) compared to territorial trials (mean=129.8 Hz) (Table 8, 

Table 9). Rumble frequency and duration, on the other hand, were not affected by 

behavioral context. 
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DISCUSSION 

Reciprocal calling  

The first objective of this study was to determine whether or not there was 

reciprocal calling between male and female veiled chameleons during courtship and 

breeding. Calls between chameleons were considered to be reciprocal when the second 

individual responded to the first individual’s call within a 20-second period. Male and 

female veiled chameleons were found to produce reciprocal calls. However, the amount 

of trials including reciprocal calls was lower than expected, with only 14 of 37 trials 

containing reciprocal calling. The majority of trials that showed back-and-forth 

communication between both individuals had occurred within a 20-second time period, 

with few trials consisting of inter-call intervals over 20 seconds (see Figure 5).  

Previous studies have shown response times between the range of less than 1 

second (the second individual called prior to the first individual’s call stopping) in cotton-

top tamarins (Saguinus Oedipus; Kureta, 2000) and 15 seconds in moustached tamarins 

(Saguinus mystax) (Snowdon and Hodun, 1985). Between these two extremes, bottlenose 

dolphins (Tursiops truncatus) were found to vocal match each other with an average of 

0.56 seconds (King et al., 2014). Similarly, the white-nosed shrub frog (Philautus 

leucorhinus) was also found to respond to calls within an average of 0.5 seconds (Arak, 

1983). While these examples exhibit much shorter response times than those found in C. 

calyptratus, all of these animals (e.g., dolphins, tamarins, and frogs) are social animals 

that live in groups which likely requires quicker response times to calls because of the 

competitive nature of group calling. Also, each has more sophisticated hearing which 

underlines the importance of quicker response times. Chameleons are more solitary 



14 

animals with poor hearing (Nečas, 1999; Tolley and Herrel, 2013), which likely hinders 

their response times. Additionally, two animals communicating with sound are able to 

produce signals simultaneously while still hearing and comprehending the signals 

produced by the other animal. While interrupting can still result in effective 

communication with audible sounds, it is highly unlikely that this is the case for 

substrate-borne vibrations with long intervals between calls. When communicating with 

vibrations through a substrate, multiple signals being produced simultaneously would 

result in vibrations encountering each other through the medium, producing constructive 

or destructive interference which could modify the original signals. This problem is 

avoided by using a relatively longer latency period between separate calls.    

 

Call rate  

Call rate was only found to differ with the type of trial (i.e., copulation or no 

copulation) when F2 was included in the model. However, due to the amount of variation 

in that model that was attributable to random effects compared to that of the model 

excluding F2, it is unclear if these results were biologically significant (see Figure 7). It 

would be more conservative to conclude that these results do not yield biological 

significance due to the lack of research on this topic. 

 

Female call characteristics and receptivity  

The second objective of this study was to determine whether or not female call 

characteristics differed with female receptivity. Both female reproductive status and size 

(SVL) had an effect on many aspects of female C. calyptratus calls. Receptive females 



15 

produced hoots with higher frequencies than non-receptive females. To date, there has 

been limited research, if any, on the effects of female chameleon receptivity on female 

call characterisitics, like duration and dominant frequency. However, the differences in 

these factors based on receptivity indicate the possibility that female C. calyptratus could 

use biotremors to advertise their reproductive status to potential mates.  

Female rumble duration was also affected by receptivity. Non-receptive females 

produced longer rumbles than receptive ones. Previous studies have shown that longer 

duration calls will have higher energetic costs than shorter duration calls (Prestwich, 

1994; Welch et al., 1998). If this is the case for C. calyptratus, one might assume that 

non-receptive females would not put more energy into calling than receptive ones. Then 

again, receptive females can conserve energy for reproduction by using shorter rumbles.  

Size also affected both female hoot and rumble frequencies (see Table 6A,6C; 

Table 7A,7C). While smaller receptive females produced higher frequency hoots than 

larger ones, there was no relationship between frequency and size in non-receptive 

females. Previous studies regarding acoustic allometry have typically shown a negative 

relationship between body size and call frequency (Bradbury and Vehrencamp, 2011; 

Martin et al., 2011; Wang et al., 2012; Gingras et al., 2013; Irschick et al., 2015). 

Wallschläger (1980) found that body size explained 59% of variance in song frequency in 

an analysis of the songs of 90 European passerine species, more specifically, there was a 

negative relationship between body size and song frequency. Similarly, multiple studies 

in frogs have found that as body size increases, call frequency decreases (Wang et al., 

2012; Gingras et al., 2013). While this was the case for receptive females, non-receptive 

females showed no correlation between hoot frequency and size. It appears that 
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nonreceptive females produce the same call frequency to announce their reproductive 

status. A consistent call frequency in this regard would likely be selected for to ensure the 

signal is understood by males.  

Size also affected rumble frequency in both non-receptive and receptive females. 

For receptive females, smaller individuals produced lower frequency rumbles, while 

larger individuals produced lower frequency rumbles in non-receptive females. In this 

case, the relationship between size and rumble frequency in receptive females is the 

opposite of what is shown in female hoot frequency and the previous studies discussed 

(Wallschläger, 1980; Wang et al., 2012; Gingras et al., 2013). This inconsistency could 

also be due to low sample sizes, as well as the lack of a broad range of sizes. Three of the 

five females were 155mm or larger, one individual was 113mm and the other was 

131mm. Had there been an even number of “small”, “medium”, and “large” individuals, 

the results might have been more similar to those typically found, with larger individuals 

producing lower frequency calls. All this withstanding, lower frequency calls by smaller 

individuals could happen as a result as the same frequency modulation mechanism 

described above and could have implications for signal transduction. 

 

Male call characteristics and behavioral context  

In the male-only dataset, the only variable distinguishing male courtship calls 

from male territorial calls was hoot frequency. Courting males produced hoots with 

higher frequencies than did males demonstrating territorial behavior. This could 

potentially illustrate how males can advertise their availability to females while also 

letting other males know they are courting a female and to avoid the area. While it was 
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determined that hoot frequency differed based on behavioral context, nothing else 

differed between contexts. Ideally, another fixed effect could have been added to the 

model had both territoriality and courtship contexts been recorded for this study; 

however, because only territorial data was used from a previous dataset (Laslie, 2018), 

and only courtship data was recorded for this dataset, the model had less terms to take 

into account variability and most likely lacked power for this reason. 

 In courtship contexts, females often select males that produce lower frequency 

calls, which is typically an indicator of body size/condition (Márquez and Bosch, 1997; 

Howard and Young, 1998; Lodé and Le Jacques, 2003;  Halfwerk et al., 2011). Females 

in two species of toad, Bufo americanus and Alytes obstetricans, have been shown to be 

more attracted to males that produced lower frequency calls (Márquez and Bosch, 1997; 

Lodé and Le Jacques, 2003). Similarly, Lesbarrères et al. (2008) found a negative 

relationship between male reproductive success (number and size of clutches) and 

fundamental frequency of calls in the agile frog, Rana dalmatina. Conversely, Halfwerk 

et al. (2011) demonstrate that while female great tits (Parus major) prefer males 

producing lower-frequency songs, there is an advantage for higher-frequency songs in 

noisy environments. They found that low frequency songs showed reduced effectiveness 

in soliciting female responses in noisy, urban habitats (Halfwerk et al., 2011). In this 

study, any background noise during trials was greatly reduced with a sound-proof room. 

However, veiled chameleons are known to inhabit anthropogenically disturbed habitats, 

such as tree alleys along busy roadways and trees in villages (Nečas, 1999). 

 

General discussion  
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Overall, these results, specifically, reciprocal calling, support the notion that 

substrate-borne vibrational communication is utilized by C. calyptratus in conspecific 

interactions (Barnett et al., 1999; Laslie, 2018; Tegge, 2018). Barnett et al. (1999) 

recorded mean call frequencies between 50-149 Hz in C. calyptratus when males were 

presented with females and were also able to elicit alarm calls with a mean frequency of 

152 Hz. Similarly, Tegge (2018) found mean alarm call frequencies of 133 and 154 Hz in 

male and female veiled chameleons, respectively. In this study, mean call frequencies in 

the courtship trials ranged from 75 Hz to 227 Hz.  

A previous study showed that C. calyptratus can detect low frequency (below 300 

Hz) vibrations on a dowel (Laslie, 2018). This suggests that they should also be able to 

detect the low frequency biotremors recorded in the current study.  It is currently unclear 

which sensory modality chameleons use to detect these vibrations: the auditory system in 

which substrate-borne vibrations can be transmitted to the inner ear through bone 

conduction, the somatosensory system via mechanoreceptors in the skin, or both. Wever 

(1968, 1969) reported that two other species of Chamaeleo, C. senegalensis and C. 

quilensis, displayed the greatest auditory sensitivity in the range of 200-600 Hz with 

moderate sensitivity at 100 Hz. This suggests that the auditory system could be used to 

detect these biotremors. Huskey et al. (2020) also found that C. senegalensis was one of 

the species known to possess a gular pouch and it is highly likely that C. quilensis does as 

well. Based on the correlation between these findings, it is reasonable to assume that the 

species possessing a gular pouch are able to amplify the biotremors they produce in order 

to allow surrounding conspecifics to receive these signals more effectively.  
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 Veiled chameleons are known to use biotremors to communicate with 

conspecifics in the contexts of courtship and territoriality (Barnett et al., 1999; Laslie, 

2018), as well as alarm calls with heterospecifics (Barnett et al., 1999; Laslie, 2018; 

Tegge, 2018). C. calyptratus likely evolved the use of substrate-borne vibrations in 

communication for a number of reasons, one of which being the environmental pressures 

of an arboreal habitat. Adult C. calyptratus are typically found on trees and shrubs 

(Nečas, 1999). As demonstrated by Barnett et al. (1999), a shrub branch is an ideal 

substrate through which these vibrations can be transmitted from one individual to 

another. Another pressure that could be responsible for the adaptation of producing 

biotremors to communicate would be the poor sense of hearing found in chameleons. The 

ear in all chameleons is greatly reduced; there is no external ear opening or tympanic 

membrane, and the round window is either absent or greatly reduced (Wever, 1968; 

Wever, 1969; Tolley and Herrel, 2013). Substrate-borne vibrations might provide a 

means of communication in spite of a chameleon’s elementary hearing  

Within a courtship context, female chameleons are typically able to advertise their 

receptivity by coloration or visual behaviors (Kelso and Verrel, 2002; Tolley and Herrel, 

2013). Because characteristics of female hoots and rumbles were found to differ by 

receptivity of the female, it is reasonable to postulate that females can communicate their 

receptivity via biotremors while out of the range of sight for courting males. Similarly, 

males could also be doing the same when advertising their availability to receptive 

females where call frequency, duration, or amplitude could provide sexually selective 

information. Males could also be advertising their physical prowess to rival suitors in a 

show of dominance. However, since only hoot frequency was higher in courting males 
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than territorial ones, further investigation on male biotremors based on behavioral context 

would be necessary in drawing that conclusion. 

In addition to one mode of sensory communication being used when another is 

less than ideal, there is also the possibility of both modes of communication (visual and 

vibratory) being utilized simultaneously. Multimodal signaling is found throughout the 

animal kingdom (Uetz et al., 2009; Higham and Hebets, 2013; Preininger et al., 2013). 

For example, male wolf spiders (Lycosidae) are known to incorporate visual and 

vibratory signals in their courtship displays (Uetz et al., 2009). In Uetz et al.’s study 

(2009), they found that female wolf spiders responded to multimodal signals from males 

much quicker than the visual and vibratory cues alone. Similarly, the small torrent frog 

(Micrixalus saxicola) exhibits multimodal signaling with acoustic and visual signals in 

male-male territorial context (Preininger et al., 2013). Preininger et al. (2013) found that 

multimodal signals significantly increased the frequency of responses compared to the 

unimodal signals. Both of these examples support the notion that the redundancy of 

multimodal signals actually enhances the ability of the receiver to obtain the information 

being sent (Uetz et al., 2009; Preininger et al., 2013). While female veiled chameleons 

are able to display their reproductive status via coloration and visable behaviors, adding 

vibrations could be adding emphasis to what they are already communicating, and still 

could provide this information to any individual out of eyesight.   

 

Conclusions 

The present study demonstrates the ability of female veiled chameleons to 

communicate their receptivity through the use of substrate-borne vibrations. The 



21 

evidence presented here, as well as the anatomical ability for veiled chameleons to 

produce biotremors (Tegge, 2018; Huskey et al., 2020), and previous biotremor data 

collected (Barnett et al., 1999; Laslie, 2018, Tegge, 2018) supports the concept that C. 

calyptratus is able to utilize biotremors to communicate in different contexts. However, 

more investigation is necessary in order to compile a larger repertoire of chameleon 

biotremors and determine how these vibrations differ by context, sex, receptivity, and 

other potentially important factors.  
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Table 1: Chameleons used in experiment. Listed are the individual chameleons, with 
their respective snout-vent lengths (SVL) (mm), and mass (g).  

 

 

 

 

 

 

 
 

 

 

  

Individual  SVL (mm) Mass (g)  
F1 131 71.83 
F2 113 61.07 
F3 161 108.10 
F4 155 87.97 
F5 170 99.84 
M1 190 192.90 
M2 182 136.33 
M3 128 66.44 
M4 205 133.30 
M5 164 79.30 
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Figure 1: Schematic of experimental setup. 

 

 

 

 

 

 

  



31 

 

 

 

 

 

 

 

 

 

 

Figure 2: A male C. calyptratus with an accelerometer attached to the casque with petro 
wax. Adapted from Tegge (2018). 
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Figure 3: Screenshot of Audacity analysis software (version 2.3.2). A hoot produced by 
an adult male C. calyptratus is highlighted and analyzed. The analysis shows the hoot is 
0.210 s in duration with a dominant frequency of 115 Hz. 

 

 



33 

Figure 4: Screenshot of Audacity analysis software (version 2.3.2). A rumble produced 
by an adult female C. calyptratus is highlighted and analyzed. The analysis shows the 
rumble is 0.169 s in duration with a dominant frequency of 100 Hz. 
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Figure 5: Histogram of inter-call intervals (response times) from all trials with both male 
and female calls present.  
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Figure 6: One rumble (A) and one hoot (B) analyzed from a single female C. calyptratus 
(CF2) in a single male-female courtship trial. 
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Table 2: Mean duration (s) and mean dominant frequency (Hz) of hoots and rumbles 
from each individual. *M3 was removed as he never produced calls.  

 

 Hoots Rumbles 
Individual  Mean Duration 

(s) 
Mean Dominant 
Frequency (Hz) 

Mean Duration 
(s) 

Mean Dominant 
Frequency (Hz) 

F1 0.131 ( 0.0004) 155.5 ( 28.6) 1.614 ( 3.1) 97.5 ( 155.9)  
F2 0.137 ( 0.0001) 227.2 ( 278.4) 0.823 ( 0.2) 94 ( 207.3) 
F3   0.521 ( 0.02) 93.4 ( 135.2) 
F4 0.159 ( 0.012) 147.2 ( 266.0) 1.145 ( 0.6) 127.7 ( 271.3) 
F5 0.126 ( 0.001) 119.8 ( 323.3) 3.775 ( 2.5)  164.2 ( 2094.2)  
M1 0.259 ( 0.004) 129.1 ( 168.3) 0.468 ( 0.04)  88.5 ( 171.1) 
M2 0.126 ( 0.002) 137.3 ( 91.9) 0.678 ( 0.2) 75.2 ( 438.4) 
M4 0.155 ( 0.001) 131.3 ( 18.8) 0.571 ( 0.1) 86.2 ( 50.4)  
M5   2.878 ( 3.1) 125.1 ( 554.2) 
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Table 3: Trials with reciprocal calling present.  



38 

Figure 7: Average call rates (calls/trials) in trials with and without copulation. Plots A 
and C represent the pooled dataset (male and females), with A containing trials with F2 
and C containing all other trials without F2. Plots B and D contain call rate data separated 
by sex, with plot B containing trials with F2, and D containing all other trials without F2. 
SE of each mean are denoted by vertical error bars.  

 

0

5

10

15

20

25

30

35

40

45

50

A B 

C D Av
er

ag
e 

ca
ll 

ra
te

 (c
al

ls
/tr

ia
l) 

Trial Type            Trial Type/Sex    



39 

Table 4: Linear mixed-effect regression model comparison of factors affecting call rate 
with F2 (A) and without F2 (B). Models were constructed with the fixed effect being 
“Copulation” (whether or not copulation occurred). The best model in each set is denoted 
by an asterisk beside the AIC value. 
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Table 5: Parameter estimates for ANOVAs on differences call rate with F2 (A) and 
without F2 (B). Models were constructed as mentioned in Table 4.  
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Table 6: Linear mixed-effect regression model comparison of factors affecting female 
hoot frequency (A), rumble duration (B), and rumble frequency (C). Models were 
constructed with fixed effects being “Receptivity” (receptiveness of female), “Receptivity 
+ SVL” (additive model with SVL as a covariate, and “Receptivity*SVL” (interaction 
between receptivity of female and SVL). The best model in each set is denoted by an 
asterisk beside the AIC value. 
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Table 7: Parameter estimates for ANOVAs on differences in female hoot frequency (A), 
female rumble duration (B), and female rumble frequency (C). Models were constructed 
as mentioned in Table 4.  
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Figure 8: Interaction plot of female mean (± S.E.) dominant hoot frequency (Hz) by SVL 
(mm), depicting the interactive model shown in Table 4A and Table 5A. Red circles 
denote receptive individuals, blue triangles denote non-receptive individuals.  
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Figure 9: Interaction plot of female mean (± S.E.) dominant rumble frequency (Hz) by 
SVL (mm), depicting the interactive model shown in Table 4C and Table 5C. Red circles 
denote receptive individuals, blue triangles denote non-receptive individuals.  
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Table 8: Linear mixed-effect regression model comparison of factors affecting male hoot 
frequency. Models were constructed with fixed effects being “Context” (behavioral 
context of male – courtship/territoriality). The best model is denoted by an asterisk beside 
the AIC value 
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Table 9: Parameter estimates for ANOVAs on differences in male hoot frequency. 
Models were constructed as mentioned in Table 5. 
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