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Cover crops have become an increasingly popular option for alleviating 

agronomic and environmental concerns, such as erosion. Dual utilization can increase 

forage use efficiency and increase immediate economic return but understanding the 

impact on soil health and grain production may affect viability of this strategy. In a two-

year study conducted in Bowling Green, Kentucky, soil health was analyzed comparing 

three treatments: grazed wheat (Triticum aestivum; WGR) to un-grazed wheat (W) and 

grazed tall fescue (Festuca arundinacea; TF). Sixteen cow calf pairs were randomly 

allocated to grazed wheat or tall fescue for two weeks. Soil samples were analyzed 

following grazing to quantify soil physical and chemical parameters. Grain production 

was measured for production and quality characteristics. Data was analyzed with 

treatment x year interaction as a fixed effect and included if significant. Soil pH in fall 

sampling varied in TF from both W and WGR (P<0.0001). pH level varied between all 

years (P<0.0001). Treatment varied for OM with greater levels in TF compared to W 

(P=0.0002) and W compared to WGR (P=0.0197). Year varied significantly with 2017 

OM (22.81 g/kg) greater than 2018 (3.03 g/kg; P<0.0001) and 2019 (3.14 g/kg; 

P<0.0001). TF was greater in N than WGR in both fall (P<0.0001) while W was greater 

than WGR in both spring and fall (P=0.0052 and P<0.0001 respectively). N was greater 

in fall 2019 than 2018 (P<0.0001) and 2017 (P<0.0001) and differed between all years in 
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spring sampling. NO3
-
 varied between treatment in both spring and fall and between 

years. In spring sampling, 2018 NO3
- (9.21 ppm) was greater than 2017 (4.40 ppm; 

P<0.0001) and 2019 (4.06 ppm; P<0.0001). Fall sampled NO3
-
 level was greater in 2019 

(11.21 ppm) than 2017 (8.91 ppm; P=0.0001) and 2018 (5.16 ppm; P<0.0001). NH4
+

 

varied between year in fall with the greatest content in 2017 (11.23 ppm) compared to 

2018 (3.25 ppm; P<0.0001) and 2019 (4.39 ppm; P<0.0001). Cash crop production traits 

were not significantly impacted by treatment during this study. N fertilizer application 

may have contributed to overall increased soil N levels. Differences in OM could have 

been due to lack of residue in un-grazed wheat. Overall, minimal location x year 

interaction suggests that grazing had minor impact on soil health after one grazing period. 

Further research is required to thoroughly investigate the impact of cover crop grazing on 

soil health. 
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I. Review of Literature 

Introduction 

The erosion of soil has been a concern for producers and environmentalists alike. 

Erosion can reduce crop productivity and yields (Magdoff and Van Es, 2009) as well as 

contribute to air pollution, water pollution, and other environmental concerns (Poesen et 

al., 2003). Cover crops have become an increasingly popular method of reducing erosion 

on cropland (USDA, 2017). However, implementation of cover crops has been slow, 

partially due to the lack of immediate economic benefits (Franzluebber, 2007). Grazing 

by livestock during winter months may improve the economic benefit of using cover 

crops. The available forage can be used more efficiently and potentially reduce feeding 

costs through the winter (Penrose et al., 1996). This study was conducted by grazing 

purebred Angus cow/calf pairs on cover crops. Lactating cows require increased nutrients 

thus, poor quality forage may lead to nutrient deficiencies, particularly through the winter 

(Short et al., 1990). Cover crops aid in meeting nutrient requirements of lactating cows 

(Fraase et al., 2010) and can help maintain cow body condition score, enable rebreeding 

to occur in a timely manner, and optimize calving interval (Short et al., 1990). Cover 

crops may also facilitate conditions expected to improve calf preweaning environment 

and ensuing weaning weight (Jeffery and Berg, 1971). This study investigates the impact 

of cover crop grazing by cattle on soil physical and chemical parameters and 

characteristics of both soybean and corn production. The following literature review 

provides a brief history and description of each of the main components in this study. 
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Cover Crops 

Benefits 

Cover crops are defined by the Soil Science Society of America (SSSA, 2008) as 

“a close-growing crop that provides soil protection, seedling protection, and soil 

improvement between periods of normal cash crop production”. Cover crops are used to 

improve production of subsequent crops by enhancing physical, chemical and biological 

soil properties as well as improving many other environmental and agronomic 

components (Weil and Kremen, 2007; Fageria et al., 2005).  

Soil health can be improved with cover crops by improving soil structure, 

increasing organic matter, and enabling diverse, biologically active microbial populations 

(Blackshaw et al., 2005). The type of cover crop will affect the impact on these 

characteristics as will type of soil, tillage and cropping system, management history, and 

climate (Blanco-Canqui et al., 2011).  

Soil organic matter (SOM) contributes to soil fertility through the process of 

decomposition which results in the release of nutrients (Nelson and Sommers, 1996). 

SOM can impact availability of nutrients, soil structure, water infiltration, cation 

exchange capacity, and soil temperature (Nelson and Sommers, 1996). Cover crops can 

increase organic matter because they often produce high levels of biomass (Reeves, 

1997). A large portion of SOM is denoted as soil organic carbon (SOC). Soil organic 

carbon is vital to quality and productivity of soils, partly by reducing nitrate loss from 

leaching (Fageria et al., 2005). Deep-rooted cover crops can improve SOC in the soil as 

root derived carbon (C) has a lower turnover rate than shoot-derived carbon (Fageria et 



3 

 

al., 2005). To improve SOC quickly, cereal cover crops are most beneficial as they 

produce the largest amount of biomass (Cupina et al., 2011).  

Decomposition processes that break down organic molecules and convert to plant 

accessible forms are largely driven by soil biology (Friedel et al., 2001). Cover crops can 

be utilized to increase populations of biological micro- and macro- organisms such as 

fungi, bacteria, and earthworms. Vukicevich et al. (2016) reviewed available literature 

and reported that utilization of cover crops increased microbe diversity, aiding in 

mitigation of soil-borne pathogens. Biological health is largely impacted by the roots of 

cover crops which enable restoration and maintenance of soil structure. Fungi produce a 

glycoprotein which aids in formation and preservation of soil aggregates (Wright et al., 

1999). Aggregates function in the soil to regulate microbial structure, water flow, nutrient 

absorption, and reduce run-off and erosion. When cover crops are utilized earthworm 

population density increases, which is correlated with aggregate conservation and 

increased water infiltration (Stavi et al., 2012).  

A major concern of cash crop producers is the impact of compaction on 

subsequent crop production. Usage of machinery, grazing by livestock, and weather 

conditions may contribute to increased compaction and thus reduced production. This 

reduced production is caused partially by restricted root growth, limiting plant access to 

water and nutrients (Williams and Weil, 2004). One method to reduce compaction is deep 

tillage; however, this is a time and labor-intensive option that may contribute to 

environmental damage through erosion, water pollution, and nutrient leaching (Horn et 

al., 2000). Another method is the usage of cover crops to mitigate compaction. Ability of 

a cover crop species to break compacted layers of soil varies. Tap-rooted species, such as 
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the mustard (Brassicaacene) family, may aid in alleviating compaction. Fibrous-rooted 

species are less effective at penetrating compacted layers in comparison to the long and 

thick taproot of many Brassica species (Chen and Weil, 2010). Winter killing brassicas 

initiates rapid decomposition of roots leaving open channels which subsequent crops use 

to promote root growth (Williams and Weil, 2004). Williams and Weil (2004) found that 

utilization of a cover crop improved soybean grain yield partially because soybean roots 

penetrated compacted soil by following channels created by the cover crop. Cores taken 

to a depth of 55 centimeters had 10 times more corn roots where tillage radish was used 

as a cover crop versus no cover crop (Weil and Kremer, 2007).  

Soil aggregate formation may be amplified by increased porosity from cover crop 

roots which can increase soil water-holding capacity (Dabney et al., 2001). Residue 

produced by cover crops may reduce evaporation thus improving water conservation of 

the soil. This may delay planting during certain weather conditions such as an overly wet 

spring (Clark et al., 2007). Adversely, cover crops may cause a shortage of water for 

subsequent cash crops when rainfall is unusually low (Unger and Vigil, 1998). Species of 

cover crop can impact subsequent crop water use or where water-holding occurs, in the 

subsoil or the soil above the plow pan (Weil and Kremer, 2007).  

Soil that is exposed can lead to erosion by wind and rain, which inhibits crop 

growth by reducing water infiltration, percolation, aeration, root growth, and nutrient 

profile of the soil (Magdoff and Van Es, 2009). Soil degradation can also have 

environmental effects beyond the loss of crop production. It can lead to increased 

pollution and sedimentation in waterways (Poesen et al, 2003). Degraded soils are often 

less able to hold water which can lead to increased damage from flooding. Soil 
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degradation by wind can cause air pollution to increase. By increasing soil coverage 

cover crops can reduce interrill erosion (Kaspar and Singer, 2011). Cover crops can also 

reduce surface run-off by preventing surface sealing, increasing water-holding capacity, 

and improving soil structure (Dabney, 1998).  

Legume cover crops are capable of fixing nitrogen (N), increasing soil N 

availability for subsequent crops (Weil and Kremer, 2007). This can provide a cheaper 

source of N than inorganic fertilizers, depending on market price. Usage of legumes 

provides a high-quality grazing forage and can reduce N fertilizer application 

requirements and therefore production costs (Samarappuli et al., 2014). Ability of 

nitrogen fixation depends on the species of legume, environmental conditions, and 

management. Legumes are commonly inter-seeded with other species to provide a high-

quality forage while mitigating health concerns such as bloat. 

Nutrient losses, such as nitrogen and phosphorus, from crop production has 

become a significant environmental concern. Leaching, denitrification, and ammonia 

volatilization can contribute to groundwater pollution and eutrophication (Dean and Weil, 

2009) while gaseous losses increase acid rain (Robertson and Vitousek, 2009). Ability to 

scavenge soil N depends upon rate of growth in the root system (Meisinger et al., 1991). 

Meisinger et al. (1991) reported that usage of cover crops reduced N leaching compared 

to areas where no cover crops were used. Kristensen and Thorup-Kristensen (2004) found 

that radish had increased NO3
- capture versus rye from deep soil layers. Planting date can 

impact the effectiveness of N capture. Brassicas often grow late into fall, uptaking NO3
- 

before it leaches. However, if planting is delayed in cool weather conditions uptake of 

NO3
- decreases (Weil and Kremen, 2007). Alternatively, planting of brassicas too early 
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may decrease NO3
- uptake as the crop will reach reproductive growth (Eichler et al., 

2004). This is demonstrated in a study that found turnips planted in sandy soils in August 

reduced N leaching by over 90% (Macdonald et al., 2005) in comparison to turnips 

established in later months which only reduced leaching by 19.7% (Vos and van der 

Putten, 2004). N is utilized by forage species however, N is accumulated in cover crop 

tissue and as the tissue decomposes N cycles back to the soil (Gieske et al., 2016). The 

effectiveness of this nutrient release for the next crop varies based on: rainfall, species, 

temperature, and other factors (Decker et al., 1994). In addition to nitrogen, phosphorus 

run-off has become a major environmental concern. Brassica species can uptake soil 

phosphorus (P), accumulate P in their tissue, and provide P to the next crop as they 

decompose (White and Weil, 2010). This is positive for nutrient recycling but may 

increase run-off P losses. Compared to other cover crops, Liu et al. (2014) found that 

perennial ryegrass (Lolium perenne) and red clover (Trifolium pratense) lost P more 

quickly when exposed to freezing/thawing cycles.  

Cover crops are generally used during fallow periods during which weed pressure 

is an issue. There are several methods of suppression that cover crops provide to decrease 

weed presence. Seed germination of weeds may be inhibited by shading of other forage 

(Holt, 1995). Competition for light, water and nutrients may also inhibit growth of weeds 

(Holt, 1995). Additionally, brassicas have been found to reduce soil fungal pathogens and 

increase disease-suppressive bacteria populations (Vukicevich et al., 2016). This is 

accomplished by the production of isothiocyanate (ITC) and other compounds that 

negatively impact certain pests (Weil and Kremer, 2007). In a study by Mari et al. (2008) 

ITC was found to reduce the growth of brown rot fungus (Monolinia fructicola). Usage 
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of cover crops may aid in reducing inputs such as herbicide use through allelopathic weed 

control (Haramoto and Gallandt, 2004). 

Challenges 

 One of the largest concerns with using cover crops is the direct costs associated 

with cover crop seed, labor, fuel, fertilizer, and herbicide or tillage to terminate the cover 

crop (Snapp et al., 2005). Another concern is that in some cases, cover crops can reduce 

the cash crop yield by using water reserves in the soil, immobilizing nitrogen, and by heavy 

residue cover which can hinder crop stand establishment (Dabney et al., 2001). Plants in 

the brassica family do not host arbuscular mycorrhizal fungi (AMF) and many species 

produce anti-fungal isothiocyanates (ITC) which can negatively impact AMF populations 

of the next crop (White and Weil, 2010). Cover cropped areas may have decreased soil 

temperature during planting of cash crop compared to conventional tillage due to increased 

residue (Snapp et al., 2005). This decrease in soil temperature of cover crop soil may slow 

emergence and development of cash crop seedlings in the spring (Dabney, 2007). 

 

Wheat 

History 

 Domestication of wheat (Triticum aestivum) is thought to have occurred 

approximately 10,000 years ago (Harlan and Zohary, 1966). This domestication arose 

around the same time that human transition to sedentism occurred (Harlan, 1992). 

Ancestors of cultivated wheat species likely originated in the Near East (Feldman, 2001). 

Polyploidy is common among wheat species with diploid, tetraploid, and hexaploid forms 
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(Levy, 2002). Modern hexaploid wheat species (T. aestivum) originated after 

domestication of diploid and tetraploid wheat species (Feldman, 2001). Wild wheat 

species are hulled meaning they have glumes that tightly enclose the grains (Feldman, 

2001). Free-threshing wheat evolved which had light glumes that can be removed easily 

(Feldman, 2001). Bread wheat, T. aestivum, accounts for approximately 95% of the 

world’s wheat production while durum (T. durum) wheat accounts for the other 5% (Peng 

et al., 2011). The United States produces five major classes of wheat: hard red winter, 

hard red spring, soft red winter, white, and durum (AG, MRC, 2018). Sixty percent of 

wheat produced in the U.S. is hard red winter and hard red spring (AG, MRC, 2018). 

Each class of wheat is generally produced regionally and has differing end-products (AG, 

MRC, 2018). 

 In the United States wheat is the third-largest crop following corn and soybeans 

(AG, MRC, 2018). The U.S. produced 1.2 billion bushels of wheat in 2018 (USDA, 

NASS, 2019). Approximately 13.17 million hectares were planted to wheat in the U.S. in 

2018 (USDA, NASS, 2019). Wheat production in the U.S. has declined; from 2001 to 

2017 the U.S. share of the global wheat market declined about 10% (USDA, ERS, 2018). 

In Kentucky, wheat was planted on approximately 182,108 hectares with approximately 

19.8 million bushels harvested in 2018 (USDA, NASS, 2018). 

Growth Characteristics, Productivity, and Management 

 Wheat is an annual C3 bunchgrass of the family Poaceae (Ball et al., 2002). It 

stands approximately 0.61 to 1.23 meters tall (Ball et al., 2002). Thirty-five to 45 percent 

water content in the seed is required for wheat to germinate (Evans et al., 1975). Optimal 

temperature for germination is 12° to 25° C but may occur between 4° and 37°C 
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(Acevedo et al., 2002). Although seed size does not impact germination, bigger seeds do 

have an advantage over smaller seeds in seedling growth and grain yield (Spilde, 1989). 

This advantage is particularly apparent when the plant is under environmental stress, 

particularly drought stress (Mian and Nafziger, 1994). Seeding should occur while soil 

and air temperatures are warm enough to ensure seedling emergence and development of 

the root system and tillers (Nagelkirk, 2019). Ideal seed depth is dependent on a number 

of factors but generally should be no deeper than 25.4 to 38.1 millimeters (Nagelkirk, 

2018).  

Wheat responds to vernalization in two different manners (Flood and Halloran, 

1986). Spring wheat varieties have mild or zero response to vernalization and are 

vulnerable to frost. Winter-type wheat varieties have a strong response to vernalization 

and are highly resistant to frost during early growth, although this resistance gradually 

decreases as heading and flowering occurs (Flood and Halloran, 1986). Wheat varieties 

are sensitive to photoperiod although this varies among genotypes (Acevedo et al., 2002). 

The majority of cultivated wheat varieties are long-day plants which flower faster as day-

length increases (Major and Kiniry, 1991). 

 Water stress during the spike period of growth negatively impacts grain yield by 

decreasing grain number (Hochman, 1982). Drought conditions during grainfill do not 

impact the number of tillers however, it does reduce grain weight (Kobata et al., 1992). 

High temperatures can negatively impact wheat yield by accelerating plant development 

(Acevedo et al., 2002). High temperatures during establishment of the potential number 

of grains has the greatest negative impact on grain yield (Acevedo et al., 2002). 
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Conversely, severe frosts can negatively impact yield; the more advanced the plant is 

developmentally, the more vulnerable it is to frost (Acevedo et al., 2002).  

 A four-year study by Bockus et al. (2001) reported annual losses of 10-22% due 

to diseases. The greatest loss was caused by leaf rust (Puccinia triticina) with an average 

of 3.48% annual loss, wheat streak mosaic virus with 1.88% loss, and Septoria diseases 

causing 1.6% loss (Bockus et al., 2001). Powdery mildew is an impactful disease of 

wheat worldwide however, there are resistant cultivars available (Wang et al., 2005). 

Wheat yields in the U.S. are threatened by armyworms and cereal leaf beetles (Nagelkirk, 

2012).     

Nutrient Characteristics, and Animal Performance 

 Both winter and spring wheat cultivars can be used in a double-crop system, 

generally before soybeans (Bruening, 2007). Wheat may also be used as a dual-purpose 

crop for both forage and grain production (Cash et al., 2007). Wheat forage may be 

grazed or cut for hay and silage (Bruening, 2007). It has been established that cereal 

plants provide nutritious forage for livestock during winter months (Cash et al., 2007). A 

dual-purpose wheat cultivar needs to be sown as early as mid-August and should have 

vigorous growth in the fall thus, the seed must be able to germinate in warm soil 

temperatures (Carver, 2009). Cash et al. (2009) found that in the U.S. dual-purpose wheat 

varieties average DM yield is approximately 4 t/ha although this is variable depending on 

cultivar and location.  

 Wheat can be grazed from complete tillering until the first hollow-stem stage 

without encumbering grain yield (Carver, 2009). Grazing after the first hollow-stem stage 
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is reported to reduce grain yield by 20-50% (Winter and Musick., 1991). Stocking rate 

and weather conditions may impact subsequent wheat yield. Wet weather conditions can 

cause trampling and pugging which damage the plant and reduces yield (Carver, 2009). 

When cut for hay or silage, wheat should be cut at the boot stage or early head emergence 

to ensure high palatability and nutritive values (Boyles et al., 2010).  

 Wheat forage has high nutritional value (Cash et al., 2007). Wheat forage is 

generally high in crude protein, ranging from 20-30%, less than 25% acid detergent fiber 

(ADF), less than 45% neutral detergent fiber (NDF), and 80% or greater total digestibility 

(Lollato et al., 2017).  

 Gunter et al. (2005) reported that calves grazing wheat and rye mixed swards 

gained an average 60.5 kg compared to calves grazing tall fescue which gained, on 

average, 27.5 kg. Netthisinghe et al. (2019) reported that calves grazing wheat gained 153 

kg BW while calves grazing tall fescue gained 98 kg. ADG was reported for steers 

grazing wheat and tall fescue at 1370 g d-1 and 879 g d-1, respectively (Netthisinghe et al. 

2019). Steers grazing wheat had an ADG of 1.64 g d-1 and 306 kg ha-1 in a study by 

Lomas et al. (2011).  

 Grazing of livestock on wheat can lead to a number of health issues if not 

managed correctly. Wheat forage can accumulate nitrates and may cause early abortion 

or reduced breeding performance (Cash et al., 2002). Nitrate accumulation in wheat 

forage is an increasingly prevalent issue when nitrogen (N) fertilizer has been applied 

(Boyles et al., 2010). Grass tetany, characterized by low levels of magnesium (Mg) in the 

blood, can be an issue when grazing livestock on wheat (Dalley, 2004). Lush growing 

forages, like wheat, may have low Mg after intensive growth particularly after large 
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amounts of precipitation and fertilization as Mg leaches by water and applied fertilizer 

(Bohman et al., 1983). One of the most common issues when grazing cattle on wheat is 

bloat. Wheat causes frothy bloat which occurs when rumen gasses are trapped in the 

rumen and a “froth” builds up preventing eructation and removal of gases (Church, 

1998). Wheat is a lush growing forage with low DM and high soluble protein which often 

leads to bloat occurrence and may result in death (Horn et al., 1977).  

 

Tall Fescue 

History 

Tall fescue (Festuca arundinacea), denoted as a bunch-forming grass species of 

Festuceae, is thought to have originated from Europe and Northern Africa (Buckner, et 

al., 1979). Historically, there was trouble differentiating meadow fescue (F. elatior) from 

tall fescue primarily due to morphological similarities of the two species. According to 

Buckner et al. (1979), tall fescue was described as “more robust” than meadow fescue 

and gave the denotation F. arundinacea in 1771. However, even into the early 1900’s tall 

fescue was sometimes referred to as F. elatior var. arundinacea (Buckner et al., 1979).  

The exact year of importation to the United States is unknown but it is believed to 

have occurred in the 1800’s (Hoveland, 2009). It wasn’t until the early-mid 1900’s that 

tall fescue became a widely utilized forage in the United States (Hoveland, 2009). This 

was due to the popularity of meadow fescue and cynicism towards tall fescue until grass 

trials in the transition zone region of the U.S. displayed improved growth, 

competitiveness, and drought tolerance of tall fescue over meadow fescue (Garman, 
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1900). From these trials Kentucky-31 (K-31) and Alta were selected as the premier 

varieties and are, in fact, still in use today (Duble, 2018). It was soon noted that although 

this forage displayed hardy plant performance, livestock often experienced toxicity 

problems upon consumption. In the late 1970’s it was established that the cause of the 

toxicity in tall fescue was the production of an ergot alkaloid produced by endophytic 

fungi (Acremonium coenophialum; Bacon et al., 1977). Despite this toxicity component, 

in 1979 Buckner et al. reported that approximately 15 million hectare (ha) were seeded to 

tall fescue in the United States. 

One method of reducing toxicity by livestock was the creation of an endophyte-

free tall fescue (E-) in 1982 (Hoveland et al., 1982). Initially, many E- varieties were 

developed disregarding the impact of the ergot alkaloid on the plant. Animal performance 

did increase significantly, unfortunately, stand persistence was severely inhibited and 

often entire stand loss would occur particularly during periods of drought (Hoveland, 

2009). Since then, discovery of other fungi which do not produce ergot alkaloids have 

allowed for the creation of novel-endophyte (NE) tall fescue. The presence of the fungi 

provides beneficial effects on the host forage without the negative toxicity effect on 

livestock (Bouton et al., 2002; Parish et al., 2003; Watson et al., 2004). 

Tall fescue is currently the most significant imported grass species in the United 

States with approximately 35 million acres seeded (Cherney and Johnson, 2007). Other 

uses for tall fescue include road-side cover and turf. Turf fescue types produce a denser 

sod and have a finer texture than pasture type varieties (Duble, 2018).  
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Growth Characteristics, Productivity, and Management 

Tall fescue is a perennial grass species that is characterized by high adaptability. 

This is partially due to the complicated and variable genetic make-up of tall fescue and its 

close relatives (Craven et al., 2009). Tall fescue is categorized as a C3 grass, meaning it is 

a cool-season forage, that grows best in temperate regions (Ball et al., 2002). In the 

United States, tall fescue is largely utilized in the “transition zone” which is the transition 

between plants best adapted to mild and harsh winters (Duble, 2018). This zone is highly 

climatically variable and corresponds to USDA hardiness zones 5 through 7 (Ball et al., 

2002). However, tall fescue is widely adaptable to hot summers, drought and low 

temperature winters (Hannaway et al., 2009). 

 Endophyte-infected tall fescue is environmentally tolerant and can grow in 

temperatures ranging from 4-35oC with the optimum growth range being between 20-

25oC (Volenec et al., 1984). However, tall fescue can survive temperature fluctuations 

below and above these temperatures with sufficient hardening. Tall fescue tolerates soil 

pH of 4.5 (acidic) to 9.0 (alkaline) with optimal growth occurring from a pH of 5.5-7.5 

(Belesky and Fedders, 1995). It can persist in a wide array of soil drainage types from 

excessively drained to slightly poorly drained and can survive long term flooding with 

tolerance to drought (USDA-NRCS, 2006). Arrested summer growth may occur in 

drought stress conditions allowing maintenance of low activity despite stress from water 

deficit (Norton et al., 2006). Tall fescue may reach true summer dormancy should 

drought conditions persist, allowing survival of the forage and expansion of its adaptation 

zone. Drying of the soil during winter reduces the buffering effect leading to reduced tall 

fescue persistence in cold, dry climates (Buckner et al., 1979). Snow cover increases the 
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likelihood of surviving low temperatures because of the insulation effect it provides 

(Burns and Chamblee, 1979). It is possible, with good management, for tall fescue to 

survive mean temperatures of -16oC (Burns and Chamblee, 1979). Tall fescue is less 

tolerant of the cold than Kentucky bluegrass, timothy, and smooth bromegrass (Balasko 

and Nelson, 2003).  

The naturally occurring endophyte in tall fescue has been shown to significantly 

increase survival during periods of stress, particularly drought (West and Waller, 2007), 

however, it has also been shown to increase propensity of toxicity in livestock (Strickland 

et al., 2009). A study in Texas, demonstrated this persistence by reporting that tall fescue 

fields with a high level of endophyte infection (E+) (94%) infection displayed greater 

stand persistence versus low level E+ (12%) infection (Read and Camp, 1986). Tall 

fescue will tolerate a wide variety of soil conditions and will continue to persist under 

these conditions due partially to the symbiotic relationship with mycorrhizal fungi 

(Hannaway et al., 2009). There are however, numerous complex factors that contribute to 

this increased tolerance adaptability of E+. Genetic interaction of the host and endophyte 

was shown to impact level of tolerance, seen in E+ tolerating soil acidity but not to the 

same extent in each genotype (Belesky and Fedders, 1995).  

Preparing the seedbed is important for stand establishment. To begin renovating a 

pasture, the current forage should be sprayed and killed with the appropriate herbicides 

applied twice before planting (Bohmont, 2003). This is to reduce competition of other 

forages with the emerging seed and, if renovating from E+ to E- or novel-endophyte, is 

crucial to inhibiting reinfection (Hannaway et al., 2009). Tall fescue seedlings display 

poor competition against other species thus it is essential to reduce competition (Hall and 
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Collins, 2018). It is advised to apply fertilizer prior to seeding, at the appropriate rate 

based on soil testing. Seed should be sown into a firm, worked seedbed for maximum 

germination (Hall and Collins, 2018). Seedlings of tall fescue establish relatively slowly 

particularly in low soil temperature (Hamilton-Manns et al., 1995). Probability of weed 

competition may increase with slow germination and should be taken into consideration. 

Soil moisture should be adequate, but not excessive, to aid in satisfactory germination 

and establishment (Hall and Collins 2018). Seed should be drilled no deeper than 12.7 

millimeters at a maximum (Duble, 2018). There are generally two seeding periods for tall 

fescue-early fall and early spring. When seeding in the fall, ensuring 2-3 weeks before a 

hard freeze is imperative to attain emergence. Likewise, when seeding in the spring, 

planting should occur after the last killing freeze (Fribourg and Milne, 2009). Usage of 

98% pure seeds (free of contaminates) and an 85% or higher germination rate is crucial to 

achieving exceptional stand establishment (Rolston and Young, 2009). It is advised to 

avoid grazing until the forage reaches a height of 200-300 mm. A plant height of 80-100 

mm is the minimum the forage should be grazed to, particularly during early growth 

periods or adverse weather. Newly established tall fescue should not be grazed by 

livestock during excessively wet periods (Hall and Collins, 2018).  

There are options for reducing toxicity of E+ tall fescue. One option is to dilute 

the level of endophyte by interseeding with other grasses or legumes (Hoveland et al., 

1981). This method displays the greatest impact during relatively low infection levels 

(<30%; Hoveland et al., 1981). Studies show that inter-seeding grass with legume species 

increases animal performance (Bouton et al., 2005). Bouton et al. (2005) reported that 

cattle grazing E+ inter-seeded with white clover gained 0.52 kg head-1 day-1 more than 
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cattle grazing E+ tall fescue alone. Another strategy to reduce E+ infection is to 

completely kill and renovate the infected pasture. If renovating, it is crucial to achieve 

close to 100% kill and to avoid transference of E+ to E- pastures. The naturally occurring 

endophyte of endophyte-infected tall fescue is transmitted only by seed (Bacon and 

Siegel, 1988). Therefore, if E- pasture is exposed to E+ seed including exposure such as: 

E+ hay, cattle recently grazing E+, and E+ adjacent to E- by wind then endophyte 

infection can increase in the exposed pastures (Hall and Collins, 2018). Endophyte 

infection level can be obtained by sampling and diagnostic procedures (Barker et al., 

2009).  

Most tall fescue growth occurs during cooler months of spring and fall. Summer 

months are generally characterized by a “slump” in both growth and quality of forage 

(Roberts et al., 2009). Management strategies can be used to extend the grazing period. 

Application of nitrogen can improve forage quantity and quality depending upon rate of 

application, timing of application, N source, and N fixed by legumes (Roberts et al., 

2009). Inter-seeding with other grasses or legumes may improve forage quality as well as 

extend the grazing period, depending on species. Grazing management is a vital part of 

maintaining persistence of a forage stand (Milne, 2001). According to Milne (2001), 

coarse-leaved cultivars (cv. Jesup and cv. Quantum) have greater tolerance to 

overgrazing than soft-leaved varieties (cv. Advance). To ensure stand persistence, tall 

fescue should not be grazed during periods of drought (Hall and Collins, 2018).  

Endophyte infection enhances resistance to pests such as insects, diseases, and 

nematodes (Ford and Kirkpatrick, 1989). A study by Kimmons et al. (1990) showed that 

E+ tall fescue had lower nematode populations than E-. However, tall fescue does show 
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susceptibility to some pests and diseases. Two of the most devastating fungal pests are 

brown patch disease caused by Rhizoctonia solani and grey leaf spot caused by 

Maggnaporthe grisea (Dong et al., 2007). Tall fescue may also be susceptible to leaf spot 

and rust. White grubs, which are the larval stage of certain beetle species, may cause 

significant damage to tall fescue (Rowan and Latch, 1994). Certain types of armyworms 

may also cause damage to tall fescue stands (Rowan and Latch, 1994). 

Nutrient Characteristics, Yield, and Animal Performance 

 Endophyte-infected tall fescue is a hardy species providing increased forage 

during cool-season months. During spring growth (April) endophyte-infected tall fescue 

was found to have 21.2% CP, 19.2% DM, 24.4% ADF, and 50.1% NDF (Elizalde et al., 

1999). Rayburn et al. (1979) noted crude protein levels ranging from 9.4-13.2% in 

December depending on stockpiling start date and nitrogen application rate. Stockpiled 

tall fescue had decreased crude protein concentrations from an average 115 g kg-1 at 

stockpiling start (September) to 55 g kg-1 in winter (December) while ADF and NDF did 

not vary with stockpiling length (Fribourg and Bell, 1984). N fertilized tall fescue had 

higher DM and better quality than non-fertilized stockpiled tall fescue (Rayburn et al., 

1979). McMurphy et al. (1990) found that forage digestibility and crude protein are 

similar in endophyte-infected tall fescue, endophyte-free tall fescue, and novel-

endophyte. In vitro dry matter digestibility (IVDMD) of Kentucky 31 tall fescue was 

58.1% in the spring and 56.2% in the fall (Carlson and Umbaugh, 1988). It is a well-

established concept that most forages have high digestibility during early growth with 

decreasing digestibility as maturity increases, particularly in the stem, which decreases in 

digestibility much more quickly than that of the leaf (Terry and Tilley, 1964).  
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 Total yield of tall fescue can range from 4.48-8.97 tonnes/hectare/year (Lacefield 

et al., 2003). Stockpiling start date impacted DM yield in December with a decrease in 

yield each month stockpile start date (June-September) was delayed (Rayburn et al., 

1979). Fribourg and Bell (1984) reported an average 1.3 Mg ha-1 DM accumulated in the 

first three months of stockpiling (beginning July or August) with a slight decline in DM 

yield after three months accumulation. During a trial with three nitrogen application 

levels, Taylor and Templeton (1976) found that DM accumulation from August 15th to 

December 1st increased significantly with increasing N application. Large losses of DM 

yield occurred when harvest was delayed from December to January (Fribourg and Bell, 

1984). In a study by Rayburn et al. (1979) delaying harvest from December to February 

decreased DM yield by 60%. In a two-year study K-31 E+ accumulated approximately 

20% more herbage mass than E- and NE (Kallenbach et al., 2003).  

 After tall fescue became a popular choice of forage in the United States, it became 

increasingly clear that consumption of this forage was contributing to poor animal 

performance (Pratt and Haynes, 1950). This was termed “fescue toxicosis”. Bacon et al. 

(1977) identified the causal agent of fescue toxicosis as a fungal endophyte which 

became known as Acremonium coenophialum. Three classes of fescue toxicosis symtoms 

were classified. The first is characterized by increased respiration rate and gangrene, 

which led to sloughing of hooves, tail switches, and ears (Stuedemann and Hoveland, 

1988). This was coined as “fescue foot”. The second class of symptoms involves bovine 

fat necrosis, the accumulation of hard fat in the abdominal cavities, disrupted digestion 

and enabling dystocia occurrance (Stuedemann et al., 1975). The third set of symptoms 
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consists of poor coat quality, intolerance to heat, and decreased gains, milk production, 

and intake (Stuedemann and Hoveland, 1988). 

Endophyte-infected tall fescue (E+) has been shown to decrease animal 

performance in comparison to endophyte-free (E-) and novel-endophyte tall fescue 

(NE)(Hoveland et al., 1983; Bond et al., 1984; Hoveland et al., 1997; Read and Camp, 

1986; Schmidt and Osborn, 1993; Parish et al., 2003; Gunter and Beck, 2004; Nihsen et 

al., 2004; Watson et al., 2004; McMurphy et al., 2013). Steers grazing tall fescue with 

high endophyte infection spend less time grazing during the day and more time grazing at 

night compared to steers grazing low endophyte levels while total grazing time was 

reduced by about 20% on high endophyte infection (Bond et al., 1984). Average daily 

gain (ADG) of steers grazing high endophyte infection is significantly lower than that of 

steers grazing low endophyte infection pasture (Hoveland et al., 1983; Hoveland et al., 

1997; Read and Camp, 1986; McMurphy et al., 2013; Nihsen et al., 2004, Gunter and 

Beck, 2004; Parish et al., 2003). On average over three years, Hoveland et al. (1984) 

found that steers grazing E- pasture had an ADG of 0.75 kg day-1 compared to steers 

grazing E+ which had an ADG of 0.34 kg day-1. Hoveland et al. (1984) found that fescue 

toxicity can impact animal performance year-round however, the greatest impact occurs 

during increased temperatures. Steers grazing on E+ tall fescue from November to March 

had a 50% decrease in ADG versus steers grazing E- tall fescue. There was a 59% 

decrease of ADG in steers grazing E+ compared to grazing E- from April-June 

(Hoveland et al., 1984). Lower DMI was reported from steers grazing E+ tall fescue in 

spring and autumn compared to steers grazing E- and NE (Parish et al., 2003). Elizalde et 

al. (1998) found that supplementing steers (with four different supplement treatments) 
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back-grounded on E+ tall fescue increased ADG and total gain with supplementation of 

all treatments in comparison to no supplementation. Hyperthermia (abnormally high body 

temperature) was exhibited in cattle grazing E+ compared to cattle grazing E- and NE 

(Hoveland et al., 1983; Nihsen et al., 2004; McMurphy et al., 2013). Developing heifers 

displayed decreased ADG as endophyte infection increased (Schmidt and Osborn, 1993). 

Pregnancy rate of replacement heifers also decreased as endophyte infection increased. 

They also displayed decreased milk production post-partum (Schmidt and Osborn, 1993). 

Cow/calf pairs display a decrease of daily gain in both the cow and the calf as well as a 

decrease in 205-day weaning weight in calves (Gay et al., 1988; Essig et al., 1989; 

Watson et al., 2004). Bovine fat necrosis increased when heavy poultry litter or N 

fertilizer has been applied (Ball et al., 2015). Presence of a rough hair coat was more 

commonly found in cattle grazing E+ than those grazing E- or NE (Hoveland et al., 1983; 

Nihsen et al., 2004). Milk yield and body weight change of dairy cattle decreased as level 

of endophyte infection increased (Strahan et al., 1987). The decrease in milk yield is 

likely due to decreased concentrations of prolactin (Strahan et al., 1987). Milk production 

of beef cows grazing E+ tall fescue was significantly lower (25%) than those that grazed 

E- tall fescue or orchardgrass (Peters et al., 1992). Oliver et al. (1998) reported increased 

contraction of α2 adrenergic receptor, a contractile receptor in veins, of cattle grazing E+ 

versus E- tall fescue. This increased contractile response impacts blood flow and 

contributes to physiological signs of toxicity in cattle (Oliver et al., 1998). Cattle and 

sheep grazing tall fescue pastures containing high ergovaline levels, particularly during 

cool weather, are prone to exhibiting fescue foot which can be indicated by a swollen 
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hock area and limping or sloughing of the hoof if the condition is severe (Tor-Agbidye et 

al., 2001).  

 Endophyte infected tall fescue grazing is detrimental to mare reproduction. Mares 

grazing E- pasture had greater conception rate, delivered more live foals, had decreased 

agalactia incidence, and had fewer retained placentas (Putnam et al., 1990; Schmidt and 

Osborn, 1993). Putnam et al. (1990) reported a decrease in gestation length, foal birth 

weight, foal survival rate, and mare lactation level from mares grazing E+ in comparison 

to those grazing E-. Removal of mares from E+ pasture one month prior to parturition 

results in a normal birthing process and mammary development (Schmidt and Osborn, 

1993). Parish et al. (2003) found that sheep grazing E+ tall fescue displayed lower 

prolactin concentrations, increased rectal temperature, increased heat stress symptom 

prevalence, and decreased ADG and gain/hectare. 

 Despite the many poor animal performance issues seen with endophyte-infected 

tall fescue it remains a highly prevalent forage throughout the United States (Cherney and 

Johnson, 2007). This is primarily due to the highly adaptable, highly stress tolerant, 

increased survivability qualities that the endophyte affords the plant (West and Waller, 

2007). This enables the forage to be utilized in a wide range of environments, during less 

than ideal conditions, making it a valuable forage species (Ball et al., 2015). There are 

various strategies to off-set toxicosis symptoms of livestock grazing endophyte-infected 

tall fescue. Such strategies include: inter-seeding with other grasses or legumes to dilute 

toxicity, maintaining low levels of infection, removal of seedheads to reduce toxin intake, 

feeding a supplement, or renovating to endophyte-free or novel endophyte pasture (Ball 

et al., 2015). 
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Soybeans 

History 

The soybean falls into the Glycine genus which has a complex taxonomic history. 

Linnaeus was the first to utilize the name Glycine in 1737 (Hymowitz and Newell, 1981). 

Since then, the assimilation of Glycine species has undergone many revisions and all 

original Glycine-named species have been categorized to other genera (Hymowitz and 

Newell, 1981).  Most recently, revision of Glycine occurred by Verdcourt in 1970 who 

evaluated and assimilated the contemporary arrangement of Glycine (Hymowitz and 

Newell, 1981). Hymowitz (1970) estimates that the process of soybean domestication 

occurred during the Shang Dynasty (1700-1100 B.C.) or earlier. Introduction of the 

soybean into the West occurred many years after the relatively rapid distribution in the 

East (Hymowitz and Newell, 1981). Utilization of the soybean in the United States was 

first mentioned in 1804 (Hymowitz and Newell, 1981).  

Soybean seeds are the primary consumed product of the cultivated soybean plant 

and have high protein and oil content (Wilcox, 1970). Usage in the West created two 

main products from soybeans, oil and protein-rich defatted meal while utilization in east 

Asia primarily uses whole soybean seeds or oil extraction for food products (Hymowitz 

and Newell, 1981). Historically, soybeans were primarily used for a variety of food 

products in the East including: tofu, soy milk, kinako, miso, and soy sauce (Chen, 1962). 

They are still used for these purposes today, along with being utilized for other food 

products such as margarine, shortening, mayonnaise, and salad dressing (Hymowitz and 

Newell, 1981). Recently, there has been development in the utilization of soybean protein 

for flour and other concentrates (Wolf and Cowen, 1971). One of the most prevalent uses 
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of soybean protein comes from processing to soybean meal and dehulled soybean meal 

(Cowen, 1971). Hymowitz and Newell (1981) reported that livestock, poultry, and pet 

feed utilizes about 95% of all soybean meal produced.  

Soybeans are vital to producers as a cash crop in the state of Kentucky with an 

estimated 790,000 hectares planted in 2017 (USDA, NASS, 2018). Production was 

estimated for 2017 at 262,000 tonnes with an average yield of 545 kg per hectare (USDA, 

NASS, 2018). Soybeans are an important economic crop in the central Kentucky region 

with an estimated 173,610 hectares planted in 2017 with an average yield of 554 kg 

(USDA, NASS, 2018). There are more total hectares planted to soybeans in the central 

Kentucky region than corn and wheat acres combined (106,837 combined acres; USDA, 

NASS, 2018).  

Growth Characteristics, Management, and Yield 

Soybean is a domesticated, commercially important legume plant named Glycine 

max. It is an annual plant ranging in height from 300-1,830 millimeters (Ngeze, 1993). 

There are two growth habits of the soybean: determinate and indeterminate (Ngeze, 

1993). Determinate types are shorter with fewer leaves but generally produce more pods. 

Indeterminate types are taller with more leaves and more pods from stem to shoot 

(Ngeze, 1993). The stem, leaves, and pods are covered with fine hairs and its leaves are 

trifoliate (Rienke and Joke, 2005). Pods grow in clusters of one to five, usually 

containing two to four seeds (Rienke and Joke, 2005). Soybean growth and development 

has been described in two primary stages: vegetative and reproductive (Gary and Dale, 

1997). The vegetative stage consists of emergence of seedlings, unfolding of unifoliate 

leaves to fully developed trifoliate leaves, node formation, nodulation, and formation of 
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branches (Gary and Dale, 1997). Gary and Dale (1997) describe the reproductive stage as 

formation of the flower bud to full bloom, formation of the pod, and pod filling to 

maturity.  

 The soybean performs best on well-drained fertile loamy soil which provides 

adequate nutrients, however, the soybean is tolerant to a wide range of soil conditions 

(Hans et al., 1997). A pH of 5.5 to 7.0 is ideal for soybean production, although soybean 

can tolerate acidic soils better than other legumes (Ngeze, 1993). Maintaining a pH of 5.5 

to 7.0 enhances microbial breakdown of crop residues and symbiotic nitrogen fixation as 

well as increasing availability of nutrients (Ferguson et al., 2006).  

 Ideal temperature for optimum growth is 23oC to 25oC. Minimum temperature 

that a soybean can develop is 10oC and maximum temperature for development is around 

40oC (Ngeze, 1993). Germination can occur at temperatures between 15oC to 40oC with 

the optimum around 30oC (Rienke and Joke, 2005).  

The soybean grows well in tropical, subtropical, and temperate climates (IITA, 

2009). Soybeans are facultative photoperiod sensitive, displaying correlation between 

flowering period and day length and temperature. There is some debate as to the 

classification of soybean to photoperiod, however there are arguably three main 

classifications of varieties that react differently to photoperiod: short day, day neutral, 

and long day plants (Borget, 1992). When described as a typical short-day plant, Rienke 

and Joke (2005) stated that the soybean is best adapted to temperate climate conditions. 

In the tropics, some varieties have adapted to the hot, humid climate by shortened growth 

period, 90-110 days with a maximum of 140-day maturity (Osafo, 1997). Sensitivity to 
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day length impacts growth duration which consequently affects vegetative growth, viable 

pollen production, pod filling, and maturity characteristics (Norman et al., 1995).  

Germination of soybean seed requires optimum moisture to grow well. The seed 

absorbs 50% of its weight in water before germination may occur, thus the soil needs to 

be saturated with water from 50% to 85% (Bohnert et al., 1995). Bohnert et al. (1995) 

stated that there are two main roles of water in plants: aiding photosynthesis as an 

electron donor and as a transport medium of plant nutrients. According to Ngeze (1993), 

the optimum rainfall is between 350 to 750 millimeters distributed throughout the growth 

period. There are two stages of development that are critical to obtain optimum moisture 

for adequate soybean production: from sowing to flowering and pod filling. Bohnert et al. 

(1995) reported that water requirements increase as growth occurs, peaks at the 

vegetative stage, and decreases to reproductive maturity. The soybean is highly 

susceptible to water stress (Troedson et al., 1985). The water use efficiency of the 

soybean has direct impacts to physiological development particularly during drought 

stress (Earl, 2002). Water use is less efficient in soybeans due to high evapotranspiration 

and low photosynthetic rates (Passioura, 1997). Sionit and Kramer (1977) found that 

drought stress during flowering and pod formation induces the greatest reduction in pod 

number and seeds at harvest. Increasing drought stress progressively reduces leaf area 

and crop growth rate limiting soybean yield (Pandy et al., 1984).  

  Another major factor impacting plant growth following photosynthesis is 

nitrogen acquisition and use (Sadowsky, 2005). Protein and oil are the primary 

components of soybean grain (Yazdi-Samadi et al., 1977). These large amounts of 

protein result in high N requirement for grain development (Beuerlein, 2009). Generally, 
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the soybean plant does not benefit from supplemental nitrogen fertilizer application. This 

is because it is a legume plant which can meet its own nitrogen needs by symbiotic 

relationship with a nitrogen fixing bacteria Bradyrhizobia japonicum (Sarkodie-Addo et 

al., 2006). This relationship results in the creation of nodules on the roots which fix N as 

early as the second trifoliate growth stage (Conley and Christmas, 2005). Nitrogen 

fertilizer application negates the benefit of Rhizobia bacteria as bacteria will not convert 

atmospheric nitrogen when soil nitrogen is readily available (Gary and Dale, 1997). 

Biological fixation accounts for approximately 52% of N uptake in soybeans, and 

biological fixation rate decreases when N fertilizer is added to the crop (Salvagiotti et al., 

2008). If Rhizobia aren’t present in the soil, then they must be established to promote 

growth. This can be accomplished by inoculation of seed with the bacteria (Conley and 

Christmas, 2005). Inoculation is the process of applying N-fixing bacteria to the seed 

prior to planting (Conley and Christmas, 2005). Inoculant may be applied in different 

forms, the most common form is powder (Stephens and Rask, 2000). When used in 

accordance to label rates most inoculant will be applied at a rate of 500,000 to 1,000,000 

Rhizobia cells per seed (Conley and Christmas, 2005). N fixation is affected by soil type, 

soil pH, nutrient availability, water stress, plant genetics, agronomic practices, and 

environmental conditions (Sadowsky, 2005).  

 Plant population and row spacing studies have reported mixed findings as to the 

effect on soybean yield and dry weight production. Weber et al. (1907) found that at 

higher populations, plants were taller and set fewer pods than plants at lower density 

indicating an effect of more severe plant competition at higher densities. In another study 

seed yield was also greater in narrow rows (250 mm) versus wide rows (760 mm; 
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Ethredge et al., 1907). A later study in 2008 by De Bruin and Pedersen reported similar 

results with greater yield in narrow rows than in wide rows indicating that the narrow row 

soybean production may be sufficiently beneficial to the producer. However, optimal 

plant populations and row spacing is impacted by region with aforementioned studies 

taking place in the upper Midwest. A study taking place in dryland conditions reported 

that optimum seeding rate in this trial was below the normal recommendation of 60,702 

to 64,750 plants/hectare of the region (Epler and Staggenborg, 2008). Alessi and Power 

(1982) found that soybean plants in narrow rows exposed to water stress had less pod-fill 

significantly reducing yields, whereas wider rows which had greater access to water 

reserves, displayed greater yield than narrow rows under similar drought conditions.  

 The incidences of soybean disease have increased in occurrence and severity due 

to reduced tillage practices and greater production intensity (Dorrance et al., 2002). 

Septoria brown spot (Septoria glycines) and sclerotinia stem rot (Sclerotinia 

sclerotiorum) are two of the diseases which cause the most soybean yield loss worldwide. 

(Wrather et al., 2000). Dorrance et al. (2010) reported yield losses of 2.5% to 9.5% due to 

Septoria brown spot in Ohio. Soybeans are vulnerable to the soybean rust pathogen 

(Phakopsora pachyrhizi; Morton and Staub, 2008) which has been identified in Kentucky 

(IPM PIPE, 2014). Fungal diseases such as Septoria tritici (Mycosphaerella graminicola) 

and powdery mildew (Blumeria gramminis) have also been shown to harm soybean 

production (Bryson et al., 2000). Damage due to predation by insects may also be 

incurred and can harm soybean growth and subsequent yield. Insect species that can 

damage soybeans include: the bean leaf beetle (Cerotoma trifurcate; Buyung et al., 

2012), soybean aphid (Aphis glycine; Tilmon et al., 2011), green cloverworm (Hypena 
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scabra; McCarville et al., 2010), and stem borers (Dectes texanus; Wright and Hunt, 

2001).  

  

Corn 

History 

The modern maize (Zea mays), or corn plant, is thought to have been 

domesticated from a Mexican wild grass known as Balsa teosinte, Zea mays spp. 

parviglumis (Wang et al., 1999) around 7,000 to 10,000 years ago (Smith, 1989). In the 

southwestern United States there is evidence of maize production by 2100 BC (Merrill et 

al., 2009). The “Corn Belt” in the United States was the product of crossing two main 

types of corn: Northern flint corn and Southern dent corn (Troyer, 1999). Northern flint 

corn was characterized by earlier maturity and greater cold tolerance while Southern dent 

corn was higher yielding (Troyer, 1999). Yellow and white corn production were similar 

in production numbers until results of a study reported increased nutritive value in yellow 

corn (Poneleit, 1994). Afterwards, the percentage of white corn produced dropped greatly 

and had decreased to only 1% by 1970 (Poneleit, 1994). Average corn production yields 

in the U.S. from 1865 to 1935 were stagnant with the national average yield exceeding 

762 kg/hectare in only 4 of those 60 years (Hallauer, 2008). By the early 1900’s, hybrids 

that yielded over 5,080 kg/hectare had been produced (Troyer, 2003). This displayed that 

hybrid corn types produced a significant yield increase however, the process of creating 

these hybrids increased inputs to the point of reducing profit (Hallauer, 2008). In 1921 D. 

F. Jones commercially produced the Burr-Leaming double-cross hybrid which was 
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cheaper to produce, allowing wide-spread adaptation to occur (Jones, 1927). During the 

time that this double-cross hybrid was produced, a number of other high input advances 

were being adopted including: usage of inorganic nitrogen (Gardner, 2009), 

mechanization of management operations (Egli, 2008), increasing plant populations, 

irrigation (Troyer, 2003), and increased herbicide use (Naylor, 1996). During this period, 

research was being done to improve inbred line yield and weed control (Crow, 1998). By 

the 1980’s single cross hybrid seed was the standard, increasing the annual national yield 

by an average of 17.57 kg/hectare a year during the single cross era (Crow, 1998). Other 

methods besides crossing to create genetic variation in corn included the use of chemicals 

or radiation to induce mutation (Schouten and Jacobsen, 2007) and by genetic 

engineering (Bevan et al., 1983). Genetically modified crops, including corn, were 

planted on approximately 140 million hectares in 2010 (Barrows et al., 2014).  

Corn has become a widely cultivated crop throughout the world surpassing both 

wheat and rice in tonnes produced (International Grains Council, 2017). The U.S. 

produced 371 million tonnes of corn in 2017 (UN, FAOSTAT, 2017). Very little of this 

corn is used for food consumption despite it being a staple food throughout the world. 

Most is used for production of ethanol, animal feed, alcoholic beverages, and other corn 

products (Gibson and Benson, 2002).  There were approximately 667,731 hectares of 

corn planted in Kentucky in 2019 (USDA, NASS, 2019).  

Growth Characteristics, Management, and Yield 

The corn plant is a highly genetically diverse species with variation in physiology. 

Maize can be average from 2.44 to 12.19 meters tall (Wellhausen, 1952). The fruit of 

corn is the female inflorescences (ears) which are enveloped by the husk while the tassel 
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represents the male inflorescence (Wellhausen, 1952). Silks are elongated stigmas which 

connect to a carpel that develops into a kernel if fertilized by pollen (Grobman, 1961). An 

ear holds an average of 600 kernels which may vary in color (Grobman, 1961).  

Corn is adaptable to growing on a variety of soil types but generally provides 

optimum performance on well-drained, medium to coarse textured soil with adequate 

moisture (McClure, 2015). The ideal seedbed for corn is a firm, clean, uniform seedbed 

that will allow for proper seed placement at approximately 50.8 millimeters deep. Placing 

seed too shallow or too deep can negatively impact root development and emergence 

time. It is critical that the seed furrow is fully closed to prevent herbicide injury, 

predation by birds and animals, and other factors that result in poor, uneven emergence. It 

is also important to plant at an appropriate rate as planting too fast can result in uneven 

seed placement and an increased number of skips. Planting may occur from late March to 

May depending on weather conditions and location (McClure, 2015). McClure (2015) 

recommends avoiding planting corn when excessively cold or wet conditions are 

expected. The ideal seeding rate per hectare varies with location, seed hybrid, and row 

spacing. However, approximately 5-10 percent more seed than the desired plant 

population should be seeded (McClure, 2015).  

Corn is susceptible to several fungal species which cause seed rot and seedling 

blight, as well as diseases such as leaf blight, leaf spot, northern leaf blight, common rust, 

and eyespot (Robertson and Munkvold, 2019). Diseases in corn, such as anthracnose may 

invade the stalk and cause rotting which can lead to lodging while ear rot such as 

Fusarium can cause yield and quality to decrease (Robertson and Munkvold, 2019). Corn 

is vulnerable to pests including: billbugs, wireworm, cutworms, southern corn rootworm, 
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corn leaf aphids, corn earworm, armyworms, and southern and European cornstalk borer 

(Griffin, 2019).  

Grain yield of maize is complex and impacted by many factors including growth 

and development of the plant, genotype, management, and environmental factors (Fageria 

et al., 2006). The growth of maize occurs in vegetative and reproductive stages 

(Abendroth et al., 2011). The reproductive stage is a highly vulnerable period for crop 

production as this is when the number of kernels on an ear is determined (Westgate et al., 

2004). Once the plant is physiologically mature environmental stresses do not impact 

yield but, physical damage to the plant such as stalks breaking or ear droppage can 

negatively impact yield (Abendroth et al., 2011). The number of ears per plant is 

generally impacted by early-season growing conditions, mid-season conditions impact 

kernels per ear, while late-season conditions affect kernel weight (Abendroth et al., 

2011).  

The components that ultimately make up total yield vary between years with 

different temperature, rainfall amount, and rainfall distribution (Novacek et al., 2013). Hu 

and Buyanovsky (2003) found that high yield averaging years were characterized by 

below average rainfall paired with warm temperatures before and during planting, above 

average rainfall and warm temperatures from planting to May, above average rainfall and 

below average temperature June through August, and below average rainfall and above 

average temperature September through October. Drought stress early in vegetative 

growth can result in a reduced ear number (Pandey et al., 2000). During the process of 

silking, drought stress can cause arrested ear development or ear abortion which can 

impact both number of ears and number of kernels (Jacobs and Pearson, 1977). The 
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component most impacted by drought stress is number of kernels (Classen and Shaw, 

1970). When kernel numbers are reduced by drought stress, kernel weight may increase 

in compensation for the lower kernel number (Eck, 1986).  

Temperature can impact grain yield components and total yield. Heat stress prior 

to tasseling, and between tasseling and silking, reduced yield and kernel number but had 

no significant effect on kernel weight (Cicchino et al., 2010). Extreme temperatures, both 

high and low, during grain fill have been reported to have similar negative effects to 

kernel weight (Jones et al., 1984). The most detrimental period of extreme temperatures 

negatively impacting kernel weight occurs during early grain fill rather than late grain fill 

(Jones et al., 1984). Above average temperatures between June and October can shorten 

maturity thus decreasing yields (Novacek et al., 2013). Conversely, below average 

temperatures between June and October can delay maturity and extend grain fill 

positively impacting yield (Novacek et al., 2013).  

Both drought stress and nitrogen deficit have been shown to reduce the number of 

kernels (Moser et al., 2006). However, the interaction of nitrogen application rate and 

drought stress also impacts yield with greater yield reductions when drought stress is 

more severe at high N rates (Pandey et al., 2000). Kernel number increased as N rate 

increased with ideal water availability but decreased as N rate increased in drought 

conditions (Moser et al., 2006). A decrease of kernel weight due to drought stress was 

greater at high nitrogen application rates (Pandey et al., 2000).  

There are varying reports as to the impact of plant population on grain yield in 

corn. Newer hybrids allow for increased populations without reducing yield primarily 

attributed to increased tolerance to crowding (Duvick, 2005). Lower lodging frequencies 
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(Tollenaar, 1989), higher nitrogen use efficiency (McCullough et al., 1994), and greater 

leaf photosynthesis rates (Dwyer et al., 1991) contribute to the increased ability of 

modern hybrids to tolerate crowding. The current ideal population ranges from 

approximately 81,000 plants ha-1 (Robles et al., 2012) to 98,600 plants ha-1 (Coulter et al., 

2010). This topic is highly controversial; some studies report little increase in yield over 

population increases from 60,000 plants ha-1 (Hammer et al., 2009; Nielson, 2012). 

Increasing plant population increases the number of ears per square meter (Novacek et 

al., 2013) but ears per plant decreases (Otegui, 1995). Kernels per ear also decreases with 

increasing population (Maddonni and Otegui, 2006).  

Competition of corn for resources such as nutrients, water, and light can greatly 

impact yield (Rajcan and Swanson, 2001). Corn has been reported to be particularly 

vulnerable to competition from adjacent corn plants (Maddonni and Otegui, 2006). To 

prevent yield loss from competition the critical stage to reduce and prevent competition 

from occurring is from V3 (third leaf with collar visible) to V14 (fourteenth leaf with 

collar visible; Hall et al., 1992). The number kernels per ear is the most sensitive yield 

component to weed competition (Evans et al., 2003). Evans et al. (2003) found that the 

longer corn was weed-free the more kernels per ear increased and thus increased yield.  

One of the first genetically modified corn hybrids included a gene from Bacillus 

thuringiensis Berliner (Bt) for an insecticidal protein which is toxic to certain pests but 

not to humans (Barrows et al., 2014). In 1996 the first Bt-corn hybrids were released 

commercially (Andow, 2001). Other traits that have since been incorporated include: 

herbicide traits such as Round-Up ReadyTM and DroughtGardTM among others (Waltz, 

2014). Incorporating various genetic material into plant species has provided better pest 
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protection and reduced the need for chemical application (Barrows et al., 2014). 

Genetically modified crops have increased yield, averaging a 2.3% increase in net returns 

(Fernandez-Cornejo et al., 2014).  

Soil 

Nitrogen Cycling 

Nitrogen is present in all living organisms, thus it is a fundamental element for 

life (Brady and Weil, 2000). Galloway et al. (2003) reported that although nitrogen is 

abundantly present on Earth, the available nitrogen for living organisms is only a small 

portion of Earth’s total nitrogen. For plant species, nitrogen aids in chlorophyll 

production which is critical for photosynthesis to occur (Brady and Weil, 2000).  

On Earth the atmosphere is 78% nitrogen gas (N2) which has a strong triple bond 

holding the atoms together making it an inert molecule (Galloway et al., 2003). The bond 

of nitrogen gas can be broken causing atoms to become reactive (Nr) allowing the atoms 

to bind with other molecules in the atmosphere, water, and soil (Galloway et al., 2004). 

N2 in the environment is broken in two ways: by bacteria that fix atmospheric N2 or by 

lightning (Schlesinger and Bernhardt, 2013). Nitrogen can enter the soil by biological or 

chemical N fixation from atmospheric NOx, decomposition of plant and animal matter, or 

mechanical application (Galloway et al., 2003). Plants can take up small organic 

compounds directly or they can be converted to NH4
+ by mineralization (Näsholm et al., 

1998). Mineralization occurs by heterotrophic organisms in the soil that first 

depolymerize large proteins to smaller peptides then mineralize to inorganic N 

(Robertson and Groffman, 2007). Jones and Kielland (2012) indicated that the 
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depolymerization rate is thought to be the primary limiting step for the nitrogen cycle in 

natural ecosystems because nitrogen from proteins to NH4
+ is slower than amino acids to 

NH4
+. A process called immobilization, in which organisms such as microbes take up 

nitrogen thus, making it unavailable to plants, is a portion of what determines nutrient 

status (Robertson and Groffman, 2007). If the percentage of immobilization is greater 

than mineralization the soil is depleted of nitrogen, whereas, if mineralization is greater 

than immobilization there is a surplus of nitrogen available (Robertson and Groffman, 

2007). If NH4
+ is not utilized by plants or microbes it can enter the process of nitrification 

which can occur autotrophically or heterotrophically (De Boer and Kowalchuk, 2001). 

Nitrification is a major source of soil acidity in many regions (Liu et al., 2010). 

Autotrophic nitrification occurs by oxidation of NH4
+ to NO2

- and then subsequent 

oxidation from NO2
- to NO3

- (Prosser, 2007). Fungi and heterotrophic bacteria carry out 

heterotrophic nitrification (Zhang et al., 2015). While NO3
- can be utilized by plants it is 

a volatile molecule that can leach into groundwater or be denitrified back into the 

atmosphere (Robertson and Groffman, 2007). Denitrification is impacted by various 

factors including: temperature, carbon (C) content, pH, and oxygen levels; if the process 

of denitrification is incomplete N2O is released (Robertson and Groffman, 2007). NO3
- 

may also enter an anaerobic process called dissimilatory nitrate reduction to ammonium 

(DNRA) (Tiedje et al., 1982). In certain environments DNRA may be a more 

energetically efficient pathway than denitrification (Tiedje et al., 1982).  
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Figure 1. The nitrogen cycle in agroecosystems (Schalau, 2007).  

 A 35% increase was seen in corn yields when 224 kg N ha-1 were applied 

compared to 0 N (Crozier et al., 2014). Yield plateaued at 179 kg N ha-1, with no 

additional increase in yield reported following increased N application. Yield 

components displayed similar trends, increasing kernel size, rows per ear, and kernels per 

row as N increased up to 179 kg N ha-1, plateauing at greater N application rates (Crozier 

et al., 2014). Ciampitti et al. (2013) and Barbieri et al. (2008) both reported that grain 

yield increased as N application rate increased. Producer applied N rate on corn in the U. 

S. averaged 163 kg N ha-1 in 2016 (USDA-ERS, 2017). Soybeans have a symbiotic 

relationship with nitrogen-fixing bacteria (Sarkodie-Addo et al., 2006). Due to this 

relationship the soybean plant generally does not benefit from supplemental nitrogen 

fertilizer application. When soil nitrogen is readily available, nitrogen-fixing bacteria will 

not convert atmospheric nitrogen for use by the soybean thus negating the benefit of 

Rhizobia bacteria (Gary and Dale, 1997).  
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Phosphorus Cycling 

Phosphorus (P) is a component of all living organisms and the availability of 

phosphorus often limits the productivity of plants and other organisms (Richardson et al., 

2005). Less than 1% of the total P on Earth is found in the atmosphere, plant biomass, 

and soil combined (Stewart et al., 2005). While a large percentage of this P is found in 

the soil, only a small portion (<1%) is available to plants (Richardson et al., 2005). 

Phosphorus is often referred to as “labile” or “non-labile” which denotes whether P in the 

soil is available to plants (labile) or not available (non-labile; Pierzynski et al., 2005). 

Phosphorus is a component of multiple cell structures and contributes to various cell 

processes (Taiz, 2002).  

Phosphorus can enter the soil by decomposition of animal matter or plant residue, 

atmospheric deposition, mineral fertilizers, and breakdown of primary apatite P in rock 

(Ruttenberg, 2014). Soluble P is converted to secondary components, organic P, or 

adsorption to mineral surfaces (Walker and Syers, 1976). Processes such as oxidation-

reduction and mineralization-immobilization impact the availability of P from these 

forms (Turner et al., 2005). The main source of available P for plants and other organisms 

comes from the soluble P which is generally in the form of H2PO4
- or HPO4

2- (Pierzynski 

et al., 2005). When this pool is depleted of available phosphorus the inorganic, organic, 

and microbial pools can replenish the source for plant use (Pierzynski et al., 2005). 

 Inorganic phosphorus applied as fertilizer can move only 30 to 50 mm (Havlin et 

al., 1999). Most of this P binds quickly with soil and minerals making it unavailable for 

plant use (Koopmans et al., 2004). Generally, 20% or less of applied inorganic 

phosphorus is taken up by the plant in the first few days following application (Foth, 



39 

 

1990). Approximately 4% of phosphate is still available after 10 days (Foth, 1990). The 

availability of phosphorus is impacted by land use, physical and chemical soil 

characteristics, type of vegetation cover, and microbial culture (Chen et al., 2000). 

Inorganic phosphorus availability is usually high in young soils however, as soil ages the 

availability of phosphorus decreases due to organic immobilization, leaching, 

transformation into unavailable forms, and erosion (Pierzynski et al., 2005). The removal 

of crops is another major factor which can decrease the phosphorus concentration in the 

soil (Pierzynski et al., 2005). Extreme soil pH, either acidic or basic, can cause 

phosphorus deficiencies (Carrow et al., 2001). Soil composition can impact available 

phosphorus. For example, sandy soils with low organic matter do not absorb as much 

inorganic phosphorus as finer textured soils (Beard, 1973). Le Boyona et al. (2006) 

reported that earthworm activity significantly impacts availability and distribution of 

phosphorus. Freezing/thawing and wetting/drying cycles can cause phosphorus to release 

into surrounding soil (Turner, 2005). Decreasing available phosphorus may impact both 

carbon and nitrogen cycling (Condron et al., 2005). Conversely, soil nutrient level can 

also impact the availability of phosphorus. For example, calcium and magnesium absorb 

phosphorus in alkaline soils (Foth, 1990). Nitrogen is a critical nutrient aiding in 

phosphorus uptake by the plant. Nitrogen allows for increased root mass, thus increased 

surface area which enables roots to uptake phosphorus more efficiently (Wang et al., 

2007). Nitrogen is also required for phosphatase production (Wang et al., 2007). 

Applying nitrogen fertilizer has been shown to increase phosphorus availability (Wang et 

al., 2007).  
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Figure 2. The phosphorus cycle in agroecosystems (Ruttenburg, 2014). 

 Applied phosphorus was found to increase soybean yields over 4 years on soils 

that were very low (<20 g/kg) or low (21-50 g/kg) in phosphorus (Borges, 1998). Sites 

that were adequate (50.5-75 g/kg) or above adequate (75.5- >100.5 g/kg) in phosphorus 

did not display an increase in soybean yields with phosphorus application (Borges, 1998). 

This is similar to results found by Webb et al. (1992) who reported that applied 

phosphorus did not increase yields when soil phosphorus levels were adequate or above. 

Wortmann et al. (2009) found that corn yields were impacted the most by phosphorus 

application when the previous crop had been corn compared to when the previous crop 

was soybeans. Corn following corn with 20 kg P ha-1 applied resulted in 0.70 Mg ha-1 

increase in grain yield compared to 0 kg P ha-1 applied. This yield increase was associated 

with an increase in ears m-2 and kernels m-2 (Wortmann et al., 2009). Conversely, 

phosphorus levels may be very high in certain soil types, geographical locations, or in 

excessively fertilized fields (Sundermeier, 2010). Cover crops can be used to absorb and 
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recycle nutrients which prevents nutrient loss and may lower excessively high soil 

nutrient levels, such as very high phosphorus (Sundermeier, 2010).  

Carbon Cycle 

Carbon in the soil makes up approximately 80% of the total carbon found on 

Earth (Lal, 2008). Soil carbon is primarily accrued through photosynthesis where plants 

acquire CO2 from the atmosphere for photosynthate production and may be stored in the 

soil carbon pool (Lal, 2008). Soil organic matter is a mixture of organic materials that are 

high in carbon (Havlin et al., 1999). Organic matter in soil can improve water holding 

capacity, nutrient availability, improved soil structure and reduced erosion which aids in 

improving plant productivity and ultimately improving food security (McNeill and 

Winiwarter, 2004). McNeill and Winiwarter (2004) reported that soil productivity is 

linked with soil organic matter levels with depletion of soil organic matter having large 

negative impacts on the ecosystem. Soil carbon is a product of both growth and 

decomposition of plant roots, as well as from C-enriched components transferred from 

roots to soil microbes (Lal, 2002). One example of this is a symbiotic relationship formed 

between certain plant species and mycorrhizae fungi. Roots of plants provide carbon to 

the fungi species and in turn the fungi provide the plant with nutrients such as 

phosphorus, which is often limiting (Lal, 2002). Biomass decomposition by microbes 

releases carbon in the soil as CO2 due to microbial respiration and produces a small 

amount of humus (Alexander and Fairley, 1983). Different forms of soil organic carbon, 

such as humus, differ in resistance to decomposition (Alexander and Fairley, 1983). 

Climate factors such as soil temperature and moisture impact photosynthesis, 

decomposition, and respiration (Lal, 2004). For example, cold, wet climates have 
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photosynthesis rates exceeding decomposition and therefore produce high levels of soil 

organic carbon while arid regions have low levels of soil organic carbon (Lal, 2004). 

Other factors such as soil texture, mineralogy, erosion, and deposition can impact soil 

organic carbon levels and impact total soil carbon stocks (Lal, 2004). Lal (2009) reported 

that the conversion of natural ecosystems to agricultural land has depleted the soil 

organic carbon levels, releasing carbon to the atmosphere which ultimately reduces soil 

carbon levels. Reduced organic matter, increased soil tillage, and increased erosion have 

contributed to the depletion of soil organic carbon (Lemus and Lal, 2005).  

Erosion 

Erosion of soils is detrimental to soil productivity. This is due to a variety of 

factors including reduced water infiltration, percolation, aeration, and root growth 

(Magdoff and Van Es, 2009). Soil degradation can also have environmental effects 

beyond the loss of crop production. It can lead to increased pollution and sedimentation 

in waterways (Poesen et al., 2003; Owens et al., 2005) as well as air pollution (Piper, 

1989). Factors that affect erosion include: climate, soil properties, topography, 

vegetation, and tillage management (Weesies et al., 1994). Degraded soils have decreased 

water-holding capacity which can lead to increased damage from flooding (Poesen et al., 

2003). Erosion by water occurs by splash erosion, inter-rill erosion, channelized rill, sheet 

erosion, and gully erosion (Torri and Borselli, 2012). Splash erosion occurs by the kinetic 

energy of raindrop splash impact initiating the soil detachment process and allowing 

surface runoff to detach and transport the soil (Torri and Borselli, 2012). Rill and sheet 

erosion can occur particularly in tilled fields dependent on tillage tracks and topography 

(Torri and Borselli, 2012). Gullies form when water cuts deeply into the soil horizon 
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(Sidle et al., 2018). Wind erosion of soil occurs when wind velocity is sufficient to move 

unstable particles allowing for detachment of soil (Shao et al., 1996). Tillage erosion is 

impacted by slope of the topography and displaces soil over the length of the slope (Van 

Oost et al., 2006). Erosion from tillage rarely transports soil off-site however, it does 

leave soil vulnerable to water and wind erosion (Van Oost et al., 2006). The primary 

effects of erosion on cash crop growth and yield include: denser subsoil into surface 

layer, removal of fertile surface horizon, and potential decrease of the rooting zone (Van 

Oost and Bakker, 2012). In most soils the surface horizon (A) has a greater soil organic 

matter level, and thus soil organic carbon level, than lower surface horizons (Guo and 

Gifford, 2002). Erosion losses on crop and pasture land in the United States is 

approximately $44 billion while world-wide costs are estimated at $400 billion per year 

(Jones et al., 1997). Soil formation occurs very slowly, as such eroded soil surfaces 

cannot renew degraded soil (McCormack et al., 1979). Corn yields in Indiana on slightly 

eroded soils were 9% to 34% greater than yields on severely eroded soils while soybean 

yields were 14% to 29% lower on severely eroded soils (Schertz et al., 1989). This same 

study found that levels of organic matter and phosphorus were significantly greater in 

slightly eroded versus severely eroded soils (Schertz et al., 1989). In addition, Schertz et 

al. (1989) reported available water supply was 50% to 75% lower in severely eroded soils 

compared to slightly eroded soils. Strategies to reduce erosion have been investigated and 

four categories were identified (FAO, 2017). First is the minimalization of deforestation 

or conversion of grassland to cropland. Second is the adaptation of no-till or reduced 

tillage farming to protect the surface and reduce runoff. Third is the construction of 

terraces or other physical barriers primarily to reduce runoff. Lastly is the incorporation 
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of vegetation that protects the soil surface from both wind and water erosion (FAO, 

2017). 

Compaction 

Weight of tractors in the United States has significantly increased since 1950 

which contributes to compaction (Sloane and Ouwerkerk, 1998). Soil compaction 

increases bulk density which is often used as a measurement of compaction (Kooistra and 

Boersma, 1994). The optimum bulk density level depends on soil texture but when bulk 

density reaches a certain threshold, root growth is restricted (USDA, 1999). When bulk 

density increases, porosity of soil decreases (Kooistra and Boersma, 1994). Macropores 

important for air and water movement through the soil are negatively impacted by 

compaction, reducing root growth and function (Kooistra and Boersma, 1994). As 

penetration resistance increases in compacted soils root penetration is limited (Taylor et 

al., 1966). A study by Taylor et al. (1966) reported that root growth decreased linearly 

with penetration at 100 psi until growth is halted completely at 300 psi. Negatively 

impacted root growth contributes to reduced nutrient uptake by the plant along with 

increased dentrification, leaching, organic nitrogen losses, reduced nitrogen 

mineralization (Douglas and Crawford, 1993), and phosphorus uptake inhibition (Lipiec 

and Stepniewski, 1995). Compaction negatively impacts soil structure by reducing 

organic matter, infiltration, biological activity, and decreasing aggregate stabilization 

(Kooistra and Boersma, 1994). Micro-, meso-, and macrofauna in soils can be negatively 

impacted by compaction which will decrease biological activity and slow organic matter 

decomposition (Radford et al., 2001). Due to a reduction in macropores, water infiltration 

rate and saturated hydraulic conductivity decreases (Douglas and Crawford, 1993). 
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Tillage is often used to reduce compaction however, determining whether the topsoil or 

the subsoil is compacted can impact whether tillage reduces compaction (Hakansson and 

Reeder, 1994). Hakansson and Reeder (1994) found that on sandy soils tillage can reduce 

compaction in one year however, on clay-like soils topsoil compaction continues to 

reduce yield despite tillage. Subsoil compaction occurs below normal tillage depth and, 

after a 10 year study, yield losses were estimated at 3% which was considered permanent 

and likely due to high axle loads on wet soils (Hakansson and Reeder, 1994). Tillage of 

compacted soils has been shown to make that soil more vulnerable to re-compaction 

(Kooistra and Boersma, 1994).  

Grazing Impacts on Soil 

Soil type and quality are determining factors in plant growth and yield. Soil 

composition determines the liquid and plastic limits and plasticity index which impact the 

soils vulnerability to experiencing leaching, compression, and compaction (Nguyen et al., 

1998). Treading on soil surfaces can reduce pore space and contribute to compaction 

which inhibits transportation of nutrients, water, and gases, hinders root and plant growth, 

and may increase nutrient runoff (Horn et al., 1995).  

Franzluebbers and Stuedemann (2010) reported that although grazed pastures had 

lower soil surface bulk density than ungrazed, deeper layers of soil were more compacted 

in grazed pastures with subsequent increased bulk density in intensely grazed forage. 

During periods of intense grazing penetration resistance also increased past the threshold 

(2 MPa) and impaired root growth (Donkor et al., 2002). High stocking density grazing 

increases the probability of compacting soils (Franzluebbers and Stuedemann, 2010) 

however, freeze-thaw cycling may mitigate some compaction (Horn et al., 1995). 
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Intensely grazed pastures, after a minimum of two years of rest, had similar bulk density 

values to pastures that had not been grazed for 27 years (Greenwood et al., 1998). 

However, Nguyen et al. (1998) reported that six months of rest improved filtration rates 

of intensely grazed ground while short-term grazing periods did not impact infiltration 

rate.  

In an effort to more efficiently utilize available land resources integrated crop-

livestock systems have become of great interest (de Oliveira et al., 2013). However, there 

are concerns as to whether grazing negatively impacts cash crop yield (Clark et al., 

2004). Compaction by cattle may occur when grazing moist cropland soils, especially 

when there is no vegetation, which can lead to a reduction in crop yields (Krenzer et al., 

1989; Mapfumo et al., 1999). There is conflicting data on whether cattle grazing cover 

crops during appropriate (dry) weather conditions impacts compaction. Clark et al. 

(2004) reported that cattle grazing did not impact subsequent soybean plant production 

under normal conditions however, grazing negatively impacted yield when soil 

penetration resistance increased. Results indicated that grazing has minimal impacts on 

soybean yield if occurring during periods of soil temperature below 0°C or if the soil is 

tilled before planting (Clark et al., 2004). In both tillage and no-till systems, a study by 

Drewnoski et al. (2016) reported that grazing improved soybean yield or had no impact 

on soybean yield under both fall and spring grazing conditions. Krenzer et al. (1989) and 

Mullins and Burmester (1997) indicate that winter grazing of cattle on cropland can lead 

to compaction and reduced crop yields however, Tracy and Zhang (2008) reported no 

significant negative effect on cropland and suggested cattle presence may have helped 

increase yield in comparison to continuous cropland fields.  
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Soil compaction can reduce air-filled porosity and affect surface CO2 (Conlin and 

van den Driessche, 2000). If severe, root growth can be negatively affected, ultimately 

impacting crop growth (Linn and Doran, 1984). Torbert and Wood (1992) and Shestak 

and Busse (2005) reported similar findings in which respiration rates were reduced in 

compacted soils compared to non-compacted soil. In year two of a study by Tracy and 

Zhang (2008) respiration rate was greater in pasture, 3.6 umol CO2 m-2 s-1, compared to 

crop fields, 2.3 umol CO2 m-2 s-1. However, respiration rate between cover crop oat 

pasture and continuous corn did not differ.  

Compaction negatively impacts forages as well as cash crops. Undersander (2003) 

reported up to 37% losses due to normal field traffic with losses increasing five days after 

cutting versus two. Methods of avoiding soil compaction include decreasing trafficked 

area, decreased number of trips, avoiding wet soil when using machinery, decreasing 

pressure by using tracks, flotation tires, or doubles, axle loads below 9.07 tonnes (Taylor 

and Gill, 1984), increase soil organic matter and biodiversity, sparing use of tillage, and 

usage of cover crops (Raper et al., 2000). 

Soil moisture is impacted by the temperature, precipitation, grazing system, and 

degree of compaction (Donkor et al., 2002; Bell et al., 2011). Grazing on plastic or wet 

soil increases compaction and enables pugging and poaching to occur (Drewry et al., 

2008). Bell et al. (2011) reported that water infiltration rate decreased the summer 

following winter grazing on wet soils compared to dry pastures. This is suggested to be 

due to compaction from grazing which inhibits water infiltration and subsequently 

reduces soil moisture (Donkor et al., 2002). High stocking density for short durations 

resulted in reduced soil moisture in comparison to lower stocking density continuous 
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grazing (Donkor et al., 2002). Banerjee et al. (2000) reported conflicting data indicating 

that neither stocking system nor stocking rate impacted soil moisture. Moisture impacts 

the ability of soil to recover after grazing (Dexter, 1991).  

Management strategies of livestock can impact various soil characteristics 

(Conant et al., 2003). In grazed cropland-pasture rotations organic matter and total carbon 

concentrations were greater than un-grazed cropland (Tracy and Zhang, 2008). Acosta-

Martinez et al. (2004) reported that in comparison to un-grazed cropland, grazed 

croplands microbial biomass carbon and nitrogen, soil organic carbon, enzyme activity, 

protozoa, and fungi populations were increased. 

 

Cattle 

History 

Loftus et al. (1994) indicates that the domestication of cattle occurred in at least 

two domestication events approximately 10,000 years ago. Cattle domestication followed 

the trend of sheep and goat domestication and was one of the earliest forms of capital 

(Conolly et al., 2012). Cattle quickly became the most important domestic animal species 

by supplying meat, milk, hides, and labor and are still a critical domestic species today 

(Price, 2000). Bos taurus and Bos indicus cattle make up the majority of all domesticated 

cattle (Lenstra, 1999). Both are thought to have descended from the wild aurochs, Bos 

primigenius. (Ho et al, 2008). The British Agricultural Revolution led to major changes 

in animal husbandry with the development of breeds, deliberate selection of sires, and 

documentation of mating selection and pedigree (Thomas, 2005). British breeds including 
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Herefords and Aberdeen-Angus were developed during the 1800s (Briggs and Briggs, 

1980). Aberdeen-Angus breed originated as a cross between two cattle breeds native to 

Scotland (Sanders, 1928). According to Sanders (1928), polled and black coloring 

characteristics were common in the native breeds thus becoming staple traits in modern 

Angus cattle. The arrival of cattle into what is now known as North America was 

facilitated by Spanish explorers who discovered the Americas and initiated importing 

cattle to the area (Payne and Hodges, 1997). Angus cattle were first imported to the 

United States in 1873 (Association, 2012).  

Because the beef market is local, national, and international, several associations 

have been developed to maintain a high level of communication and quality. These 

include the American Angus Association (established 1886) and National Cattlemen’s 

Beef Association (established 1898; Ball, 2000). According to a study by Short in 2001, 

beef production in the United States had risen over the previous 30 years despite a 

reduction of numbers in national cattle numbers. In 2017 cash receipts for cattle and 

calves brought $67.1 million (USDA, ERS, 2018). As of 2019, beef cattle are raised in all 

50 states and number approximately 94.8 million total head and 31.4 million beef cows 

(NCBA, 2019). Cow/calf production is the most prevalent sector of the beef industry in 

the state of Kentucky (USDA, NASS, 2018). Kentucky ranks 14th in the U.S. in total 

cattle production and has an estimated 1.03 million head of beef cows making it the 

largest beef cow producing state east of the Mississippi River (USDA, NASS, 2018). 

According to the Kentucky Department of Agriculture total estimated expenses per cow 

in fall 2018 was estimated at $585 with revenue per cow valued at $718. A large portion 
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of the estimated expenses is due to feed, especially the increased requirement for 

supplemented feed during winter months (KDA, 2018).  

Maternal Characteristics 

Cow/calf operations are largely dependent on the longevity of a cow within the 

herd to recoup initial purchase price, cost of heifer development, and cow maintenance 

(Snelling et al., 1995). Longevity is impacted by numerous factors including calving 

interval, postpartum interval (PPI), and calf performance (Snelling et al., 1995). Given an 

average 285-day gestation length, a cow has approximately 80 days to recuperate from 

calving and to conceive, in order to maintain a 365-day calving interval which is vital to 

recuperating costs (Frazier et al., 1999). If PPI increases, a cow resumes estrous cycling 

late in the breeding season or fails to resume cycling within the breeding season 

(Williams, 2005). This limits the number of days for rebreeding to occur. Calves are 

likely born late in the calving season leading to smaller calves at weaning, and calving 

interval could increase potentially past the optimal 365-days (Dunn et al., 1980). 

 Nutritional requirements during lactation contributes to determining length of PPI 

(Short et al., 1990). Lactation following calving increases nutritional requirements of the 

cow which can delay resumption of estrus cycling (Short et al., 1990). If nutritional 

requirements aren’t met the release of gonadotropin releasing hormone (GnRH) from the 

hypothalamus is reduced which leads to a subsequent decrease in anterior pituitary 

secretion of luteinizing hormone (LH). Decreased secretion of LH diminishes ovarian 

activity, possible failed resumption of estrous cycle, and potentially decreases longevity 

(Williams, 2005). Lactating cows are particularly vulnerable to nutrient deficiency during 

winter months if not supplemented appropriately (Short et al., 1990). Milking ability of 
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the cow greatly impacts the performance and weaning weight of a calf. Marston et al. 

(1992) reported that calves from cows with higher EPD’s for milking were heavier than 

calves born from lower milk EPD cows. However, increasing milk production, 

particularly in poor nutritional environments, may have a negative impact on female 

fertility (Cammack et al., 2009).  

Body condition score (BCS) can be a beneficial tool for judging body reserves 

and optimizing reproduction (Short et al., 1990). Optimum BCS is subjective based on 

breed, amount of milk production, and dystocia. Studies have reported an interaction 

between BCS at calving and PPI as lower BCS can elongate PPI and higher BCS can 

decrease PPI (Short et al., 1990). Low BCS cows will have an elongated PPI due to 

nutrient restriction which decreases secretion of hormones necessary for estrous cycling 

(Wettermann et al., 2003). Having a calf that is still suckling the cow has been reported to 

lengthen PPI (Short et al., 1990). Short et al. (1990) found that complete weaning, partial 

weaning, or short-term weaning (48 hours) can shorten the PPI.  

Cattle have requirements for certain nutrients such as protein, energy, and water 

however, there is generally no requirement for dry matter intake (Hibbard and Thrift, 

1992). Intake is limited by the capacity of the digestive tract and is highly correlated with 

forage quality (Hibbard and Thrift, 1992). Lactating cows will consume more forage than 

gestating cows although frame size and mature body weight contributes to determining 

amount of forage consumed. It is estimated that on low quality forage lactating cattle 

have the capacity to consume 2.2% dry matter as a percentage of their body weight. 

However, if adequate protein is not provided dry matter intake will decrease. Lactating 

cows require nearly twice the daily protein of dry cows. Larger sized cows require more 
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energy than smaller cows (Hibbard and Thrift, 1992). A 590 kg lactating cow has a daily 

DM intake of approximately 14.5 to 15.40 kg/day, 8.21 to 8.94 kg TDN, 17.6 to 19.2 

Mcal NEm, and 7.98 to 8.71 kg CP (NRC, 2000). A lactating cow weighing 

approximately 590 pounds also requires 46.18 to 54.89 liters of water per day (NRC, 

2000). Nutrient requirements are impacted by stage of production, environmental 

conditions, breed, age, weight, gender, and other factors (NRC, 2000).  

Beef cows are often managed in less intensive systems which can provide 

challenges in meeting nutrient requirements under grazing conditions. Nutritional 

requirements for a cow vary depending upon pregnancy status, lactation, and 

environmental conditions such as extreme weather and limitation of available forage 

(Hawkins et al., 2000). According to the Nutrient Requirements of Beef Cattle net energy 

and protein requirements are highest during peak lactation (NRC, 2000). When 

nutritional requirements are not met body reserves are used to meet the demand (Jenkins 

and Ferrell, 1992). According to Hawkins et al. (2000), cows grazing low quality forage 

such as dormant native range may not gain the required nutrients for rebreeding. A study 

by Montano-Bermudez et al. (1990) demonstrated the energy increase required by a 

lactating cow, the energy needed to improve BCS during lactation, and additional 

increase in energy to gain weight back after a loss during lactation. Producing 1 kg of 

milk was estimated to require 1.0 ± 0.13 MCal of energy; to gain 1 kg of weight during 

lactation energy required was 1.05 ± 0.83 MCal; when 1 kg of weight is lost the energy 

required to regain lost weight was 2.94 ± 0.52 MCal (Montano-Bermudez et al., 1990). 

This same study reported that maintenance requirements are positively related to milk 

production thus reporting that medium and high milk producing cow groups have higher 
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energy maintenance requirements per unit of metabolic body weight (MW=kg0.75) than 

low producing cows (Montano-Bermudez et al., 1990).  

Miller et al. (2001) reported that feed costs are the largest expense for cow-calf 

producers, accounting for over 60% of the variation in total annual cow costs making it 

vital for producers to achieve maximum performance with the fewest inputs thus 

becoming more efficient. Overall efficiency of cow-calf producers’ herds can be 

calculated by measuring both cow and calf feed intake over a production cycle-defined as 

time from weaning one calf to the weaning of the next (Shuey et al., 1993). This allows 

for conversion to kilograms of calf weaned per kilogram of feed intake (Shuey et al., 

1993). An individual cows feed efficiency is affected by intake, digestion, body 

composition, metabolism and protein turnover, activity, thermoregulation, and other 

factors (Richardson and Herd, 2004).  

Growth and Production of Pre-Weaned Calves 

Preweaning average daily gain significantly impacts the profitability of a cow-calf 

operation and is a similar measure of growth as weaning weight (Kennedy and 

Henderson, 1975). Breed of dam was found to influence preweaning ADG with dairy 

influenced dams tending to wean heavier calves than purebred and crossbred beef cows 

(Brown et al., 1970; Butson et al., 1980). Mendonça et al. (2019) and Frigerio (1961) 

reported that crossbreds generally produced the heaviest calves, while purebred Angus 

cows produced heavier calves than purebred Hereford. However, Rovira (1966) found no 

significant difference between breeds and Warren et al. (1965) reported Herefords to be 

heavier than Angus at weaning. Crossbred cows produced calves with greater weaning 

weights than purebred cows (159 kg and 125 lbs respectively; Franke, 1999). Charolais 
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calves were heavier at weaning than Limousin, Hereford, and Angus calves (Cundiff et 

al., 2001). In a study by Franke (1999) weaning weights were greatest in calves from 

Charolais (160 kg) cows consecutively followed by calves from Angus (135 kg), 

Hereford (177 kg), and Brahman (90 kg) cows.  

Age of dam impacts weaning weight with Brown et al. (1970) reporting a rapid 

incline in weaning weight from 3 to 6.5 years of age of the dam, a gradual incline to 8.5 

years of age, followed by a decline to 11 years of age. Da Silva et al. (2016) reported 

similar trends between dam age and calf weaning weight. Results indicating an impact of 

age of dam on preweaning ADG were reported by Schaeffer and Wilton (1974) and 

Butson et al. (1980).  

Differences in calf weight is due to an average increase in milk production as dam 

age increases (Neville, 1962; da Silva et al. 2016). Marshell et al. (1976) reported 

correlation values for average milk weight with weaning weight to be 0.50 to 0.80. 

Cortés-Lacruz et al. (2017) estimated milk yield correlation to calf weight to be 0.54. 

Average milk yield accounts for approximately 60% to 71% of the variance in 

preweaning ADG (Jeffery and Berg, 1971). Butson et al. (1980) found that, after 

adjustments for variable effects such as sex, age of calf, age of dam, and breed, a 1 kg 

increase in average daily milk yield was associated with an average 7.65 kg increase in 

weaning weight. Similar increases in preweaning ADG and weaning weight were 

conveyed by other studies including Jeffery and Berg (1971) who reported 0.06 to 0.09 

kg/day increase in preweaning ADG per 1 kg increase in milk yield. A 1% weight loss in 

the dam during lactation was found to be associated with increasing weaning weight from 

0.14 to 1.09 kg (Singh et al., 1970). The authors of this study indicated that cows that 
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were higher milk producers lost more weight while nursing but increased weaning weight 

of suckling calves (Singh et al., 1970).  

Sex of calf has a highly significant effect on weaning weight with males generally 

heavier at weaning than females (Butson et al., 1980; Paterson, 2015; Fahmy and 

Lalande, 1973; Botkin and Watley, 1953; Harwin et al., 1966). Paterson (2015) reported 

that bull and steer calves averaged 254 kg weaning weight while heifers averaged 241 kg. 

An increase of 11 kg at 210-day weaning in bull calves compared to heifers was reported 

by Botkin and Whatley (1953). Similarly, Harwin et al. (1966) reported an increase of 10 

kg in bull calves compared to heifers.  

Butson et al. (1980) reported an average increase of 1.7 kg weight at weaning for 

every kilogram increase in weight at birth which is similar to results reported by Lawson 

(1976), and Singh et al. (1970). However, increased birth weight is associated with 

increased occurrence of dystocia and reproductive issues (Berg et al., 1978). Age of calf 

at weaning is also a significant source of variation in weaning weight (Butson et al., 

1980; Schaeffer and Wilton, 1974). In addition, environmental impacts such as climate, 

management, and grazing conditions have a significant impact on weaning weight. These 

factors vary from year to year and have been reported to account for 6 to 8% of variation 

in weaning weight (Brown, 1960) while numerous studies have experienced a significant 

year effect on weaning weight (Peacock et al., 1960; Meade et al., 1963; Warren et 

al.,1965; Harwin et al., 1966). 
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Forage and Grazing Factors 

Plant cell walls contain cellulose, a carbohydrate that is a main component of the 

cell (Van Soest, 1994) and is the largest carbohydrate source on Earth (Voet et al. 2013). 

Mammals are limited in their ability to digest cellulose because enzymes in mammalian 

digestive tracts cannot degrade glycosidic bonds and other structural bonds (Church, 

1988). However, ruminant species digestive tracts have evolved and contain anaerobic 

micro-organisms which can degrade these bonds. Micro-organisms then produce by-

products (e.g. acetic acid, propionic acid, butyric acid, others) that allow ruminants to 

utilize plant material. A large portion of land area is unsuitable for crop production but 

can be utilized by grazing. Ultimately, this allows ruminants to utilize a food source that 

humans are not able to readily consume, producing high quality animal protein available 

for human consumption (Church, 1988).  

Grazing removes leaves, thus photosynthetic ability, from plants who respond by 

mobilizing resources to facilitate regrowth (McInenly et al., 2010). If grazing occurs 

during the regrowth period carbohydrate reserves are depleted faster than they can be 

replenished which can harm yield and long-term growth of the plant (Cullen et al., 2006). 

Forage regrowth rate, mass, and nutritional quality depend upon defoliation interval and 

intensity (Kydd, 1964). Defoliation interval is the resting phase between grazing, and as 

this interval increases leaf area and root reserves have increased time to recover and 

forage mass increases (Phillip et al., 2001). Defoliation intensity is the degree of leaf area 

removal and as this increases leaf area, root reserves, and mass decreases (Phillip et al., 

2001). Therefore, overgrazing decreases regrowth and mass both by repeated grazing of 

the same plant and excessive removal of plant mass (Phillip et al., 2001). There is data 
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suggesting that removal of some forage can increase productivity and efficiency. Kydd 

(1964) found that at optimum stocking density defoliation opened the canopy allowing 

sunlight to penetrate the sward and promote tillering and new leaf development (Kydd, 

1964). If adequate rest is provided, short periods of high intensity grazing aids in 

increasing yield (Motazedian and Sharrow, 1990). However, if severe defoliation occurs 

with each event, regrowth will be impaired (Phillip et al., 2001).  

Quality of a forage is affected by both species (Sanderson et al., 2004) and 

maturity (Roth et al., 2011). Legume species generally contain more protein than grass 

species which are usually more fibrous (Pavlů et al., 2003). Young, or less mature forage, 

has higher quality than the mature forage of the same species because it is less fibrous 

and contains more protein (Donaghy et al., 2008). Temperature can impact quality of 

forages, demonstrated by lower digestibility and yield of alfalfa grown in high 

temperatures (21°C to 27°C) compared to lower temperatures (10°C to 16°C; Vough and 

Marten, 1971). Available water reserves may also affect forage quality. Heinrichs (1970) 

reported that extreme flooding for five or more days reduced crude protein and 

diminished root and shoot growth. Under drought conditions forage mass (Vough and 

Marten, 1971), protein, and digestibility were reported to be reduced compared to forages 

supplied with adequate water (Asay et al., 2002).  

When consuming poor-quality forage, which may occur during winter grazing, 

dry matter intake may be regulated first by bulk fill before nutritional requirements have 

been met (Provenza, 1995). When dry matter digestion fell below 67% bulk fill regulated 

dry matter intake (Van Soest, 1994). Poor-quality forage intake slows passage rate and 
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increases rumination and rumen retention. This contributes to reduced time grazing and 

subsequently less dry matter intake (Church, 1988).  

Differences in movement and sleep patterns which are influenced by temperature 

and photoperiod impacts grazing behavior of cattle (Ruckebusch, 1988). Cattle will spend 

5 to 12 hours per day grazing depending on various factors, generally during morning and 

dusk (Welch and Hooper, 1998). Ruckebusch (1988) found that when experiencing cold 

stress cattle graze for longer periods of time daily and dry matter intake is increased. 

During periods of heat stress more grazing occurs at night as heat inhibits activity level; 

water availability can modify grazing behavior and is critical to mitigating heat stress 

(Kendall et al., 2007).  

Topography and plant species growth can impact grazing behaviors (Senft, 1987). 

Cattle are prone to graze valley bottoms and land that is level and near water while 

tending to avoid slopes that are greater than 10 degrees, although this may vary by breed 

(Cook, 1966). Bos indicus influenced cattle are more likely to travel further from a water 

source than Bos taurus influenced cattle (Rook et al., 2004). Regardless of breed, cattle 

are more likely to remain in one area or return more frequently to an area with abundant, 

high-quality, palatable forages compared to expanses of poor-quality forage (Bailey, 

1995).  

When describing management strategies, stocking rate and stocking density are 

important terms to understand. Stocking rate is the animal to land relationship over time 

while stocking density is the animal to land relationship at a certain point in time (Allen 

et al., 2011). Distinguishing effects between available forage and animal density may be 

difficult when comparing increased stocking density with decreased available forage and 
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continuously grazed systems (Allen et al., 2011). Decreased weight gain of livestock has 

been reported with increasing stocking density without constant available forage (Curtis 

et al., 2008). Curtis et al. (2008) found that gain per acre increased with increasing 

stocking density until available forage was limited. For example, soil organic matter 

accumulation is increased by forage trampling and fecal deposition under high stocking 

density management (Conant et al., 2003). Franzluebbers and Stuedemann (2010) 

reported that high grazing intensity decreased soil carbon level in sandy loam soils that 

had been eroded in comparison to low density grazing. However, both grazing intensities 

had higher soil organic carbon level than un-grazed (Franzluebbers and Stuedemann, 

2010). 

The type of grazing method utilized impacts forage removal by cattle. When 

available forage is not limited, cattle are more selective and will consume a higher crude 

protein, lower fiber diet than the average available forage (Hinata et al., 2012). Cattle are 

less selective and will consume forage based increasingly on quantity instead of quality 

when hunger increases (Hirata et al., 2012). Rotational stocking reduces access to forage 

and prevented selective grazing in comparison to continuous stocking (Phillip et al., 

2001). Studies have reported that ideal livestock performance occurs by rotating 

frequently to allow selection of more palatable and digestible forages (Taylor et al., 1980; 

Olson et al., 1989). Walton et al. (1981) reported that weight gains in the third and fourth 

years of the study were nearly double in rotationally grazed areas (218 kg/ha) than gains 

from continuous grazed areas (119 kg/ha). In addition, digestibility and nutritional quality 

was increased in forage that was rotationally grazed as compared to continuously grazed 

forage (Walton et al., 1981). Rotational grazing and continuous grazing had no difference 
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in average daily gains when grazed at equal stocking rates and grazing pressure (Hart et 

al., 1976).  

Grazing of crop residues and cover crops has been reported to have conflicting 

effects on subsequent cash crop yield. Krenzer et al., 1989 and Mullins and Burmester, 

1997 found that winter grazing by cattle can reduce cash crop yields. Winter grazing on 

corn stalks was reported to have only slight impacts on subsequent soybean yield by 

Clark et al. (2004) and effects were even less when grazing occurred when soil was 

frozen or if tillage occurs before planting. Grain yield effects due to compaction are 

amplified when crops experience drought stress (Sidhu and Duiker, 2006). Therefore, 

adequate or above average moisture levels mitigate some of the effects of compaction on 

yield (Tracy and Zhang, 2008). Stalker et al. (2015) found no significant difference 

between corn yields of grazed versus un-grazed cropland. Wheat yields have been 

reported to decrease with the presence of cattle grazing (Trent et al., 1988; Edwards et al., 

2011). Conversely, Baumhardt et al. (2009) found no significant difference between 

grazed and un-grazed wheat yields or subsequent soybean yields. Both studies suggested 

that grazing by livestock positively impacted soil nutritional and functional components 

in comparison to un-grazed systems (Acosta-Martinez et al., 2004; Tracy and Zhang, 

2008). De Oliveira et al. (2013) reported that the overall gross margin was lower in cash 

crop system than in an integrated crop-livestock system with no impact of grazing on 

soybean yield. 

Weaned calves grazing oats and brassicas had an average daily gain of 0.85 

kg/day (Drewnoski et al., 2018). Beef cows grazing annual turnips had an average daily 

gain of 1.89 pounds/day over 4 years with increasing bodyweight and body condition 
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score from 2007-2009 (Fraase et al., 2010). Gaugler et al. (2014) reported heifer ADG of 

0.62 kg/day grazing a two species mixture cover crop with stagnant and increasing body 

condition scores in 2012 and 2013 respectively. Additionally, the dual crop system had 

the greatest return per acre compared to single cover crop, half-use of single crop, half-

use of dual crop, and drylot treatment (Gaugler et al., 2014). 
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II. Article Section 

Improving sustainability utilizing cover crop grazing to improve soil health while 

increasing grain and livestock production 

 

Introduction 

Agronomic and environmental concerns about erosion and overall soil health 

during periods of rest between crops has generated interest in cover crop utilization. 

Erosion of soil can limit the capacity for growing crops due to reduced supply of 

adequate nutrients for crops and failure to maintain soil microorganism biodiversity 

(Magdoff and Van Es, 2009). This is due to a variety of factors including reduced water 

infiltration, percolation, aeration and root growth (Magdoff and Van Es, 2009). Soil 

degradation can also have environmental effects beyond the loss of crop production. It 

can lead to increased pollution and sedimentation in waterways (Poesen et al., 2003) as 

well as air pollution (Piper, 1989). Degraded soils have decreased water-holding capacity 

which can lead to increased damage from flooding (Poesen et al., 2003). Cover crops are 

used to improve production of subsequent crops by enhancing physical, chemical and 

biological soil properties as well as improving many other environmental and agronomic 

components (Weil and Kremen, 2007; Fageria et al., 2005). A study by Franzluebber 

(2007) showed that usage of cover crops has the potential to aid in soil management, crop 

production, and increasing long-term economic benefits however, the practice of using 

cover crops has yet to be widely applied due to the lack of immediate economic benefit. 

Cover crops can be utilized to help reduce issues with soil health and the negative 
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environmental impact associated with erosion. One of the largest concerns with using 

cover crops are the direct costs associated with cover crop seed, labor, fuel, fertilizer, and 

herbicide or tillage to terminate the cover crop (Snapp et al., 2005). There are strategies 

that can be taken advantage of that will aid in more efficient use of the forage with a 

relatively immediate economic benefit. One such strategy is the usage of cover crops as 

grazing fodder for livestock. Grazing species of animals have the ability to convert 

cellulose, the predominant carbohydrate source in the world, into products for human use 

(Oltjen and Beckett, 1996). Utilization of livestock grazing on cover crops allows for an 

immediate economic benefit while reducing input costs (Franzluebber, 2007; Magdoff 

and Van Es, 2009). Extending grazing into fall-winter period reduces feed costs 

increasing efficiency of forage utilization and profitability (Penrose et al., 1996). In 

comparison to native grass pastures, cover crops generally provide higher quality forage 

for grazing animals (Franzluebber, 2007; Magdoff and Van Es, 2009). This was 

demonstrated by Choet et al. (2003) who reported increased average daily gains from 

steers grazing winter wheat compared to native-pasture grazed steers. Redmon et al. 

(1995) noted a positive effect on grazed winter wheat with increased grain yield when 

wheat cultivars were grazed until the joint stage compared to un-grazed winter wheat. 

Studies have shown that total soil carbon concentration increases in grazed cover crop 

systems resulting in an overall positive effect on soil organic matter despite potential 

compaction caused by livestock grazing (Tracy and Zhang, 2008).  

The first objective of this study was to measure soil health properties and cash 

crop production characteristics of a grazed cover crop field and an un-grazed cover crop 

field. The second objective was to identify effects of utilizing cover crop forage for 
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grazing by livestock and evaluate strategies to identify whether cover crop grazing is an 

adequate approach that will increase available forages without harming soil health or 

grain production. 

 

Material and Methods 

Field Management Practices 

This study was conducted from 2017 to 2019 at the Western Kentucky University 

Research and Education Complex located in Bowling Green, Kentucky. For four years 

prior to establishment of experimental plots, the 10.8 hectares used in this study were 

managed and maintained as grazed tall fescue (Festuca arundinacea; cv. Kentucky 31) 

pastures. For the purposes of this study 7.2 ha of tall fescue was tilled and converted for 

use as cropland. Three adjacent fields at 3.6 hectare each were established for data 

sampling with a comparison of soil physical and chemical parameters, and soybean and 

corn characteristics between an un-grazed cover crop field, in this case wheat (Triticum 

aestivum; W), grazed cover crop field (WGR), and grazed endophyte-infected tall fescue 

field (TF). Previously reported data from this study with comparison between treatments 

includes cattle performance, wheat yield and characteristics, and tall fescue yield and 

characteristics (Netthisinghe, 2019). The primary soil type of the three sites is Crider silt 

loam. Crider silt loam soil is characterized by being well-drained, moderately permeable, 

high water holding capacity, and neutral to strong acid pH (USDA, NRCS, 2004). Cover 

crops used in this study include: a soft red winter wheat cultivator (cv. Branson) seeded 

in November 2016 and 2017; annual ryegrass (Lolium multiflorum) established December 
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2018; and red clover (Trifolium pratense) and turnip (Brassica rapa) mixture seeded 

November 2019. Wheat cultivars were harvested in June 2017 and 2018 while annual 

ryegrass was terminated May 2019. Following harvest or termination of cover crop, the 

two cash crop fields were planted to either soybeans (Glycine max), 3.9 maturity group 

Syngenta variety, (2017 and 2018) or corn (Zea mays), 112-day maturity LG variety, 

(2019) and harvested. Subsequently, the selected cover crop was then sowed into crop 

stubble. Cash crop fields were managed and maintained in a no-tillage system. For 

grazing, tall fescue was stockpiled starting in September and maintained by mowing two 

times a year. To meet fertilizer requirements, 54 and 32 kg ha-1 urea nitrogen was applied 

to wheat grazed and wheat fields respectively in February or March of each year of the 

study. Tall fescue was fertilized with urea nitrogen, phosphorus, and potassium (N-P-K) 

as required by soil test in February and with 43-43-32 kg ha-1 N-P-K in September of 

each year. Different sets of 16 Angus cow/calf pairs of similar body weights were used 

each year in this study, allocated randomly to grazing winter cover crop or endophyte-

infected tall fescue. Cattle grazed for three weeks in 2017 (March 21-April 12), two 

weeks in 2018 (March 14-March 28), and were unable to graze in spring 2019 or spring 

2020. Grazing during spring 2019 was inhibited by excessive rain and polar vortex winter 

conditions while grazing in spring 2020 was prevented due to late soybean harvest which 

delayed cover crop planting thus resulting in inadequate stand establishment for grazing. 

The grazing period length was determined by available forage and weather conditions. 

Cattle body weights were established at day 0 of grazing and taken again once each week 

of grazing. Cattle were supplemented with an 11.7% crude protein concentrate and 

mineral. Initial soil sampling occurred prior to experimental start date in fall 2016 to 
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determine baseline analysis of each field. Soil samples was taken at a depth of 101.6 mm 

using a 19 mm diameter soil probe (Oakfield Apparatus Co., Fond du Lac, Wisconsin). 

Bulk density samples were taken using a 173.4 cm3 compact slide hammer corer (AMS-

Samplers, American Falls, Idaho). Soil core samples and bulk density samples were taken 

in all plots March, June, and October 2017-2019. 

Grain Yield and Quality, Soil Physical and Chemical Parameters, and Cattle Analysis 

  Soybean and corn grain was hand-harvested from a sample area of 1 m2 at six geo 

referenced locations in each cash crop field and yield was measured as weight threshed. 

Four replicates of each of the cash crop fields were measured to determine yield. Soybean 

plants were cleaned and measured for various plant, pod, and seed characteristics. Grain 

moisture content was determined by a grain moisture meter (Dickie John, Minneapolis, 

MN). Twelve soil core samples and one bulk density sample were taken from 1 m2 areas 

at 12 geo referenced locations within each field. Extractable nutrient samples were then 

air-dried at room temperature to a constant weight and kept in bags until they were 

processed. Before analysis, soil was ground to pass through a 2-mm screen. Nitrate and 

ammonia samples were separated and stored in a freezer until arrival at laboratory for 

analysis. Soil samples were then analyzed for pH, P, K, Ca, Mg, Fe, Cu, and Zn using 

Mehlich-3 (M-3). Emission spectroscopy on an inductively coupled spectrophotometer 

(Vista Pro Varian Analytical Instruments, Walnut Creek, California) was used to determine 

Mehlich-3 (Mehlich, 1984) extractable nutrient concentrations. A 2-gram soil sample in 

high-temperature combustion in a Vario MAX C-N analyzer (Elementar America Inc.) was 

used to measure total soil carbon and nitrogen contents. Sample analysis was conducted by 
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the Waters Agricultural Laboratory in Owensboro, Kentucky. Cattle body weights were 

recorded weekly by a 9’ weighbridge (For-Most 30, Hawarden, Iowa; Netthisinghe, 2019).  

Statistical Analysis  

The statistical analysis for soybean characteristics, corn characteristics, and soil 

physical and chemical parameters was conducted using the MIXED procedure of SAS 

9.4 (SAS, 2011). Treatments included un-grazed wheat, grazed wheat, and grazed tall 

fescue. Treatment x year interactions were analyzed as a fixed effect and included if 

significant. Cultivars, sowing rate, and plant densities were also considered fixed effects. 

Dependent variables evaluated for soil sampling included soil macro- and micro-nutrients 

including: N, NH4, NO3, C, pH, CEC, OM, P, K, Mg, Ca, S, B, Zn, Mn, Fe, and Cu and 

bulk density. Soybean and corn characteristics were evaluated on grazed and un-grazed 

wheat fields. Dependent variables for soybean characteristics include: plant number, 

average plant height, average number of branches, nodes on main stem, total nodes on 

branches, pods on main stem, total pods on branches, pods per branch, seeds per pod, 100 

seed weight, total seed weight, chaff weight, dry matter, and seed moisture. Corn 

sampling dependent variables included yield and seed moisture. Main effects were 

treatment, year, and their 2-way interactions. For dependent variables that did not have a 

2-way interaction detected when evaluating, their sum of squares and associated degrees 

of freedom were apportioned to the model error term (residual) for significance testing. 

The PDIFF option of LSMEANS was used to separate means when protected by F-test at 

α=0.05, with trends declared at > 0.05 to < 0.10. 
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Results and Discussion 

Temperature and Precipitation 

 120-year average monthly temperature and average monthly temperature, 

January-December, from each year of the study are presented in Figure 3. 120-year 

average monthly precipitation and total monthly precipitation over the duration of the 

study are presented in Figure 4. Average monthly temperatures from January-April 2017 

were greater than 120-year average temperatures. Mean monthly temperature May-

December 2017 were similar to 120-year averages. Monthly accumulative precipitation 

in 2017 was greater than 120-year averages April-October with the exception of July. 

Peak accumulative precipitation occurred during May and September 2017. Average 

monthly temperature in 2018 differed from 120-year mean temperatures exhibited by 

lower temperatures in January, April, and November and higher temperatures in 

February, May, June, September, and December. In 2018, monthly accumulative 

precipitation was, on average, greater than 120-year mean with the greatest increase 

above average seen in February. This led to inadequate pasture soil conditions for grazing 

during spring months resulting in a shortened grazing period of 14 days and delayed 

planting of cover crops during the fall. Mean monthly temperatures in 2019 were similar 

to 120-year monthly averages except for February and September which were greater 

than the 120-year average and November which was lower than the 120-year averages. 

Monthly accumulative precipitation was extremely variable in 2019 compared to 120-

year averages. Peaks were seen in February (303.78 mm) and June (230.89) with a sharp 

decrease in accumulative precipitation (7.37 mm) in September 2019. Due to delayed 

planting the previous fall, extreme increase in precipitative accumulation in February, 
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and polar vortex weather conditions (-12.11°C) forage growth and soil conditions did not 

facilitate livestock grazing during 2019. 
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Figure 3. Monthly and 120-year average temperatures from January to December 

by year at Western Kentucky University Research and Education Complex, 

Bowling Green, KY. 

Figure 4. Monthly and 120-year average temperatures from January to December 

by year at Western Kentucky University Research and Education Complex, 

Bowling Green, KY. 
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Base-Line Soil Nutrient Levels Prior to Experiment 

Table 1. Initial soil values in fall 2016 prior to start of experiment 

Item Treatment1 

Parameter TF W WGR 

pH   6.33   5.99   6.04 

OM (g kg-1) 21.55 22.61 20.61 

CEC (C M 100g 

soil-1) 

16.36            17.10 15.77 

P (g kg-1) 12.15 21.04 23.00 

K (g kg-1)          260.55          299.00          248.00 

Mg (mg kg-1)            253.7          244.67          208.08 

Ca (mg kg-1)        2020.95        2012.75        1919.71 

S (mg kg-1)            19.30             19.42 17.88 

B (mg kg-1)              0.68    0.73    0.75 

Zn (mg kg-1) 2.59    2.63    3.27 

Mn (mg kg-1)         218.35           146.71 221.58 

Fe(mg kg-1)           94.85           118.00 110.83 

Cu (mg kg-1)             1.80    2.28     1.68 
1 TF=tall fescue, W=wheat un-grazed, WGR=wheat grazed 

 

Soil Physical and Chemical Parameters 

Spring Soil Sampling 

 Soil nitrogen (Table 2) content was impacted by treatment (P=0.0198), year 

(P<0.0001), and treatment x year interaction (P=0.0034) during spring sampling. N 

differed between W and WGR treatments with greatest content seen in W, intermediate 

content in TF, and lowest content in WGR. TF did not differ from W or WGR. N level 

was different between all three years of the study with highest N level seen in 2018 

followed by intermediate level in 2019 and lowest level in 2017. The difference between 

treatments could be due to a spike in N requirements for regrowth after grazing in wheat 

grazed compared to only wheat (Sundermeier, 2010). Nitrogen is a highly variable 

nutrient, susceptible to leaching, which could also account for the difference in treatments 
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(Follett, 1995). Franzluebbers and Stuedemann (2008) reported similar results with lower 

N concentration in grazed treatments compared to un-grazed due to the increased nutrient 

requirement following grazing. 

Table 2. Total soil nitrogen (g kg-1) from spring sampling as impacted by forage 

management and year 

Item  Year   

Treatment1 2017 2018 2019 Mean 

TF 2.37c 3.68a,d 3.51a,d   3.18f,g 

W 2.35c 4.46b,d   3.35a,b,e 3.38f 

WGR 1.93c 4.19b,d 2.91b,e 3.01g 

Mean 2.21h        4.11i        3.25j  
a,b within a column, means without a common superscript differ (P<0.05; SEM=0.16). 
c,d,e within a row, means without a common superscript differ (P<0.05; SEM=0.16) 
f,g within a column, means without a common superscript differ (P<0.05; SEM=0.09) 
h,i,j within a row, means without a common superscript differ (P<0.05; SEM=0.09) 
1 TF=tall fescue, W=wheat un-grazed, WGR=wheat grazed 

 

NO3
-
 (Table 3) level was also impacted by treatment (P=0.0404), year 

(P<0.0001), and treatment x year interaction (P=0.0003). TF and WGR treatments 

differed with TF containing lower NO3
- levels than WGR. Between years, 2018 was 

greater in NO3 than both 2017 and 2019 which did not differ. In the nitrogen cycle, 

ammonia can be converted to nitrate which is potentially why there is a decrease in 

ammonia concentration from 2017 to 2018 (Tables 5 and 12) while nitrate concentration 

increases during this time (Follett, 1995). Franzluebbers and Stuedemann (2008) found 

that NO3
- did vary slightly between cover crop management strategies, however, this 

difference was not biologically significant. The decrease of NO3
-
 seen in 2018 to 2019 

could be due to increased leaching due to large amounts of rainfall during this period.  
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Table 3. Nitrate (ppm) from spring sampling as impacted by forage management and 

year 

Item  Year   

Treatment1 2017 2018 2019 Mean 

TF         5.79 5.77a         3.39 4.99e 

W 3.33c 10.35b,d 3.92c   5.87e,f 

WGR 4.07c 11.51b,d 4.88c 6.82f 

Mean 4.40g 9.21h 4.06g  
a,b within a column, means without a common superscript differ (P<0.05; SEM=0.88). 
c,d within a row, means without a common superscript differ (P<0.05; SEM=0.88) 
e,f within a column, means without a common superscript differ (P<0.05; SEM=0.51) 
g,h within a row, means without a common superscript differ (P<0.05; SEM=0.51) 
1TF=tall fescue, W=wheat un-grazed, WGR=wheat grazed 

 

pH (Tables 4 and 5) was impacted by treatment (P<0.0001) with TF differing 

from W and WGR which were not different. There was a trend for pH between years 

(P=0.0581) with 2017 being more basic than 2019 and a trend for increased pH in 2017 

compared to 2018. Conversion of grassland to cropland for purposes of the experiment 

could have contributed to decreasing soil pH due to increased tillage (USDA, NRCS, 

1998). W and WGR were more acidic than TF treatment which may be due to increased 

urea nitrogen fertilizer application and soil tillage (USDA, NRCS, 1998).  

Organic matter (Tables 4 and 5) was significantly affected by both treatment 

(P<0.0001) and year (P<0.0001). Within treatments, TF and W values did not vary from 

each other but did differ from WGR. TF and W were greater in OM than WGR. Between 

years, 2018 was greater than 2017 but did not differ from 2019. 2017 was also lower than 

2019. The difference in wheat grazed is potentially due to the removal of forage material 

by grazing and mechanical removal by harvesting (USDA, NRCS, 1996). 2018 is likely 

greater in organic matter than 2017 as the level of material built up from year one to year 

two. Galantini and Rossell (2006) reported results supporting the data in this study 
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showing a slight decrease of OM in wheat grazed however, this is ultimately an increase 

from the basal level of organic matter seen in fallow winter fields and over the duration 

of the study, increases in OM were noted. 

Cation exchange capacity (Tables 4 and 5) values were significantly impacted by 

both treatment (P<0.0001) and year (P=0.0008). TF had the greatest CEC value and 

differed from WGR which was also lower than W. 2017 and 2018 had similar CEC 

values and were both different than 2019 which had a significantly lower value. Cation 

exchange capacity is impacted by organic matter, which is likely the reason the data 

reflects similar findings to that of organic matter between treatments (Mengel, 1993).  

Treatment and year impacted C (Tables 4 and 5) values (P=0.0022 and P<0.0001 

respectively). WGR was lower than both TF and W which were not different. Year values 

for C were different between all treatments with the highest value in 2018 followed by 

intermediate values in 2019 and lowest values in 2017. A large component of organic 

matter is carbon which is why we see a similar trend in significant values of carbon as 

seen in organic matter (USDA, NRCS, 1996). Similar results were reported by 

Franzluebbers and Stuedemann (2008) who found that C was lower in grazed cover crop 

fields compared to un-grazed cover crops. 

NH4
+

 (Tables 4 and 5) was impacted by year (P<0.0001) but not by treatment 

(P=0.9505) during spring sampling. 2017 had a higher NH4
+

 value than either 2018 or 

2019. 2018 and 2019 also differed with greater values in 2018. During the nitrogen cycle, 

ammonia can be converted to nitrates which is likely why there is a decrease in ammonia 

concentration from 2017 to 2018 while nitrate concentration increases during this time. 
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This treatment result is similar to Franzluebbers and Stuedemann (2008) who reported 

that NH4
+

 was not impacted by cover crop management. 

Soil phosphorus (Tables 4 and 5) level was not impacted by treatment or year in 

this study (P=0.9553 and P=0.6183 respectively). There were no differences in 

phosphorus levels, and throughout spring sampling biological levels of soil phosphorus 

content was moderate (20.5-50 g kg-1; WAL, 1976).  

Potassium (Tables 4 and 5) level differed both by treatment and year in spring 

sampling (P=0.0422 and P=0.0366 respectively). TF had the greatest K level and 

differed from WGR but not from W. 2019 K value differed from both 2017 and 2018 

with a lower value. 2017 and 2018 did not differ. K is an essential nutrient for plant 

growth (Kaiser and Rosen, 2018a). Wheat grazed treatment underwent removal of forage 

by grazing which would have increased nutrient requirements to facilitate regrowth 

decreasing K (Kaiser and Rosen, 2018a). Even with decreased K level WGR had high 

(163-212.5 g kg-1) to very high (>213 g kg-1) levels of K to facilitate crop production 

(WAL, 1976). 

Magnesium (Tables 4 and 5) content differed between all three treatments 

(P<0.0001) with the greatest value seen in TF followed by W and WGR which had the 

lowest value. 2017 and 2018 did not differ but were both greater in Mg content than 2019 

(P=0.0075). Although, there was an increased level of magnesium in tall fescue versus 

wheat un-grazed and wheat grazed this was due to a divergence in the initial soil value as 

compared to a treatment effect (Table 1). However, magnesium was lower in WGR than 

the two other treatments likely for similar reasons seen with K (Kaiser and Rosen, 

2018b). Magnesium has been found to be of importance, primarily for prevention of grass 
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tetany, particularly in the southern Kentucky region where it is often deficient (NRC, 

1986). Magnesium values in this study, even when decreased, were very high (>150.5 mg 

kg-1; WAL, 1976). 

Spring sampling of calcium (Tables 4 and 5) displayed both treatment and year 

effects (P=0.0007; P=0.0044 respectively). Between treatments, TF and W did not differ 

but were greater than WGR. 2019 was lower in Ca than 2017 but did not differ from 

2018. 2017 and 2018 were not different in Ca content. Due to increased uptake of 

nutrients during regrowth after grazing Ca may have been lower in WGR (Loneragan and 

Snowball, 1969). 

Sulfur (Tables 4 and 5) values were not affected by treatment (P=0.2262) but 

were impacted by year (P<0.0001). 2017 had the highest S value and was different from 

both 2018 and 2019 which did not differ. Throughout the study, soil S content was 

considered to be at moderate (300.5-500 mg kg-1; WAL, 1976) levels even though 

between years were different. 

Treatment (P=0.4703) effects were not seen in soil B (Tables 4 and 5) content 

during spring sampling. There was, however, a year effect (P<0.0001). 2019 values were 

lower than 2017 and 2018. 2017 and 2018 did not differ in soil B level. Boron levels 

ranged from adequate (0.80-1 mg kg-1) in 2018 to medium (0.50-0.75 mg kg-1) in all 

other years and treatments (WAL, 1976).  

Treatment (P=0.2173) and year (P=0.5454) effects were not exhibited in zinc 

(Tables 4 and 5) values from spring samples. Zinc levels did not differ however, 



107 

 

biological levels did range from adequate (3.05-5 mg kg-1) to very high (>7.0 mg kg-1) 

between effects (WAL, 1976). 

Manganese (Tables 4 and 5) was significantly impacted by both treatment 

(P<0.0001) and year (P=0.0014). WGR Mn level was greater than both TF and W which 

were not different. Between years, 2019 was lower in Mn content and differed from both 

2017 and 2018 which did not differ in Mn.  

All treatments (P<0.0001) were different for soil Fe (Tables 4 and 5) level with 

W having the highest level followed by WGR with intermediate levels and TF with the 

lowest level. 2017 (P=0.0121) had the lowest soil Fe content compared to both 2018 and 

2019 which were not different. Although Fe levels differed, biological values remained in 

the high range (100.5-200 mg kg-1; WAL, 1976). 

Copper (Tables 4 and 5) level was different between TF and WGR (P=00184) 

with increased levels in WGR. W did not differ from TF or WGR. In comparison across 

years, 2017 (P<0.0001) was greater than both 2018 and 2019 which did not differ. There 

were differences among Cu content between treatments and years however, biological 

levels maintained an adequate (1.55-3.00 mg kg-1; WAL, 1976) level to enable growth.  
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Table 4. Soil parameters from spring sampling as impacted by forage management 

Item  Treatment1   

Parameter TF W WGR SEM 

pH   6.28a   5.86b  5.86b 0.07 

OM (g kg-1) 30.44a 29.47a 25.03b 0.68 

CEC (C M 

100g soil-1) 

15.12a 14.67a 12.46b 0.42 

C (g kg-1) 27.28a 26.49a 23.53b 0.78 

NH4 (ppm) 9.51 9.34 9.38 0.41 

P (g kg-1)        30.79        29.14        28.69 5.23 

K (g kg-1)      274.88a      251.53a,b      204.99b 19.95 

Mg (mg kg-1)      238.51a      205.18b      178.79c 8.56 

Ca (mg kg-1)    1829.38a    1676.85a    1434.54b 72.52 

S (mg kg-1)        14.46        13.62        13.72 0.37 

B (mg kg-1) 0.66          0.72 0.68 0.03 

Zn (mg kg-1) 3.74 7.84 4.32 1.75 

Mn (mg kg-1)      154.53a      134.79a      225.69b 9.10 

Fe (mg kg-1)      115.06a      183.32b      159.00c 6.99 

Cu (mg kg-1)  1.98a   2.23a,b  2.39b 0.10 
a,b,c within a row, means without a common superscript differ (P<0.05) 
1 TF=tall fescue, W=wheat un-grazed, WGR=wheat grazed 

 

Table 5. Soil nutrients from spring sampling as impacted by year 

Item  Year   

Parameter 2017 2018 2019 SEM 

pH 6.15  5.96  5.90 0.08 

OM (g kg-1)        25.72a 30.11b 29.11b 0.68 

CEC (C M 

100g soil-1) 

       14.60a 14.88a 12.76b 0.42 

C (g kg-1)        20.03a 31.94b 25.33c 0.78 

NH4 (ppm)        19.19a   5.26b  3.77c 0.40 

P (g kg-1)        28.16         33.66        26.80 5.23 

K (g kg-1)      259.91a       269.88a      201.61b 19.95 

Mg (mg kg-1)      223.82a       212.63a      186.03b 8.56 

Ca (mg kg-1)    1811.18a     1664.08a,b     1465.08b 72.49 

S (mg kg-1)        15.48a 13.38b  12.95b 0.37 

B (mg kg-1)          0.74a  0.82a    0.51b 0.03 

Zn (mg kg-1)          4.19    4.87    6.84 1.76 

Mn (mg kg-1)      193.93a 175.10a 145.97b 9.10 

Fe (mg kg-1)      135.12a 161.12b 161.12b 6.99 

Cu (mg kg-1)  2.63a     1.99b     1.99b 0.10 
a,b,c within a row, means without a common superscript differ (P<0.05) 
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Post-Wheat Soil Sampling 

Tables 6 and 7 represent June soil sampling taken post-wheat harvesting for 

treatment and year effects respectively. C, N, NO3, and NH4 values were not reported for 

this sampling period. Sampling did not occur in June 2019 for cost savings purposes due 

to inclement weather and inadequate forage growth of rye grass preventing grazing from 

occurring. 

pH (Tables 6 and 7) was not impacted by year (P=0.8124) but was impacted by 

treatment (P=0.0002). TF had the highest pH and varied from both W and WGR 

however, W and WGR were not different. The differences between treatments follow a 

similar trend as both spring and fall sampling. 

Treatment affected OM (Tables 6 and 7) content (P<0.0001) but year did not 

impact OM (P=0.5105). Between treatments, TF was greater than both W and WGR with 

a trend for increased values in W versus WGR. These are results are similar to spring and 

fall where TF is greater than WGR. 

Cation exchange capacity (Tables 6 and 7) value for TF was greater than WGR 

(P=0.0448) with a trend for greater values than W. W and WGR CEC values were not 

different. Year did not have an effect on CEC values (P=0.7540). OM has high CEC and 

so CEC generally follows the trends of OM. As seen here, with an increase in TF of 7.43 

C M 100 g soil-1 and 10.22 C M 100 g soil-1 compared to W and WGR respectively.  

Phosphorus (Tables 6 and 7) level in June sampling was not impacted by 

treatment (P=0.6645) or year (P=0.5970). Biological levels of phosphorus remained in 

the moderate region (20.5-50 g kg-1; WAL, 1976). 
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 Treatment did impact K (Tables 6 and 7) level in soil for June sampling 

(P=0.0355) and although year was not significant (P=0.0680) there was a trend for 

greater levels in 2017 compared to 2018. Between treatments, TF varied from WGR with 

a greater level reported in TF. TF did not vary from W nor did WGR vary from W. 

Greater values for K in TF versus WGR was comparable to spring and fall results. 

Treatment (P<0.0001) and year (P=0.0047) effects were both significant for Mg 

(Tables 6 and 7). TF had the greatest value for Mg and differed from both W and WGR. 

W had intermediate value for Mg and WGR had the lowest value. Mg was greater in 

2017 than 2018. Although WGR had the lowest value for Mg, biological values still 

ranged in high (125.5-150 g kg-1) levels (WAL, 1976). 

Calcium (Tables 6 and 7) was impacted by treatment (P=0.0019) and year 

(P=0.0374). TF and W did not differ but were both greater than WGR. 2017 had greater 

Ca content compared to 2018. Differences in Ca followed similar tendencies in spring 

and fall values with values being greater in TF and W and WGR having the lowest 

concentrations. 

Treatment did not impact S (Tables 6 and 7) level (P=0.4073) however, year did 

have a significant impact (P=0.0161) with 2018 having a lower value than 2017. 

Although 2018 was lower, biological values stayed within medium (13-25 mg kg-1) range 

(WAL, 1986).  

Year 2017 was greater in B than 2018 (Tables 6 and 7; P=0.0199) but treatment 

did not impact B content (P=0.3941). This year difference is opposite of both spring and 

fall sampling results where B was greater in 2018 than 2017.  
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Zinc (Tables 6 and 7) content was not impacted by treatment (P=0.4071) but 

there was a trend for increased values in 2017 versus 2018 (P=0.0741). 

Treatment (P<0.0001) and year (P=0.0045) affected Mn (Tables 6 and 7) content 

in June soil sampling. Greatest value for Mn was reported in WGR, TF was intermediate 

and did not differ from either WGR or W, and W had the lowest Mn levels. 2017 had 

increased Mn content compared to 2018. WGR had the greatest Mn content in all 

sampling periods. Biological levels of Mn ranged from high (100.5-200 mg kg-1) to very 

high (>201 mg kg-1; WAL, 1976). 

Iron (Tables 6 and 7) was greater in 2017 than 2018 (P=0.0441). Treatment 

impacted Fe level (P=0.0049). TF and WGR value for Fe was lower than W. TF and 

WGR were not significantly different.  

Year value for Cu (Tables 6 and 7) was greater in 2017 than 2018 (P=0.0011). 

Treatment did not impact Cu content in soil during June sampling (P=0.8052). Although 

year had an effect on Cu levels, biological levels remained within the adequate (1.55-3 

mg kg-1) range (WAL, 1976). 
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Table 6. Soil parameters from June sampling as impacted by forage management 

  Treatment1   

Parameter TF W WGR SEM 

pH 6.50a 5.68b 5.73b 0.11 

OM (g kg-1)       38.98a       30.82b       27.75b 1.29 

CEC (C M 

100g soil-1) 

      22.82a       15.39a,b       12.60b 2.57 

P (g kg-1)       39.38       27.40       29.43 8.56 

K (g kg-1)     318.76a     256.40a,b     195.48b        31.10 

Mg (mg kg-1)     276.23a     205.32b     167.21c        14.11 

Ca (mg kg-1)   2087.11a   1736.05a   1402.46b      122.20 

S (mg kg-1)       16.20       15.30       15.27 0.47 

B (mg kg-1)         0.64         0.63         0.56 0.05 

Zn (mg kg-1)         4.99         5.41         4.42 0.62 

Mn (mg kg-1)     171.90a,b     137.09a     210.79b        13.02 

Fe (mg kg-1)     134.96a     180.89b     139.67a        11.21 

Cu (mg kg-1)         2.01         2.08         1.97 0.14 
a,b,c within a column, means without a common superscript differ (P<0.05) 
1 TF=tall fescue, W=wheat un-grazed, WGR=wheat grazed 

 

Table 7. Soil parameters from June sampling as impacted by year 

Item Year  

Parameter 2017 2018 SEM 

pH  5.95   5.99 0.10 

OM (g kg-1) 33.03 32.01 1.07 

CEC (C M 100g 

soil-1) 

17.42 16.45 2.13 

P (g kg-1) 34.79 29.35 7.09 

K (g kg-1)        291.44         222.33 25.74 

Mg (mg kg-1)        241.11a         191.42b 11.68 

Ca (mg kg-1)      1897.39a       1586.35b 101.13 

S (mg kg-1)  16.28a    14.89b 0.39 

B (mg kg-1)   0.69a      0.54b 0.05 

Zn (mg kg-1)  5.61    4.27 0.51 

Mn (mg kg-1)        196.28a 150.24b 10.78 

Fe (mg kg-1)         165.63a 138.04b 9.28 

Cu (mg kg-1)   2.32a     1.72b 0.12 
a,b within a row, means without a common superscript differ (P<0.05) 

 

 

 



113 

 

Fall Soil Sampling 

pH (Table 8) was impacted by treatment (P<0.0001), year (P<0.0001), and 

treatment x year interaction (P<0.0001). TF differed from both W and WGR with the 

highest pH in TF. W and WGR were not different. Year was significant between 2017, 

2018, and 2019. 2018 had the highest pH followed by 2017 and lastly, 2019. The rise in 

pH in 2018 could be due to a reduction in seasonal fluctuation of pH due to consistent 

above average rainfall May 2018-December 2018. This would have maintained moist soil 

levels, increased root and bacteria activity, and increased potential leaching of N, 

allowing for increased pH (Murdock and Call, 2006). The rise in pH level in 2018 was an 

unexpected result given no lime was applied prior to or during the experiment. This 

difference may also be due to sampling error. 

Table 8. pH from fall sampling as impacted by forage management and year 

Item  Year   

Treatment1 2017 2018 2019 Mean 

TF 6.38a,c 7.56d 6.36a,c 6.77f 

W 5.80b,c 7.44d 5.26b,e 6.17g 

WGR 5.83b,c 7.50d 5.28b,e 6.21g 

Mean        6.00h 7.50i        5.64j  
a,b within a column, means without a common superscript differ (P<0.05; SEM=0.11). 
c,d,e within a row, means without a common superscript differ (P<0.05; SEM=0.11) 
f,g within a column, means without a common superscript differ (P<0.05; SEM=0.06) 
h,i,j within a row, means without a common superscript differ (P<0.05; SEM=0.06) 
1 TF=tall fescue, W=wheat un-grazed, WGR=wheat grazed 

 

Treatment (P=0.0007), year (P<0.0001), and treatment x year interaction 

(P=0.0097) all impacted OM (Table 9) in fall soil sampling. WGR had the lowest OM 

value and differed from TF and W. TF and W did not differ. 2017 was approximately 

19.76 g/kg greater in OM than both 2018 and 2019 which did not differ. Overall, 

treatment and year values for OM were lower in fall sampling than either spring or post-
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wheat (Tables 4 and 6). This could be attributed to the increased activity of 

microorganisms during summer months which would have increased breakdown of OM 

(Rigobelo and Nahas, 2004). 

Table 9. OM (g kg-1) from fall sampling as impacted by forage management and year 

Item  Year   

Treatment1 2017 2018 2019 Mean 

TF 24.78a,c 3.35d 3.54b 10.56e 

W 23.33a,c 3.03d 3.07d   9.81e 

WGR 20.31b,a 2.71b 2.83b   8.62f 

Mean       22.81g 3.03h 3.14h  
a,b within a column, means without a common superscript differ (P<0.05; SEM=0.61). 
c,d within a row, means without a common superscript differ (P<0.05; SEM=0.61) 
e,f within a column, means without a common superscript differ (P<0.05; SEM=0.35) 
g,h within a row, means without a common superscript differ (P<0.05; SEM=0.35) 
1 TF=tall fescue, W=wheat un-grazed, WGR=wheat grazed 

 

Nitrogen (Table 10) was significantly affected by treatment (P<0.0001), year 

(P<0.0001), and treatment x year interaction (P<0.0001). N was lowest in WGR which 

varied from TF and W. TF and W were not different. Between years, N was greater in 

2019 in comparison to both 2017 and 2018. 2017 had greater N level than 2018. Nitrogen 

value was likely increased in fall 2019 compared to 2017 and 2018 due to reduced 

rainfall which would have decreased leaching allowing N to remain in the soil (Follett, 

1995). 
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Table 10. Total nitrogen (g kg-1) from fall sampling as impacted by forage management 

and year 

Item  Year   

Treatment1 2017 2018 2019 Mean 

TF 3.45c 2.59c 7.07a,d 4.37e 

W 2.93c 2.59c 7.22a,d 4.25e 

WGR 2.83c,d 2.22c 3.81b,d 2.95f 

Mean        3.07g 2.47h        6.03i  
a,b within a column, means without a common superscript differ (P<0.05; SEM=0.36). 
c,d within a row, means without a common superscript differ (P<0.05; SEM=0.36) 
e,f within a column, means without a common superscript differ (P<0.05; SEM=0.21) 
g,h,i within a row, means without a common superscript differ (P<0.05; SEM=0.21) 
1 TF=tall fescue, W=wheat un-grazed, WGR=wheat grazed 

 

Treatment (P<0.0001), year (P<0.0001), and treatment x year interaction 

(P<0.0001) impacted NO3 (Table 11) content in fall soil sampling. NO3 in TF was lower 

than both W and WGR which did not differ from one another. NO3 varied between all 

three years of the study. 2019 had the highest NO3 content followed by 2017 and 

subsequently, 2018. Similar to total N values, NO3 is greatest in 2019 which is likely due 

to the same mechanisms impacting total N due to reduced rainfall prior to sampling 

(Follett, 1995). 

Table 11. Nitrate (ppm) from fall sampling as impacted by forage management and 

year 

Item  Year   

Treatment1 2017 2018 2019 Mean 

TF 8.50c 6.56a,c  3.81a,d 6.29f 

W 9.48c 4.18b,d       15.08b,e 9.58g 

WGR 8.75c  4.73a,b,d 14.73b,e 9.40g 

Mean 8.91h        5.16i        11.21j  
a,b within a column, means without a common superscript differ (P<0.05; SEM=0.83). 
c,d,e within a row, means without a common superscript differ (P<0.05; SEM=0.83) 
f,g within a column, means without a common superscript differ (P<0.05; SEM=0.48) 
h,i,j within a row, means without a common superscript differ (P<0.05; SEM=0.48) 
1 TF=tall fescue, W=wheat un-grazed, WGR=wheat grazed 
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Ammonia (Table 12) level was impacted by year (P<0.0001) and treatment x year 

interaction (P=0.0077) but not by treatment (P=0.1182). During 2017 NH4 was greater 

than both 2018 and 2019. 2018 had lower NH4 content than 2019. NH4 is relatively 

immobile in comparison to NO3 which would reduce fluctuation in NH4 even during 

periods of limited precipitation. In addition, microbial activity is generally high during 

early fall and NO3 is a common end-product of this activity (Follett, 1995).  

Table 12. Ammonia (ppm) from fall sampling as impacted by forage management and 

year 

Item  Year   

Treatment1 2017 2018 2019 Mean 

TF 10.24a,c 3.59d 5.81a,e 6.55 

W 12.90b,c 3.21d 3.83b,d 6.64 

WGR 10.56a,c 2.96d 3.54b,d 5.69 

Mean         11.23f 3.25g          4.39h  
a,b within a column, means without a common superscript differ (P<0.05; SEM=0.62). 
c,d,e within a row, means without a common superscript differ (P<0.05; SEM=0.62) 
f,g,h within a row, means without a common superscript differ (P<0.05; SEM=0.36) 
1 TF=tall fescue, W=wheat un-grazed, WGR=wheat grazed 

 

Similarly, year (P<0.0001) and treatment x year interaction (P=0.0010) impacted 

S (Table 13) level however, treatment did not (P=0.1802). Soil S content was different 

between all three years. 2019 had the highest levels, 2017 had intermediate levels, and 

2018 had the lowest levels. Soil sulfur is available as sulfates which are vulnerable to 

leaching. Greater S levels in 2019 are potentially due to reduced rainfall during 

September and early October which would have decreased leaching (Schulte and Kelling, 

2002).  
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Table 13. Sulfur (mg kg-1) from fall sampling as impacted by forage management and 

year 

Item  Year   

Treatment1 2017 2018 2019 Mean 

TF 16.00 14.54 16.38a 15.64 

W 15.41c 13.69c  21.32b,d 16.81 

WGR 15.13c 13.50c 22.13b,d 16.92 

Mean 15.51e 13.91f 19.94g  
a,b within a column, means without a common superscript differ (P<0.05; SEM=0.94). 
c,d within a row, means without a common superscript differ (P<0.05; SEM=0.94) 
e,f,g within a row, means without a common superscript differ (P<0.05; SEM=0.54) 
1 TF=tall fescue, W=wheat un-grazed, WGR=wheat grazed 

 

Cation exchange capacity (Tables 14 and 15) was not impacted by year 

(P=0.9211) but was impacted by treatment (P<0.0001). WGR was lower than both TF 

and W which did not differ. Cation exchange capacity often follows the trend of OM 

because of the high CEC value in OM (Mengel, 1993). OM was decreased in WGR 

compared to both TF and W which is likely why CEC value is lower in WGR than TF 

and W. 

Treatment (P<0.0001) and year (P<0.0001) affected C (Tables 14 and 15) 

content. TF had the greatest C value followed by W with intermediate values and WGR 

with the lowest values. 2017 was greater than both 2018 and 2019. 2018 and 2019 did not 

differ from one another. OM has high C content (USDA, NRCS, 1996). There are similar 

trends between OM and C values.  

Phosphorus (Tables 14 and 15) was not impacted by either year (P=0.8248) or 

treatment (P=0.9192) effects. Biological levels were maintained within the moderate 

range (20.5-50 g kg-1; WAL, 1976). 
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Potassium (Tables 14 and 15) content was impacted by treatment (P=0.0308) but 

not by year although there was a trend seen in year effects (P=0.0706). TF had the 

greatest K level, W had intermediate levels but did not differ from TF or WGR, and 

WGR had the lowest K level. 2017 K value was greater than 2018. There was a trend for 

increased K in 2017 compared to 2019. Potassium is essential for plant growth (Kaiser 

and Rosen, 2018a). Wheat grazed treatment underwent removal of forage by grazing 

which would have increased nutrient requirements to facilitate regrowth decreasing K. 

Potassium biological levels were high (163-212.5 g kg-1) in WGR and very high (>213 g 

kg-1) for all other treatments and years (WAL, 1976).  

There was an effect from both treatment (P<0.0001) and year (P=0.0153) for Mg 

(Tables 14 and 15) in fall sampling. TF was highest in Mg followed by W and least in 

WGR. 2017 was greater than both 2018 and 2019 which were not significantly different.  

Calcium (Tables 14 and 15) was affected by treatment (P<0.0001) but not 

affected by year although there was a trend seen in Ca content across years (P=0.0780). 

W and WGR both differed from TF with intermediate values in W and lowest values in 

WGR. W and WGR did not differ from one another. Ca values in 2017 tended to be 

greater than 2018 but not 2019. Regardless of differences, biological Ca levels were in 

the very high (>900.5 mg kg-1) range (WAL, 1976). 

Treatment (P=0.5513) did not impact B (Tables 14 and 15) content however, 

there was a year effect (P=0.0173). 2017 and 2019 differed from 2018. 2018 had higher 

B soil content than both 2017 and 2019 which did not differ.  
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Soil Zn (Tables 14 and 15) content was not impacted by treatment (P=0.2447) or 

by year (P=0.6164). 

Manganese (Tables 14 and 15) was impacted by treatment (P<0.0001) but 

although it was not impacted by year there was a trend (P=0.0991). WGR was greater 

than TF and W. TF and W were not significantly different. Mn values tended to be 

greater in 2017 than 2018.  

Treatment (P<0.0001) and year (P=0.0017) impacted Fe (Tables 14 and 15) soil 

content in fall sampling. TF differed from both W and WGR with TF having the lowest 

value. W and WGR did not differ. 2017 and 2019 were greater for Fe than 2018. 2017 

and 2019 were not significantly different. Although different, all Fe values were within 

the high (100.5-200 mg kg-1) biological range (WAL, 1976). 

Soil Cu (Tables 14 and 15) content was not impacted by treatment (P=0.4922) or 

year (P=0.5777) during fall sampling.  

Table 14. Soil parameters from fall sampling as impacted by forage management 

Item  Treatment1   

Parameter TF W WGR SEM 

CEC (C M 

100g soil-1) 

15.44a 14.37a 12.36b 0.45 

C (g kg-1) 31.94a 28.33b 25.90c 0.73 

P (g kg-1)        29.63        30.74        32.85 5.70 

K (g kg-1)      278.79a 245.09a,b      201.19b 20.79 

Mg (mg kg-1)      246.76a       203.14b      164.50c 8.66 

Ca (mg kg-1)    1884.24a     1559.30b    1399.38b 78.68 

B (mg kg-1) 0.61 0.81 0.69 0.13 

Zn (mg kg-1) 4.02 7.34 4.26 1.53 

Mn (mg kg-1)      158.21a      139.12a      230.39b 10.22 

Fe (mg kg-1)      109.29a      165.70b      157.35b 8.55 

Cu (mg kg-1) 1.88 2.03 2.04 0.10 
a,b,c within a row, means without a common superscript differ (P<0.05) 

1 TF=tall fescue, W=wheat un-grazed, WGR=wheat grazed 
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Table 15. Soil parameters from fall sampling as impacted by year 

Item  Year   

Parameter 2017 2018 2019 SEM 

CEC (C M 

100g soil-1) 

14.04 13.94 14.19 0.45 

C (g kg-1) 31.95a 27.02b 27.21b 0.73 

P (mg kg-1)         31.39         28.42        33.40 5.71 

K (mg kg-1)       281.17       219.30      224.61        20.79 

Mg (mg kg-1)       225.44a       197.12b      191.84b 8.65 

Ca (mg kg-1)     1741.11     1486.71    1615.09        78.65 

B (mg kg-1)   0.61a    1.01b          0.50a 0.13 

Zn (mg kg-1) 4.57  6.44          4.61 1.53 

Mn (mg kg-1)      191.48       160.35      175.89        10.12 

Fe (mg kg-1)      160.69a      118.74b      152.92a 8.55 

Cu (mg kg-1) 1.96 1.92    2.07 0.10 
a,b,c within a row, means without a common superscript differ (P<0.05) 

 

Bulk Density 

Bulk density (Table 16), often used to quantify compaction, was impacted by 

treatment (P<0.0001), year (P<0.0001), and treatment x year interaction (P=0.0171). TF 

had lower bulk density than W and WGR which did not differ. Bulk density varied 

between each year of the study with greatest value in 2019, intermediate value in 2017, 

and lowest value in 2018. Treatment differences are likely due to the increased 

mechanical compaction of wheat un-grazed and wheat grazed by planting, spraying, and 

harvesting. An unexpected result, a decrease in bulk density from 2017 to 2018 could 

potentially be contributed to increased mechanical compaction immediately prior to year 

one due to renovation of pasture to the wheat un-grazed and wheat grazed treatments. 

Increased compaction in 2019 could be due to increased mechanical compaction due to 

wet soil conditions. In addition, increased bulk density values may have been impacted 

by grazing following above average precipitation, which may have increased pugging and 

impacted compaction. There is conflicting research on whether cattle grazing cover crops 
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during dry weather conditions impacts compaction. Krenzer et al. (2013) found that 

compaction was increased with cattle grazing winter wheat however, Tracy and Zhang 

(2008) reported inconsistent trends with cattle presence and compaction. 

Table 16. Bulk density (g cm-3) as impacted by forage management and year 

Item  Year   

Treatment1 2017 2018 2019 Mean 

TF 1.31a,c 1.13a,d 1.51e 1.32f 

W 1.38a,b,c 1.31b,c 1.56d 1.42g 

WGR 1.44b,c 1.35b,d 1.55e 1.45g 

Mean 1.38h 1.26i 1.54j  
a,b within a column, means without a common superscript differ (P<0.05; SEM=0.03). 
c,d,e within a row, means without a common superscript differ (P<0.05; SEM=0.03) 
f,g within a column, means without a common superscript differ (P<0.05; SEM=0.02) 
h,i,j within a row, means without a common superscript differ (P<0.05; SEM=0.02) 
1 TF=tall fescue, W=wheat un-grazed, WGR=wheat grazed 

 

Soybean Characteristics 

Plant number (Tables 17 and 18) per 1 m2 did not differ between treatments 

(P=0.3132) or year (P=0.7782).  

Average height of plants (Tables 17 and 18) was not impacted by treatment 

(P=0.1208) or year (P=0.3934).  

Average number of branches (Tables 17 and 18) was not significantly different 

between year (P=0.3295) or treatment (P=0.8577).  

Treatment (P=0.2094) nor year (P=0.1032) affected nodes per main stem (Tables 

17 and 18). 

Nodes on all branches (Tables 17 and 18) was not impacted by treatment 

(P=0.3934) or year (P=0.2443). 
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Pods per main stem (Tables 17 and 18) was not affected by treatment (P=0.6392) 

however, there was a difference between years (P=0.0420). There were 3.72 less pods 

per main stem in 2017 than 2018. 

Pods on total branches (minus main stem; Tables 17 and 18) was not impacted by 

treatment (P=0.7162) or year (P=0.1755). 

Treatment (P=0.3784) did not affect pods per branch (Tables 17 and 18) nor did 

year (P=0.5624) affect pods per branch. 

Seeds per pod (Tables 17 and 18) was not different between treatment (P=0.1434) 

or year (P=0.1434). 

One hundred seed weight (Tables 17 and 18) was not impacted by treatment 

(P=0.7479) but year was different (P=0.0038). 2017 had greater 100 seed weight than 

2018. Although 100 seed weight differed, total seed weight did not differ between years, 

indicating that differences in 100 seed weight were likely due to sampling error. 

Total seed weight (Tables 17 and 18) did not differ between treatment (P=0.7980) 

or year (P=0.9783).  

Clark et al. (2004) found that soybean grain yield decreased with increasing soil 

penetration resistance following cattle grazing, however, no effect on plant population 

was noted. Minimal effects on soybean yield were reported by Clark et al. (2004) when 

grazing occurred when soils were frozen or when tillage occurred before planting. 

Kunrath et al. (2015) reported that soybean plant height was not impacted by cover crop 

management (grazed or un-grazed). Nodule biomass was not impacted by grazing and 

was inversely correlated with number of nodules (Kunrath et al., 2015). Soybean yield 
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was not found to differ between grazed and un-grazed areas (Kunrath et al., 2015). 

Kunrath et al. (2015) reported that number of pods per plant was not impacted by cover 

crop management. Reported values from Kunrath et al. (2015) for number of pods per 

plant were 35.5 plant-1 in grazed areas and 38.1 plant-1 in un-grazed areas. These values 

are lower than total pods on branches in this study of 85.50 plant-1 in un-grazed areas and 

79.08 plant-1 in grazed areas. Kunrath et al. (2015) also reported 100 seed weight values 

which did not differ at 13.4 g and 13.3 g in un-grazed and grazed areas, respectively. This 

was slightly lower than 100 seed weight in this study which reported 100 seed weight at 

16.50 g in un-grazed and 16.33 g in grazed areas. 

Table 17. Soybean characteristics as impacted by forage management 

Item Treatment1  

Characteristic W WGR SEM 

Plant No. m-2 33.08 29.95 2.14 

Av. Height 57.75 62.02 1.87 

Av. Branches   2.62   2.55 0.26 

Nodes Main Stem 11.10 11.73 0.35 

Total Nodes on 

Branches 

13.01 10.92 1.70 

Pods Main Stem 31.05 31.87 1.21 

Total Pods on Branches 85.50 79.08 12.31 

Pods per Branch 25.50 29.32 3.00 

Seeds per Pod  2.76   2.69 0.03 

100 Seed Wt (g kg-1) 16.50 16.33 0.36 

Total Seed Wt (g m-2)   430.83         423.00 21.37 
1 W=wheat un-grazed, WGR=wheat grazed 
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Table 18. Soybean characteristics as impacted by year 

Item  Year  

Characteristic 2017 2018 SEM 

Plant No. m-2 31.95 31.08 2.05 

Av. Height 58.73 61.03 1.87 

Av. Branches   2.40   2.77 0.26 

Nodes Main Stem 11.00 11.83 0.35 

Total Nodes on 

Branches 

10.53 13.40 1.70 

Pods Main Stem  29.60a  33.32b 1.21 

Total Pods on 

Branches 

70.08 94.50 12.31 

Pods per Branch 26.16 28.66 3.00 

Seeds per Pod   2.69   2.76 0.03 

100 Seed Wt (g kg-1)  17.25a  15.58b 0.36 

Total Seed Wt (g m-2)         426.50 427.33 21.37 
a,b within a row, means without a common superscript differ (P<0.05) 

 

There was no difference between treatments for chaff weight (Table 19; 

P=0.9571).  

However, DM (Table 19) displayed a trend for increased value in W compared to 

WGR (P=0.0611).  

There was also a trend for seed moisture (Table 19; P=0.0514). WGR tended to 

have greater seed moisture than W. Differences in DM and seed moisture could have 

been impacted by a variety of factors. Soybean moisture fluctuates during the day; 

moisture was higher at 8:00 am harvest than harvesting at 1 pm (Yaklich and Cregan, 

1987). In addition, even within individual plants, seeds may mature at different rates and 

alter soybean moisture (Peske et al., 2004). 
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Table 19. Soybean characteristics as impacted by forage management 

Item Treatment1  

Characteristic W WGR SEM 

Chaff Wt (g kg-1) 248.50 247.17 17.09 

DM (%)   91.17   90.43 0.25 

Seed Moisture 

(%) 

  15.32   16.92 0.51 

1 W=wheat un-grazed, WGR=wheat grazed 

 

 

Corn Characteristics 

 

Grain yield (Table 20) of corn was not significantly different between W and 

WGR (P=0.8863). Moisture of corn (Table 20) was not significant, however, there was a 

trend for higher moisture percentage in W than WGR (P=0.0960). As with soybeans, 

corn grain moisture can be altered by a multitude of factors (Daynard and Hunter, 1975).  

Krenzer et al. (1989) reported that cattle grazing cover crops or crop residues can 

reduce subsequent corn crop yield. However, Tracy and Zhang (2008) found that corn 

yields were not negatively impacted by cattle grazing through the winter and may have 

contributed to increased yields compared to continuous corn fields. Sidhu and Duiker 

(2006) indicated that decreased yield due to compaction would be exacerbated during 

drought-stress conditions. 

Table 20. Corn characteristics as impacted by forage management 

Item Treatment1  

Characteristic W WGR SEM 

Yield (kg m-2)  2.77   2.73 0.18 

Moisture (%) 13.57 13.00 0.22 
1 W=wheat un-grazed, WGR=wheat grazed 
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Previously Reported Findings from this Study on Wheat and Cattle Performance 

Previously reported data from this study includes cattle performance on tall fescue 

compared to cover crop winter grazing, wheat grain yield, and forage quality 

(Netthisinghe, 2019). From 2017-2018 Netthisinghe (2019) found that wheat grain yield 

was not impacted by treatment x year interaction. However, between treatments there was 

a difference with an 8-12% reduction in grain yield in WGR compared to W 

(Netthisinghe, 2019). Trent et al. (1988) reported similar findings of reduced grain yield 

in grazed wheat versus un-grazed wheat. In addition, wheat straw yield was reduced by 

18% in WGR in comparison to W (Netthisinghe, 2019). This was likely a result of 

reduced plant height by grazing, subsequently reducing straw yield (Christiansen et al., 

1989).  

 Body weight of grazing calves in this study were found to increase on both W and 

TF (Netthisinghe, 2019). Average daily gain of calves differed between W (1370 g d-1) 

and TF (879 g d-1) in 2017 but not in 2018 (Netthisinghe, 2019). Hersom et al. (2004) 

reported that calves grazing wheat has greater ADG than calves grazing native range. 

Drewnoski et al. (2018) reported that calves grazing an oat and brassica mixture had an 

ADG of 0.85 kg/day. Heifer ADG was reported at 0.62 kg/day grazing a cover crop 

mixture with increasing body score in 2013 (Gaugler et al., 2014).  

Average daily gain response of cows grazing TF and W were mixed across the 

two years which was attributed to differences in individual physiological status 

(Netthisinghe, 2019). Fraase et al. (2010) reported that ADG of cows grazing turnips was 

1.89 lbs/day over a 4-year study. When grazing turnips, cow body weights increased 1.03 

kg hd-1day-1 compared to 0.898 kg hd-1day-1 averaged across four other feed sources 
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(Neville et al., 2007). Allen et al. (2000) and Cranston et al. (2015) reported increased 

gain of cattle grazing red clover-grass swards compared to those grazing grass only 

pasture.  

Results indicate that cover crops can help maintain cow body condition score, 

enable timely rebreeding and optimize calving interval by meeting nutrient requirements 

during winter months (Fraase et al., 2010). By providing adequate nutrients during 

lactation, cover crops may also aid in improving calf preweaning environment and 

ensuing weaning weight (Jeffery and Berg, 1971). 

 

Summary and Conclusion 

 Soil nitrogen and nitrate levels were all impacted by treatment x year interaction, 

treatment, and year. The differences seen were likely due to environmental factors and 

the relatively variable nature of these nutrients due to susceptibility to leaching. 

Differences in pH in fall 2018 sampling was likely due to a reduction in seasonal 

fluctuation of pH given above-average rainfall May-December.  OM tended to decrease 

from spring to fall sampling, potentially due to increased microbial activity during the 

summer which would have increased breakdown of OM. Although, significant treatment 

and year effects were observed in soil nutrient parameter analyses, in general, these 

effects had minor impacts on biological levels. Soybean pods per mainstem and 100 seed 

weight did differ between years, however, the differences were most likely due to 

environmental effects. All other soybean and corn characteristics were not impacted by 

treatment. Overall, due to minimal interaction effects, there was little impact of cattle 

grazing winter wheat for two grazing periods on overall soil health. This implies that 
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grazing cattle on certain cover crops may be an effective method of increasing available 

forage without negatively impacting soil health or cash crop production. Further research 

is required to fully determine effects of cover crop grazing by cattle on soil physical and 

chemical parameters and subsequent cash crop production in the south-central Kentucky 

region. 
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Appendix 1. Experimental Field Layout and Soil Survey 

 

Figure 5. Layout of experimental fields with geo-referenced sampling locations 
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Table 21. Map legend of soil survey for three experimental fields used in this study 

Map Symbol Map Name Hectares in Area of 

Interest 

Percent in Area of 

Interest 

CrB Crider silt loam, 2 

to 6 percent slopes 

5.14 47.4% 

CuB Crider-Urban land 

complex, 2 to 6 

percent slopes 

0.04 0.3% 

Np Nolin silt loam, 

ponded 

2.41 22.4% 

VrC3 Vertrees silty clay 

loam, 6 to 12 

percent slopes, 

severely eroded 

3.24 29.8% 

Totals for Area of Interest 10.83 100.0% 

Figure 6. Soil survey of experimental fields-primary soil type Crider silt loam 
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