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Heavy metal pollution in the environment pose risks to ecosystems and 

the populations that reside in them. Mercury, lead, and cadmium negatively 

impact humans by way of neurological disorders, various cancers, and damage 

the reproductive organs, kidneys, and lungs. Bats have been studied as a 

bioindicator species to identify possibly elevated levels of these metals in the 

environment. Previous studies have identified correlation between metal 

concentrations within bat tissues and fur. Many bat species are endangered or at 

risk due to white-nose syndrome so collection of tissues and fur for analysis can 

impose stress on bat colonies. This study investigates the presence of a 

correlation between mercury concentrations and lead and cadmium 

concentrations in guano. Thirty-seven guano samples from a breeding colony of 

federally endangered gray bats were analyzed for mercury using a mercury 

analyzer. Lead and cadmium concentrations were determined using acid 

digestion and ICP-OES. Analysis indicates a positive correlation between 

mercury, lead, and cadmium. Guano samples from the same cores consistently 

mirror these findings. In conclusion, when the concentration of mercury, lead, or 

cadmium is determined for a bat guano sample the remaining two concentrations 

can be predicted.



1. GENERAL INTRODUCTION AND LITERATURE REVIEW

Mercury and other heavy metals are a growing environmental and health 

concern in the United States and across the globe. Graening and Brown detected 

toxic concentrations of metals in water, sediment, and animal tissues (2003). 

Many of these metals are biomagnified as they contaminate air, water, and land. 

While they may be synthetic or natural in origin, these trace metals are toxic and 

bioaccumulative (Tiefenbacher, 2000) making them of special importance.  

Karst ecosystems have several underground features of note: caves, pits, 

sinkholes, rivers, etc. Special attention is being paid to karst ecosystems 

because they play a vital role in providing a habitat for several endangered 

species as well as contributing to the hydrogeology and hydrology of water 

storage and circulation (Bonacci, Pipan, and Culver, 2008).  

1.1 Sources of Mercury and Trace Metals in the Environment 

Previous research has identified synthetic and natural sources of mercury 

and trace metal contamination in the environment. Phosphate rocks are 

commonly used to manufacture phosphate fertilizers for the soil, providing a 

significant source of cadmium metal in the soil and food chain (Aydin, Aydin, 

Saydut, Bakirdere, and Hamamci, 2010; Cheraghi, Lorestani, and Merrikhpour, 

2011; Gupta, Chatterjee, Datta, Veer, and Walther, 2014; Mar and Okazaki, 

2010). Cuculic, Cuckrov, Zeljko, and Mlakar determined that carbonate rocks 

also provide a source of minor cadmium, copper, lead, zinc contamination in the 

water column (2011). 

1 
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Agriculture is a contributor to heavy metal contamination in the 

environment. The use and overuse of phosphate rocks as a source of 

phosphorus in fertilizers adds heavy metals to the environment like cadmium, 

arsenic, lead, and mercury (Aydin, Aydin, Saydut, Bakirdere, and Hamamci, 

2010). The use of biogenic sources of phosphorus fertilizers, such as bird and 

bat guano, also contribute to heavy metal pollution in the environment (Cheraghi, 

Lorestani, and Merrikhpour, 2011), although the amount of bird and bat guano 

used for fertilizers is small relative to other sources of phosphorus. Fertilizers 

create a cycle of heavy metals moving through the environment (Liu, Nie, Sun, 

and Emslie, 2013). 

Roadside ecosystems encounter higher than normal levels of metals such 

as lead, cadmium, nickel, and zinc. Cadmium enters the environment as a result 

of tire wear while nickel originates from fuels and lubricating oils. Despite lead 

being removed from most gasoline in 1996, lead still contaminates roadside 

environments. Once contaminants are on the road surface, surface and 

groundwater, consumption of plants and animals by animals from outside the 

ecosystem, and migrating animals are the primary means for spreading 

contamination throughout the environment (Scanlon, 1991). 

In addition to highway contamination, industrial process also contribute to 

heavy metal pollution in the environment. Tetra ethyl lead (TEL) and tetra methyl 

lead (TML) are still used in aviation gasoline (Kraus, 2011). Additionally, lead is 

released into the environment by industrial manufacturing processes. Cadmium 

is released via industrial processes like metal plating and alloy production and is 
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also a byproduct of phosphate fertilizers and coal combustion (Gupta, Chatterjee, 

Datta, Veer, and Walther, 2014; Thies and Gregory, 1994). 

 Mercury can easily travel through terrestrial and aquatic environments, 

passing through natural filtration systems in the form of methylmercury (MeHg), 

the most deleterious form of mercury to living organisms due to its organometallic 

character (Gilmour, Henry, and Mitchell, 1992; Grasman, 2002; Lison, Espin, 

Aroca, Calvo, and Garcia-Fernandez, 2016; Morel, Kraepiel, and Amyot, 1998). 

Methylmercury can easily be absorbed, stored, and accumulated in various 

tissues of aquatic animals and fish (Gilmour, Henry, and Mitchell, 1992; Graening 

and Brown, 2003; Mansour, Soliman, and Soliman, 2016; Milan, 2009; Zukal, 

Pikula, and Bandouchova, 2015).  

Once this happens, MeHg passes into the food web where it 

bioaccumulates and becomes biomagnified (Lison, Espin, Aroca, Calvo, and 

Garcia-Fernandez, 2016). Bat guano has also been identified as a source of 

trace metal contamination in aquatic environments, specifically cadmium (Cd), 

lead (Pb), copper (Cu), zinc (Zn), and mercury (Hg). In anchialine objects like 

caves, sinkholes, and caverns this can be especially problematic as they serve 

as important aquatic environments and aquifers containing reserves of potable 

water (Cuculic, Cukrov, Kwokal, and Mlakar, 2011). Studies have established 

that concentrations of these trace metals increase following heavy periods of rain 

(Bonacci, Pipan, and Culver, 2008; Cuculic, Cukrov, Kwokal, and Mlakar, 2011; 

Dodge-Wan, Prasanna, Nagarajan, and Anandkumar, 2017).  
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 As populations increase in karst terrains, surface water and groundwater 

sources are becoming increasingly threatened. Bonacci, Pipan, and Culver 

indicate several factors negatively impacting the karst ecosystem, including 

human influence, water pollution, unsustainable agriculture and forestry, and 

deficiencies in the legal framework that should protect these areas (2008). 

Whether organisms in the ecosystem are aquatic or terrestrial, water sources in 

the karst system are important for the survival of species, thus warranting a study 

of contamination. 

 According to a publication by the United States Geological Survey, every 

state in the United States has karst features in the landscape or has soluble 

rocks with the potential to develop into karst features like caves and sinkholes. 

This area accounts for 18% of the land area in the United States (Weary and 

Doctor, 2014) and approximately 20% of the groundwater used by the population 

(Maupin and Barber, 2005). Additionally, more than 25% of the world’s 

population lives in karst regions or obtains their water from a karst aquifer with 

karst terrain accounting for 10% of the Earth’s surface (Maupin and Barber, 

2005) 

 Dodge-Wan, Prasanna, Nagarajan, and Anandkumar detected 

correlations between several trace metals in a epiphreatic cave. A correlation 

between iron (Fe) and manganese (Mn) as well as  cobalt (Co), copper (Cu), and 

cadmium (Cd) suggest that some trace metal contamination is originating from 

soil and rock leaching into the environment (2017). Open pit mines provide a 

source of heavy metal contamination when they are exposed to large amounts of 
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water in the instance of becoming filled with water and forming a lake (Zocche, 

Leffa, Damiana, Carvalhalo, Mendonca, Santos, Boufleur, Dias, and Andrade, 

2010). Heavy metals pass through the food chain as a result. 

 

1.2 Effects of Mercury and Trace Metals on Health and the Environment 

 Methylmercury is recognized as an agent that can cause 

neurodegenerative effects and also affects the reproductive system in mammals. 

MeHg also crosses the placental barrier and can concentrate in the fetal brain 

causing developmental problems in the fetus, potentially resulting in fetal death. 

Furthermore, MeHg can also be transferred to offspring via lactational transfer 

(Lison, Espin, Aroca, Calvo, and Garcia-Fernandez, 2016). 

 The first well-documented case of wide-spread acute methylmercury 

poisoning occurred in 1953 in Minamata, Japan. The Chisso Corporation’s 

chemical factory released industrial wastewater containing methylmercury into 

Minamata Bay which bioaccumulated and biomagnified in the fish and shellfish 

which were consumed by the city’s population. As a result, individuals who ate 

contaminated fish and shellfish developed symptoms including ataxia, numbness 

in the extremities, muscle weakness, vision and hearing loss, insanity, paralysis, 

and coma (Ekino, Susa, Ninomiya, et al, 2007; Nabi, 2014). More than 1,700 

people died as a result of this severe mercury poisoning, referred to as Chisso-

Minamata Disease (Takaoka, 2011). There is also a congenital form of Chisso-

Minamata Disease that can pass to fetuses in utero (Ekino, Susa, Ninomiya, et 

al, 2007). 



6 
 

 Other trace metals present serious considerations for the health of 

mammals in the environment. Cadmium can retard growth, cause anemia, 

damage kidney and testicular tissue, interfere with the metabolism of copper and 

zinc, and increases hypertension in animals. Excess nickel negatively impacts 

growth rate, reproduction, disrupts liver metabolism, and muscle glycogen 

metabolism. An overabundance of zinc in an organism impedes copper 

metabolism, causes anemia, and interferes with the function of the 

gastrointestinal tract, liver enzymes, and skeletal formation (Scanlon, 1991; 

Thies, Gregory, 1994).  

Arsenic and arsenic compounds cause abnormal development in 

mammalian embryos, degenerative tissue changes, cancer, damage to 

chromosomes, and death (Thies, Gregory, 1994). The largest poisoning of a 

population in the world is due to arsenic contamination. Between 35 and 75 

million of the 125 million people in Bangladesh receive drinking water from 

groundwater sources that have been contaminated with arsenic naturally 

occurring in the ground (Hossain, 2006; Sahu, Saha, 2019). 

A summary of biological effects of mercury, lead, and cadmium is 

summarized in Table 1. 
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Table 1: Biological Effects of Heavy Metal Toxicities  

Metal Biological Impacts 

Mercury Bioaccumulates in fat due to methylation, elemental form readily 
methylates into methylmercury, which: 

● Causes neurodegenerative effects 
● Affects the reproductive system in mammals  
● Crosses the placental barrier and can concentrate in the 

fetal brain causing developmental problems in the fetus and 
potential fetal death 

● Can also be transferred to offspring via lactational transfer  
(Lison, Espin, Aroca, Calvo, and Garcia-Fernandez, 2016) 

Lead Mimics the function of calcium in mammals and can: 
● Retard growth 
● Cause anemia 
● Damage kidney and testicular tissue 
● Interfere with the metabolism of copper and zinc 
● Increases hypertension in animals 

(Scanlon, 1991; Thies and Gregory, 1994) 

Cadmium Mimics the function of zinc in mammals and can: 
● Result in flu-like symptoms (chills, fever, and muscle pain) 
● Damage the lungs 
● Cause kidney, bone and lung disease 
● Cause various cancers 

(United States Department of Labor, 2019) 

 

 A study of heavy metal contamination of bats in Britain concluded that  

lead and cadmium have a direct relationship in renal concentrations in multiple 

species of bats. The study did not yield the same correlation between lead or 

cadmium and mercury. Lead and cadmium appear to be introduced into the 

environment from similar contamination sources, while mercury comes from 

different sources (Walker, Simpson, Rockett, Wienburg, and Shore, 2007). 

 Some research suggests bats exposed to heavy metals and other 

anthropogenic stressors simultaneously may have antagonistic or synergistic 
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effects. For example, 13% of bats with potentially toxic lead levels and 4% of 

bats with potentially toxic levels of arsenic also presented with white-nose 

syndrome (Courtin, Stone, Risatti, Gilbert, and VanKruiningen, 2010; Jones, 

Jacobs, Kunz, Willig, and Racey, 2009). In addition, Grasman determined that 

areas contaminated by environmental pollutants endured more severe epizootic 

infectious diseases (2002), suggesting a level of immunosuppression within 

populations due to contamination in the environment.  

White-nose syndrome arrived in Mammoth Cave National Park in 2016. 

Since the arrival, there has been an 18.5% decline in the population of the most 

abundant bat species in the cave system, Myotis septentrionalis (Northern Long-

eared Myotis) (Thalken, Lacki, Johnson, 2018). Mercury and methylmercury have 

long been documented in the Mammoth Cave National Park System (Helf, 2003). 

It is possible that the bioaccumulation of methylmercury in the bats made them 

more susceptible to contracting white-nose syndrome. 

Increased concentrations of mercury in bat tissues leads to a decrease in 

neutrophil counts, the white blood cells responsible for fighting bacterial and 

fungal infections (Beldomenico, Telfer, Gebert, et al, 2008). This can make bats 

more susceptible to contracting white-nose Syndrome. Over time, chronic heavy 

metal exposure can increase glucocorticoid hormones, which are associated with 

chronic stress. This causes an increase in inflammatory response in bats, making 

them more prone to contract white-nose syndrome (Becker, Chumchal, Bentz, et 

al, 2017). 
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1.3 Bats as Bioindicators 

 Because of their wide range of geographical distribution, relatively long life 

span, high metabolic rate and food intake, and high trophic position, bats are 

considered an excellent bioindicator for mercury (Hg) contamination in the 

environment. Consumption of water and insects that may be contaminated with 

Hg and other trace metals can be detected in bats due to the bioaccumulative 

nature of these metals. Due to the length of the life-span, insectivorous bats are 

at an increased risk of obtaining toxic concentrations of a variety of trace metals 

(Jones, Jacobs, Kunz, Willig, and Racey, 2009; Lison, Espin, Aroca, Calvo, 

Garcia-Fernandez, 2016; Walker, Simpson, Rockett, Wienburg, and Shore, 

2007). The collection of bat guano for analysis is also useful for heavy metal 

analysis due to containing undigested portions of food which can help expose the 

source of contamination (Mansour, Soliman, and Soliman, 2016). 

The majority of studies cited in the literature use destructive samples such 

as kidney, liver, muscle, and brain which limits sample size. In addition, while 

carcasses obtained in the field are occasionally used, the samples available are 

limited and must be handled with extreme caution. Authors seek validation of 

existing research findings by means of non-destructive samples such as guano 

and fur (Bird, Boobyer, Bryant, Lewis, Paz, and Stephens, 2001; Graening and 

Brown, 2003; Lison, et al., 2016; Milan, 1990; Scanlon, 1991; Walker, Simpson, 

Rockett, Wienberg, and Shore, 2006; Wurster, Munksgaard, Zwart, and Bird, 

2015; Zocche, Leffa, Damiana, Carvalhalo, Mendonca, Santos, Boufleur, Dias, 

and Andrade, 2010; Zukal, Pikula, and Bandouchova, 2015). Validation of 
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existing results is especially important as many bat species are rare, threatened, 

or endangered making specimen collection difficult (Lison, Espin, Aroca, Calvo, 

and Garcia-Fernandez, 2016). 

Concentrations of metal pollution in small mammals, including bats, is 

determined to increase with increasing traffic flow in and near the environment. 

Insectivores are known to have higher metal concentrations than herbivores in 

the same environments. Scanlon also notes that as organisms die, the heavy 

metal contaminants contained in tissues returns to circulate through the 

ecosystem (1991). Studies suggest that current levels of heavy metal 

concentrations in a variety of bats is not decreasing in relation to historical levels. 

Continued monitoring of heavy metal contamination in bats is imperative to 

monitoring the health of ecosystems (Walker, Simpson, Rockett, Wienburg, and 

Shore, 2007. 

There are a limited number of studies on the exposure and potential 

impacts of heavy metal exposure to bats and even fewer studies on bats from 

habitats near areas near coal sources. Studies are also limited on human 

impacts of heavy metal exposure in and around coal areas, especially 

downstream from coal mining areas. As humans and bats share a trophic level, 

bats seem especially useful in serving as a bioindicator for potential human 

exposure to these toxic metals as well. There are limitations to this comparison 

however, as humans are more complex due to mobility and diets not necessarily 

being locally derived (Zocche, Leffa, Damiana, Carvalhalo, Mendonca, Santos, 

Boufleur, Dias, and Andrade, 2010). 
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1.4 Current Analysis Methods of Mercury and Trace Metals in Bats 

 A review by Zukal, Pikula, and Bandouchova selected fifty-two studies and 

revealed heavy metal exposure, including arsenic, cadmium, cobalt, chromium, 

copper, mercury, manganese, nickel, lead, tin, and thallium, is continual and 

even increasing in parts of the world (2015). Despite wide recognition of bats as 

a bioindicator species, there is limited documentation in the literature on the 

negative effects of heavy metals on wild bat populations. One study documented 

the presence of heavy metals in wild bat populations (Jones, Jacobs, Kunz, 

Willig, and Racey, 2009). 

 Existing literature utilizes a variety of methods for heavy metal analysis in 

tissue, hair, and guano samples. However, consistent units of concentration are 

utilized throughout the literature so direct comparisons of data sets can be 

evaluated. Some studies use wet weight while others use dry weight of tissues 

(Zukal, Pikula, and Bandouchova, 2015) while relying on a conversion factor to 

draw comparisons between the two, impacting the results (Mochizuki, Mori, 

Hondo, and Ueda, 2008). Due to the processes involved in heavy metal 

accumulation in various organs and tissues, it is difficult to make a correlation 

between concentrations of different metals in different tissue types within a single 

organism. It is easier to expose a relationship between various metals in a single 

tissue type, but it must be carefully assessed (Hariono, Ng, and Sutton, 1993). 

 Little is known about potential toxicity levels of heavy metals in bats. While 

no studies have been done to quantify toxic thresholds of heavy metals in bats, 
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studies of other insectivorous mammals have shown that a higher tolerance for 

heavy metals exists when compared to rodents (Ma and Talmage, 2001).  

Milan concluded, through analysis of mercury concentrations in insect 

prey and mercury concentrations in the Big Brown Bat and Little Brown Bat that 

there was not a statistically significant relationship between the two. However, 

the concentrations of mercury in the surrounding natural environment and in the 

bats were proportional suggesting that bioaccumulation through the food chain 

and environmental factors are responsible for mercury accumulation in bats 

(1990). This relationship further supports the use of bats as a bioindicator of 

mercury contamination in the environment. 

Hariono, Ng, and Sutton ascertained lead concentrations in bat fur was 

positively correlated to lead concentrations in the kidneys and liver (correlation 

coefficients of 0.55 and 0.51), respectively. A greater correlation existed for lead 

concentrations in fur washings and lead concentrations in the kidneys and liver 

(correlation coefficients of 0.73 and 0.94, respectively) (1993). Another study by 

Mansour, Soliman, and Soliman, indicated strong correlation between heavy 

metal concentrations in bat guano and heavy metal concentrations in liver and 

kidney samples for insectivorous bats (2016). Mulec, Covington, and Walochnik 

suggest that analysis of guano is an excellent alternative means when direct 

sampling of bats is impossible (2013) whether collection is limited, the species 

being studied is protected, or the researcher wants to limit stressors to the bat 

colony. 
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The purpose of this research is to determine if a correlation between the 

concentrations of mercury, lead, and cadmium in bat guano. By using mercury 

concentration to predict concentrations of lead and cadmium, analysis of 

environmental conditions can be done in a more rapid, economical manner. By 

conducting the analysis using bat guano in lieu of bat tissues or hair, minimal 

disruption is required to the bat colony under investigation. This is important as 

many species, like the Gray Bat, are threatened or endangered. 

To accomplish these goals, bat guano was collected from a colony of Gray 

Bats and prepared for analysis by drying. Direct analysis of mercury 

concentration was completed using an AMA-254 instrument while analysis of 

lead and cadmium was completed with inductively coupled plasma- optical 

emission spectroscopy (ICP-OES) after the samples were prepared by acid 

digestion. Data for the concentrations of lead and cadmium were compared to 

the data for the concentrations of mercury to determine if mercury concentrations 

can be used to predict other metal concentrations in guano. 
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2. METHODOLOGY 

Safety Considerations 

 When working with bat guano in the laboratory setting certain safety 

considerations must be observed. Bat guano may contain Histoplasmosis or  

Cryptococcosis spores. While not all samples may be contaminated, all samples 

should be treated as if they may be contaminated. Because of this, goggles, 

gloves, and a N-95 (or better) respirator should be worn when handling and 

conducting research with dried guano samples in the lab. Work areas should be 

cleaned with a disinfectant (Texas A&M University Biosafety Occupational Health 

Program, 2015). 

 Additional caution must be exercised in the collection of guano samples 

when bats are present. Since samples were collected from an active maternity 

roost of gray bats, care must be taken not to disturb the bats to reduce the 

chance for rabies exposure from a bite. In Kentucky, it is more common for 

skunks to be carriers of rabies than bats. However, bats account for the majority 

of rabies infections in humans in the United States. Should a direct exposure or 

bite occur, one should seek medical attention and begin a post-exposure 

prophylaxis treatment regimen (Kentucky Cabinet for Health and Family 

Services, 2019) . 

 

Sample Collection and Preparation 

 Guano samples were collected with the assistance of Dr. Christopher 

Groves at Crumps Cave, a 1.5 mile long cave located in the Smiths Grove 

community of Warren County, Kentucky. The gated cave is owned and managed 
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by Western Kentucky University and there is limited access to the cave as it is 

the summer home of a breeding colony of the transient, federally endangered 

gray bat as seen in Figure 1. The guano collected for this investigation was a 

mound 24 inches in height from this colony.  

 

 

Figure 1: The gray bat, Myotis grisescens (US Fish and Wildlife Service, 2019). 

 

 Core samples were collected by driving a series of 1 inch PVC pipes 

through the deepest section of the guano mound (Figure 2a). The ends of the 

pipe were sealed for removal from the cave and were then transported to a 

freezer for storage until the cores could be sectioned for analysis (Figure 2b). 
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a      b  

Figure 2: a) Collecting guano samples and b) transporting the collected samples 
from Crumps Cave, Smiths Grove, KY. 
 
 
 

 

a     b  

Figure 3: a) Cutting open the PVC pipes used to collect the guano samples to 
reveal b) the cores were compacted during collection.  
 

 

 

 To prepare the samples for analysis, the PVC pipes were cut open using 

an oscillating tool fitted with an oscillating saw blade (Figure 3a). Due to the 

freshness of the guano collected, the cores underwent some compaction during 



17 
 

the collection process (Figure 3b). Once the sample cores were removed, they 

were measured, divided into samples, numbered (Figure 4), and transferred to 

paper envelopes to dry for 1 week. The samples had an average of 41.2% 

moisture content. 

 

a     b 

 

c  

Figure 4: Cores a) one, b) two, and c) three were divided into smaller sections for 
drying and analysis. 
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Table 2: Division of Core Samples 

Core Total Length 
(cm) 

Length of Sample (cm) Number of Samples 

1 11.5 cm 2.0 cm 6 

2 12.25 cm 1.0 cm 13 

3 9.0 cm 0.5 cm 18 

 

 Once dried, samples were evaluated for mercury, lead, and cadmium 

content at the Advanced Materials Institute at the Center for Research and 

Development on the campus of Western Kentucky University, a unit of the WKU 

Applied Research and Technology Program.  

 

Mercury Analysis  

AMA254 

 

Figure 5: The AMA-254 Advanced Mercury Analyzer (LECO Corporation, US, 

2008). 

 

The bat guano samples are analyzed for mercury concentration using the 

AMA254 Mercury Analyzer by LECO Corporation, US and QuickSilver software 
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(Figure 5). The AMA254 can quantify mercury content in samples in about 5 

minutes with detection levels from 5ppb to 5ppm and precision of 2.5ppb or ≥5% 

RSD, whichever is greater. The instrument operates in three phases: 

decomposition, collection, and detection (LECO Corporation, US, 2008). This 

process is outlined in Figure 6. 

 

 

 

Figure 6. Flow Diagram for AMA-254 (LECO Corporation, US, 2008). 

 

After solid contaminants, such as small rocks, were removed from the 

guano sample, 0.100 to 0.200 grams of guano was added to the nickel sample 

boat (Figure 7). The exact mass was entered into the QuickSilver software and 

the analysis process began. A total of 37 samples were divided out of 3 cores to 
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be examined to ensure measurements were repeatable and consistent 

throughout the cores. 

During decomposition, the sample is inserted into the instrument and it is 

heated to approximately 750°C to thermally decompose the sample and release 

gaseous components, including Hg(g). Oxygen carrier gas moves the gaseous 

portion of the sample to the catalyst furnace where impurities are removed 

(LECO Corporation, US, 2008). 

 

Figure 7. The Nickel Sample Boats for AMA-254; (L to R) empty, guano sample, 
remaining ash. 
 

The cleaned gas is carried to the mercury amalgamator to begin the 

collection phase. The amalgamator is composed of gold plated ceramic beads. 

Gold has a high affinity for mercury at a significantly lower temperature than 

required for the decomposition phase. Once all mercury has been collected in the 

amalgamator, the beads are quickly heated to 900° Celsius to release all of the 

mercury vapor, trapping the mercury vapor for detection phase (LECO 

Corporation, US, 2008). 
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In the detection phase, the mercury gas passes through a cuvette in the 

path of an Atomic Absorption Spectrophotometer with a lamp set to 253.7 nm, 

which is a wavelength specific to mercury absorption. The amount of mercury is 

then quantified by a UV diode detector for mercury (LECO Corporation, US, 

2008). 

 

Calibration of AMA254 

 The AMA-254 is unique in its analysis and calibration as the instrument 

measures total mercury. The mass of the standard sample is entered into the 

QuickSilver software and once the total mercury in the sample is measured, the 

concentration is calculated in parts per million. Concentration of the standard 

sample remains the same regardless of the amount used, however the intensity 

is directly related to the mass of the sample. A sample with a larger mass will 

have more mercury in it and therefore a higher intensity when compared to a 

sample with a smaller mass. The concentration of the mercury will be the same. 

Conversely, if there are two samples of the same mass with two different 

concentrations of mercury, the samples with the highest total mercury 

concentration will display the highest intensity. 

 The standard used in this analysis is fly ash (NIST 1633b.) This standard 

is from the National Institute of Standards and Technology and is known to have 

a mercury concentration of 0.141 ± 0.019 ppm (National Institute of Standards 

and Technology, 1993). 
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Other Trace Metal Analysis 

Acid Digestion 

 In order to examine the guano samples for the concentration of lead and 

cadmium by ICP-OES, the samples were prepared using acid digestion. A 10 mL 

volume of nitric acid, trace metal analysis concentration, was added to 

approximately 0.500 g of guano in a 50 mL polypropylene digestion vessel 

(Figure 8a). The digestion vessels containing the samples were heated at 85°C 

for one hour in a HotBlock (Figure 8b). Once cooled, the samples were diluted to 

a total volume of 25 mL using deionized water (Figure 8c). 

 

a   b  

 

Figure 8: Preparation of guano samples for analysis: a) mixing with nitric acid, b) 
digesting in the HotBlock, and c) diluting with deionized water. 
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 Domestic sludge (NIST 2781) was used as a standard for comparison for 

lead and cadmium concentrations using ICP-OES and was prepared for analysis 

by acid digestion as well. This standard is from the National Institute of Standards 

and Technology and is known to have a lead concentration of 200.8 ± 4.2 ppm and 

cadmium concentration of 12.78 ± 0.63 ppm (National Institute of Standards and 

Technology, 2018).  

A 5 mL volume of hydrochloric acid, trace metal analysis concentrated, 

and 10 mL of nitric acid, trace metal analysis concentration, was added to 

approximately 0.500 g of standard in a 50 mL polypropylene digestion vessel. It 

was also heated at 85°C in a HotBlock but required 90 minutes of heating and an 

additional treatment of hydrogen peroxide to complete the digestion. Once 

cooled, the standard sample was diluted to a total volume of 50 mL using 

deionized water. 

 

ICP-OES 

 
 

Figure 9: The iCAP 6000 series ICP spectrometer by Thermo Scientific, with 
ASX-520 Autosampler. 
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 The bat guano samples were analyzed for cadmium and lead using the 

iCAP 6000 series ICP spectrometer, by Thermo Scientific. Additionally, the ASX-

520 Autosampler was used throughout the analysis (Figure 9). The iTEVA 

software was used to control the unit during analysis and the method used was 

developed to utilize a sample flush time of 80 seconds with three repeats and the 

plasma viewer was set to axial. Three measurements were made for each metal 

concentration for each sample assessed and an average was recorded. 

Lead and cadmium are not commonly analyzed in samples at the 

Advanced Materials Institute therefore the standard typically used to calibrate the 

ICP spectrometer did not contain lead or cadmium. To ensure quality control, 

lead and cadmium standards, ranging from 0.001 ppm to 1.000 ppm were made 

and used to calibrate the instrument before analysis. 

To prepare samples for analysis, all samples and domestic sludge 

standards were centrifuged to remove any small particulate matter that might 

clog the tubing of the instrument. A 15 mL volume was then loaded into the 

autosampler for analysis for each sample. 
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3. RESULTS 

The raw data collected for mercury, cadmium, and lead concentrations in 

the bat guano samples was scrutinized and graphed to demonstrate relationships 

between the metal concentrations. A positive correlation between each of the 

metals exists (cadmium and mercury, lead and mercury, and lead and cadmium) 

suggesting that determining the concentration of one metal in a guano sample 

would allow for the prediction of another metal in the guano sample.  

The concentrations of mercury, cadmium, and lead were also investigated 

to see how each changed with varying depth of the guano sample. There were 

fluctuations in the concentrations of each metal of the three metals throughout 

the depth of the cores. These fluctuations varied similarly throughout the depth of 

each core.  

 

Correlation of One Metal Concentration to Another Metal Concentration 

The graphs in Figures 10, 11, and 12 illustrate the relationship between 

the three metal concentrations. The mound sampled was from an entire breeding 

colony comprised of bats of varying ages. Due to the biological nature of bat 

guano, a 15% error bar is included for all data points.  

 

Cadmium Concentration versus Mercury Concentration 

Figure 10 demonstrates that as the concentration of mercury increases in 

the guano, the concentration of cadmium also increases. Mercury concentrations 

range from 0.0755 ppm to 0.2572 ppm while cadmium concentrations range from 

0.3617 ppm to 1.4354 ppm. The data points represent a linear relationship with 
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most data points close to the trendline. The data does not contain clusters of 

points. 

Statistical calculations from the graph in Figure 10 indicate there is a 

positive correlation value of 0.4896 between the concentrations of cadmium and 

mercury. Furthermore, the data collected allows for a high confidence in the 

prediction of cadmium concentration based on mercury concentration in a guano 

sample with a 0.0462 standard error of prediction from the data.  

 

 
Figure 10: Concentration of cadmium vs. concentration of mercury in bat guano 
cores. 
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Lead Concentration versus Mercury Concentration 

Figure 11 illustrates the concentration of mercury rises in a sample of 

guano in trend with the concentration of lead. Mercury concentrations range from 

0.0755 ppm to 0.2572 ppm while lead concentrations range from 0.3880 ppm to 

1.5260 ppm. A linear relationship exists between the variables and most data 

points are found close to the trendline. The data also appears to be evenly 

dispersed, forming no clusters. 

Statistical calculations on the graph in Figure 11 determined a positive 

correlation value of 0.2552 between the concentrations of lead and mercury. 

Furthermore, the data collected results in a high confidence in the prediction of 

lead concentration based on mercury concentration in a guano sample due to a 

standard error of prediction of 0.0512.  

 

 
Figure 11: Concentration of lead vs. concentration of mercury in bat guano cores. 
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Lead Concentration versus Cadmium Concentration 

 Figure 12 indicates the concentration of cadmium in a sample of guano 

increases in trend with the concentration of lead. Cadmium concentrations range 

from 0.3617 ppm to 1.4354 ppm while the concentrations of lead range from 

0.3880 ppm to 1.5260 ppm. Similar to the trends for cadmium and lead 

concentrations in trend with mercury concentrations, the data points revealed a 

linear relationship. Most data points lie close to the trendline illustrated on the 

graph and almost all data also appears to be evenly dispersed across the graph. 

Statistical calculations show there is a positive correlation value of 0.7138 

between the concentrations of lead and cadmium. Furthermore, the data 

collected allows for a high confidence in the prediction of lead concentration 

based on cadmium concentration in a guano sample with a 0.1523 standard error 

of prediction from the data.  
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Figure 12: Concentration of lead vs. concentration of cadmium in bat guano 
cores. 
 

 Table 3 provides statistical validation for the prediction of one metal 

concentration from the concentration of another metal. A positive covariance 

value indicates that metal concentrations tend to change together in the same 

direction while the Pearson correlation, r, provides data on the linear relationship 

between the two variables being examined. The standard error of prediction is 

between 5% and 15% for all three relationships. 

 Also included in Table 3 is covariance data, which was previously 

unmentioned. This is due to the fact that a positive covariance only indicates that 

two variables are changing together, in the same direction. Due to the data 

having a positive covariance value, it validates the need for additional 

calculations to expose the correlation of the concentrations along with the 

standard error of prediction for the data. 
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Table 3: Correlation, standard error, and covariance data for the relationship of 
mercury, lead, and cadmium concentrations in the bat guano cores. 

 

Metals Compared Pearson 
Correlation (r) 

Standard Error of 
Prediction 
(dependent from 
independent) 

Covariance 

Cadmium vs. Mercury 0.4896 0.0462 0.0049 

Lead vs. Mercury 0.2552 0.0512 0.0028 

Lead vs Cadmium 0.7138 0.1523 0.0296 

 

 

 The high correlation between lead and cadmium concentrations was 

expected, as lead and cadmium tend to have similar sources of contamination in 

the environment. Mercury is not typically observed as sharing a source of 

contamination (Walker, Simpson, Rockett, Weinburg, and Shore, 2007). 

Additionally, lead and cadmium tend to accumulate from local sources of 

contamination whereas mercury tends to accumulate from regional and global 

sources and become persistent in the environment. 

 

General Comparison and Trends in Metal Concentration Correlation 

 Generally, observations and data support an increase in concentration of 

any of the three metals in the guano indicates that there is a high probability of a 

higher concentration of the other two metals. While the previous graphs appear 

to have outliers, when the data points are removed and statistical calculations 

are repeated, there were no statistically significant changes in the results. That is 

to say, there were no changes in the outcomes of the calculations outside of the 
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anticipated range of error. Additionally, the points that appear to be outliers on 

two of the graphs originate from the same sample within the same core. 

Therefore, all data collected from the guano samples are included on the graphs 

and in the statistical calculations. 

Table 4 provides the correlation values for each individual core and 

correlation data for all three cores combined. The only consistent correlation 

across all three cores is between lead and mercury concentrations. The 

correlation between cadmium and mercury and between lead and cadmium is 

not as close between all three cores. Despite the variance in the correlations 

between the three core samples, all indicate a positive correlation in each of the 

metal concentration relationships. This underscores the importance of using a 

large number of samples for data, especially when analyzing biological samples. 

 

Table 4: Comparison of the correlation data for the relationship of mercury, lead, 
and cadmium concentrations in each of the bat guano cores. 

 

Metals Compared Core 1 
(6 samples) 

Core 2 
(13 samples) 

Core 3 
(18 samples) 

All 
Cores 

Cadmium vs. Mercury 0.3514 0.4305 0.7032 0.4896 

Lead vs. Mercury 0.2256 0.2769 0.2456 0.2552 

Lead vs Cadmium 0.9855 0.8001 0.5988 0.7138 

 
 

Correlation of Metal Concentration with Depth of Guano Mound 

The graphs in Figures 13, 14, and 15 demonstrate how the concentration 

of each metal changes with depth along the three core samples. To better 
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understand the graphs, a depth of 0 cm indicates top of the guano mound, or the 

most recent sample. An increasing depth indicates a sample deeper within the 

mound, or an older sample. A 15% error bar is also included on these graphs 

because of the expected natural variance of bat guano samples. 

 

Mercury Concentration versus Depth of Guano Mound 

Figure 13 depicts how the concentration of mercury changes along the 

depth of the guano cores. In this graph, data is included from all three cores. It is 

observed that the concentration of mercury increases with increasing depth of 

the guano mound for all three core samples taken. This indicates that the oldest 

guano samples, located at the bottom of the mound, would be expected to have 

the highest concentrations of mercury, while the most recently deposited guano 

has the lowest concentration.  
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Figure 13: A line graph depicting the concentration of mercury vs. depth of the 
bat guano cores. 
 
 

Cadmium Concentration versus Depth of Guano Mound 

Figure 14 depicts how the concentration of cadmium changes along the 

depth of the guano cores. In this graph, data from all three cores is represented. 

It is observed that the concentration of cadmium increases with increasing depth 

of the guano mound for all three core samples taken. This implies that the oldest 

guano samples, located at the bottom of the mound, would be expected to have 

the highest concentrations of cadmium, while the most recently deposited guano 

has the lowest concentration.  
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Figure 14: A line graph depicting the concentration of cadmium vs. depth of the 
bat guano cores. 
 
 

Lead Concentration versus Depth of Guano Mound 

 Figure 15 represents how the concentration of lead changes along the 

depth of the guano cores. In this graph, data is visualized from all three cores. 

The graph reveals that the concentration of lead generally increases with 

increasing depth of the guano mound for all three core samples taken. This 

indicates that the oldest guano samples, located at the bottom of the mound, 

would be expected to have the highest concentrations of lead, while the most 

recently deposited guano has the lowest concentration.  
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Figure 15: A line graph depicting the concentration of lead vs. depth of the bat 
guano cores. 
 
  

General Comparison and Trends in Metal Concentration versus Depth of Guano 

Mound 

 When the three graphs represented in Figures 13, 14, and 15 are 

compared, it is evident that all three metals have some fluctuations. The graphs 

also seem to reveal some outliers. However, excluding these data points did not 

significantly change the outcomes of the correlation calculations within the 

anticipated range of error so they have not been excluded. 

 Table 5 gives Pearson correlation, standard error of prediction, and 

covariance data for the previous data sets, for the concentration of metal versus 

the depth of the guano cores. All three data sets yield a positive covariance, 
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warranting a correlation calculation to judge the strength of the relationship 

between the variables.  

Additionally, the standard error of prediction has been calculated. Mercury 

presents the lowest correlation value, but allows for a prediction with a fairly low 

error expected from predictions made from the data. Cadmium provides the 

highest correlation of concentration prediction from depth and also yields a 

relatively low error from the prediction, given the variance of a biological sample. 

 
 

Table 5: Correlation, standard error, and covariance data for the relationship of 
mercury, lead, and cadmium concentrations with depth in the bat guano cores. 

 
 

Metal Pearson Correlation 
(r) 

Standard Error of 
Prediction  

Covariance with 
Depth 

Mercury 0.3369 0.0499 0.0568 

Cadmium 0.7416 0.1352 0.4755 

Lead 0.5324 0.1841 0.3685 

 
 

 The metal concentrations all generally increased with increasing depth. 

Mercury had the weakest correlation with depth suggesting that most of the 

mercury in the guano was in its methylated form and bound in the guano matrix. 

It is possible, since lead and cadmium have a greater increase in concentration 

with depth in the guano mound, that the moisture in the sample allowed for a 

“trickle down” effect of those unbound metals. 

To see if this trend was consistent for all three metals in each of the cores 

sampled, the raw data for each core was evaluated. Pearson correlation values 
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were calculated for each metal as depth increased in each core. This data is 

located in Table 6 for comparison. 

 

Table 6: Comparison of the correlation data for the relationship of depth and 
mercury, lead, and cadmium concentrations in each of the bat guano cores. 

 

Metals  Core 1 
(6 samples) 

Core 2 
(13 samples)  

Core 3 
(18 samples) 

All Cores 
(37 samples) 

Mercury 0.0833 0.4707 0.3044 0.3369 

Cadmium 0.8350 0.6918 0.7743 0.7416 

Lead 0.8503 0.5827 0.4402 0.5324 

 
 

 Cadmium is most consistent when the correlation values for each core are 

compared to the data for all three cores together. Lead was the next most 

consistent metal and mercury was the least consistent across all three cores. It is 

also notable that correlation values for Core 3 were close to the overall 

correlation values for the metal concentration and depth relationship. This is most 

likely due to the fact that Core 3 was divided into smaller samples, therefore 

providing more data points for the calculation. However, as guano is expected to 

have natural variance, this data also highlights the importance of a larger data 

set in order to draw conclusions. 

 

Average Total Metal Concentrations in Guano Samples 

Table 7 gives the average concentration for each metal in each core. 

Additionally, an average metal concentration for all three cores was calculated 
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and the standard deviation was computed. The standard deviations range from 

6.16% to 12.18% of the mean values. With such a small standard deviation for 

each of the three metal concentrations in the cores, it can be reasoned that the 

three core samples are representative of the whole guano mound. Furthermore, 

these small standard deviation values support the use of 15% error bars on the 

data in the line graphs used to represent the data. 

 

Table 7: Average metal concentration in each bat guano core. 

Core Sample Mercury (ppm) Cadmium (ppm) Lead (ppm) 

1 0.1814 0.6450 0.9109 

2 0.1764 0.6656 0.7377 

3 0.1600 0.5901 0.7476 

Average of all cores 0.1726 0.6336 0.7987 

Standard Deviation 0.0112 0.0390 0.0973 

 
 

The persistence of these metals in bat guano is reason for concern as 

Milan determined that the presence of heavy metals in bats is proportional to 

concentrations of the metals in the environment (1990). Mansour, Soliman, and 

Soliman confirmed this again when they determined a correlation exists in heavy 

metal concentrations found in bat guano and liver and kidney tissues (2016). It is 

biologically important to make sure that a single source is analyzed for heavy 

metals, especially when studying endangered species like the gray bat.  

Analysis of guano limits the stress placed on the bats and is the most 

minimally invasive of sample collection methods (Mulec, Covington, and 
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Walochnik, 2013). By collecting guano from a mound, it is possible to study a 

population of bats collectively. While there may be advantages to being able to 

link concentrations to an individual bat, it does present more stress on the bat.  

Heavy metals like mercury, cadmium, and lead introduce stress on bat 

populations, especially endangered ones like the gray bats considered in this 

project. Since white-nose syndrome is present in bats in the general area of the 

cave where the guano samples were collected, care was taken to minimize 

stress on the bat colony. Care was taken to minimize noise in the cave, lighting 

was kept to a minimum, and lights were not aimed at the colony. Collection of 

guano also allows the researcher to get a wide snap-shot of a population while 

also decreasing risks to the individual person, like rabies or histoplasmosis. 
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4. CONCLUSIONS 

This investigation set out to uncover if the concentration of heavy metals 

were related to one another in a biological sample. Specifically, core samples of 

bat guano from a guano mound belonging to a transient, breeding colony of 

migratory gray bats was experimentally investigated for mercury, cadmium, and 

lead concentrations. Data was reviewed to determine possible correlation 

between the concentrations of cadmium and mercury, lead and mercury, and 

lead and cadmium. 

Concentrations of cadmium and lead can be forecast from the 

concentration of mercury due to a 0.4896 and 0.2552 correlation and 0.0462 and 

0.0512 standard error of prediction, respectively.  

The lower correlation for lead prediction can possibly be attributed to the 

fact that it can be more difficult to get a reading of lead concentration using 

inductively coupled plasma- optical emission spectroscopy (ICP-OES), when 

compared to determining the concentration of cadmium using the same 

instrumentation and methods. All standards and blanks analyzed alongside that 

samples fell within quality control ranges. 

Furthermore, when concentrations of cadmium are known, concentrations 

of lead can also be predicted. The data yields a 0.7138 correlation with a 0.1523 

standard error of prediction, supporting that there is a close relationship between 

the data.  

While there are few sources of heavy metal pollution that all three metals 

have in common, for example batteries, all three metals are commonly used in 

industrial processes. This leads to the suggestion that areas of the world that 
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have experienced significant levels of industrialization could expect to find the 

three metals in measurable concentrations in the environment. While the three 

are not released together in most industrial processes, it is common to find 

industries co-existing near each other that together, have the potential to release 

all three.  

Mercury can be released by burning fossil fuels, through the electrical 

industry, and old paints. Cadmium can be introduced through the production of 

alloys and pigments, while lead is released via mining processes, the burning of 

fossil fuels, and through leaching into water and the ground via old pipes. 

Interstate 65 is a major north/ south highway that runs through Smiths Grove, 

Kentucky, where Crumps Cave is located. It is possible that the fossil fuels being 

burned as vehicles have passed and currently pass through the area have 

contributed to the significant relationship between the mercury and cadmium 

concentrations. 

A shared source of cadmium and lead is the earth’s crust, especially 

sedimentary rocks, which are present in karst areas like the one being evaluated 

in this investigation. Due to the karst environment and habitat of the gray bats 

being studied, it is likely that the environment is contributing to the lead and 

cadmium concentrations since the correlation between the two is high. 

These findings are useful because a laboratory procedure to determine 

mercury content in a sample of guano can be completed in a matter of minutes 

using the Advanced Mercury Analyzer instrument. This time requirement is 

significantly shorter compared to the time needed to process and quantify a 
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guano sample for cadmium or lead, since an acid digestion is also required in 

order to run a biological sample using the ICP-OES instrumentation.  

One possible way to account for the fluctuation and variance of heavy 

metal concentration in the bat guano is related to the reproductive cycle of the 

gray bat. The gray bat is transient throughout the year depending on the season. 

Females store sperm over the winter and when they emerge from hibernation in 

the spring, they become pregnant. This occurs during late March and early April. 

Females then form maternity colonies and their pups are born in late May or 

early June.  

The oldest guano (greater depth) comes from adult females who bring in 

metal contaminants from their previous location. Additionally, they are newly 

pregnant or become pregnant shortly after arrival. Prior research has established 

that heavy metals can cross the placental barrier so the guano from the females 

would be expected to experience a drop in heavy metal concentration in their 

guano. Once the pups are born, the female bats up their food intake to produce 

milk for their young, as the pups will not fly for approximately 20 days. Increasing 

food intake would account for an influx of heavy metal concentration. 

Eventually, the pups emerge and will consume insects at rates similar to 

the adult females. This would lead one to expect an increase in concentration of 

heavy metals near the top of the mound. However, the weeks leading up to the 

collection of guano samples were especially wet and rainy, possibly diluting the 

metal concentrations in the environment and therefore the bat food sources. 
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This interpretation is based on the labeling of the Kentucky Department of 

Fish and Wildlife and USDA at the entrance of Crumps Cave that the cave is 

home to a breeding colony of Gray Bats. Future work could include sexing the 

bats to determine with certainty that this is a maternal roosting colony and not a 

bachelor colony during the summertime. 

Heavy metal concentrations were also graphed and compared to each 

other compared to the depth from which each sample was taken in the cores. 

The concentrations not only displayed a uniform trend of increasing metal 

concentration with depth of the mound, the concentrations also followed a similar 

pattern of fluctuation.  

One other possible interpretation and explanation for this data is changes 

in atmospheric chemistry due to changes in environmental regulations regarding 

disposal of certain wastes and emissions of industrial gases. Future research 

could include Cesium-154 dating to determine a more exact age of the bat guano 

from the mound and compare it to existing environmental regulations at the time. 
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5. BROADER IMPACT 

The research presented here is important because three toxic metals that 

build up in the environment are being studied- mercury, lead, and cadmium. 

When these metals are present, they can work their way through the food chain 

which means humans are also at risk of their toxic effects. Mercury primarily 

affects the nervous system and can cause damage to the reproductive system. 

Lead exposure can cause anemia, weakness, kidney and brain damage, fertility 

issues in men and women, and could even lead to death. Cadmium can cause 

slowed growth, cause anemia, damage the kidneys and testicular tissue, and 

also causes high blood pressure. Mercury and lead can freely cross the placental 

barrier and cause miscarriages, stillbirths, and developmental delays, while 

cadmium is very limited in its ability to do so. 

Bats, like humans, are at the top of their food chain. These metals 

bioaccumulate, which means they get more and more concentrated as they go 

up the chain, so the closer you are to the top the more concentrated the metals 

tend to get. By researching bats, one can get a good estimate of these toxic 

metals in the environment. The lab test that checks for the amount of mercury is 

quick and easy compared to the test for lead and cadmium. If a relationship can 

be established between the amount of mercury and the amounts of lead and 

cadmium, then one can predict the amounts of the other two based on the 

amount of mercury. 

These findings could also be used by scientists researching birth defects 

in areas with pollution, behavioral scientists studying neurological incidents in 
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areas polluted with metals, or incidents of organ failure in areas with high 

concentrations of these metals. 
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