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Employee selection is an important process for organizations. Organizations seek 

to select the best employees for their available positions. Testing is key to many selection 

efforts. The results of studies assessing the criterion-related validity of a selection test are 

affected by a number of statistical artifacts, one of which is range restriction. Range 

restriction has the effect of attenuating the correlation coefficient. Statistical equations 

exist to correct for the effects of range restriction, and they enable researchers to obtain a 

more accurate estimate of the validity coefficient. Thorndike (1949) developed the best 

known and most frequently used of these correction equations. In the present study, 

Monte Carlo analyses were used to compare the accuracy of two indirect range restriction 

correction equations. The only difference between the two equations is the nature of the 

predictor intercorrelation employed; one equation uses the restricted predictor 

intercorrelation, whereas the other uses the restricted value. The distinction between these 

values is important as both forms of the correlation are likely available in a predictive 

design, and the magnitude of each can be quite different depending on the extent of range 

restriction. Given these differences between the two forms of the equation, I hypothesized 

that the equation utilizing an unrestricted predictor intercorrelation would be more 

accurate. Results indicated that the equation that made use of the unrestricted correlation 

was generally more accurate, particularly when the selection ratio was low, and the 

predictors were not highly correlated. 
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Introduction 
 

Organizations can take many shapes and sizes, ranging from a small municipal 

government to a large, publicly traded company. The cornerstone of any organization is 

its employees. An organization selects employees based on the belief that those chosen 

will serve to benefit the organization and help with the achievement of their mission and 

goals (Guion, 1998). Therefore, personnel selection has been a major topic of research in 

the field of industrial-organizational psychology (Schmidt & Hunter, 1998). In order to 

find optimal employees, organizations may test applicants with a carefully designed array 

of exams to determine whether or not an applicant will be successful on the job. 

Applicants with high scores on the exams are expected to display higher levels of job 

performance once on the job. Industrial-organizational psychologists are typically 

employed by many companies to determine if the aforementioned tests are successful at 

predicting future job performance, or even to find new tests that predict job performance 

through the use of a criterion-related validity study (Schmidt, Ones, & Hunter, 1992).  

A validity study first begins with a job analysis. A job analysis is the systematic 

study of a job to determine the responsibilities and requirements for a particular position. 

When conducting a job analysis, analysts collect information related to the tasks that 

employees perform, the KSAs needed to complete tasks, and the equipment typically 

used by jobholders, among other pieces of information. This information is compiled and 

can be used for a variety of typical human resources functions such as the alignment of 

selection test procedures with the job specification information that was obtained during 

the job analysis (Brannick, Levine, & Morgeson, 2007). Next, there is a statement of the 
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proposed use of a particular test, the intended interpretations of test scores, and expected 

outcomes. A criterion-related validity study is a type of study in which evidence for 

validity is presented by the demonstration of a relationship between scores on a selection 

test (predictor) and a measure of work outcomes, known as the criterion (SIOP, 2018). 

This is done in order to obtain the operational validity of the selection test, which is an 

estimate of how well the predictor in practical use (e.g., when selecting job applicants) 

correlates with the criteria in question (Brown, Oswald, & Converse, 2017). In order to 

demonstrate this relationship, selection test scores are correlated with a criterion, such as 

job performance scores. The expected outcome is that the applicants with high scores on 

the test will have higher job performance scores. If this occurs, then the test is shown to 

be effective for its intended use. For the purpose of selection, these studies are performed 

in order to gather validity evidence that supports a certain interpretation of test scores, 

such as the prediction that high test scores will lead to higher observed job performance. 

The greater the evidence, the more likely the organization is to accept the findings and 

use the selection test in the future when selecting employees. 

Criterion-related validity studies can be conducted using two distinct designs: 

predictive and concurrent. When using a predictive design, scores on a selection test are 

obtained first, from job applicants. Then, at a later date when applicants have transitioned 

to full-time employment, criterion scores (typically on some measure of job performance) 

are collected. Scores on the predictor and criterion are then corrected in order to obtain 

the predictor test’s validity. In a concurrent validity study design, scores on the predictor 

and criterion are obtained at approximately the same time from employees in the 
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organization. This is a distinct difference between predictive and concurrent designs. A 

predictive design collects predictor data from applicants and criterion data from them 

once they are actual employees, whereas a concurrent design collects both from the 

current pool of workers. These different designs have implications for the validity 

coefficient obtained in the study. When a predictive design is utilized, applicants will 

probably be motivated to perform well on the selection test in order to get the job. A 

concurrent design uses only current job holders, in other words, people who may not 

share the same level of motivation because they are already employed by the organization 

and do not see any potential benefit exerting all of their effort on the test. This score 

distortion will affect the data and the validity coefficient.  

A criterion-related validity study is feasible if: there are adequate sample sizes, 

sufficient score ranges within the predictor and criterion, and an unbiased, relevant, and 

reliable criterion (Guion, 1998). An adequate sample helps to generalize study results to a 

larger population. Sufficient score ranges bring more variance that enable uncorrected 

coefficients to be closer to the actual population value. An acceptable criterion measure is 

needed so that the measure chosen actually provides a good approximation of the 

construct in question. 

Validity is the most important aspect to consider when attempting to develop and 

determine the effectiveness of selection procedures (SIOP, 2018). If a selection procedure 

lacks validity, it is essentially useless and may lead to lawsuits against an organization if 

it continues to be used once evidence against it appears. Despite the best efforts of 

researchers, there are statistical artifacts that can serve to decrease the size of the 
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estimated validity coefficient obtained from a validity study. One such artifact that can 

decrease a validity coefficient is range restriction (Schmidt, Hunter, & Urry, 1976). Other 

important artifacts to consider when conducting a validation study are predictor and 

criterion reliability and sampling error, as large sample sizes are needed to ensure 

adequate statistical power. Industrial-organizational psychologists strive to obtain 

accurate estimates of validity coefficients in order to accurately determine a selection 

test’s relation with job performance. Therefore, it is necessary and important to employ 

correction procedures, through the use of statistical equations, to account for the effects 

of range restriction on the obtained validity coefficients.  

Range Restriction 
 

Range restriction occurs when a researcher is seeking to estimate the relationship 

between two variables (e.g., selection test and job performance), but score variability on 

one or both variables is reduced because of selection decisions. This reduction in 

variability affects the validity coefficient by distorting its size (Raju & Brand, 2003). 

When the variance on either the predictor or criterion is smaller in the selected sample 

than in the relevant population, the sample coefficient will underestimate population 

validity (Guion, 1998). In essence, researchers desire to find a relationship between X 

(the predictor) and Y (the criterion to be predicted) in an unrestricted population, but the 

only data available are from a restricted sample (Mendoza & Mumford, 1987). 

Although selection can result in correlations of greater strength than in the 

population (e.g., if the middle of the distribution of scores are removed), the nature of 

selection in applied personnel selection (i.e., top-down selection) serves to reduce the 
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strength of correlations in the selected sample. In addition to the nature of selection, 

range restriction may increase the correlation between two variables or even show no 

effect on the relationship at all if the relationship between the predictor and criterion 

variable is not linear (Huck, 1992).  

To illustrate a situation where range restriction occurs, consider the following 

scenario. An organization is attempting to validate a test they believe can estimate future 

job performance. Those who score higher on the test are expected to perform the job 

better and selection decisions are made using this test. The sample of data available for 

the validity study only includes applicants who were actually hired. Thus, low scoring 

applicants are not included in the analysis, reducing the variability of scores on both 

predictor and criterion. This reduced variability (i.e., range restriction) reduces the 

resultant correlation between test scores and job performance (Thorndike, 1949). The 

range of scores on the selection test is restricted; therefore, the correlation between test 

scores and job performance can only be obtained from the restricted sample. In a 

situation like this, the obtained correlation is expected to be an underestimate of the 

population correlation (Henriksson & Wolming, 1998).  

Types of Range Restriction 
 

Range restriction in selection can take two forms, direct (also called explicit) or 

indirect (also called incidental). Direct range restriction occurs when applicants are 

selected top-down by test scores (Hunter, Schmidt, & Le, 2006; Sackett & Yang, 2000; 

Wiberg & Sundström, 2009). When an organization selects applicants top-down on a 

given selection test, there are no low scoring applicants hired; therefore, those applicants 
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are not included in a criterion-related validity study as they do not have criterion scores. 

Thus, a validity coefficient can only be computed from applicants who were hired. 

Consider college applications for a hypothetical United States university called Big State 

University. BSU is an institution known for its extremely rigorous admission standards. 

High School students must have high GPAs and standardized test scores to be admitted. 

Big State University will not accept students who fail to meet this high threshold. In 

correlating high school GPA or test scores with first year college GPA, a weak 

correlation would be found, contrary to expectations. As BSU only selects students with 

high test scores and GPAs, there is little variance in the data. This low level of variance 

as compared to the applicant sample is a restriction of range that leads to a low 

correlation. 

Indirect range restriction is the second form of range restriction. In this scenario, 

applicants are chosen on the basis of some other third variable (Z) that is correlated with 

the predictor variable (X) to some extent (Hunter et al., 2006; Wiberg & Sundström, 

2009; Zimmermann, Klusmann, & Hampe, 2017). As an example, to illustrate indirect 

range restriction in action, consider the Graduate Record Examination (GRE). The GRE 

is a test designed by the Educational Testing Service (ETS) and is intended to predict 

future performance of graduate school students (Kuncel, Hezlett, & Ones, 2001). 

Numerous studies have found the GRE to be a valid predictor of graduate school 

performance (Broadus & Elmore, 1983; Kuncel et al., 2001; Sleeper, 1961); therefore, it 

is typically used for graduate school selection decisions. Top-down selection of school 

applicants by GRE scores would result in direct range restriction. If graduate school 
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applicants were instead selected on the basis of a variable correlated with GRE scores 

(e.g., undergraduate GPA), then the nature of the range restriction would be indirect 

(Hunter et al., 2006). 

Correcting for Range Restriction  
 

The Standards for Educational and Psychological Testing (AERA, APA, & 

NCME, 1999) and the Principles for the Validation and Use of Personnel Selection 

Procedures (SIOP, 2018) recommend the adjustment of validity coefficients. The 

Principles state, “when range restriction distorts validity coefficients, a suitable bivariate 

or multivariate adjustment should be made when the necessary information is available” 

(SIOP, 2018, p. 14). If the assumptions regarding correction formulas are met, the 

adjusted coefficient is the best estimate of the population validity coefficient (SIOP, 

2018). 

Researchers have been examining range restriction and methods for correcting 

validity coefficients since Pearson’s (1903, 1908) work on correlations. Aitken (1934) 

and Lawley (1943) supplemented these early works by developing formulas that could be 

applied to multivariate cases of range restriction. Thorndike (1949) improved developed 

correction methods for direct and indirect range restriction. Corrections for range 

restriction have been conducted in a variety of scenarios such as test validation, selection, 

and, in more recent memory, validity generalization studies (Hedges & Olkin, 1985). 

Thorndike’s (1949) work on range restriction correction formulas has been 

studied over the years by a variety of researchers (Duan & Dunlap, 1997; Holmes, 1990; 

Linn, 1983; Ree, Carretta, Earles, & Albert, 1994). Although others have attempted to 
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develop other correction methods, Thorndike’s three correction equations (referred to as 

Cases 1, 2, and 3 in the original literature) are still consistently used in the field (Hunter 

et al., 2006). It is important for researchers to use the correct formula when correcting for 

range restriction, as correction methods employed under the wrong conditions may alter 

the corrected validity coefficient in potentially damaging ways (Alexander, Carson, 

Alliger, & Barrett, 1984).  

Correcting for Direct Range Restriction 
 

Thorndike’s (1949) Case 2 formula for correcting for direct range restriction is presented 

below. 

!!" =
#!"(%#&!)

(1 + #!"!(%#
$

&!$ − 1)
 

As mentioned, direct range restriction involves only two variables: X, the predictor 

variable through which selection was executed, and Y, the criterion. !!" is the corrected 

(thus, unrestricted) coefficient, #!" is the correlation from the restricted sample, %# and &! 

represent predictor standard deviations for unrestricted and restricted groups. This 

equation corrects for univariate range restriction, a scenario involving truncation of just a 

single variable, the predictor X. Direct range restriction can occur by selecting applicants 

above a certain cutoff score and rejecting those applicants who score below it. 
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Correcting for Indirect Range Restriction 
 

            Thorndike (1949) presented two equations to correct for indirect range restriction; 

these equations are the focus of the present study. These equations are also commonly 

referred to as Thorndike’s Case 3.  

!!" =
#!" +	#!%#"% -%&

$

&%$ 	− 	1.

(/1 +	#!%$ -%&
$

&%$ 	− 	1.0 /1 +	#"%
$ -%&

$

&%$ 	− 	1.0
 

In this equation: #!"  is the restricted correlation between the experimental predictor and 

the criterion, #"% is the restricted correlation between the criterion and the operational 

predictor, #!% is the restricted correlation between the experimental and the operational 

predictors, %&$ is the unrestricted variance of the operational predictor, and &%$ is the 

restricted variance of the operational predictor. This equation demonstrates subjects being 

selected on the operational predictor Z, a third variable with a relationship to the 

experimental predictor X.  

The second indirect range restriction correction equation proposed by Thorndike 

(1949) uses the unrestricted predictor intercorrelation (i.e., the correlation between X and 

Z). This second equation is listed below. 
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!!" =
#!"	(/1 +	!!%$ -&%

$

%&$
	− 	1.0 	+	!!%#"% 1%&&% 	− 	

&%
%&2

(/1 +	#"%$ -%&
$

&%$ 	− 	1.0
 

Aside from the substitution of the restricted predictor intercorrelation (#!%) with the 

unrestricted value (!!%), all terms in this equation are the same as the first equation. In a 

job selection scenario, !!% will be available in unrestricted form if all applicants take 

both selection tests. 

Issues with Range Restriction 
 

Corrections for range restriction are based on three assumptions: the linearity of 

regression of Y on X, homoscedasticity of error distributions, and normally distributed 

variables (Greener & Osburn, 1979). Lawley (1943, as cited in Greener & Osburn, 1979), 

however, reported that the assumption of normality is not necessary. 

Lee, Miller, and Graham (1982) corrected validity coefficients for the relationship 

between the Navy Basic Test Battery and the Navy Enlistment Exam under five different 

selection ratios, finding the corrected coefficients to be slightly overcorrected but, still 

providing better figures than the uncorrected coefficients. Brown, Stout, Dalessio, and 

Crosby (1988) also found evidence of overcorrections, citing violations of assumptions as 

the potential reason and urging that all aspects of the predictor-criterion relationship be 

examined. Overcorrection is more of a concern to researchers than under-correction, as it 

will lead to an overstatement in the predictive value of a test (Linn, Harnisch, & Dunbar, 

1981). 
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Greener and Osburn (1979) studied the accuracy of corrections for direct range 

restriction in distributions that violated the assumption of linearity, homoscedasticity, or 

both. Through their corrections, they found that for small correlations between .10 and 

.25, correlations corrected were generally no more accurate than the uncorrected 

counterparts. For correlations ranging from .30 to .60, corrected coefficients were more 

accurate than uncorrected ones. Corrections for direct range restriction seem to be 

sensitive to violations of linearity but insensitive to homoscedasticity violations. Similar 

findings were reported by Gross and Fleischman (1983). Lord and Novick (1968) noted 

that violations of assumptions are inclined to happen frequently in professional practice 

and that these violations will mostly have only minor effects on the obtained coefficients. 

Nevertheless, researchers still encourage the use of range restriction correction equations 

due to the fact that uncorrected coefficients are more biased than those that are corrected 

(Gross & Kagen, 1983). 

The Monte Carlo Method 
 

The Monte Carlo method (also known as Monte Carlo simulations or analyses) is 

a statistical technique ideal for investigating the range restriction correction equations and 

their effectiveness. The Monte Carlo Method was developed by Metropolis and Uslam 

(1949) in the 1940s while they worked at Los Alamos Laboratory in New Mexico, a site 

organized for the eventual creation of the Atomic Bomb. The Monte Carlo method allows 

for the creation of large datasets that can be manipulated. In the case of range restriction 

correction equations, many variables can be manipulated for use in the equations, such as 

the selection ratio, predictor intercorrelation, the correlation between the criterion and 
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operational predictor, and the correlation between the experimental predictor and the 

criterion. Large population sizes (e.g., a million distinct cases) can be generated through 

the Monte Carlo method. Regarding range restriction, a complete population dataset can 

be generated with a known population correlation between the predictor and criterion. 

Samples can then be drawn from this population, allowing a sample correlation to be 

computed. Next, the aforementioned variables would be manipulated and inserted into 

the equations. The equations would produce a corrected validity coefficient and the 

obtained value would be subject to comparison with the true population correlation in 

order to see the effectiveness under the various conditions present (e.g., different 

selections ratios and predictor intercorrelation).  

The Monte Carlo method is extremely useful as it does not deal with real subjects, 

freeing the researcher from limitations imposed by practical considerations (e.g., 

difficulty in collecting sufficiently large samples). Monte Carlo analyses rely solely on 

computer algorithms for data creation. They can explore a variety of possible conditions 

related to the correction equations such as the level of range restriction and the strength 

of correlations. A disadvantage of the Monte Carlo method is that the conditions explored 

during the course of the analysis may not mirror actual conditions in a real-world setting.  

Current Study 
 

Thorndike (1949) offered two different methods for use in correcting indirect 

range restriction. The equations are similar with the only differences due to the nature of 

the predictor intercorrelation; the correlation between X and Z is restricted in one version, 

whereas it is unrestricted in the other. When correcting for indirect range restriction, the 
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equation using the restricted predictor intercorrelation is commonly used (Zimmerman et 

al., 2017) and is often the only version of the correction printed in personnel psychology 

textbooks (cf. Guion, 1998). Thorndike’s unrestricted predictor intercorrelation equation 

has the potential to provide more accurate results (i.e., estimates of the unrestricted 

correlation between 3 and 4 that are closer to the actual unrestricted value) than the more 

common form that uses the restricted predictor correlation. There are two reasons to 

hypothesize this greater accuracy. First, a larger sample size is employed in the 

unrestricted predictor intercorrelation, thereby reducing the effects of sampling error. 

Second, use of the unrestricted correlation avoids the additional error that arises from any 

range restriction correction; in the case of the common Thorndike correction, the 

restricted correlation between X and Z is itself corrected for direct range restriction so that 

the correlation between X and Y may be corrected for indirect range restriction.  

When selection decisions are made in organizations, the unrestricted predictor 

intercorrelation is available if all applicants take both tests (i.e., the operational and 

experimental predictors). The present study employed Monte Carlo techniques to 

investigate the accuracy of the two indirect range restriction equations developed by 

Thorndike (1949). It is hypothesized that the indirect range restriction equation that uses 

the unrestricted predictor intercorrelation will be more accurate than the form of the 

equation utilizing a restricted predictor intercorrelation. 

Four variables were manipulated in this study: the selection ratio and the three 

bivariate correlations between X, Y, and Z. Correlations from a range restricted sample 

were computed and adjusted with both indirect range restriction correction equations. 
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Accuracy of the equations were determined by comparing the corrected sample value 

with the known population value. 

Method 
Conditions 
 

 Four variables were manipulated in this study. The selection ratio, the proportion 

of the number of hired to the job to the number in the applicant sample, was set to .01, .1 

and .5 (e.g., when the selection ratio = .5, 300 cases were randomly selected from the 

population to serve as the applicant sample, 150 of which were selected for the hired 

sample). The population correlation between the experimental predictor and the criterion 

(i.e., !#() was set to .3 and .5. The population correlation between the operational 

predictor and experimental predictor (i.e., !&#) was set to .3, .5, and .7. Finally, the 

population correlation between the operational predictor and criterion (i.e., !(&) was set 

to .3 and .5. Thus, the experiment consisted of 36 conditions, three selection ratio 

conditions and twelve correlational conditions for 3 x 2 x 3 x 2 design. 

Procedure  
 

 For each of the twelve correlational conditions a dataset was generated to form a 

population of 1,000,000 cases, each with scores on the experimental predictor (X), the 

operational predictor (Z), and the criterion variable (Y). Scores on all three variables were 

standardized with a mean of zero and a standard deviation of 1.0. Within each condition, 

a random sample of cases was drawn from the population to serve as the applicant 

sample. From this applicant sample, cases with the top 150 scores on the operational 

predictor were selected (i.e., top-down selection) for the hired sample, thereby inducing 
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indirect range restriction on the experimental predictor. Thus, the sample size was 100 for 

all of the restricted correlations. A range-restricted correlation was then computed within 

each sample. This correlation was corrected using both versions of Thorndike’s (1949) 

Case 3 correction equations, the equation utilizing the restricted predictor intercorrelation 

(i.e., the more common version) and the equation that calls for the use of the unrestricted 

predictor intercorrelation (i.e., the less common version). The corrected correlations were 

then compared to the known population correlation to determine the accuracy of each 

equation. Finally, a third corrected correlation was generated by correcting the sample 

correlation via a misapplication of the restricted predictor intercorrelation equation. For 

this correction, the more common equation, which calls for the restricted correlation 

between the operational and experimental predictor, was used with the unrestricted 

predictor intercorrelation. This correction was performed to determine the amount of 

error caused by a simple misapplication of the equation. Finally, a no range restriction 

condition in which cases from the applicant sample were randomly selected for the hired 

sample was created to serve as a baseline for accuracy for the corrected correlations. 

 In summary, range restricted correlations were corrected three ways: with the 

restricted predictor intercorrelation equation, with the unrestricted predictor 

intercorrelation equation, and with a misapplication of the restricted predictor 

intercorrelation equation in which the unrestricted predictor intercorrelation is employed 

instead of the restricted value. There was also an uncorrected condition in which cases 

were randomly selected in order to avoid the effects of range restriction. 
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For all corrected correlations accuracy was determined by the signed (i.e., raw) 

difference between the population correlation (i.e., 5#() and the various sample 

correlations corrected for indirect range restriction as well as the squared difference 

between these values. Results were averaged across 1,000 replications for each condition. 

Results 
 

 Tables 1-6 list mean bias (i.e., mean error) and mean squared bias (i.e., mean 

squared error) for the three selection ratios employed in the study for a no range 

restriction (and thus, no correction) baseline condition, range restriction corrected with 

the two equations (the restricted predictor intercorrelation and the unrestricted predictor 

intercorrelation versions), and range restriction corrected with an incorrect application of 

the more common equation (where the unrestricted predictor intercorrelation is used in 

place of the restricted value called for by the equation). Tables 7-12 list Cohen’s d values 

for the comparison of bias and squared bias for each of the three correction equations to 

the no range restriction (and thus no correction) condition. These Cohen’s d values 

indicate how much more bias and squared bias is present with the range restricted 

corrected values as compared to a condition where there were no range restriction effects. 

Inspection of these tables offers some information regarding the effectiveness of 

these correction equations. Bias was similar across all selection ratios, although the 

unrestricted predictor intercorrelation correction equation provided slightly more accurate 

estimates. As to squared bias, the two equations displayed comparable levels across all 

selection ratios when the operational and experimental predictors were highly correlated 

(.7). However, when the selection ratios were low (.1 and .01) and the two predictors 

were not highly correlated (!#& = .5 and .3), squared bias was greater when correlations 
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were corrected using the restricted predictor intercorrelation equation than with the 

unrestricted predictor intercorrelation equation. For example, when the selection ratio 

was .01 and when !#( = .3, !#( = .5, and !#&  = .3, Cohen’s d for the restricted predictor 

intercorrelation was .635 whereas d for the unrestricted predictor intercorrelation 

equation was .033. These results provide support for our hypothesis that the unrestricted 

predictor intercorrelation equation provides more accurate (lower levels of squared bias) 

estimates than is provided by the restricted predictor intercorrelation equation. 

Incorrect usage (inserting the unrestricted predictor intercorrelation into the 

equation which calls for the restricted correlation) provided less precise estimates across 

all conditions. This effect was best illustrated when a .01 selection ratio was utilized as 

Cohen’s d values for squared bias ranged from .60 to 1.22. Similar values were also 

found for bias when incorrect usage occurred. For example, when  !#( = .3, !#( = .5, 

and !#&  = .3, Cohen’s d for bias was -1.38. Incorrect usage resulted in less accurate 

estimates for selection ratios of .1 and .5, as well. In one scenario where !#( = .3, !#( = 

.5, and !#&  = .7, and SR =.1, Cohen’s 6 for bias was -.75. When SR = .5 in this 

condition, Cohen’s 6 was -.34. However, across both selection ratios within this same 

condition, Cohen’s 6 values for both the restricted predictor intercorrelation and 

unrestricted predictor intercorrelation equations ranged from .13 to .16, highlighting just 

how inaccurate estimates can be when the correction equation is used in an inaccurate 

manner. In summary, although there are situations where the bias and squared bias are 

comparable for correct application of the two equations (e.g., when predictor 

intercorrelations or selection ratios are high), there is always a price to be paid in 

accuracy when the traditional equation is used incorrectly. 
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Discussion 
 

The purpose of this study was to determine if the unrestricted predictor 

intercorrelation form of the Thorndike (1949) equation correcting for indirect range 

restriction would provide more accurate estimates (closer to the population correlation) 

than the restricted predictor intercorrelation form of the equation. Industrial-

organizational psychologists routinely use predictive validity studies in order to 

determine a relationship between selection test scores and later job performance. Indirect 

range restriction occurs when applicants are selected on the basis of higher scores on the 

operational predictor, a predictor that is not the focus of the validation study. Researchers 

and practitioners want the most accurate estimate possible of the unrestricted population 

correlation to make informed decisions. As mentioned, when selection decisions are 

made in organizations, the unrestricted predictor intercorrelation will be available if all 

applicants take both tests (i.e., the operational and experimental predictors) in a 

predictive design. Therefore, it is of value to know which equation estimates the 

population correlation with greater accuracy as well as the conditions under which it does 

so. 

Across many of the conditions examined in this study, use of the unrestricted 

predictor intercorrelation equation over the restricted predictor intercorrelation equation 

did not affect estimated unrestricted correlation. However, there were some conditions in 

which the unrestricted predictor intercorrelation equation estimate was decidedly closer 

to the population correlation than its counterpart. When the correlation between the two 

predictors and the selection ratio were both low, the unrestricted predictor intercorrelation 

equation displayed lower levels of squared bias. Additionally, incorrect usage of the 
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traditional correction equation resulted in greater inaccuracy than both the traditional and 

alternate equation. In fact, incorrect usage frequently resulted in massive errors, with 

Cohen’s d values for squared bias as high as 1.21. 

It is not surprising that the restricted predictor intercorrelation and the unrestricted 

predictor intercorrelation forms of the correction equations performed similarly when 

range restriction was moderate (.5 selection ratio) and diverged in quality when range 

restriction effects were more extreme (.1 and .01 selection ratios) as the increased levels 

of range restriction led to larger corrections, and larger corrections magnify errors in the 

correction. More extreme levels of range restriction are likely to magnify weaknesses 

inherent to an equation. What is surprising is that for a given selection ratio, lower levels 

of predictor intercorrelation also demonstrated this pattern of results where the 

unrestricted predictor intercorrelation equation outperformed the restricted predictor 

intercorrelation correction equation. Because the restricted predictor intercorrelation  and 

unrestricted predictor intercorrelation versions of the indirect range restriction correction 

vary only on whether the restricted or unrestricted predictor intercorrelation is used, it 

might be expected that their results would converge at lower levels of this correlation as 

the difference between the two values would be at a minimum. Our study found the 

opposite effect: lower levels of predictor intercorrelation led to the greatest differences 

between the two equations in terms of squared bias; squared bias was comparable 

between the two equations at higher levels of predictor intercorrelation. 

Conclusion 
Researchers and practitioners need guidance for performing adjustments for the 

effects of range restriction. It is necessary to have the most accurate estimate of the true 

population correlation to make sound research and business decisions, such as the hiring 
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of employees. The results of this study indicate that it would be beneficial for scholars 

and practitioners to correct for indirect range restriction using the equation that calls for 

the unrestricted predictor intercorrelation when that correlation is available.  
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Table 1 

Mean and Standard Deviation of Bias (.5 Selection Ratio) 

Note. N = 1000 for all values. 

 

 

 

 

 

  

Population 

Correlation 

5#(  5&(  5#& 

 Baseline (no 
restriction) 

Restricted ##& 
Equation 

Unrestricted 

##& Equation 

Incorrect 
Usage 

  M SD M SD M  SD M SD 
 

.3    .3    .3  .007 .075 .004 .083 .005 .079 -.015 .082 
 

.3    .3    .5  .0001 .072 -.002 .087 -.002 .084 -.019 .089 
 

.3    .3    .7  -.0003 .077 .007 .093 .007 .093 -.002 .097 
 

.3    .5    .3  .0004 .072 .0004 .087 -.001 .073 -.045 .076 
 

.3    .5    .5  .006 .077 .006 .09 .004 .081 -.044 .083 
 

.3    .5    .7  -.004 .074 .009 .089 .007 .087 -.031 .088 
 

.5    .3    .3  -.001 .062 .006 .067 .007 .065 -.005 .067 
 
.5    .3    .5  .002 .063 .005 .077 .006 .077 .007 .083 

 
.5    .3    .7  .0007 .063 .004 .087 .004 .087 .018 .094 

 
.5    .5    .3  .001 .062 .004 .07 .004 .059 -.029 .061 

 
.5    .5    .5  .001 .061 .007 .071 .006 .065 -.023 .068 

 
.5    .5    .7   .0006 .061 .005 .071 .005 .07 -.011 .072 
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Table 2 

Mean and Standard Deviation of Squared Bias (.5 Selection Ratio) 

Note. N = 1000 for all values. 

 

  

Population 
Correlation 

5#(  5&(  5#& 

 Baseline (no 
restriction) 

Restricted	##& 
 Equation 

Unrestricted  

##&Equation 

Incorrect 
Usage 

  M SD M SD M SD M SD 

 
.3    .3    .3 

 .006 .008 .007 .01 .006 .009 .006 .009 

 
.3    .3    .5 

 .005 .007 .008 .01 .007 .01 .008 .011 

 
.3    .3    .7 

 .006 .008 .009 .012 .009 .012 .009 .013 

 
.3    .5    .3 

 .005 .007 .008 .011 .005 .008 .008 .01 

 
.3    .5    .5 

 .006 .008 .008 .012 .007 .009 .009 .012 

 
.3    .5    .7 

 .006 .008 .009 .011 .008 .011 .009 .011 

 
.5    .3    .3 

 .004 .005 .005 .006 .004 .006 .005 .006 

 
.5    .3    .5 

 .004 .006 .006 .009 .006 .009 .007 .011 

 
.5    .3    .7 

 .004 .005 .008 .011 .008 .011 .009 .014 

 
.5    .5    .3 

 .004 .005 .005 .007 .004 .005 .005 .006 

 
.5    .5    .5 

 .004 .005 .005 .007 .004 .006 .005 .006 

 
.5    .5    .7 

  .004 .006 .005 .007 .005 .007 .005 .007 
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Table 3 

Mean and Standard Deviation of Bias (.1 Selection Ratio) 
 

Note. N = 1000 for all values. 

 

  

Population 
Correlation 

5#(  5&(  5#& 

 Baseline (no 

restriction) 
Restricted ##&  

Equation 

Unrestricted   

##&	Equation 

Incorrect 

Usage 

  M SD M SD M  SD M SD 
 
.3    .3    .3  -.0005 .075 .009 .095 .008 .085 -.033 .11 

 
.3    .3    .5  .003 .072 .012 .11 .012 .104 -.017 .135 

 
.3    .3    .7  .001 .074 .019 .132 .018 .131 .002 .152 

 
.3    .5    .3  -.004 .075 .009 .105 .004 .074 -.099 .087 

 
.3    .5    .5  .002 .074 .004 .107 .003 .087 -.099 .11 

 
.3    .5    .7  .004 .075 .019 .115 .016 .11 -.072 .122 

 
.5    .3    .3  -.0009 .063 .009 .078 .013 .069 

-
.0009 .095 

 
.5    .3    .5  -.0004 0.06 .013 .09 .017 .09 .034 .125 
 

.5    .3    .7  .004 .064 .003 .108 .005 .11 .044 .133 
 

.5    .5    .3  .001 .064 .007 .085 .007 .057 -.066 .072 
 

.5    .5    .5  .001 .06 .01 .085 .006 .069 -.05 .09 
 

.5    .5    .7   -.0007 .06 .015 .101 .013 .096 -.013 .112 
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Table 4 

Mean and Standard Deviation of Squared Bias (.1 Selection Ratio) 
 

Note. N = 1000 for all values. 

 

 

 

 

 

  

Population 

Correlation 

5#(  5&(  5#& 

 Baseline (no 
restriction) 

Restricted##&   
Equation 

Unrestricted 

##&	Equation 

Incorrect 
Usage 

  M SD M SD M SD M SD 

 
.3    .3    .3 

 .006 .008 .009 .012 .007 .01 .013 .016 

 
.3    .3    .5 

 .005 .008 .012 .017 .011 .016 .012 .026 

 
.3    .3    .7 

 .005 .008 .018 .026 .018 .027 .023 .034 

 
.3    .5    .3 

 .006 .008 .011 .015 .005 .008 .018 .018 

 
.3    .5    .5 

 .006 .008 .011 .016 .008 .011 .021 .023 

 
.3    .5    .7 

 .006 .008 .014 .02 .012 .019 .02 .023 

 
.5    .3    .3 

 .004 .005 .006 .009 .005 .008 .009 .014 

 
.5    .3    .5 

 .004 .005 .008 .013 .008 .014 .017 .027 

 
.5    .3    .7 

 .004 .005 .012 .018 .012 .019 .02 .033 

 
.5    .5    .3 

 .004 .006 .007 .01 .003 .005 .009 .01 

 
.5    .5    .5 

 .004 .005 .007 .01 .005 .007 .011 .013 

 
.5    .5    .7 

  .004 .005 .01 .016 .009 .016 .013 .019 
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Table 5 

Mean and Standard Deviation of Bias (.01 Selection Ratio) 

Population 
Correlation 

5#(  5&(  5#& 

 Baseline (no 
restriction) 

Restricted ##&  
Equation 

Unrestricted   

##&	Equation 

Incorrect 
Usage 

  M SD M SD M  SD M SD 
.3    .3    .3  -.0008 .076 -.0009 .114 .009 .09 -.042 .155 

 
.3    .3    .5  -.0007 .074 -.012 .129 -.011 .115 -.05 .181 

 
.3    .3    .7  .002 .076 .04 .154 .035 .158 .019 .199 

 
.3    .5    .3  

 
.0000 .074 .003 .125 .003 .076 -.135 .117 

 
.3    .5    .5  .0007 .077 .044 .131 .021 .106 -.108 .153 
 

.3    .5    .7  .0003 .075 .04   .15 .027 .14 -.096 .168 
 

.5    .3    .3  -.0002 .063 .02 .089 .024 .073 .009 .137 
 

.5    .3    .5  .0009 .061 .012 .107 .02 .109 .07 .179 
 

.5    .3    .7  .004 .062 .024 .134 .032 .143 .106   .19 
 

.5    .5    .3  .004 .063 .002 .102 .01 .059 -.092 .103 
 

.5    .5    .5  -.001 .06 .039 .115 .032 .098 -.007 .163 
 

.5    .5    .7   .003 .062   .04 .129 .035 .126 .005 .164 

Note. N = 1000 for all values. 
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Table 6 

Mean and Standard Deviation of Squared Bias (.01 Selection Ratio) 

Population 

Correlation 

5#(  5&(  5#& 

 Baseline (no 
restriction) 

Restricted	##&  
Equation 

Unrestricted  

##&	Equation 

Incorrect 
Usage 

  M SD M SD M  SD M SD 
 
.3    .3    .3  .006 .008 .013 .019 .008 .013 .026 .033 

 
.3    .3    .5  .006 .007 .017 .025 .013 .019 .035 .043 

 
.3    .3    .7  .006 .009 .025 .037 .026   .04   .04 .057 

 
.3    .5    .3  .005 .008 .016 .021 .006 .009 .032   .03 

 
.3    .5    .5  .006 .009 .019 .027 .012   .02 .035 .038 

 
.3    .5    .7  .006 .008 .024 .038    .02 .035 .037 .045 

 
.5    .3    .3  .004 .005 .008 .013 .006 .011 .019 .034 

 
.5    .3    .5  .004 .005 .012 .016 .012 .019 .037   .06 

 
.5    .3    .7  .004 .006 .019 .029 .022 .035 .047 .076 

 
.5    .5    .3  .004 .005     .01 .015 .004 .007 .019   .02 

 
.5    .5    .5  .004 .005 .015 .021 .011   .02 .027 .044 

 
.5    .5    .7   .004 .005 .018     .03 .017 .032 .027 .045 

Note. N = 1000 for all values. 
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Table 7 

Cohen’s d for Bias as Compared to Baseline Condition (.5 Selection Ratio) 

Population 

Correlation 

5#(  5&(  5#& 

 
Restricted 

##& 
 Equation 

Unrestricted 

##& 
 Equation 

Incorrect 

Usage 

 

.3    .3    .3  -0.02 -0.02 -0.28 
 

.3    .3    .5  -0.02 -0.03 -0.24 
 

.3    .3    .7  0.09 0.09 -0.02 
 

.3    .5    .3  0.001 -0.02 -0.62 
 

.3    .5    .5  0.002 -0.02 -0.63 
 

.3    .5    .7  0.15 0.13 -0.34 
 

.5    .3    .3  0.11 0.12 -0.06 
 

.5    .3    .5  0.05 0.07 0.07 
 

.5    .3    .7  0.04 0.05 0.22 
 

.5    .5    .3  0.04 0.05 -0.5 
 

.5    .5    .5  0.07 0.07 -0.37 
 

.5    .5    .7   0.07 0.06 -0.18 

Note. N = 1000 for all values. 
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Table 8 

Cohen’s d for Squared Bias as Compared to Baseline Condition (.5 Selection Ratio) 

Population 

Correlations 

5#(  5&(  5#& 

 
Restricted  

##&  
Equation 

Unrestricted 

##& 
 Equation 

Incorrect 

Usage 

 

.3    .3    .3  0.14 0.07 0.15 
 

.3    .3    .5  0.28 0.24 0.34 
 

.3    .3    .7  0.27 0.26 0.32 
 

.3    .5    .3  0.26 0.03 0.29 
 

.3    .5    .5  0.22 0.08 0.29 
 

.3    .5    .7  0.26 0.22 0.33 
 

.5    .3    .3  0.12 0.07 0.12 
 

.5    .3    .5  0.27 0.25 0.34 
 

.5    .3    .7  0.41 0.42 0.5 
 

.5    .5    .3  0.18 -0.05 0.14 
 

.5    .5    .5  0.21 0.09 0.21 
 

.5    .5    .7   0.2 0.17 0.24 

Note. Correction equation estimates were compared to the baseline. 
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Table 9 

Cohen’s d for Bias as Compared to Baseline Condition (.1 Selection Ratio) 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
Note. N = 1000 for all values. 

 

 

 

 

 

  

Population 
Correlation 

5#(  5&(  5#& 

 
Restricted 

##&   
Equation 

Unrestricted 

##&  
Equation 

Incorrect 

Usage 

 

.3    .3    .3  0.11 0.1 -0.35 
 

.3    .3    .5  0.1 0.1 -0.19 
 

.3    .3    .7  0.17 0.16 0.004 
 

.3    .5    .3  0.14 0.11 -1.18 
 

.3    .5    .5  0.02 0.01 -1.1 
 

.3    .5    .7  0.16 0.13 -0.75 
 

.5    .3    .3  0.14 0.21 0.005 
 

.5    .3    .5  0.17 0.22 0.35 
 

.5    .3    .7  -0.01 0.02 0.39 
 

.5    .5    .3  0.08 0.1 -0.99 
 

.5    .5    .5  0.12 0.08 -0.067 
 

.5    .5    .7   0.19 0.17 -0.14 
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Table 10 

Cohen’s d for Squared Bias as Compared to Baseline Condition (.1 Selection Ratio) 

Population 

Correlation 

5#(  5&(  5#& 

 
Restricted 

##&  
Equation 

Unrestricted 

##&  
Equation 

Incorrect 

Usage 

 

.3    .3    .3  0.34 0.18 0.59 
 

.3    .3    .5  0.51 0.43 0.68 
 

.3    .3    .7  0.64 0.61 0.71 
 

.3    .5    .3  0.45 -0.02 0.86 
 

.3    .5    .5  0.47 0.21 0.91 
 

.3    .5    .7  0.52 0.47 0.82 
 

.5    .3    .3  0.3 0.14 0.49 
 

.5    .3    .5  0.48 0.46 0.68 
 

.5    .3    .7  0.57 0.57 0.66 
 

.5    .5    .3  0.37 -0.15 0.66 
 

.5    .5    .5  0.46 0.19 0.71 
 

.5    .5    .7   0.55 0.49 0.66 

Note. N = 1000 for all values. 
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Table 11 

Cohen’s d for Bias as Compared to Baseline Condition (.01 Selection Ratio) 

 

Note. N = 1000 for all values. 

  

Population 

Correlation 

5#(  5&(  5#& 

 
Restricted 

##&   
Equation 

Unrestricted 

##&   
Equation 

Incorrect 

Usage 

 

.3    .3    .3  -0.002 0.116 -0.341 
 

.3    .3    .5  -0.112 -0.103 -0.357 
 

.3    .3    .7  0.313 0.266 0.115 
 

.3    .5    .3  0.033 0.036 -1.383 
 

.3    .5    .5  0.405 0.224 -0.896 
 

.3    .5    .7  0.333 0.238 -0.746 
 

.5    .3    .3  0.264 0.356 0.088 
 

.5    .3    .5  0.123 0.216 0.516 
 

.5    .3    .7  0.194 0.257 0.723 
 

.5    .5    .3  -0.018 0.099 -1.121 
 

.5    .5    .5  0.441 0.411 -0.045 
 

.5    .5    .7   0.362 0.327 0.018 
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Table 12 

Cohen’s d for Squared Bias as Compared to Baseline Condition (.01 Selection Ratio) 

Population 

Correlation 

5#(  5&(  5#& 

 
Restricted 

##&   
Equation 

Unrestricted 

##&  
Equation 

Incorrect 

Usage 

 

.3    .3    .3  0.496 0.218 0.828 
 

.3    .3    .5  0.606 0.545 0.957 
 

.3    .3    .7  0.73 0.712 0.842 
 

.3    .5    .3  0.635 0.033 1.22 
 

.3    .5    .5  0.651 0.365 1.05 
 

.3    .5    .7  0.672 0.574 0.976 
 

.5    .3    .3  0.435 0.235 0.604 
 

.5    .3    .5  0.648 0.591 0.769 
 

.5    .3    .7  0.698 0.702 0.803 
 

.5    .5    .3  0.571 -0.07 1.02 
 

.5    .5    .5  0.733 0.48 0.726 
 

.5    .5    .7   0.67 0.574 0.72 

Note. N = 1000 for all values. 
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