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The objective of this study is to empirically test existing techniques to calculate 

the likely range of values for a Classical Test Theory true score given an observed score. 

The traditional method for forming these confidence intervals has used the standard error 

of measurement (SEM) as the basis for this confidence interval. An alternate equation, 

the standard error of estimate (SEE), has been recommended in place of the SEM for this 

purpose, yet it remains overlooked in the field of psychometrics. It is important that the 

correct equation be used in various applications in personnel psychology. Monte Carlo 

analyses were conducted to investigate the performance of the various methods for 

computing a confidence interval around an observed score. Results indicated that the SEE 

equation used with an observed score regressed to the mean most accurately and 

efficiently located an individual’s true score.
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Introduction 

The interpretation of test scores is central to many functions within the field of 

industrial-organizational (I-O) psychology. Such decisions may concern an 

organization’s selection, promotion, training, development, and performance 

management procedures. Given the nature of the decisions being rendered, it is crucial 

that researchers and practitioners apply accurate methods to maximize the benefits of this 

research and practice (Gasperson, Bowler, Wuensch, & Bowler, 2013).  

Classical Test Theory 

Classical Test Theory (CTT), the oldest theory of measurement (Spearman, 

1904), provides a framework for the interpretation and development of psychological test 

and assessment reliability (Lord & Novick, 1968). CTT explores the relationship between 

information that can be gathered from observation and information that is unobservable 

(Spearman, 1904). Most notably, the theory states that an individual’s observed score (X) 

equals the sum of the hypothetical true score (T) plus measurement error (E).  

X = T + E 

Observed score. The observed score, X, is a random variable consisting of a 

stable component (T) and a random component (E). The observed score is the number of 

points an individual receives on a given test. This score fluctuates based on the amount of 

random error present. Therefore, examiners cannot assume that the observed score is an 

accurate representation of an individual’s true abilities or the true score (Harvill, 1991).  

Error score. The term E, defined as random error (Lord & Novick, 1968; 

Pedhazur & Schmelkin, 1991), is a random variable that does not include
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a stable or systematic component. The following assumptions define the nature of E. 

Across test takers, scores on E are uncorrelated with scores on T (!!" = 0, Equation 

2.7.1b, Lord & Novick, 1968, p. 36). Across test takers, scores on E from an 

administration of parallel forms of a test are uncorrelated (!!#!$ = 0; Equation 2.7.1d, 

Lord & Novick, 1968, p. 36). Finally, across administrations of the same test to a given 

test taker, the expected value for E is zero ($($) = 0; Equation 2.4.2, Lord & Novick, 

1968, p. 31). CTT accepts the concept of error such that there will generally be random 

error present in measurement for reasons that include administration or procedural 

variations, environmental factors, instrumental limitations, or other factors. Depending on 

the nature of the random error, an individual’s observed score can be affected either 

positively or negatively. For example, an individual may accidentally circle an incorrect 

answer on a question for which they knew the answer, an error which would result in a 

negative error score and an observed score lower than the true score. On the other hand, 

an individual may guess correctly on a question for which they did not know the answer, 

an error which would result in a positive error score and an observed score higher than 

the true score.  

True score. The true score represents the part of the observed score that is free 

from random error of measurement (literally: T = X – E). Unlike the observed score, CTT 

assumes that the true score remains constant over time. T is the expected value of X 

across repeated measurements (i.e., $(') = (; Equation 2.3.1, Lord & Novick, 1968, p. 

30) as X = T + E and the expected value of E is zero (thus, $(') = ( + 0). The true score 

is the theoretical value that represents an individual’s score if no random error is present.  
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Systematic error in classical test theory. Systematic error occurs in the same 

manner in repeated measurements of a test taker and influences the mean of these 

repeated measurements as much as it influences each individual measure (Guion, 1965). 

A few examples of systematic error are test wiseness, rater leniency, or a faulty answer 

key; in all of the cases, scores in each instance will be affected in the same way. 

After considering the particular distinctions between each component of the CTT 

equation, Guion (1965) proposed it may be helpful to rephrase the basic equation as:  

X = s + e 

Guion (1965) explained, “Now, instead of t (true measure), the equation considers s 

(systematic measure) to be a composite of a true measure and any constant error. In this 

revision of the equation, e represents only that residual error which is random and 

unpredictable” (p. 29).  

Although it may be appealing to have both random and systematic measurement 

errors contained in the E component (leaving T as the errorless term within the classical 

test theory model), the assumptions of classical test theory do not allow for such a 

structure. It is crucial to understand that the names of the terms do not define their 

characteristics; the corresponding assumptions define these characteristics. 

Reliability. The consistency and dependability of test scores is important for one 

to make meaningful inferences about those scores (Harvill, 1991). The CTT model of a 

test score (observed score equals the sum of the true score and error score) can also be 

expressed in terms of variance: the variance of the observed score equals the variance of 

the true score plus the variance of the error scores (Gulliksen, 1950).  

*%$ = *&$ + *'$	 
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From this variance expression, CTT defines reliability as the ratio of true score variance 

to observed score variance.  

!%% =
*&$
*%$

 

The reliability coefficient for a given test reveals the extent to which the observed 

score variance is due to true score variance. True score and observed score variances 

would be equal in the case of perfect reliability (+1.00). The reliability coefficient 

indicates the percent of observed score variance that is not random error; lower levels of 

random error will lead to a higher reliability coefficient. The reliability of a test is 

estimated from obtained test scores from a group of examinees and can provide 

examiners with a good indication of whether measurement errors may be present or 

absent for the given group. However, reliability does not allow for the assessment of 

individual scores (Harvill, 1991). Reliability coefficients can be estimated through a 

variety of methods such as alternate forms, split-half, test-retest, and interrater reliability 

methods. Each of these procedures provide examiners with a value that estimates how 

free the test or measurement is from random error. Once the reliability coefficient is 

determined, further steps can be taken to estimate the role random error plays in an 

individual score.  

Confidence Intervals and True Scores 

 As discussed, individual obtained or observed scores are collected upon 

completion of a test or measurement. Examiners know the observed score, but do not 

know the error score or true score. The observed score is insufficient because it does not 

necessarily represent an individual’s true ability or true score due to the presence of 

random error. Confidence intervals are utilized to assist in determining the likely range of 
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values of an individual’s true score. The theoretical true score rather than the observed 

score should be considered in applied personnel activities. The addition of confidence 

intervals to observed scores is an effective way to report test scores to examinees or other 

interested persons and allows the unreliability of test scores to be expressed in a 

nontechnical way (Harvill, 1991).  

 Confidence intervals were first introduced to statistical hypothesis testing by 

Neyman (1937) and play a prominent role within CTT. Using an upper and lower limit on 

the score scale, confidence intervals produce a range of possible test scores within which 

an individual’s true score is likely to exist (Harvill, 1991). These intervals allow for 

probabilistic statements about a true score. As with significance tests, confidence 

intervals are based on the standard error of the statistic. The application of confidence 

intervals to observed scores is complicated in that confidence intervals in classical test 

theory can be structured two different ways which call for two different standard error 

formulations, the standard error of measurement (SEM) and the standard error of estimate 

(SEE).  

Standard Error of Measurement 

The standard error of measurement is the standard deviation of errors of 

measurement that is associated with the test scores for a specified group of test taskers 

(AERA, APA, & NCME, 2014). The SEM equation provides the average magnitude of 

random error on a test for a given true score. The SEM is calculated by subtracting the 

reliability of the test from one, taking the square root of that difference, and multiplying 

the square root value by the standard deviation of the test scores (Dudek, 1979; Harvill, 

1991).  
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*$, =	*%-1 − !%% 

A test’s reliability is directly related to the SEM, which emphasizes the 

importance of obtaining a sound estimate of the reliability coefficient. If the reliability of 

a test equals zero, the SEM will equal the standard deviation of the observed test scores. 

If a test reliability is perfect (equaling one) the SEM will be zero. Higher reliability 

means less random error is present in individual observed scores. The SEM and the 

reliability coefficient each provide valuable information, but the SEM allows one to make 

statements regarding error at the individual score level, whereas the reliability coefficient 

is an index of the error present in the test as a whole (Ghiselli, Campbell, & Zedeck, 

1981). 

To use the SEM to address error at the individual score level, a confidence 

interval is formed. Typically, 95% confidence intervals are used, although 99% or 68% 

intervals are also employed. As Cascio, Outtz, Zedeck, and Goldstein (1991) stated, the 

“SEM is an estimate of the standard deviation of the normal distribution of test scores 

that an individual would obtain if he or she took the test an infinite number of times” (p. 

240). In other words, 5% of the observed scores will deviate from their true score by 

more than 1.96 SEMs. 

Because the SEM indicates the standard deviation of observed scores if the true 

score is held constant, any use of this equation to form a confidence interval around a 

given observed score to determine the likely location of a true score is a misapplication of 

the SEM equation (Dudek, 1979). Dudek noted that although textbooks have called 

attention to this misuse of the SEM for years (e.g., Guilford, 1954; Lord & Novick, 1968; 

Nunnally, 1978), the equation continues to be misused. Dudek (1979) highlighted this 
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misconception in order to guide and inform readers of the appropriate method, the 

standard error of estimate.  

Standard Error of Estimate  

As previously discussed, the SEM serves as an estimate of the variability 

expected for observed scores when the true score is held constant. Use of the SEM to set 

confidence intervals to locate true scores is in error (Dudek, 1979). Setting confidence 

intervals in search of true scores requires an index of error when the observed score is 

held constant (Dudek, 1979). This equation necessary for this application is given by 

Lord and Novick (1968) and is referred to as the standard error of estimate (SEE). The 

equation for SEE is similar to the SEM equation as it contains all of the same components 

in a slightly different arrangement.  

*$$ = 	*%-!%%(1 − !%%) 

Compared to the SEM, the SEE is smaller by a factor of the square root of the reliability 

(*$$ = *$,√!%%).  

In addition to his arguments regarding the correct form of standard error for 

confidence intervals around an observed score, Dudek (1979) also argued that the interval 

should be based on an adjusted version of the observed score. This adjustment is a 

regression to the mean adjustment in which the observed score is moved closer to the 

mean (i.e., made less extreme). This adjustment is needed because extreme observed 

scores are often extreme due to the presence of large (in the same direction) $ scores. 

That is, in these cases $ is often very different from the expected value of $ (i.e., 0), 

inflating the observed score. Thus, when applying confidence intervals in search of an 

individual’s true score, one should not simply use the observed score value but the 
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observed score value regressed toward the mean. This adjusted value is calculated by 

subtracting the mean of observed scores from the observed score, multiplying this 

difference by the test reliability, and adding the product to the observed score mean.  

'(&) = '1 + !%%(' − '1) 

In summary, the suggested applications necessary for an accurate calculation of 

confidence intervals around an observed score with the goal of locating the true score 

includes the use of both the SEE equation (in place of the SEM equation) and the 

observed score value regressed toward the mean (Dudek, 1979). Proper procedures for 

locating the true score given an observed score are important as applications of these 

procedures extend beyond academic psychometric applications to applied decision 

making procedures (e.g., statistical banding). 

The Present Study  

The present study employed Monte Carlo analytic techniques to explore the 

accuracy of the various ways to compute a confidence interval to locate a true score given 

an observed score. A Monte Carlo analysis is a statistical technique that generates large 

datasets to test statistical models and procedures. Monte Carlo analyses have the benefit 

of allowing the researcher to explore the effectiveness of statistical methods in a variety 

of conditions with large sample sizes, thus serving as an appropriate means for evaluating 

this study’s proposed research question.  

I expected that a SEE based 95% confidence interval formed around an observed 

score regressed to the mean will exhibit the best performance; this interval will include 

the true score with the desired accuracy (i.e., 95%) and will evenly balance true scores 

outside of the interval (i.e., overestimates equal underestimates). Additionally, the SEE 
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interval has the advantage of hitting both of these goals with a narrower width than a 

SEM interval.  

Method 

Design 

A Monte Carlo analysis was executed to assess the accuracy of both the SEM and 

SEE equations in conjunction with the presence or absence of a regression to the mean 

adjustment to the observed score. Thus, there were four types of confidence intervals 

computed within each condition: a SEM based confidence interval with and without a 

regression to the mean adjustment to the observed score and a SEE based confidence 

interval with and without a regression to the mean adjustment to the observed score.  

 Only one variable, reliability, was manipulated for this study. The accuracy of the 

four methods for computing the confidence interval was evaluated at nine levels of 

reliability ranging from .1 to .9 (in .1 increments).  

Sample 

I used the random number generator function (normal distribution) of SAS (SAS 

Institute, 2013) to generate a true score and error score for each case. The use of 

randomly generated variables satisfies the CTT assumption of uncorrelated true scores 

and error scores as random variables are uncorrelated with other variables. Observed 

scores were computed as the sum of the true and error scores. One million cases were 

generated for each condition. Results were averaged across these one million trials.  

Dependent Variables  

 Because this is a Monte Carlo design and because true scores and error scores (as 

well as the resultant observed scores) are known for each case, the success of the 
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confidence interval at locating the true score could be assessed. For reliability levels 

ranging from .1 through .9 (in .1 increments), the accuracy of the 95% confidence 

intervals were assessed for the four confidence interval formulations.  

23*')_,-./ =X +/- (1.96*SEM) 

23*')_(&) = '(&) +/- (1.96*SEM) 

23*''_,-./ =X +/- (1.96*SEE) 

23*''_(&) = '(&) +/- (1.96*SEE) 

If the confidence interval contained the true score, then the outcome was coded as 

successful for that confidence interval. Thus, the dependent variable is dichotomous with 

1 representing a true score falling within the given confidence interval and 0 representing 

a true score falling outside of the interval. A 95% confidence interval functioning 

correctly will include the true score in 95% of the trials. The mean success of the 

confidence interval was computed across the one million trials.  

 In addition, for those cases for which the SEM based confidence interval without 

a regression to the mean adjustment (i.e., the most common form of this interval) failed to 

include the true score, we also assessed whether the true score was located between the 

population mean and the lower bound of the interval (meaning the interval was too 

extreme) or beyond the upper bound of the interval (meaning the interval was too 

conservative). 

Results 

The means for the four proposed confidence interval equations across the nine 

reliability conditions are listed in Table 1. Each mean represents the percentage of cases 

in which the confidence interval successfully captured the true score, with 95% accuracy 
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being desired. The SEM based confidence interval with a regression toward the mean 

adjustment demonstrated the highest percentage, capturing the true score in 99% of the 

trials. If a confidence interval designed to capture the true score in 95% of the cases 

contains the desired value more than 95% of the time then the interval must be 

considered too wide. The least accurate equation is the SEE based confidence interval 

without a regression to the mean adjustment as it produced an average accuracy rate of 

only 78%. Appearing appropriately accurate are the SEM based confidence interval 

without a regression toward the mean adjustment and the SEE based confidence interval 

with a regression toward the mean adjustment, each with ideal average accuracy rates of 

95%. Although these two equations are tied for accuracy, we must recognize that the 

SEM based confidence interval without a regression to the mean adjustment produces a 

wider (by factor of 1 √!%%⁄ ) confidence interval than the SEE based confidence interval 

with a regression toward the mean adjustment. Therefore, given that the accuracy of the 

intervals is equal, the SEE based confidence interval with a regression toward the mean 

adjustment is more useful than the SEM based confidence interval without a regression 

toward the mean adjustment. 

In short, the SEM based 95% confidence interval (without a regression to the 

mean adjustment) that has been traditionally used does capture the true score 95% of the 

time. However, this confidence interval is inefficient as it is wider than is necessary. The 

SEE based interval with a regression to the mean adjustment should be preferred.  
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Table 1 

Proportion of Trials Where a Confidence Interval on the Observed Score Contained the 

True Score for Different Methods of Computing the Confidence Interval 

Reliability 

(!%%) 

SEM- 

NORM 
SEM-RTM 

SEE- 

NORM  
SEE-RTM 

M M M M 
0.1 0.949 1.000 0.464 0.949 

0.2 0.950 0.999 0.619 0.949 

0.3 0.949 0.999 0.716 0.950 

0.4 0.950 0.997 0.784 0.949 

0.5 0.949 0.994 0.833 0.950 

0.6 0.949 0.988 0.870 0.949 

0.7 0.949 0.980 0.898 0.949 

0.8 0.949 0.971 0.920 0.949 

0.9 0.950 0.961 0.936 0.950 

Total 0.949 0.988 0.782 0.949 

 
      

Note. N = 1000000 for individual reliability conditions, N = 9000000 for 

total.  
 

 As an additional analysis of the remaining 5% of cases not captured by the SEM 

based confidence interval without a regression toward the mean adjustment, we examined 

where the confidence interval missed the true scores. Table 2 displays the number of 

cases and the percentage of these cases in which the true score was located between the 

population mean and the lower bound of the interval (meaning the confidence interval 

was too extreme) across nine conditions of reliability. 
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Table 2 

Location of True Scores Outside of SEM-NORM CI 

Reliability (!%%) 
5 cases 

not in CI 

Percent beyond upper 

bound 

Percent below lower 

bound 

0.1 50,044 0.0% 100.0% 

0.2 49,788 0.0% 100.0% 

0.3 50,243 0.0% 100.0% 

0.4 49,852 0.0% 100.0% 

0.5 50,189 1.2% 98.8% 

0.6 50,190 3.2% 96.8% 

0.7 50,035 6.7% 93.3% 

0.8 50,112 12.3% 87.7% 

0.9 49,779 21.8% 78.2% 

 

 As shown in Table 2, the SEM based confidence interval without a regression 

toward the mean adjustment, in addition to being unnecessarily wide, is biased as regards 

the cases for which it fails to contain the true score. The data in Table 2 demonstrate that 

at all reliability levels the true score falls between the mean and the lower bound of the 

interval far more often that it falls beyond the upper bound. Thus, the SEM based 

confidence interval without a regression toward the mean adjustment was not only wider 

than the SEE based confidence interval with a regression toward the mean equation, but 

also missed the true scores in an uneven manner. Ideally, there should be an even balance 

of the missed true scores. Most of the time, the true score was not captured by the 

confidence interval due to the interval resting too far from the mean. This result explains 

why the regression toward the mean adjustment to the SEM equation allows the 

confidence interval to capture an ample amount of otherwise missed cases in the SEM 

equation without the regression toward the mean adjustment.  
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Discussion 

Dudek (1979) argued that confidence intervals formed around observed scores for 

the purpose of locating true scores are in error when constructed with the SEM equation. 

The purpose of this study was to empirically test this claim and compare the accuracy and 

efficiency of various methods for computing the confidence interval around an observed 

score. I-O psychologists and other personnel decision-making professionals regularly use 

statistical tools such as confidence intervals to interpret test scores and guide 

organizational procedures such as selection, promotion, training, development, and 

performance management. Therefore, it is essential that the mathematical formulas 

calculating the confidence intervals are applied in the appropriate manner.  

Results produced by this Monte Carlo simulation allowed for the simple rejection 

of the SEE based confidence interval without a regression toward the mean adjustment 

with the accuracy rates falling well below the 95% target. Both the 95% SEE based 

interval with a regression toward the mean adjustment and the 95% SEM based interval 

without a regression toward the mean adjustment appeared to perform as advertised as 

they capture the hypothetical true score 95% of the time. Although both equations 

demonstrated the same accuracy, the SEE based interval with a regression toward the 

mean adjustment has an advantage in efficiency as it produces a narrower interval than 

the SEM based confidence interval without a regression toward the mean adjustment. It is 

self-evident that a narrower interval is more useful in locating an individual’s true score.  

 Additional analysis of the SEM based confidence interval without a regression 

toward the mean adjustment demonstrated a further inefficiency in that the calculated 
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interval was located too far from the mean, resulting in missed true scores that were far 

more likely to be below the lower bound of the mean than beyond the upper bound.  

Practical Implications and Future Research 

 Standard error of the difference. The commonly computed SEM value is 

traditionally used in a supplemental calculation known as the standard error of the 

difference (SED; Gulliksen, 1950). The SED provides a range of observed scores in 

which one cannot deem significantly different from one another because of the possible 

range of true scores (Cascio et al., 1991). Gasperson et al. (2013) conducted a study that 

specifically concerned the potential effects of calculating the SED with the SEM vs. the 

SEE and found substantial variations in banding-based selection decisions depending on 

whether the SED formula used the SEM value or SEE value. These observed variations 

(selection means, selections by race, and minority selection ratios) are a result of smaller 

bands produced when the SED formula is employed using the SEE value (Gasperson et 

al., 2013).  

Statistical banding. Statistically based banding or test score banding is a 

technique within the field of psychometrics that uses the SED to guide employment 

decisions. The SED allows one to create a range of observed scores that are deemed 

equivalent based on the assumption that solitary observed scores are considerably 

unreliable (Gasperson et al., 2013). The concept of statistical banding began to emerge in 

the mid-1980s and serves as an alternative to strict top-down selection (Sproule, 1984). 

Specifically, this additional method was introduced in order to address concerns of 

adverse impact while also minimizing the loss of utility (Cascio et al., 1991).  
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Given the proposed inaccuracy of the SEM equation per Dudek (1979), 

Gasperson et al. (2013) conducted a study to explore the correct way in which bands 

should be established. Differences in employment decisions were assessed when bands 

were created using the SEM based SED versus the SEE based SED. Although only two 

data sets were examined, Gasperson et al. (2013) noted variations in band sizes and 

selection decisions while comparing the two SED procedures, supporting the 

modifications proposed by Dudek (1979). When the SEM based SED was used, larger 

bands were produced which led to at least one employee who was erroneously accepted 

and another who was erroneously rejected (Gasperson et al., 2013). Given the gravity of 

employment decisions and the potential legal implications of such decisions, practitioners 

must ensure they are referring to the most accurate formula and method in guiding their 

personnel practices.  

Diversity and inclusion. As diversity and inclusion currently serve as popular 

topics among organizations, pressure on proper selection strategies that work to minimize 

adverse impact will only continue to increase. Racial, gender, disability, and veteran 

representation within an organization depends upon initial selection procedures. 

Gasperson et al. (2013) presented evidence supporting this concern in the form of 

differences in band sizes and selection decisions when comparing the use of the SEM 

based SED and the SEE based SED. These findings indicated the need for additional 

research in this area such as the simple exploration of additional data sets to ensure 

professionals are using the most statistically sound method.  

Organizational resources. In addition to ethical and legal concerns, the proper 

application of the SEE equation can also result in the preservation of organizational 
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resources. By accurately estimating individual true scores, thus increasing precision in 

selecting the most capable/qualified candidates for employment or promotion, an 

organization could potentially save both time and money. This increased precision can in 

turn have a positive impact on overall organizational success as the most fitting 

applicants with the highest potential for productivity and development are selected.   

Conclusion 

 As indicated through the findings in this analysis, the comparison of SEM and 

SEE equations (with and without mean adjustments) are worthwhile. Differences among 

the confidence interval ranges and location of uncaptured true scores should continue to 

be noted, along with further examination of differences in SED calculations and potential 

banding variations. Applying these considerations to data sets varying in both size, 

reliability, and type (real world data vs. simulated data) would be beneficial in this area 

of study.  
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