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The purpose of this thesis is to study the dependence structure of exchange rate

pairs using a mixture of copula as opposed to a single copula approach. Mixed

copula models have the ability to generate dependence structures that do not belong

to existing copula families. The flexibility in choosing component copulas in this

mixture model aids the construction of a system that is simultaneously parsimonious

and flexible enough to generate most dependence patterns in exchange rate data.

Furthermore, the method of mixture copulas facilitates the separation of both the

structure and degree of dependence, concepts that are respectively embodied in two

essential and distinct parameters for the study of dependence – the weight parameters

and the association parameters. The model proposed was constructed to capture

various dependence patterns using carefully chosen mixtures of Gaussian, Gumbel and

Clayton copulas. We used a two stage semi-parametric approach by first estimating

the marginal distributions of each exchange rate pair non-parametrically, and then

plugging in the empirical CDF’s into the copula. The empirical findings of this

experimental study shows a high tendency that each of the exchange rate pairs would

either appreciate or depreciate together against the US dollars and that relationship is

stronger than that implied by the Gaussian assumption. Our proposed copula mixture

model therefore adequately represents the dependence function which appropriately

captures the dependence structure between each of the exchange rate pairs in this

experimental study. The implications for these findings will be useful for central

bank’s monetary policies aimed at exchange rate price stabilization as well as for

vii



other stake holders in the exchange rates business. It can also be applied to a wide

range of analysis in economics, finance, health, engineering, biology and other related

disciplines.
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Chapter 1

INTRODUCTION

In simple terms, the value (price) of a country’s currency in relation to the currency

of another country is referred to as the exchange rate. Modeling the interdependence

between exchange rates is of great interest in areas where joint distributions are re-

quired and in areas where more than a linear correlation is required. This includes

areas of risk management, asset pricing, and portfolio management. In terms of ag-

gregate output, fluctuations in the exchange rates may affect the economy in a way

that tend to move prices of imports and the competitiveness of the export industry

which in turn partly determines the nature of a country’s balance of payment. Cen-

tral banks use information from this analysis to make important decisions regarding

currency interventions. Exchange rates are also used in the valuation of derivatives

such as multivariate currency options, and used to hedge against exposure to several

currencies in investment portfolio management (Scotti & Benediktsdottir, 2009).

Over the past few years, a number of studies related to economics and finance

have investigated the interdependence and contagion of exchange rate series. Yang

et al. (2016) finds that three main types of studies focused on the issue of interde-

pendence in foreign exchange markets. An example of the first type is a study by

Engle et al. (1988), who contend that exchange rates react not only to shocks in

individual markets but also to shocks transmitted across markets. The study used

the generalized autoregressive conditional heteroskedasticity (GARCH) model, and

since then many papers have discussed the interdependence of exchange rate returns

based on the GARCH framework. For example, Pérez-Rodŕıguez (2006) finds from re-

search based on the dynamic conditional correlation (DCC) GARCH model that, the

correlation between the EUR/USD and GBP/USD is particularly high. The second

type of study is one that considers the cause-and-effect relationships among different
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currencies. For example, Spagnolo et al. (2005) provides the causality relationship

among forward and spot exchange rates by employing a Markov switching model

and instrumental variables. Further, Kenourgios et al. (2011) finds, by applying the

vector autoregressive model and Granger causality tests, that the implied volatility

of the EUR affects the GBP and the CHF. Beirne & Gieck (2014) also finds that,

using a global vector autoregression (VAR) model, the interdependence of foreign

exchange markets is notable in developed markets. The third type of study considers

non-linear dependence based on the copula functions. For example, Patton (2006),

by employing a time-varying copula model provides evidence that the dependence

between the DEM/USD and JPY/USD exchange rates is asymmetric. He also finds

that the degree of dependence when the currencies depreciate is higher than when

they appreciate. Further, Dias & Embrechts (2010) model the dependence of the EU-

R/USD and the JPY/USD returns based on the copula-GARCH model. They find

that a time-varying copula with the proposed interdependence specification gives bet-

ter results than alternative dynamic benchmark models. According to Patton (2006),

asymmetric responses of central banks to exchange rate movements is a possible cause

of asymmetric dependence. For example, Patton (2006) explained that a desire to

maintain the competitiveness of Japanese exports to the United States with German

exports to the United States would lead the Bank of Japan to intervene to ensure

a matching depreciation of the yen against the dollar whenever the Deutsche mark

(DM) depreciated against the U.S. dollar. On the other hand, a preference for price

stability could lead the Bank of Japan to intervene to ensure a matching appreciation

of the yen against the dollar whenever the DM appreciated against the U.S. dollar.

A distortion of balance in these two objectives could cause asymmetric dependence

between these exchange rates. According to Patton (2006), if the competitiveness

preference dominates the price stability preference, we would expect the DM and yen

2



to be more dependent during depreciation against the dollar than during appreciation.

The importance of the dependence among different exchange rates cannot be un-

derstated, yet they are difficult to predict. This is simply because there are numerous

economic and geopolitical factors that affect the exchange rates between two countries

especially in a floating regime. They appear to affect each other (Yang et al., 2016).

Copulas have been used to study the dependence in many financial and economic

time series, (Patton, 2009) and (Patton, 2012). We will investigate the dependency

in four exchange rates using a mixed copula approach as opposed to the popular

single-copula approach. This is particularly due to the fact that different pairs of

exchange rates may show different dependence structures and strengths. Therefore,

there is no single copula that is applicable to all situations. By a cautious selection

of component copulas in the mixture, we will be able to construct a model that is

simultaneously simple and flexible enough to generate most dependence patterns in

exchange rate data (Hu, 2006). This thesis is based on the third type of studies, the

analysis of the non-linear dependence based on copula functions.

We will analyze the exchange rates of Yen, Euro, Australian dollars and the British

Pounds Sterling to the US dollars. We will proceed by estimating the mixture model

using a two stage semi-parametric procedure. This procedure will make our estimation

robust and free from specification errors since we will first estimate the marginals non-

parametrically and then plug in the empirical CDF’s into the mixture copula. We

will then use the method of Maximum Likelihood (ML) Estimation to estimate the

parameters in the mixture copula. The process we use in this paper is based on

the assymptotic distribution derived in Genest & Rivest (1993) which shows that

under some regularity conditions the ML Estimators in this semi-parametric setup

are consistent and asymptotically normal (Hu, 2006). Since most exchange rates data

are usually conditional hetroskedastic we will employ the ARMA-GARCH filtering
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techniques to the exchange rates to take care of possible serial correlation. We will

then employ Monte Carlo experiments to study the performance of the ML estimator

based on the ARMA-GARCH filtered data. Finally to test for the performance of

our model, we will employ the Goodness of Fit test and a Diagnostic test. Our data

comprises weekly exchange rates based on the US dollar in relation to the Euro, the

Japanese Yen, the Australian dollar and the British Pounds covering a sample period

from January 8, 1999 to December 27, 2019 with a total of 1095 observations.

This thesis contribute to the current research in the following ways. First, it

compensate for the lack of academic studies on the use of copula mixture models

to measure the dependence structure of exchange rates. Second, it examines the

dependence structure between the four most traded exchange rates which is the first

of its kind. Thus it seeks to provide useful implications for investors and policy makers

related to risk management across different regimes. Moreover, understanding the

dependence between exchange rates provides meaningful information to carry on a

trade.

The structure of the remainder of this thesis as follows: Chapter 2 presents the

statistical models; Chapter 3 describes the estimation procedure; Chapter 4 discusses

the data and main results; and Chapter 5 concludes the study.
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Chapter 2

THE STATISTICAL MODELS

This section describes briefly the statistical models employed in the analysis of this

work. It begins by introducing the ARMA-GARCH model for individual exchange

rates and then discuss copulas and the mixed copula model.

2.1 The ARMA-GARCHModel for Individual Exchange Rates

The inference procedures utilized in this thesis are based on asymptotic distribu-

tions derived for independent and identically distributed (i.i.d) data. However, ex-

change rate series are usually autocorrelatd and conditional heteroscedastic instead

of i.i.d. Hence, before we make inferences about the dependence structure among dif-

ferent exchange rates, we first filter the exchange rate series using an ARMA-GARCH

model. In effect researchers adopt the choice of ARMA models for the conditional

mean and GARCH models for the conditional variance in time series analysis and

modeling (Patton, 2009; Scotti & Benediktsdottir, 2009; Yang et al., 2016). The

autoregressive-moving-average model (ARMA) gives a parsimonious description of a

typical stochastic process relating two polynomials, the AR (Autoregression) and the

MA (Moving averages). Usually, the notation ARMA(r,m) refers to a model with r

autoregressive terms (lags) and m moving-average terms (lags). Hence we will first

filter the time series using ARMA-GARCH filteration before we conduct any inferen-

tial studies. The general ARMA(r,m) component in our model for the conditional

mean is expressed as:

xt = c +
r

∑
i=1

φixt−i +
m

∑
j=1

θiεt−j + εt (2.1.1)

where,
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i. xt is the time series to be modeled.

ii. c is a constant.

iii. r is the number of autoregressive orders.

iv. m is the number of moving average orders.

v. φi is the autoregressive coefficients.

vi. θj is moving average coefficient.

vii. εt is the error. Note that the error term εt is also called the innovations.

Note that the deterministic component of Equation (2.1.1), c+∑ri=1 φixt−i+∑mj=1 θiεt−j,

presents the value of the exchange rate in a current state as function of past obser-

vations and errors. The term εt, is the random component in Equation (2.1.1). This

term is usually considered to have a mean of 0 and constant variance. We will utilize

this term for the construction of the GARCH part (variance modeling) of our model

and later use it in the copula. However, since investors and policy makers behave

differently in different time horizons depending on different times, the error term in

the time series for the exchange rates series, εt, do not satisfy the homoscedstic as-

sumption of constant variance. In other words, the variance of the error term (εt)

varies with time and this kind of volatility (heteroskedasticity) which depends on the

observations of the immediate past is known as conditional variance. The exchange

rate series used in this thesis like many other practical time series will have to be

filtered first using ARMA-GARCH model before the asymptotic distribution theories

for i.i.d data can be applied. ARCH (auto-regressive conditional heteroskedasticity)

models were introduced by Robert Engle to account for this behavior of the error

term. Here, the conditional variance process is given an autoregressive structure and

the log series are modeled as a white noise multiplied by the volatility, as shown in

Equation (2.1.4). In 1986, Tim Bollerslev re-defined the ARCH model to allow it to

have an additional autoregressive structure within itself. The GARCH(p, q) part of
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the model is given by Equation (2.1.3). The conditional variance of the innovations

εt, σ2
t is defined as:

σ2
t = V art−1(εt) = Et−1(ε2t ). (2.1.2)

The Generalized Autoregressive Conditional Heteroskedasticity, GARCH (p, q),

for the conditional variance of innovations, εt, is given by:

σ2
t = k +

p

∑
i=1

Giσ
2
t−i +

q

∑
j=1

Ajε
2
t−j. (2.1.3)

Note that successive innovations are not independent although they are uncorre-

lated. Actually, the direct generating mechanism for GARCH innovations process,

εt, is εt = σtzt, where zt is a standardized, independent, identically distributed (i.i.d)

random variable drawn from some specified probability distribution, usually Gaussian

(Pham & Yang, 2010), where σt is the conditional standard deviation.

The ARMA-GARCH model can be summarized in the following equations:

xt = c +
r

∑
i=1

φixt−i +
m

∑
j=1

θiεt−j + εt, (2.1.4)

εt = σtzt, zt ∼ N(0,1)

σ2
t = k +

p

∑
i=1

Giσ
2
t−i +

q

∑
j=1

Ajε
2
t−j, (2.1.5)

where equation (2.1.4) is the ARMA part used to model the mean and Equation

(2.1.5) is the GARCH part used to model the variance. For example, the ARMA(1,1)-

GARCH(1,1) model can be expressed as:

xt = c + φ1xt−1 + θ1εt−1 + εt

7



σ2
t = k +G1σ2

t−1 +A1ε2t−1.

In selecting the orders of the ARMA component for each individual exchange

rate, the method of Bayesian Information Criterion (BIC) was applied. This method

is applied to select the number of lags to be used in the ARMA model. This method

selects the model with the lowest BIC. However, for the GARCH component in par-

ticular, the simpler GARCH(1,1) model has become widely used in financial time

series modeling and is implemented in most statistics and econometric software pack-

ages. GARCH(1,1) models are favored over other stochastic volatility models by

many economists and mathematicians due to their relatively simple implementation.

Also, it is usually sufficient in capturing all of the dependence in the conditional

variance, implying that higher order models such as GARCH(4,3) are not necessary

(Lumsdaine, 1996; Kat & Heynen, 1994; Lumsdaine, 1995).

2.2 The Copula

A copula is a multivariate function of the marginal distributions which restores

the joint distribution among random variables. Technically, it is a multivariate cum-

mulative distribution function for which the marginal probability distribution of each

variable is uniform on the interval [0,1]. It is used to describe the dependence between

random variables. This dependence is important in multivariate studies. The idea

of a copula can be dated back to the 19th century when modeling multivariate non-

Gaussian distributions was gaining momentum. Modern theories and applications

about copula was introduced by Sklar (1959), which states that an n-dimensional

joint distribution can be decomposed into its n univariate marginal distributions and

an n-dimensional copula (Sklar, 1959).
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Theorem 2.1. [Sklar, 1959] Suppose that H is a distribution function on Rn with

marginal distributions F1, . . . , Fn, then there is a copula C such that

H(x1, . . . , xk) = P [F1(X1) ≤ F (x1), . . . , Fn(Xn) ≤ Fn(xn)] = C [F1(x1), . . . , Fk(xn)]

(2.2.1)

If H is continuous, then C is unique and is given by

C(u1, . . . , un) =H [F −11 (u1), . . . , F −1n (un)]

for u = (u1, . . . , un)T ∈ [0,1]n where xT is the transpose of the vector of x and

F −1i (ui) = inf{x ∶ Fi(x) ≥ u}, i = 1, . . . , n. Conversely, if C is a copula on [0,1]n

and F1, . . . , Fn are distribution functions on R, then the distribution function defined

in (2.2.1) is a distribution function on Rn with marginal distributions F1, . . . , Fn.

As can be seen, a copula maps from a [0,1]k to [0,1] and connects a k marginal

distributions to restore a joint distribution. This means that it models the dependence

between individual random variables. Thus, from Theorem 2.1, a copula uses the

CDF’s (pseudo observations) instead of the actual observations. Because of this,

the measurement is invariant under increasing and continuous transformations of the

data. This idea is very important when dealing with applied economic data, for

example, where the natural logarithm function is usually applied.

This thesis considers bivariate relationships where the symbols x and y (x, y ∈ R)

denotes the observations of random variables of X and Y respectively; and u, v

(u, v ∈ [0,1]) to denote their marginal CDFs. We therefore provide a few definitions.

The density(PDF) of a bivariate copula is given by:

c(u, v) = ∂C(u, v)
∂u∂v

. (2.2.2)

The density of the bivariate distribution H(x, y) which can be restored by multi-

plying the copula density with the marginals fX(x) and fY (y) is written as:

9



h(x, y) = c(FX(x), FY (y))fX(x)fY (y). (2.2.3)

A copula C(u, v) exhibits a left tail dependence if,

lim
u→0

C(u,u)
u

= λl > 0. (2.2.4)

This tail dependence is very important property of a copula.

A copula will model a right tail dependence if,

lim
u→1

C(u,u) + 1 − 2u

1 − u = λr > 0. (2.2.5)

We introduce the rank correlation statistics called the Kendall’s τ . This is a rank

correlation which models the relationship between the rankings instead of the actual

values of the observations. Hence, it is a robust measure and provides an alternative to

linear correlation coefficient for non-elliptical distributions (Hu, 2006). The Kendall’s

τ is defined as:

τ(X,Y ) = P [(X1 −X2)(Y1 − Y2)>0] − P [(X1 −X2)(Y1 − Y2)<0], (2.2.6)

where τ ∈ [−1,1]. A positive τ means positive dependence and a value close to 1 or

-1 implies stronger dependence.

The moment condition below gives the relationship between the Kendall’s τ and a

Copula:

τ = 4∫
1

0
∫

1

0
C(u, v)dC(u, v) − 1. (2.2.7)

We now consider how the idea of a single copula can be extended to a mixture of

different copulas in the spirit of our model specification.
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2.3 The Mixed Copula Model

We make use of three copulas in our mixture model: the Gaussian copula, the

Gumbel copula, and the Clayton copula. Gaussian copula has symmetric structure

while the other two are asymmetric with Gumbel copula showing heavy right-tail

dependence and Clayton copula showing heavy left-tail dependence. Note that the

choice of these three copulas allows us to model various dependence structures, which

is very common in financial and economic data analysis. A Gaussian copula can be

represented as:

Cg(u, v;ρ) = Φρ(φ−1(u), φ−1(v)), (2.3.1)

where φ is the univariate normal distribution and Φρ is the standardized bivariate

normal distribution with correlation ρ, (ρ ∈ [−1,1]). Also, the higher the association

parameter ρ, the stronger the dependence. To extend this copula to the multivariate

case, we just replace ρ with a correlation matrix. For all elliptical distributions, the

following relationship holds:

ρ = sin(π
2
τ), (2.3.2)

where τ is the Kendall’s τ and will be discussed later in the chapter.

Figure 2.3.1 shows the scatter plot (top left), contour plot (top right), the cross

sectional contour plot (bottom left), and the density (bottom right) of a Gaussian

copula with ρ = 0.5. Note that the density and contour plots of the copula is based

on the definition as expressed in Equation (2.3.1). Also, we observe from the shape

of the density plot(bottom right) that with regards to market returns, a Gaussian

dependence structure exhibits an equal likelihood for a market to either boom or
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crash together due to its symmetric nature. The shape of the cross sectional plot

(buttom left) indicates a significantly stronger dependence structure during extremes

in relation to market returns. These paramount increase in correlations from tranquil

periods to volatile periods is called “correlation breakdown” and thus the constancy

of correlation overtime between returns such as this cannot be vouched. Boyer et

al. (1997) proposes that correlation can barely reveal a thing about the underlying

nature of the dependence in such situations. This is because the assumptions for

Gaussian distributions themselves requires higher correlations conditional on large

co-movements (Patton, 2006). We can make a comparison between the estimated de-

pendence and that of the Gaussian dependence to find out whether there is unusual

excess co-movement. For the estimated dependence, when the dependence in volatile

periods is higher than that computed in the tranquil periods and when these depen-

dencies are significantly higher than that implied from the Gaussian, then we conclude

the presence of contagion. This in effect will be against the Gaussian assumptions.

The Gumbel copula is the next copula in our mixture model. It can be represented

by the equation:

Cm(u, v;α) = exp{−[(−log(u))α + (−log(v))α] 1
α}, (2.3.3)

Here, the association parameter is α, and α ∈ [1,∞). The relationship between α and

the strength of dependence is positive. We have:

α = 1

1 − τ (2.3.4)

which can be derived from Equation (2.2.7). Figure 2.3.2 shows the scatter plot(top

left), contour plot(top right), cross sectional plot(buttom left) and the density plot(buttom

right) of the gumbel copula. We observe that the Gumbel copula is asymmetric about
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Figure 2.3.1: The (a) scatter plot ,(b) contour plot, (c) cross sectional plot and (d)
the density plot of a Gaussian Copula with ρ = 0.5.

(1/2, 1/2) and more density is put on the right tail. Using Equations (2.2.4) and

(2.2.5) we can easily show that the Gumbel copula is right tailed dependence . That

is λl = 0 and λr = 2 − 2
1
α . Also, the shape of the density (buttom right) of the cop-

ula from Figure 2.3.2 implies that if two markets are more likely to boom together

rather than crash together in terms of market returns, this copula will perform well

in capturing such dependence.

The third copula function in the mixture is the Clayton copula which is defined

as:
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Figure 2.3.2: The (a) scatter plot, (b) contour plot, (c) cross sectional plot and (d)
the density plot of a Gumbel Copula with α = 0.5.

Cc(u, v;β) =max([u−β + v−β − 1]
−1
β ,0) (2.3.5)

where β ∈ [−1,∞)/{0}.

The relationship between the parameter β, of Clayton copula and Kendall’s τ is

β = 2τ
1−τ .

The characteristics of the Clayton copula is equivalent to the opposite of the

Gumbel copula. It captures the left tail dependence. Precisely, using Equations

(2.2.4) and (2.2.5), we can show that the Clayton copula has a positive left tail

dependence. That is, λr = 0 and λl = 2
−1
β . Figure 2.3.3 shows the scatter plot(top left),
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Figure 2.3.3: The (a) scatter plot, (b) contour plot, (c) cross sectional plot and (d)
the density plot of a Clayton Copula with β = 0.5.

contour plot(top right), cross-sectional plot(buttom left) and the density plot(buttom

right) of the Clayton copula. The shape of the density plot(buttom right) implies that

when two markets are likely to crash together than boom together, this copula will

do a better job of modeling such a situation.

Below is a practical example showing the difference between the three dependence

structures used in this research. If we take a Kendall’s τ between two exchange rates

series to be 0.2, then from Equations (2.3.2) and (2.3.4), we can compute ρ = 0.31,

α = 0.8 and β = 0.5 for the Gaussian, Gumbel and Clayton copulas respectively.

Therefore, the probability that two pairs of exchange rates are in their lowest 5th
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percentiles and their highest 95th percentiles are given in Table 2.3.1. For the pur-

pose of illustration, we add the percentiles of an independent copula. As we expect,

the probability that both exchange rates returns hits their lowest 5th and highest

95th percentiles for the Gaussian copula are both equal to 0.0073. This is due to

its symmetric nature. However, when a Gumbel and Clayton copulas are used to

measure the dependence, we realize the probability that the two exchange rates are

in their lowest 5th percentile decreases to 0.0054 and then increases to 0.0158 for the

Clayton copula. Clayton copula is therefore seen to be astute in capturing left tail

dependence. Note that when we ignore any correlation between the two exchange

rates, as can be seen from the last column of the table, the results would have led

to a significant underestimation of the joint dependence between the exchange rates

pair. Similarly, we see the probability that two markets are in their highest 95th

percentile as measured using the Gumbel copula is 0.0146, which is greater than both

the Gaussian and Clayton copulas probability estimates. Thus, the Gumbel copula is

suitable for measuring right tail dependence. We realize again that ignoring the con-

ditional dependence between the two exchange rate pairs would have underestimated

the results in terms of the probability, as can be seen from the last column of Table

2.3.1.

quantiles Gussian Gumbel Clayton Independent
5% 0.0073 0.0054 0.0158 0.0025
95% 0.0073 0.0146 0.0037 0.0025

Table 2.3.1: Percentiles for different copula structures.

By implication, we can infer that the probability that both markets are in their

highest 95th percentile is 0.0073 or about 7 times in a millennium. However, when

we assume the Gumbel copula, the probability of such an event is 0.0146, which is
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about 15 times in a millennium, more than twice as likely than under the Gaussian

assumption.

We will define the mixture of copula model using these three different copulas as

follows:

Cmix(u, v;ρ,α, β,w1,w2) = w1Cg(u, v;ρ) +w2Cm(u, v;α) + (1 −w1 −w2)Cc(u, v;β)

(2.3.6)

where,

i. w1 and w2 are both between 0 and 1 and w1 + w2 ≤ 1. Also, w1 and w2 are the

weight parameters that reflect the dependence structures.

ii. ρ, α and β are the association parameters (degree of dependence).
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Chapter 3

ESTIMATION PROCEDURE

3.1 The Two-Stage Estimation

To estimate the parameters in the copula model, there are generally two main

approaches. In the first approach, one may estimate the copula and the marginal

distributions simultaneously. Utilizing the method of Maximum likelihood estimator

(MLE), one can easily compute the likelihood using the density from Equation (2.2.3).

This approach requires that the parameters in the marginals and that in the copula

are estimated jointly, thus it may lead to complex computational issues. In addition,

this requires that the marginal distributions be explicitly specified and any error in the

specification step will be detrimental to the estimation of the copula. In the second

approach, one can estimate the model in two stages. The first stage requires that we

estimate the marginals assuming that the two random variables are independent. In

the second stage, we plug the estimated marginal functions into the copula and use

MLE to estimate the parameters in the copula. This thesis makes use of the second

approach in our estimations. That is estimating the marginals non-parametrically

and then plugging in the empirical CDF’s into the copula. Since we do not have to

specify the marginals, our estimation will be robust and will avoid errors due to the

marginal specification issues.

In short, to estimate the mixed copula between two data series {Xt}nt=1 and {Yt}nt=1,

i. First filter the original data with ARMA-GARCH model.

ii. Second, compute the empirical CDFs of each filtered series assuming indepen-

dence.

iii. Finally, use EM algorithm to implement the estimation.
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3.2 Data Filtration

We apply the asymptotic theories presented in Genest et al. (1995) for i.i.d. data

which shows that the ML estimators in this semi-parametric setup are consistent and

asymptotically normal. But, economic and financial data are far from i.i.d. They are

usually conditional heteroskedastic. We solve this problem by filtering our data using

the ARMA-GARCH filter. In Table 3.2.1, we report the estimates, with standard

errors in parentheses, of the ARMA-GARCH parameters for the four exchange rates

as defined in Equations 2.1.4 and 2.1.5.

We further conduct an experiment to show the validity of the filtration. We

make use of the Monte Carlo simulations to implement this experiment. During this

experiment, we compare three MLE estimators for i.i.d. data, filtered GARCH data,

and unfiltered GARCH data. The study is conducted on a Gumbel copula with true

value of parameter α = 2.0. We set the number of iterations to be 1000 and the sample

size to be 2000. We let α̂ denote the ML estimator of α. In Figure 3.2.1, the solid

line(black) shows the density of α̂ when the data is i.i.d.; the dashed line(red) shows

the density of α̂ when the data is filtered and generated by GARCH(1, 1) and; the

dotted line(blue) shows the density of α̂ when the data is unfiltered and generated

by GARCH(1, 1). We observe that the estimator for filtered GARCH data (mean =

2.0009) closely resemble the estimator for i.i.d. data (mean = 2.0019) but, when the

data is unfiltered and GARCH (mean = 1.8454), we observe the estimator is biased

to the left. This implies that, whenever we have conditional heteroscedastic data,

large volatility clustering results in underestimation of the degree of dependence.
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Exchange Rates ARMA Orders ARMA Constants ARMA Coefficient GARCH Constant Lagged Variance lagged ε2

AUS/US (0, 1) 0.000089 0.267745 0.000007 0.103536 0.853525
(0.000424) (0.031638) (0.000001) (0.012515) (0.015427)

Euro/US (0, 1) 0.000030 0.260660 0.000002 0.073061 0.914051
(0.000327) (0.030981) (0.000010) (0.121006) (0.134039)

Pounds/US (1, 1) -0.000019 -0.032463,0.313104 0.000009 0.132161 0.782916
(0.000347) (0.105035),(0.098929) (0) (0.013670) (0.018729)

Yen/US (0,1) 0.000014 0.271058 0.000005 0.075117 0.884538
(0.000378) (0.030816) (0.000001) (0.008949 ) (0.013728)

Table 3.2.1: Summary for the ARMA-GARCH specifications. ARMA orders and
the corresponding parameters were selected based on BIC for data filtration in the
exchange rate time series.
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Figure 3.2.1: The distribution of α̂ when the data are i.i.d (black solid line), GARCH
and unfiltered (blue dotted line) and GARCH and filtered (red dotted line).

3.3 Estimation of the Empirical CDF and the EM Algorithm

As described in the section above, the time series data was filtered with the

ARMA-GARCH model. We then compute the empirical CDF’s of the filtered data.

20



In Figure 3.3.1, the graph on the left shows the kernel density (solid line) of the fil-

tered Euro/Dollar exchange rate and the corresponding normal density (dashed line).

Note that estimating the marginals parametrically would require the features of the

marginals be specified explicitly. The plot on the right of Figure 3.3.1 compares the

empirical CDF with a normal probability distribution function.
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Figure 3.3.1: Kernel Density (solid black line) and empirical CDF of filtered Eu-
ro/Dollar exchange rate returns compared with normal PDF/CDF (red dotted line)

To implement the estimation described above, we utilize EM algorithm. Primarily,

researchers use the EM algorithm’s design to solve Maximum likelihood problems that

emanates from incomplete data. With a little modification, we treat the information

that each observation is drawn from which distribution as missing data in the mixture

model.

In other words, we estimate the marginals non-parametrically and then plug the

empirical CDFs into the copula. This approach is advantageous in that we do not need

to specify the marginals. Therefore we will have a robust and error free specification

estimations for the marginals. For instance if we generate a sample (z1, z2, ..., zn)

independently from a univariate distribution FZ(z), the empirical CDF(used to form

the sample) of Z can be computed using:
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F̂Z(z) =
1

n

n

∑
t=1

1{Zt ≤ z} (3.3.1)

If F̂X(x) and F̂Y (y) represents the empirical CDF’s of X and Y, then we can write

the joint distribution as

Ĥ(x, y; θ) = C(F̂X(x), F̂Y (y); θ),

where θ denotes the parameters in the copula.

Note that the other exchange rates which will be used in the study will follow

similar form using the ARMA-GARCH models. We will name the above specifications

the “copula models” for the marginal distributions, because they will be used with

the copula models introduced above.
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Chapter 4

MAIN RESULTS

4.1 Data

Our data comprises weekly exchange rates based on the Euro, the Australian

dollar and the British pound sterling and the Japanese Yen per US dollar exchange

rates, covering a sample period from January 8, 1999 to December 27, 2019. The data

set was retrieved from FRED, Federal Reserve Bank of St. Louis website. Our sample

size is 1095. We present the correlation coefficient matrix between the four data sets

in Table 4.1.1. We observe that the strongest correlation rate is the Australia vs Euro

pair whereas the weakest correlation pair is the Pounds vs Yen.

Euro GBP JPY
AUS 0.827 0.278 0.752
Euro 0.549 0.546
GBP -0.001

Table 4.1.1: Linear correlation coefficient across the four exchange rates.

4.2 Estimates

Table 4.2.1 shows the estimated parameters in the mixture model. We come to the

following conclusions. First, the model exhibits significant association parameters and

shape parameters across the three copula mixture. This implies that the dependency

shown by the exchange rate pairs exhibits both lower and upper tail dependence.

Therefore all the data pairs under consideration will poorly be modeled under only

the Gaussian assumptions. In other words, there is a high tendency that two exchange

rates markets would either appreciate or depreciate together against the US dollars
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and that relationship is stronger than implied by just a single copula such as the

Gaussian copula assumption. Furthermore, we realize that the AUS vs Yen pair and

the Pounds vs Yen pair among the six pairs exhibits a negative Gaussian association

parameter ρ (-0.0118 and -0.1260 respectively). A small negative association Gaussian

parameter ρ implies a weak negative dependence during tranquil periods, when these

exchange rates are in their normal “levels” of range against the US dollars. However,

a high association parameters for the Gumbel and Clayton copulas for the exchange

rate implies a stronger tail dependence, that is when they are rigorously rising against

the US dollars or falling against the US dollars. Thus, we find that the dependency

on both the right tail and the left tail are much stronger than that implied by only

the Gaussian assumption. However, the dependency during the tranquil periods are

similar to that implied from a bi-variate normal distribution. This implies that the

exchange rate pair under consideration exhibits both left and right tail dependence

and cannot be adequately modeled by just the Gaussian assumption of dependence

alone. In other words, the tendency that two exchange rate markets boom and fall

together is stronger than implied by a Gaussian dependence structure. Overall, we

find that all the exchange rate pairs exhibit asymmetric dependence structure. This

behavior of asymmetric dependency of exchange rates is in line with the findings of

Patton (2006) on the study of the DM-dollar (Euro Dollar) and Yen-dollar exchange

rates. They found that these asymmetric dependency of exchange rates is due to the

behavior of the actions and reactions of the central banks in response to exchange rate

movements. For instance, the desire to be competitive enough would lead the bank of

Australia to intervene to ensure a matching depreciation of the British pounds sterling

against the US dollars whenever the pounds depreciated against the US dollars and

generate a stronger dependency during a depreciation of the pounds and Australian

dollars against the US dollars. This behavior of the exchange rates markets is similar
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to what is popularly known in the financial market as “contagion”. There is a large

literature about theoretical modeling of the market co-movement in which the general

idea about financial contagion is seen to be explained by financial links including

herding behavior and fear based spillover (Allen & Gale, 2000), and by real links

including trading and production (Forbes & Warnock, 2012), and by political factors.

AUS AUS AUS Euro Euro Pounds
Euro Pounds Yen Pounds Yen Yen

Gaussian(ρ̂) W:0.28,0.7163 W:0.31, 0.6584 W:0.38, -0.0118 W:0.45, 0.7128 W:0.37, 0.6155 W:0.39, -0.1260
(0.02) (0.04) (0.30) (0.01) (0.07) (0.03)

Gumbel(α̂) W:0.35, 1.7008 W: 0.42,1.3252 W:0.30, 1.1758 W: 0.33, 1.7960 W:0.36, 1.0416 W: 0.33,1.2516
(0.04) (0.03) (0.10) (0.04) (0.04) (0.04)

Clayton(β̂) W:0.37,0.5721 W:0.28 , 1.2907 W:0.32,0.8600 W:0.22, 1.7916 W:0.27, 0.2299 W:0.28, 0.6717
(0.03) (0.07) (.50) (0.06) (0.18) (0.12)

Table 4.2.1: Estimates for the mixed copula

4.3 Goodness of Fit Test

To to evaluate the performance of the estimated mixture model, we perform the

goodness of fit test in this section. The relevance of this section is to verify whether

the proposed mixture model satisfactorily models the dependence between the four

exchange rates under consideration. We consider all the six pairs of exchange rate

data and our approach is similar to the one conducted by Genest & Rémillard (2008).

The test statistic called the Cramer Von-Mises statistic can be expressed as

Sgofn =
n

∑
i=1

(Cn(Ui,n)) −Cθn(Ui,n))2 (4.3.1)

where,

i. Sgofn is the Cramer Von-Mises Statistic.

ii. Cn is the empirical copula.

iii. Ui,n is the Pseudo observations from the estimated margins.
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iv. Cθn is the estimated mixture copula.

v. n is the sample size of the Pseudo observation.

An approximate p-value for the test can be obtained by means of a parametric boot-

strap whose asymptotic soundness is investigated by Genest & Rémillard (2008).

The Goodness of fit test amounts to formally testing that

H0 : Cmixed fits the data well and

HA : Cmixed does not fit the data well,

where Cmixed is our estimated mixture copula. The empirical copula is a consistent

estimator of the unknown copula C whether H0 is true or not, as suggested in

Fermanian et al. (2005) and Genest & Rémillard (2008). This goodness-of-fit test

consists of comparing Cn with an estimate Cθn of C obtained under the assumption

that C ∈ ζ is true. Note that θn is an estimate of θ computed from Equation 3.3.1.

Thus, we considered taking the Cramer Von-Miss Statistic for all the six exchange

rate pairs and their corresponding p-values using bootstrap simulation with N = 500

(Hofert et al., 2019).

Exchange pairs CM statistics P values
1 AUS/EURO 0.01 0.51
2 AUS/POUNDS 0.01 0.93
3 AUS/YEN 0.03 0.06
4 EURO/POUNDS 0.01 0.42
5 EURO/YEN 0.03 0.08
6 POUNDS/YEN 0.02 0.16

Table 4.3.1: Cramer Von Mises Statistics

Table 4.3.1 shows the cramer Von-Mises statistics for each data pair and the

corresponding p-values. We realize from the table that the goodness of fit statistic
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based on the Cramer Von-Mis statistic all lies outside the critical region with p-values

greater than the 0.05. In other words, we fail to reject the null hypothesis that our

mixture copula model fits the data well for all the six pairs.
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Figure 4.3.1: The (a) scatter plot, (b) contour plot, (c) cross sectional plot and
(d) the density plot of a Mixture of Euro vs Australia Dollars exchange rates with
ρ = 0.7163, α = 1.7008 and β = 0.5721 and weights 0.28, 0.35 and 0.37 for the Gaussian,
Gumbel and Clayton copulas respectively.

We take the model for the Euro and Australia dollar pair mixture model as an

example. As shown in Figure 4.3.1 these dependence structures can be visualized by

making a scatter plots, contour plots, cross sectional plots and a density plots. Note

that, unlike its components, the constructed mixture has both lower and upper tail

dependence with different weights on the component copulas.
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4.4 Empirical Application of the Mixed Copula Model

Reconstruction of a joint distribution of a direct statistical application of an es-

timated mixed copula model. It has been shown in the previous sections that the

dependence structures between economic and financial markets exhibits L and U

shapes. Their marginal distributions are also characterized by left skewness with

thick tails (see Figure 3.2.1). Hence it is better to specify their joint distribution

using mixed copulas. Specifying their joint distribution with only existing families

becomes difficult. The process of reconstruction using mixed copulas involves two

cogent steps:

i. First we estimate the copula with non-parametrically estimated marginals.

ii. Second, specify the marginals and plug them into the estimated copula function.

If we take the Euro and Australian dollar pair as an example, we have

H(X,Y ;γx, γy) = 0.28Cg[FX(x;γx), FY (y;γy); 0.7163] +

0.35Cm[FX(x;γx), FY (y;γy); 1.7008] + 0.37Cc[FX(x;γx), FY (y;γy); 0.5721]

,

where γx and γy are the parameters in the marginal distributions of X and Y respec-

tively. The dependence function and the marginals are estimated separately. The

copula models the dependence structures and we specify the marginals separately.

This model approach is able to provide a more realistic description of the data gen-

erating process compared to just a joint Gaussian model.

4.5 Diagnostic Tests

We perform a graphical diagnostic test to assess which estimated copula fits best.

This involve comparing the contour plots of the parametric estimates with those of
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the empirical copula for each of the corresponding exchange rate data set. In Figure

4.5.1, we plot the empirical copula (red line) and parametric estimates (black line)

for each of the six pairs of markets. As can be seen from the graphs, the models

predictions for all the six pairs closely matches and suggest that the mixture model

fits better.
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Figure 4.5.1: Contour plots of the fitted Mixture copulas (black line) overlaid with
the contours of the empirical copula (red line) for each corresponding exchange rate
data set.
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Chapter 5

Conclusion and Future Work

We have so far showed that the estimation of dependence is very important in

economics and finance. In addition, we showed that using a mixture of copula mod-

els to empirically measure cross-market dependence presents many flexibility. This

flexibility is mainly due to the structure of the mixture copula itself. The degree of

dependence is carried through the association parameters and the structure of the

dependence is summarized by the weight of each individual copula function. We pro-

ceeded by using a semi-parametric approach for the model estimation and computed

the dependence structures in the underlined data set. We found that all the pairs

of exchange rates under the study exhibited positive weight on all the three copulas

in the mixture. This implies that the dependency shown by the exchange rate pairs

exhibits both lower and upper tail dependence. Therefore all the data pairs under

consideration will poorly be modeled under only the Gaussian assumptions. Further-

more, the AUS vs Yen pair and the Pounds/Yen pair among the six pairs exhibits

a negative association parameter ρ (-0.0118 and -0.1260 respectively) for the Gaus-

sian component. A small negative association Gaussian parameter ρ implies a weak

negative dependence during tranquil periods , that is when these exchange rates are

in their normal “levels” of range against the US dollars. However, a high associa-

tion parameters for the Gumbel and Clayton copulas for the exchange rate implies

a stronger tail dependence, that is when they are rigorously rising against the US

dollars or falling against the US dollars.

Our findings also emphasized that exchange rate pairs that have lower correla-

tions such as the Pounds and Yen pairs have almost the same probability to crash

together as pairs that have higher correlation coefficient such as the Euro and Aus-

tralia pair. We realized this situation can be explained by the different estimated
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weight parameters in the mixed copula model.

We expect future research to gravitate towards comparing different tail depen-

dence structures such as the symmetrized Joe Clayton copula (Joe-Clayton copula

conditioned to capture both upper and lower tail dependence) to selected mixed cop-

ula models, targeting their relative performance over exchange rate data.
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