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Core/shell semiconductor nanoparticles are of great interest as photocatalysts due 

to their large surface area per volume and tunable band gaps. The synthesis of core/shell 

semiconductor nanoparticles has traditionally involved the use of binding ligands to ensure 

the particles do not aggregate. These binding ligands lower the surface area of the 

nanoparticles though, reducing their overall efficiency. Ionic liquids have been found to be 

capable of acting as both solvents and stabilizing agents for synthesis of catalysts with 

highly active surfaces. Our experiments focus on the synthesis of CdS/ZnS core/shell 

nanoparticles with the ionic liquid 1-butyl-3-methylimidazolium methyl sulfate, 

[BMIM][MeSO4], acting as both solvent and stabilizing agent. During synthesis we 

attempt to control the size of the synthesized particles and optimize the purification process 

to remove nanoparticles from [BMIM][MeSO4].
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Chapter 1: Introduction 

1.A- Introduction to nanoparticles as photocatalyst for solar energy 

 The search for cheap and clean renewable energy has taken on an even more 

prominent role in the scientific community due to the looming energy crisis the world faces. 

According to the US Energy Information Administration, fossil fuels make up 62% of the 

United States energy source as of 2019.1 Nuclear power makes up 20%, with renewable 

energy sources only contributing 17.5%. Of this percentage wind and hydro power 

contribute 7% and 8%. Solar energy only makes up 2% of the energy production in the 

United States.  

While working fine during sunny times, storage is necessary with solar energy in 

order to make it effective. This energy could be stored as electricity in batteries or as 

chemical energy in molecular hydrogen (the “hydrogen economy” coined by professor 

John Bockris in 1970). 2,3 Both storage methods run into inherent problems. When stored 

as electricity the size of battery needed to supply a home is large, meaning it is expensive. 

This is becoming less of an issue with the advances in creating more efficient batteries. 

Some other answers to the storage problem are not only better batteries but large areas 

filled with many batteries known as battery farms. When stored as hydrogen the decision 

on whether to store as liquid or gas must be made. In both cases the energy density per 

volume is lower than hydrocarbon sources such as gasoline, equivalent to about a third the 

energy of gasoline. The enthalpy of combustion for gasoline is -5430kJ/mol. By dividing 

the enthalpy of combustion for gasoline (-5430kJ/mol) by the division of the molar mass 

(114g/mol) by the density (0.7g/mL), the energy density per volume can be calculated to 

be approximately 33kJ/mL. This can be repeated with hydrogen using its enthalpy (-
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286kJ/mol) and dividing by the division of the molar mass (2g/mol) by the density 

(0.07g/mL), the energy density per volume can be calculated to be approximately 10kJ/mL.  

 

𝐻2 +
1

2
𝑂2   → 𝐻2𝑂                                               ∆𝑟= −286𝑘𝐽 

2𝐶8𝐻18 + 25𝑂2 → 18𝐻2𝑂 + 16𝐶𝑂2                  ∆𝑟= −5430𝑘𝐽 

 

Water can be split into hydrogen and oxygen gas. This decomposition of water into 

hydrogen and oxygen is known as water splitting. For water to be decomposed it requires 

energy due to the positive enthalpy. This energy can be applied electrically (electrolysis) 

by passing a current through two electrodes in water. However, this electricity would most 

likely come from non-renewable sources. Alternatively, a photocatalyst can be employed 

to harvest photons of the appropriate energy for the water-splitting reaction. In 1972 

photocatalysis was first reported as a method for the separation of water into  hydrogen and 

oxygen gas.4 The system used as seen in Figure 1.1 shows how light was used to power the 

process. When light hit the TiO2 electrode an electrical current flowed from the Pt electrode 

to the TiO2 electrode. This indicated oxidation (oxygen production) was occurring at the 

TiO2 electrode and reduction (hydrogen production) was occurring at the Pt electrode. 
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Figure 1.1: This diagram represents the electrochemical cell that was used to perform the 

first known water splitting using solar energy .Parts of the cell are labeled as follows, TiO2 

electrode (1), Pt electrode (2), Salt bridge (3), Resistance (4), Volt meter (5). (modified 

from reference 6) 

 

 The discovery of photocatalysis for water splitting led to a desire for a catalyst that 

could use solar energy to perform water splitting. Many different materials have been tested 

for their ability to catalyze this reaction; semiconductor nanoparticles (also known as 

quantum dots) with metal cocatalyst have been singled out by researchers though due to 

unique physical properties (surface area/volume) and electrical properties (tunable 

bandgap).5 
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1.B-Properties of semiconductor nanoparticles that are advantageous to 

photocatalysis 

One of the most advantageous properties of nanoparticles is their ratio of surface 

area to volume. Figure 1.2 shows how the same volume of bulk material can be converted 

to a nanoparticle form and increase its surface area with the same amount of volume. This 

means that with more surface area there will be more surface locations for photocatalysis 

to occur. This leads to nanoparticles being a more cost effective and productive catalyst for 

water splitting than bulk materials.  

 

Figure 1.2: With the same volume of material the nanoparticles will have a higher surface 

area then the bulk material.  

 

Perhaps the most beneficial property of semiconductor nanoparticles is their 

tunable bandgap. The optical properties of semiconductor nanoparticles are dependent on 

their size, meaning that by controlling the size of the nanoparticles the absorbance and 

emission of the particles can be controlled. Figure 1.3 shows, as semiconductor 

nanoparticles grow, their bandgap decreases leading to an absorbance and emission at 

lower energy wavelengths.  
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Figure 1.3: As semiconductor nanoparticles increase in size their bandgap decreases. This 

allows control over the absorption and emission of particles by controlling size.  

 

1.C- Core/shell metal/semiconductor nanoparticles  

 A core/shell photocatalyst functions by accepting a photon from light. When this 

photon hits the photocatalyst a charge separation will occur as seen in Figure 1.4.6 The 

negative charge that forms can then be used for hydrogen production (reduction reaction). 

The positive charge is used to convert the OH- produced from the hydrogen formation into 

oxygen gas (oxidation reaction). The photocatalyst cannot easily accept another photon 

until both charges are removed.7 However, it is also possible for the positive and negative 

charge to recombine without performing any catalysis. One method used to prevent charge 

recombination is to alter the morphology of the nanoparticles into nanorod structures. This 

provides a greater distance for the charges to be separated.  
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 In order to replicate the photochemical electrode in Figure 1.1, semiconductor 

nanoparticles require a metal cocatalyst to perform the reduction part of the water splitting 

reaction. This metal cocatalyst not only facilitates the reduction reaction but aids in 

preventing charge recombination. As seen in Figure 1.5 the metal cocatalyst will isolate 

the negative charge. While the negative charge is isolated the positive charge can still freely 

move throughout the nanoparticle. In order to isolate the positive charge core/shell 

nanoparticles have been synthesized, thus creating a location for the positive charge to be 

isolated. Core/shell nanoparticles are nanoparticles formed by growing a second 

semiconductor layer around a previously synthesized semiconductor nanoparticle. By 

trapping the positive charge in the core and the negative charge in the metal cocatalyst, 

recombination of the charges can be delayed allowing more time for them to be used in 

catalysis.  

 

Figure 1.4: A photon from light causes a charge separation in the photocatalyst. The 

negative charge that forms from the separation will be used to split the water via hydrogen 

reduction. The positive charge will be used to convert OH- into oxygen gas. (Modified 

from Ref.6) 
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Figure 1.5: An energy diagram for Figure 4. Negative charge will be isolated in the metal 

cocatalyst. The positive charge will be isolated in the “core” of the nanoparticle. 

 

 The localization of the positive and negative charge, and subsequently the location 

of the oxidation and reduction reactions, has had the benefit of allowing researchers to test 

the rate of the individual half reactions. This individual testing has shown the removal of 

the positive charge localized in the “core” of the core/shell nanoparticle to be the rate-

limiting step of the water splitting reaction. Due to the difficulty in accepting a photon for 

more charge separation before both the positive and negative charges are removed, this 

slow removal of the positive charge limits the rate of the overall reaction.  

1.D: Synthesis of semiconductor nanoparticles 

 When synthesizing nanoparticles, a bottom-up approach is typically taken over a 

top-down method. This means that instead of turning bulk material into nanoparticles, the 
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particles are instead synthesized from molecular precursors. Whenever nanoparticles are 

synthesized there is a major issue that needs to be overcome pertaining to their size. While 

the small size of the particles is part of what makes them excellent photocatalyst, it also 

makes them aggregate together. Once the particles reach the nanometer size, surface energy 

becomes high enough between the particles to begin causing aggregation. Once the 

particles aggregate together, they lose all benefits gained from synthesizing them at the 

nanoscale size. To prevent this aggregation during synthesis in organic solvents (such as 

1-octadecene) an insulating ligand is added to the reaction. This insulating ligand such as 

oleic acid seen in Figure 1.6 will attach to the surface of the nanoparticles and prevent them 

from aggregating together. 

 

Figure 1.6: Ligands are used to prevent nanoparticle aggregation. Here the structure for 

oleic acid can be seen. Oleic acid is a possible insulating ligand that can be used to prevent 

nanoparticle aggregation.  

 

 These insulating ligands also have drawbacks to being used. As stated earlier 

photocatalysis for hydrogen production is a surface level chemistry, meaning that the more 

CH3

OH

O
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surface area the better. Yet the insulating ligands themselves cause a loss in surface area 

when attaching to the particles. These ligands can also cause issues when implementing 

these particles into industrial devises due to causing a buildup of insulating material. As 

the particles are used to coat a surface, there is also a buildup of the insulating ligands.  

1.E- Ionic liquids for the synthesis of semiconductor nanoparticles 

Ionic liquids are salts that are in the liquid phase below 100°C and typically contain 

a bulky organic cation paired with either an organic or inorganic anion.8–10 These ionic 

liquids have been shown to help promote synthesis of nanoparticles and are theorized to 

stabilize nanoparticles synthesized in them due to unique structural properties.11  

 The properties of ionic liquids vary greatly depending on the cations and anions 

that compose the ionic liquid but possess some intrinsic properties present in all ionic 

liquids that indicate they are an excellent medium for the development of efficient 

photocatalytic nanoparticles. Ionic liquids have a surface tension that is higher than organic 

solvents and lower than water.12 This intermediate surface tension allows for an optimal 

level of nucleation while being low enough to prevent Ostwald ripening. This can lead to 

a uniform size of nanoparticle throughout.  

 What truly separates ionic liquids as solvents for nanoparticle synthesis is their 

inherent structure they have, even in the liquid phase. This structure is formed from a 

mixture of electrostatic, hydrogen bonding (between the imidazolium or cation and the 

anion), and van-der-Waals interactions.13 These forces combine to create an organized 

three-dimensional structure in the liquid phase. When nanoparticles are added to the ionic 

liquid these hydrogen bonds are disrupted or broken apart as seen in Figure 1.7. Once 

broken apart multiple polar and non-polar regions are formed within the ionic liquid. These 
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structured regions help organize the nanoparticles. Once the nanoparticles are integrated 

into the system of the ionic liquid it is theorized that they are stabilized by ion layers that 

form around the nanoparticles from the cations and anions that make up the ionic liquid as 

seen in Figure 1.7.14 

 

Figure 1.7: Nanoparticles are theorized to be electrosterically (electrostatic and steric) 

stabilized when grown or placed in ionic liquids due to the creation of polar and non-polar 

regions upon the introduction of nanoparticles to the system. This causes an ion layer to 

form around the nanoparticles that work to stabilize the particles. (Modified from Ref.14) 

 

 Core/shell semiconductor nanoparticles synthesized in ionic liquids have been 

found to have increased catalytic activity when compared to nanoparticles synthesized with 

insulating ligands.15 These nanoparticles synthesized in ionic liquids can generate nearly 

twice the amount of hydrogen via water splitting than the same particles synthesized with 

ligands.  

 Our research is focused on the synthesis of a complete metal/semiconductor hybrid 

catalyst using ionic liquids to compare performance with insulated catalysts. Our system 

consists of a core/shell CdS/ZnS nanoparticle with attached Pt cocatalyst stabilized by the 
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ionic liquid used for the synthesis. By performing the full synthesis in ionic liquids, we aim 

to form catalysts with little aggregation and relatively high surface area per unit volume. 

We believe this will aid in the rate limiting step of removing the positive charge from the 

nanoparticles and lead to a more efficient photocatalyst.  

 

Chapter 2: CdS/ZnS core/shell nanoparticles capped with oleic 

acid and oleylamine 

 Our research began by synthesizing CdS/ZnS core/shell particles using 1-

octadecene as our solvent. The particles would be insulated with oleic acid (our ligand of 

choice) as seen in Figure 2.1. These particles would then be characterized in order to 

determine particle size and concentration. This step would allow us to obtain experience 

with the processes used to synthesize core/shell particles for future experimentation. These 

particles could also be used as a basis to compare with nanoparticles synthesized using our 

new method. 

 
Figure 2.1: One-pot synthesis of CdS/ZnS core/shell nanoparticles described this chapter. 

CdS nanoparticles were synthesized by injection of a sulfur solution into hot octadecene 

containing cadmium acetate and oleic acid. Zinc shells were then grown on these particles 

by alternating addition of Zn(OAc)2·2H2O and sulfur in the presence of oleylamine. 
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2.A: Materials and methods 

2.A.1: Materials 

Acetone, 1-octadecene, methanol, toluene, hexanes, oleylamine, ethanol, cadmium 

acetate dihydrate (Cd(OAc)2·2H2O), cadmium oxide (CdO), sulfur powder, zinc acetate 

dihydrate (Zn(OAc)2·2H2O), oleic acid, and thioacetamide were purchased from Sigma 

Aldrich and used directly with no further purification. 

2.A.2: UV-vis spectroscopy procedure 

UV-vis spectra were obtained using a UV-2600 UV-VIS Spectrophotometer by 

Shimadzu. A 0.5mL quartz cuvette was used to hold our samples. Samples were scanned 

over a wavelength range of 300nm to 800nm. Spectrophotometer was set on its slowest 

setting, scanning at 1nm increments. System was blanked by scanning our cuvette with the 

solvent our particles were dispersed in. Data was saved as a .txt file to be used in Microsoft 

excel. Data was then used to create scatter plots.  

2.A.3: Fluorimetry procedure 

Fluorimetry was performed on a Shimadzu RF-5301 PC spectrofluorometric 

fluorometer. A 5mL quartz cuvette optically polished on four sides was used to hold 

samples during testing. Samples were diluted in solvent before use. Solvents used were 

tested prior to scanning our samples to ensure they had no emission reading. If a reading 

was observed this would be subsequently subtracted from tested samples data. Samples 

were scanned at 0.5nm increments at 100 scans per minute. Samples were scanned using 

an excitation wavelength of 390nm with an observed range of 400nm to 800nm. The data 

for each sample was transferred individually to an excel file. Once the data for each sample 
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was on an excel file the data would be modified in order to construct a scatter plot of the 

spectra.  

2.A.4: Transmission Electron Microscopy (TEM) imaging procedure 

For TEM imaging a JEOL 1400Plus transmission electron microscope was used to 

observe synthesized particles. Imaging was performed with a voltage setting of 100kv. 

Images ranged from 100x magnification to 250000x magnification. The filament used was 

LaB6. Copper grids (200 mesh) were coated with a thin carbon film and used to hold our 

samples during imaging by placing in the sample holder. The copper grids were coated 

with carbon in lab using carbon-coated mica which was prepared from raw mica and carbon 

rods. The fixtures which hold the carbon were from Ladd Research Industries: 30170 – 

carbon rod evaporation unit 30180 - carbon evaporation shield. The carbon was from EMS 

Cat #70200, sharpened to about 4 mm with a #12040 carbon rod sharpener from E. Fullam. 

The glass shield was coated with "Bell Shine" from Ladd #30099. Our vacuum evaporator 

was built by Torr International, model number: TH#-2KW-UPGRD-EB1P operated 

initially in the 10-6 torr range vacuum range, and at about 40 Amps. The mica was fixed 

into a clean petri dish which was then placed on a 50mL beaker making it approximately 

5-10cm from the graphite rod. The mica was coated using an indirect coating method using 

a quarter affixed directly above the mica so that the coating would be consistent and reduce 

the overall thickness of the coat. Water was then used to separate the mica from the carbon 

by placing water droplets onto a PELCO PTFE immunostaining pad (product #10526-1), 

purchased from Ted Pella Inc. The carbon-coated mica was cut into small squares, slightly 

larger than a copper TEM grid, and placed carbon side up into the water droplet at an angle 

from the side of the droplet to quickly remove the carbon layer. Due to the mica being 
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hydrophilic in nature and carbon being hydrophobic, the mica would sink into the water 

droplet while the thin layer of carbon would remain at the top of the droplet. The floating 

carbon film was then lifted onto a copper TEM grid, ensuring that the carbon film covered 

as much of the grid as possible. The copper grids were washed in hydrochloric acid prior 

to carbon coating to facilitate breaking through the surface of the droplet. The grid would 

be placed in a tray to dry by a pair of tweezers. Using a small slip of paper made removing 

the grid from the tweezers easier as the grid would otherwise stick to the tweezers. 

2.A.5: Centrifugation procedure 

Samples were centrifuged using a Thermo Scientific Sorvall ST 8 having a radius 

of 12cm in 50mL polypropylene centrifuge tubes from VWR (max rcf 17,000 g). Samples 

were centrifuged at 7000rpm at ten-minute increments until particles crashed out. 

2.B-Cadmium Sulfide Nanoparticle Growth 

 Our first objective was the synthesis of CdS nanoparticles in 1-octadecene that were 

insulated with oleic acid. This synthesis can be seen in Figure 2.2. Once synthesized we 

characterized our synthesized CdS nanoparticles using UV-vis, fluorimetry, and TEM. 

 

Figure 2.2: Cd(OAc)2·2H2O was dissolved in 1-octadecene and oleic acid at 260°C and 

sulfur solution was added via syringe. This allowed our CdS nanoparticles to form. Once 

formed, by maintaining temperature our particles could grow to our desired size. 
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2.B.1: Procedure for CdS nanoparticle synthesis 

Sulfur stock solution was made by adding elemental sulfur (0.032g, 1mmol) to a 

20mL vial. Afterwards a rubber septum was placed on the vial and an inert environment 

was induced by vacuuming out atmosphere and replacing with argon. Once under an inert 

environment, 1-octadecene (10 mL) was added via syringe to the vial. The vial was swirled 

to mix up the solution and then placed on a heating mantle set to 180°C and heated until 

sulfur was dissolved. Stock solution was stored in a dark environment at room temperature 

until needed for future synthesis. When used for subsequent reactions the solution is 

reheated to 180°C until sulfur is dissolved again.   

Cd(OAc)2·2H2O (0.046g, 0.2mmol) was added to a three-neck round-bottom flask 

and an inert environment was induced by three alternating vacuum/argon cycles. 1-

octadecene (10mL) and oleic acid (0.25mL, 0.8mmol) were transferred to the flask via 

syringe. The solution was then heated to 260°C to allow the Cd(OAc)2·2H2O to dissolve, 

indicated by a color change from brown to clear and colorless. Temperature of solution 

was monitored by an internal temperature probe, ensuring accurate temperature 

measurement. After it was confirmed that the Cd(OAc)2·2H2O fully dissolved, we 

proceeded to form the CdS nanoparticles. 1mL (0.1mmol) of the sulfur stock solution was 

added to the flask via syringe and allowed to cool to 240°C. The solution sat at 240°C for 

15 minutes to allow particles to fully grow.  

At this point, the as-synthesized CdS nanoparticle dispersion can be used directly 

for the addition of ZnS shells by the SILAR method (described in section 2.C) or the 
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particles can be purified for characterization (described in the remaining portion of section 

2.B below). 

 Purification to remove our particles from the 1-octadecene, cadmium acetate, 

cadmium oleate, and oleic acid was performed by centrifugation. The solution was cooled 

to around room temperature. The crude product was divided between two 50mL centrifuge 

tubes. The flask was washed with 10mL methanol followed by 30mL hexanes and divided 

up between the two centrifuge tubes to ensure all particles were removed from the flask. 

Centrifuge tubes were filled to 50mL mark with acetone. Centrifugation was performed at 

6000rpm for ten minutes on each sample of nanoparticles. The supernatant was decanted, 

and the pellets were dispersed in hexanes and transferred to a 20mL vial. One drop of the 

hexanes dispersion was used to cast a sample onto a TEM grid via pipette. A 1mL sample 

was transferred into a 2mL vial to be used for UV-vis and fluorimetry. Addition of acetone 

to the centrifugation procedure was instrumental as without, no pellets ever formed, while 

pellets formed after one centrifugation in the presence of acetone. 

2.B.2: UV-Vis Spectroscopy 

 Approximately 0.3mL of the CdS nanoparticle dispersion in hexanes was 

transferred to a quartz cuvette with two optically polished sides. The UV-vis data were 

collected on the slowest setting possible to get as smooth a spectrum as possible. We 

obtained a UV-vis spectrum of our samples showing a shoulder at approximately 422 nm; 

the low-energy peak absorbance was estimated from this spectrum as seen in Figure 2.3. 

This absorbance value is what was used to estimate the diameter and concentration of our 

particles as described below.  
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Figure 2.3: UV-Vis spectroscopy was performed on our synthesized nanoparticles to help 

confirm they were CdS. The absorbance peak obtained matches the known location of CdS 

nanoparticle absorbance peaks.16 

 

CdS nanoparticle diameter (D) 

D=(-6.6521×10-8)λ3+(1.9557×10-4)λ2+(9.2352×10-2)λ+(13.29)                                                                       

(1) 

 

Extinction coefficient (ε) 

ε = (21536)(D)2.3                                                                                                                                    (2) 

 

Absorbance (A) 

A = (ε)*length of cuvette(L)*concentration(C)                                                                                       (3) 

 

 

 Peng and coworkers reported an empirical correlation between the low-energy peak 

absorbance wavelength (λ) and nanoparticle diameter (D, equation 1), as well as a 

correlation between nanoparticle diameter and extinction coefficient (ε, equation 2).16 In 

 

Absorbance 

Peak  

(422nm) 
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order to determine the location of the peak shown in figure 2.3, we assumed that the 

shoulder of our spectrum was the right side of a symmetrical curve which has a gaussian-

like distribution. The estimated peak was used as our absorbance peak for Peng’s equation. 

This method was done for determining our absorbance peak due to our spectra showing a 

shoulder instead of a defined peak. Using this we were able to determine our peak as seen 

in Figure 2.3 being at 422nm. This wavelength value was used to estimate the diameter of 

our particles by equation 1. Using our calculated diameter, we could estimate the extinction 

coefficient for our particles using equation 2. With the extinction coefficient and 

absorbance value from our peak we could estimate the concentration of our particles in 

solution using equation 3.  

2.B.3: TEM Imaging 

 TEM imaging was then performed on our particles to obtain the image seen in 

Figure 2.4. Average particle diameter equaled 1.8nm with a standard deviation of 0.4nm 

when 100 particles were sized. These sizes were obtained using imageJ software.17 Initial 

imaging of particles was difficult due to an aging filament in our TEM. This aging filament 

went unnoticed due to most imaging done at our institution being at lower magnifications. 

A new filament was obtained for our microscope that allowed clear images at high 

magnification for our particles.  
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Figure 2.4: TEM imaging was performed on our CdS particles. Upon looking at our 

images we could clearly see numerous particles that had been formed with a spherical 

morphology. Scale bar of image represents 20nm. Average size of particles in the image 

above equaled 1.84nm ± 0.4nm. 100 particles were measured for average size calculation.  

 

 Upon characterization with UV-vis and TEM we could conclude with strong 

confidence that we had synthesized CdS nanoparticles. The lowest energy peak of CdS is 

known to be between 350nm and 450nm.16 While our peak was not a perfect absorbance 

peak but instead a shoulder, this has been reported by others.18 The weak contrast in TEM 

imaging was also consistent with CdS nanoparticles. 

2.B.4: Tracking of CdS particle growth over time   

 We then followed the nanoparticle growth reaction to estimate the size of our 

nanoparticles at certain time points for use in subsequent experiments growing ZnS shells.  

In order to monitor the reaction process, the CdS nanoparticles were synthesized following 

the same procedure shown in section 2.B.1. After the sulfur stock was injected, 0.7mL 
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samples were taken at time points and absorbance peaks were observed as seen in Figure 

2.5. These peaks could be used to determine the size of the particles using equation 1 as 

seen in Table 2.1. We determined that the CdS particles grew (using the equation-1) until 

they reached their maximum size at 10 mins. After 10 mins the particles remain the same 

size. After looking at this data we decided to allow our CdS particles to grow for 15mins 

to allow the particles to reach their maximum size  

 

Figure 2.5: UV-vis spectroscopy was used to find the absorbance peak for different time 

points of growth for the CdS cores. These peaks can be used in calculations to estimate the 

size of the nanoparticles at a time point. 
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Table 2.1: The wavelength of the absorbance peak is used to calculate the diameter of the 

particles. These can be seen in the above table for the five time points we checked for size. 

These values correspond to the peaks in Figure 2.5 

Time Point Wavelength value of peak (nm) Diameter (nm) 

1min 393 3.2 

5min 400 3.4 

10min 410 3.7 

20min 410 3.7 

30min 410 3.7 

 

2.B.5: Fluorimetry 

 Figure 2.6 shows the fluorimetry reading obtained from CdS nanoparticles. Our 

UV-vis spectra showed a peak at 422nm; therefore, we expected an emission peak to appear 

at a slightly higher wavelength. The peak emission intensity was weak. A small peak can 

be seen at about 410nm and a small broad peak at about 550nm. This signals that our CdS 

nanoparticles do not have strong emission and that the excited electrons relax preferentially 

through non-radiative pathways.  
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Figure 2.6: Fluorimetry was performed on the CdS nanoparticles. Excitation wavelength 

was set at 390nm 

 

2.C: Zinc sulfide shell growth vis SILAR method 

 Once CdS nanoparticles had been synthesized and characterized we could begin 

growing ZnS shells. This process is illustrated in Figure 2.7.  

 

Figure 2.7: Our CdS nanoparticles from 2.B.1 are used as the “core” for core/shell growth. 

Zinc and sulfur solutions are injected in subsequent injections to grow ZnS layers. 

Repeating injection will grow additional layers increasing the overall size of our ZnS shell. 
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2.C.1: Procedure for ZnS shell growth 

A zinc stock solution was prepared by transferring zinc acetate dihydrate (0.2195g, 

1mmol) to a 20mL vial, before sealing with a rubber septum. An inert environment was 

induced by vacuuming out atmosphere and replacing with argon before oleic acid (3mL, 

0.009mol) and 1-octadecene (7mL) were added via syringe. The solution was placed on a 

heating mantle set to 150° until the zinc acetate was fully dissolved (indicated by turning 

clear and colorless).   

A dispersion of CdS nanoparticles in octadecene and oleic acid was prepared as 

described in section 2.B.1, and the size and concentration of the nanoparticles in the 

dispersion was determined by UV-vis spectroscopy. The size and concentration of CdS 

nanoparticles were used to determine the amounts of zinc and sulfur stock solutions to use 

at each injection (Table 2.2, details of this calculation are shown in section 2.C.1). Then, 

2mL of oleylamine was injected into the three neck round bottom flask at 50°C and was 

immediately heated to 220°C. 31µL of zinc stock solution was injected into the flask at 

temp and allowed to sit for five minutes. Immediately after five minutes 31µL of sulfur 

stock solution was injected into the flask via syringe and the temp was increased to 240°C. 

The zinc and sulfur were allowed to react for twenty minutes before cooling the solution 

back to 220°C and transferring a 0.3mL sample to a 1mL vial for characterization.  
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Table 2.2: This table was created quickly from our calculation sheet to know exactly how 

much of our stock solutions to inject for every layer. Knowing the amounts quickly was 

imperative in order to ensure our particles were grown evenly and efficiently 

layer number µmol of Zn/S needed µL of Zn/S needed 

0 0 0 

1 3.1 31 

2 4 40 

3 5.5 55 

4 6.7 67 

5 8.5 85 

6 10 100 

 

 

This process was repeated with the increasing amounts of stock solution used from 

Table 2.2 until six cycles were completed, with samples taken after each heating and 

cooling cycle. The crude product, after samples were taken, was divided between two 

50mL centrifuge tubes. Flask was washed with 10mL methanol followed by 30mL of 

hexanes and divided up between the two centrifuge tubes to ensure all particles were 

removed from the flask. Centrifuge tubes were filled to 50mL mark with acetone. The 

samples were centrifuged at 6000rpm for ten minutes. The supernatant was decanted, and 

the pellets were dispersed in hexanes and transferred to a 20mL vial. A 1ml sample was 

transferred into a 2ml vial for characterization. TEM samples were prepared for each 

sample by transferring a single drop onto a carbon coated TEM grid, that was on a paper 
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towel, via pipette. The remaining amount of each sample was used for UV-vis and 

fluorimetry. 

2.C.2: Calculating amounts of zinc and sulfur needed to grow multiple ZnS layers  

For the growth of the ZnS shell we decided to use the SILAR method (Successive 

Ionic Layer Adsorption and Reaction) to synthesize and grow our shells.19 This method 

involves the growth of the shell in layers via multiple subsequent injections of the zinc and 

sulfur stock solutions. In order to start we needed to know the size of the CdS nanoparticles. 

This is determined by using the absorption peak from UV-vis. The low-energy peak 

wavelength and the absorbance value at this wavelength were used to calculate the diameter 

and concentration of our particles in solution. This is done as described in section 2.B.2 

using equations 1-3.16 The wavelength from the absorbance peak is used to estimate the 

diameter of the CdS nanoparticles. The diameter is then used to estimate the extinction 

coefficient. Finally, the extinction coefficient is used with the absorbance value from the 

low-energy absorbance peak to estimate the concentration of CdS particles in solution prior 

to addition of ZnS. 

 The calculation for the amount of ZnS required to form a single monolayer on a 

CdS nanoparticle can be thought of as a simple subtraction problem.19 This is illustrated in 

Figure 2.8. From the previous experiments we determined how to calculate the diameter of 

the CdS nanoparticles synthesized by using their absorbance peak. From the diameter we 

can determine the radius of the particles. The radius is then used to calculate the volume of 

the CdS nanoparticles. The volume of the CdS/ZnS core/shell particle can be determined 

by using the same volume equation for a sphere but adding 0.31nm to the radius. This is 

due to each layer of ZnS being 0.31nm in thickness. The volume of the CdS nanoparticle 
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can then be subtracted from the CdS/ZnS core/shell particle to get the volume of the ZnS 

shell. The amount of zinc and sulfur needed can be calculated by taking the volume of the 

ZnS shell and multiplying by the density of ZnS (4.1 × 106g/m3). The number of moles 

this equates to is determined by dividing the mass of the ZnS shell by the molecular weight 

of ZnS (97.474 g/mol). All these calculations are for just one CdS/ZnS particle, therefore 

the moles needed for one particle can be multiplied by the concentration of particles in 

solution calculated using equation 3. This process can be repeated for each layer, using the 

previously synthesized ZnS shell as the starting volume. These calculations were inserted 

into a excel file to create a calculation sheet to quickly give us all the amounts needed for 

every shell we grow.  

 

 

Figure 2.8: The calculations used determine the amount of zinc and sulfur for needed to 

form each shell by subtracting the volume of the core from the volume of the core and the 

first layer. This is repeated for every shell layer grown. 

 

 Figure 2.9 shows the absorbance peak obtained from UV-vis spectroscopy of CdS 

nanoparticles grown for 15 minutes. The diameter and concentration of the CdS particles 
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were determined as described in section 2.B.2, and the concentration was multiplied by the 

reaction volume to give us the total number of particles of CdS in solution. The total 

number of CdS nanoparticles was used to determine the amounts of zinc and sulfur needed 

to grow our six layers as seen in Table 2.2.  

 

Figure 2.9: This absorbance peak from CdS nanoparticles taken after 15mins gave us the 

absorbance and wavelength values we needed in order to calculate the diameter of our 

particles synthesized. This would then be used in order to calculate amounts needed for 

SILAR. 

 

2.C.3: UV-vis characterization of ZnS shell growth 

 We obtained our UV-vis spectra showing the absorbance of our CdS/ZnS core/shell 

particles as seen in Figure 2.10. Upon observing the spectra, the absorbance peak can be 

observed shifting to a lower energy state upon each addition of ZnS. As observed when 
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checking the growth of the CdS nanoparticles, the movement of the absorbance peak to 

higher wavelengths corresponds to the particle growing.  

 

Figure 2.10: UV-vis spectroscopy was performed on each sample taken from the SILAR 

shell growth. The absorbance peak moves downfield (red shifting) with each subsequent 

layer growth. This shows that the particle is growing continuously larger. 

 

2.C.4: Fluorimetry characterization of ZnS shell growth 

 We also took our samples, still in the vial, and put them under a UV lamp. Using 

this we could see the red shift of the particles with our naked eyes. This was an easy and 

quick indicator that our particles sizes had changed with the growth of the shell. The initial 

CdS particles can be seen as light green color in Figure 2.11. As the shell was grown, they 

began to shift to a yellow color. By the time the final shell layer was grown the color had 

shifted to a darker orange color. These colors are due to the CdS/ZnS core shell particles 
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absorbing the UV-light and then emitting the color. This emission can be recorded and 

plotted by fluorimetry. 

 

Figure 2.11: CdS nanoparticle dispersion (left) and CdS/ZnS core/shell nanoparticle 

dispersions with increasing shell thickness (from left to right) viewed under a UV lamp. 

The emission colors could be seen changing from the green to orange. This allowed us to 

see the red shift with our own eyes 

 

An excitation wavelength of 390nm was used for our emission readings. 

Fluorimetry characterization can indicate if the shell is growing around our particles. This 

is due to fluorimetry reading the emission, which is when the electron that is excited in the 

bandgap relaxes and falls an energy level.  
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Figure 2.12: Fluorimetry was performed on the samples taken from our SILAR shell 

growth. The emission peak moves downfield with each layer added, just like the UV-vis. 

This further helps confirm that our particles are growing. Excitation wavelength was set to 

390nm. 

 

 Figure 2.13a,b,c shows the effect of mixing of the band edge energy levels of CdS 

and ZnS. 20 The resulting mixed band edges are closer in energy than the original CdS band 

edges, resulting in a lower energy band gap (indicated by a red line in figure 2.13). While 

the CdS bandgap remains the same size during growth of the ZnS shell, the ZnS bandgap 

decreases in size as more zinc and sulfur are added to the reaction mixture. The smaller 

0

0.2

0.4

0.6

0.8

1

400 410 420 430 440 450

n
o

rm
al

iz
ed

 in
te

n
si

ty
 (

co
u

n
ts

)

Wavelength (nm)

Normalized Fluorimetry of ZnS shell growth 
on CdS Nanoparticles

0µmol  Zn/S 3.1µmol  Zn/S 4.1µmol  Zn/S

5.5µmol  Zn/S 6.7µmol  Zn/S 8.3µmol  Zn/S



31 
 

ZnS bandgap results in a smaller mixed bandgap with CdS, which accounts for the 

decreasing bandgap (red shifting peak) of our CdS/ZnS core/shell particles as they grow.  

 

Figure 2.13: Images A,B, and C show the mixed bands that form from the conduction and 

valence bands of the CdS and ZnS. Image-D shows an example of the fluorimetry red 

shifting. Image-E shows a broad peak that red shifts as the ZnS shell is grown, but also 

decreases in intensity as the shell is grown.  

 

In Figure 2.14 a second peak can be observed at 580nm. Previous studies have 

shown that this peak can be attributed to the effects of surface-state traps.21 The surface 

trap states are due to surface cadmium on the CdS nanoparticle that has a vacancy and no 

ligand attached. This allows the cadmium to act as an electron trap. This matches the data 

we see, as the peak shrinks in size as the shell is grown. This explains why the broad second 
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peak decreases in intensity in comparison to the first peak with every layer of the ZnS shell 

grown. As the shell is grown there is less of the CdS core exposed, leading to less of a 

chance for a trap state to occur.  

 

Figure 2.14: A second peak could be seen in our fluorimetry readings. After investigation 

we noticed a trend that the second peak got smaller in comparison to the first peak as our 

shells were grown. We concluded that this peak was from surface trap states. 

 

2.C.5: TEM characterization of ZnS shell growth 

TEM imaging was performed on all samples taken to observe their size and 

morphology, and two of these images are shown in Figure 2.15. The particles from image-

A, after adding one equivalent of ZnS, are smaller than particles from image-B, after adding 
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six equivalents of ZnS. Upon sizing, the particles from Figure 2.15a had average diameters 

of d=1.58nm ± 0.26nm (n=100). Upon sizing image-B we found the average diameter to 

be d=3.17nm ± 0.47nm (n=100).  The overall sizing distributions can be seen in Figure 

2.16 below. 

  

Figure 2.15: TEM images obtained after adding one equivalent of ZnS (A) and after adding 

six equivalents of ZnS (B). Both images are at 100000x magnification with 20 nm scale 

bars.  

 

     

Figure 2.16: Histograms were made for the sizing of both image-A and image-B from 

Figure 18.   

A B 
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Chapter 3: Synthesis of CdS/ZnS core/shell nanoparticles 

[BMIM][MeSO4] 

 Once CdS/ZnS core/shell nanoparticles had been successfully synthesized in 1-

octadecene and characterized we began experimenting with the same synthesis in 

[BMIM][MeSO4] as seen in Figure 3.1.  

 

Figure 3.1: Reaction scheme for synthesis of CdS/ZnS core/shell nanoparticles 

[BMIM][MeSO4]. 

 

3.A: Materials and methods 

3.A.1: Materials 

Acetone, 1-octadecene, methanol, toluene, hexanes, oleylamine, ethanol, cadmium 

acetate dihydrate (Cd(OAc)2·2H2O), cadmium oxide (CdO), sulfur powder, zinc acetate 

dihydrate (Zn(OAc)2·2H2O), oleic acid, and thioacetamide were purchased from Sigma 

Aldrich and used directly with no further purification. 1-butyl-3methylimidazolium methyl 

sulfate ([BMIM][MeSO4]) was purchased from Sigma Aldrich and transferred from its 

purchased bottle into a smaller bottle in a glove box with an inert environment to ensure 

the majority of the sample remained uncontaminated with moisture, due to 

[BMIM][MeSO4] being hygroscopic.  
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3.A.2: UV-vis spectroscopy procedure 

UV-vis spectra were obtained using UV-2600 UV-VIS Spectrophotometers by 

Shimadzu. Samples were scanned at both the slowest setting and medium setting depending 

on if particles were observed to be partially crashing out. Scanning was from 300nm to 

800nm at 0.5nm increments. A 5mL quartz cuvette with four optically polished sides was 

used to hold our samples. This was due to fluorimeter being next to this spectrophotometer 

allowing us to use the same prepared sample for both characterizations. System was 

blanked by scanning our cuvette with the solvent our particles were dispersed in. 

3.A.3: Fluorimetry procedure 

Fluorimetry was performed on a Shimadzu RF-5301 PC spectrofluorometric 

fluorometer. A 5mL quartz cuvette optically polished on four sides was used to hold 

samples during testing. Samples were diluted in solvent before use. Solvents used were 

tested prior to scanning our samples to ensure they had no emission reading. If a reading 

was observed from the solvent this would be subsequently subtracted from tested samples 

data. Samples were scanned at 0.5nm increments at 100 scans per minute. Samples were 

scanned using an excitation wavelength of 340nm with an observed range of 450nm to 

800nm. The data for each sample was transferred individually to an excel file and used to 

construct a scatter plot of the spectrum 

3.A.4: Transmission Electron Microscopy (TEM) imaging procedure 

For TEM imaging a JEOL 1400Plus transmission electron microscope was used to 

observe synthesized particles. Imaging was performed with a voltage setting of 100kv. 

Images ranged from 100x magnification to 250000x magnification. The filament used was 

LaB6. Copper grids (200 mesh) were coated with a thin carbon film and used to hold our 
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samples during imaging by placing in the sample holder. The copper grids were coated 

with carbon in lab using carbon-coated mica which was prepared from raw mica and carbon 

rods. The fixtures which hold the carbon were from Ladd Research Industries: 30170 – 

carbon rod evaporation unit 30180 - carbon evaporation shield. The carbon was from EMS 

Cat #70200, sharpened to about 4 mm with a #12040 carbon rod sharpener from E. Fullam. 

The glass shield was coated with "Bell Shine" from Ladd #30099. Our vacuum evaporator 

was built by Torr International, model number: TH#-2KW-UPGRD-EB1P operated 

initially in the 10-6 torr range vacuum range, and at about 40 Amps. The mica was fixed 

into a clean petri dish which was then placed on a 50mL beaker making it approximately 

5-10cm from the graphite rod. The mica was coated using an indirect coating method using 

a quarter affixed directly above the mica so that the coating would be consistent and reduce 

the overall thickness of the coat. Water was then used to separate the mica from the carbon 

by placing water droplets onto a PELCO PTFE immunostaining pad (product #10526-1), 

purchased from Ted Pella Inc. The carbon-coated mica was cut into small squares, slightly 

larger than a copper TEM grid, and placed carbon side up into the water droplet at an angle 

from the side of the droplet to quickly remove the carbon layer. Due to the mica being 

hydrophilic in nature and carbon being hydrophobic, the mica would sink into the water 

droplet while the thin layer of carbon would remain at the top of the droplet. The floating 

carbon film was then lifted onto a copper TEM grid, ensuring that the carbon film covered 

as much of the grid as possible. The copper grids were washed in hydrochloric acid prior 

to carbon coating to facilitate breaking through the surface of the droplet. The grid would 

be placed in a tray to dry by a pair of tweezers. Using a small slip of paper made removing 

the grid from the tweezers easier as the grid would otherwise stick to the tweezers.  
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3.A.5: Centrifugation procedure 

Centrifugation was performed using an Eppendorf Centrifuge 5415C with a radius 

of 5.5cm. Samples were centrifuged in 1.7mL GeneMate polypropylene centrifuge tubes 

from VWR. Samples were centrifuged at 2500rpm for 10 minutes.  

3.B: Cadmium sulfide nanoparticle growth 

3.B.1: Preparation and handling of [BMIM][MeSO4] 

[BMIM][MeSO4] is very hygroscopic. To ensure as pure solvent as possible we 

used as little [BMIM][MeSO4] at a time as possible. We took our purchased bottle of 

[BMIM][MeSO4] (1000 mL) to a glove box that had an inert environment and transferred 

approximately 50mL to a smaller glass bottle that was sealed with a rubber septum. This 

bottle was stored in a dark drawer. The [BMIM][MeSO4] was transferred under argon with 

a syringe directly from the bottle, limiting exposure to air/moisture. Before each use it 

would be sparged with argon to remove as much moisture as possible. Afterwards the 

septum would be wrapped tightly with parafilm. 

3.B.2: Procedure for CdS nanoparticle synthesis 

 As done previously in section 2.B, we began our experiments with the synthesis of 

CdS nanoparticles. During this procedure though we would be replacing 1-octadecene and 

oleic acid with [BMIM][MeSO4] as both our solvent and stabilizing agent. This can be seen 

in Figure 3.2. 



38 
 

 

Figure 3.2: Reaction scheme for synthesis of CdS nanoparticles using cadmium acetate 

dihydrate, thioacetamide, and [BMIM][MeSO4].  

 

A three neck round bottom flask was set up as seen in Figure 3.2. Cd(OAc)2·2H2O 

(0.24g, 0.92mmol) and thioacetamide (0.068g, 0.9mmol) were added to the flask which 

was then sealed with a rubber septum. The air was removed from the flask under vacuum 

and replaced with argon three times to create an inert environment.  10mL of 

[BMIM][MeSO4] was transferred via syringe into the flask. The solution was heated to 

180°C and held at that temperature for ten minutes during which time the solution began 

to change to a yellow color. 

Once heating was complete the solution was immediately transferred to a sealed 

20mL vial at temperature (180°C) with a glass syringe. The solution needed to be moved 

while still hot due to forming a viscous liquid when cooled that cannot be moved with 

syringe. Since it was being transferred at high temperatures a glass syringe and all metal 

needle were used to ensure no rupturing of the syringe or needle during transfer.  

At this point, the as-synthesized CdS nanoparticle dispersion can be used directly 

for the addition of ZnS shells by the SILAR method (described in section 3.C) or the 
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particles can be purified for characterization (described in the remaining portion of section 

3.B below). 

In order to characterize our nanoparticles by TEM, they must be removed from the 

[BMIM][MeSO4]. For characterization, a 1mL aliquot was transferred to a 1.7mL 

centrifuge tube. The sample was centrifuged at 2500rpm for ten minutes. After 

centrifugation, a pellet was formed at the bottom of the tube. The supernatant was decanted 

and the pellet was dispersed in 1mL of DI-H2O. A TEM grid was prepared as described in 

materials and preparations section, and the rest of this dispersion was used for UV-vis and 

fluorimetry.  

3.B.3: UV-vis spectroscopy 

In preparation for UV-vis spectroscopy approximately 1mL of CdS nanoparticles, 

dispersed in water, were transferred to a 5mL cuvette with four optically polished windows 

suitable for both UV-vis and fluorimetry. This was done due to the UV-vis spectrometer 

and fluorimeter being next to each other and speeding up the process as well as conserving 

sample. More water was added via pipette to fill the cuvette. The sample was capped and 

shaken to ensure particles were evenly dispersed within the solution and then UV-vis 

spectra was obtained using a medium speed with a reading every 0.5nm. A medium speed 

was chosen to get as accurate a reading while ensuring the particles did not begin to settle. 

Our UV-vis spectra showed a clear peak is seen at 460nm as seen in Figure 3.3.  
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Figure 3.3: The UV-vis spectrum for our CdS nanoparticles in [BMIM][MeSO4] showed 

an absorbance peak at 460nm. 

 

We attempted to track the growth of the nanoparticles with UV-vis spectroscopy 

like in section 2.B.4 using samples taken at different points, however the peak remained 

the same wavelength through all tested time points. This is believed to be because the 

method used with thioacetamide forms particles much more quickly than the methods we 

used previously with elemental sulfur.  

The CdS nanoparticle synthesis using thioacetamide in [BMIM][MeSO4] involved 

heating all the reagents together compared to the hot injection method performed using 

sulfur in 1-octadecene. The one-pot-synthesis with thioacetamide involved all reagents for 

the synthesis being present from the beginning of the reaction, which allowed for 

nanoparticles to form as the solution was heated. Once the solution reached the desired 

temperature of 180°C, the CdS nanoparticles are already formed and reached their 

maximum size before any samples were taken from the reaction mixture. This growth 

during heating was further accelerated due to the high reactivity of thioacetamide compared 
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to elemental sulfur. The hot injection method could be used to prevent this from happening 

by heating up the cadmium to 180°C before injecting the thioacetamide and allowing the 

particles to form and grow. In the future an attempt at tracking the growth of the particles 

in [BMIM][MeSO4] can be done by modifying the experiment to a hot injection method. 

3.B.4: TEM imaging 

TEM imaging was used to observe the morphology, size, and extent of aggregation 

of the CdS nanoparticles after being precipitated from [BMIM][MeSO4] and dispersed in 

water. Roughly spherical particles with average diameter of 4.2nm±0.7nm were observed 

(Figure 3.4). The majority of particles were not aggregated, though a small number of 

aggregates were observed. The observation of well-dispersed nanoparticles indicated that 

irreversible aggregation did not occur in [BMIM][MeSO4] for most of the sample. 

Aggregates likely formed from the centrifugation process (discussed in section 3.B.6.c). 

 

 

Figure 3.4: TEM imaging and sizing of the CdS nanoparticles dispersed in water after 

centrifugation. Scale bar equals 20nm. Average diameter was d=4.2nm±0.7nm. 100 

particles were sized.        
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3.B.5: Fluorimetry 

The sample was taken directly from the UV-vis spectrometer and inserted into the 

fluorimeter for scanning. Like the CdS nanoparticles formed in 1-octadecene, the particles 

synthesized in [BMIM][MeSO4] also have low fluorescence intensity (Figure 3.5). The 

peak is of low intensity as well as broad. It is also in the same range as the CdS 

nanoparticles synthesized in 1-octadecene with a peak at around 410nm as seen in Figure 

2.15. 

 

Figure 3.5: Fluorimetry was performed on our purified CdS nanoparticles with an 

excitation wavelength of 340nm. Like the particles synthesized in 1-octadecene the 

emission peak is very low. 

 

3.B.6: Issues with synthesis and purification 

In order to synthesize our CdS nanoparticles in the [BMIM][MeSO4] we had to undergo 

many small tests to obtain our new procedure. This pertained to both the reagents chosen, 

reagents amount, and the purification process and can be seen in Table 3.1.   
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Table 3.1: Comparing the CdS nanoparticle synthesis in 1-octadecene (from chapter 2) 

with the CdS nanoparticle synthesis in [BMIM][MeSO4] (chapter 3).  

 

 

3.B.6.a: Issues with [BMIM][MeSO4] 

As stated earlier, [BMIM][MeSO4] had to be used carefully due to being 

hygroscopic. Another issue observed occurred when heating the [BMIM][MeSO4] to 

dissolve the Cd(OAc)2·2H2O. When the [BMIM][MeSO4] was heated to over 200°C it 

would begin to change color from a brown color to black. This color change at about 200°C 

would be a slow change taking over an hour to fully change to black. At over 260°C this 

color change would occur by the time the solution reached temperature. This color change 

also occurred more quickly with sulfur and thioacetamide, changing to a transparent black 

solution on a hot plate temperature of 190°C. This made it difficult to tell when the 

cadmium was fully dissolved as we could no longer rely on color change. Heating also 

 Synthesis in 1-octadecene 

(chapter 2) 

Synthesis in 

[BMIM][MeSO4] (chapter 

3) 

Method Hot injection One-pot-synthesis  

Cadmium reagent Cd(OAc)2·2H2O Cd(OAc)2·2H2O 

Sulfur reagent Elemental sulfur Thioacetamide 

Solvent 1-Octadecene & oleic acid [BMIM][MeSO4] 

Temperature 

synthesized 

260°C 180°C 

Preparation for optical 

spectroscopy 

None Precipitated and dispersed in 

water 

Preparation for TEM 

imaging 

Precipitated and dispersed 

in hexanes 

Precipitated and dispersed in 

water 
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caused a change once the [BMIM][MeSO4] was cooled, as it would change into a viscous 

liquid. As we discovered previously, Cd(OAc)2·2H2O dissolved at 180°C, therefore we 

lowered the temperature so the [BMIM][MeSO4] would not change properties. 

 A second issue with [BMIM][MeSO4] is that it is non-volatile, meaning it will 

never evaporate. Due to this we could not cast grids with our crude product with no 

purification. 

 A third issue with [BMIM][MeSO4] was that it had a UV-vis reading due to 

scattering, and we could not observe a peak from CdS nanoparticles in our crude product 

directly. Therefore, purification was needed not just for TEM imaging but also for UV-vis 

and fluorimetry. As Figure 3.6 shows, [BMIM][MeSO4] after being heated has an 

absorbance reading through the entire range that our CdS nanoparticle absorbance peaks 

can appear. 

 

Figure 3.6: [BMIM][MeSO4] seemed to cause scattering under UV-vis, preventing us from 

performing UV-vis on our crude product. This meant that we had to perform purification 

for UV-vis spectroscopy on our particles 
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3.B.6.b: Issues with CdS nanoparticle synthesis  

 Our first attempt at CdS nanoparticle synthesis involved following the procedure 

from 2.B but using [BMIM][MeSO4] as our solvent and stabilizing agent instead of 1-

octadecene and oleic acid. This procedure yielded inconclusive UV-vis data. While only a 

small number, TEM imaging showed that we had synthesized nanoparticles. We increased 

the concentration of Cd(OAc)2·2H2O and sulfur powder by five times in order to synthesize 

more particles. This also yielded inconclusive UV-vis data. TEM imaging showed a minor 

increase in the number of particles, however these particles were aggregated. We switched 

our sulfur source from elemental sulfur to thioacetamide due to its higher reactivity as well 

as previous studies using thioacetamide to synthesize nanoparticles in [BMIM][MeSO4].
22 

TEM imaging of these CdS nanoparticles synthesized with thioacetamide showed a 

substantial increase in the amount of particles. With a method that yielded a high number 

of particles we could focus on optimizing the purification process to obtain UV-vis data.  

3.B.6.c: Issues with purification process 

Purification was needed in order to remove our particles from the 

[BMIM][MeSO4]. Even trace amounts of [BMIM][MeSO4] could form an organic layer 

that the TEM electron beam could not pierce. As seen in Figure 3.7, a thick film of organic 

material from the [BMIM][MeSO4] prevents the nanoparticles from being seen. The 

electron beam cannot pierce the film of organics, only searing a partial hole where the beam 

is condensed. 
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Figure 3.7: TEM image of a CdS nanoparticle dispersion in hexane/oleic acid with residual 

[BMIM][MeSO4] preventing detection of particles. 

 

While centrifugation was ultimately the method of purification we chose to remove 

the [BMIM][MeSO4], it took many steps to reach an optimized procedure. While these 

steps were in themselves unsuccessful, each one provided a small piece of information that 

allowed us to improve our purification process to finally be able to obtain UV-vis data.  

Our initial purification process was liquid-liquid extraction. While ultimately 

unsuccessful, it did prove to us we were forming nanoparticles. This method was done by 

using [BMIM][MeSO4] and an immiscible solvent containing dissolved oleic acid as a 

ligand. Our first study was to determine which solvents would allow us to form two phases 

with [BMIM][MeSO4]. We tested acetone, toluene, hexanes, and tetrahydrofuran (THF) 

and found that hexanes and toluene were both immiscible with the neat ionic liquid, while 

acetone formed a second phase when oleic acid was added to [BMIM][MeSO4]. THF was 

not studied further. Figure 3.8 shows the process for our liquid-liquid extraction. We took 

1mL of our crude product in 2mL vial and added 1mL of an organic solvent mixed with 

oleic acid at different concentrations. These vials were then shaken/vortexed to attempt and 
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pull the CdS particles from the [BMIM][MeSO4] into the organic solvent/oleic acid 

mixture. These extractions never gave us UV-vis data showing we had synthesized 

particles; however, they did provide useful TEM images as seen in Figure 3.9. These TEM 

images showed that we had synthesized nanoparticles, but this purification procedure was 

not useful for obtaining UV-vis or fluorimetry spectra. 

 

Figure 3.8: Scheme showing liquid-liquid extraction experiments using oleic acid with an 

organic solvent (hexanes, toluene, or acetone). The mixtures had ratios of 2:1 organic 

solvent:oleic acid, as well as 20:1, 50:1, and 100:1. 

 

 

Figure 3.9: TEM image from a liquid-liquid extraction using 20:1 toluene:oleic acid 

showing a few free particles, most though are aggregated together. The scale bar represents 

50 nm. 

Crude product 
([BMIM][MeSO4] with 

CdS particles) 

Mixture of organic 
solvent with oleic acid  
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 Since liquid-liquid extractions were not working our next attempt was 

centrifugation to separate our particles from the [BMIM][MeSO4]. This procedure is 

illustrated in Figure 3.10. To determine the best solvent for the crashed out CdS particles, 

we centrifuged four 1mL samples of crude product at 6000 rpm for 10 minutes to obtain a 

pellet in each centrifuge tube. Acetone, isopropanol, THF, and water were then used as 

solvents to try and disperse the particles. Of these, only water fully dispersed the particles 

and formed one phase. Particles dispersed in water were found to have the fewest 

aggregates (Figure 3.11). We also observed web-like structures in the TEM images of this 

water dispersion, but these structures were not reproducible. 

 

Figure 3.10: Scheme for centrifugation experiments.  

 

 

Figure 3.11: TEM images obtained from CdS nanoparticles dispersed in water. The right 

image is a magnified region of the left image to show individual particles. 

A B 
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 Once we had determined the best solvent to disperse our particles in after 

centrifugation we decided to optimize our precipitation procedure. We first wanted to 

determine the optimal number of centrifugations we could perform. More centrifuges 

would allow us to obtain a purer product. Therefore, 1mL of crude product with CdS 

nanoparticles were added to two centrifuge tubes. Each was centrifuged at 6000rpm for ten 

minutes. Both had the supernatant decanted. One sample was dispersed in water and a TEM 

sample was prepared (Figure 3.12a). The second sample was dispersed in 1mL of 

isopropanol, centrifuged at 6000rpm for ten minutes to obtain a white pellet. The 

supernatant was decanted and the pellet was dispersed in isopropanol and precipitated by 

centrifugation once more. The supernatant was decanted and the pellet dispersed in water 

and a sample prepared for TEM imaging (Figure 3.12b). As Figure 3.12 shows, after more 

than one centrifuge, our particles form large aggregates with no free particles. However, 

even the sample obtained after one centrifugation procedure did not give a clean UV-vis 

peak. We attributed these inconclusive UV-vis spectra to either multiple size particles 

crashing out together, thus broadening the peak due to their different absorbance peaks, or 

from more [BMIM][MeSO4] being crashed out with the particles thus distorting the 

spectrum.  

 

Since we could not improve our method via number of centrifuges, we decided to 

optimize centrifuge speed. All previous attempts had spin speeds at 6000rpm for ten 

minutes. For this study we decided to try and find the lowest possible centrifuge speed that 

would obtain a pellet. We decided to try and obtain the particles that were all the same size, 

and by centrifuging at the lowest possible speed the larger particles would preferentially 
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crash out. This led to us lowering the centrifugation speed from 6000rpm to 2500rpm which 

gave us our first absorbance peak for our particles synthesized in [BMIM][MeSO4] which 

can be seen in Figure 3.3. 

 

Figure 3.12: TEM images obtained after centrifugation at 6000 rpm once (a) and three 

times (b). Image-A scale bar=20nm. Image-B scale bar=50nm 

 

3.C: Planned future experiments: zinc sulfide shell growth 

3.C.1: Procedure for ZnS shell growth 

 CdS nanoparticles would be synthesized following the procedure from section 

3.B.2. However, a three-way distillation head will be attached to the flask. The water jacket 

condenser will be attached to the side of the distillation head, leading to a beaker. This will 

allow moisture to leave the reaction vessel. A solution will be made by adding 

thioacetamide (0.272g, 3.61mmol) to a 20mL vial. The vial will be sealed with rubber 

septum and atmosphere will be vacuumed out and replaced with argon. Then 5mL of 

[BMIM][MeSO4] will be added to vial via syringe under argon. The solution will be heated 

on hot plate set to 100°C to dissolve thioacetamide. A zinc solution will be made by adding 

A B 
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Zn(OAc)2·2H2O (0.806g, 3.61mmol) to 20mL vial. This will then be dissolved in as little 

DI-H2O as possible at room temperature. The amount of water needed to fully dissolve the 

Zn(OAc)2·2H2O will be determined in lab. Vial is shaken and vortexed until 

Zn(OAc)2·2H2O is dissolved.  

 After CdS nanoparticles are synthesized a 0.7mL sample will be transferred to 2mL 

vial. 0.65mL of the thioacetamide solution will be transferred to flask via syringe and 

allowed to sit at 180°C for five minutes. An equivalent amount of zinc acetate dihydrate 

will be added to flask as an aqueous solution via syringe and allowed to sit for five minutes, 

after which a 0.7mL sample will be transferred to a 2mL flask. This procedure will be 

repeated with increasing amounts of sulfur and zinc added to grow subsequent shells as 

seen in Table 3.2 and 0.7mL samples will be transferred to 2mL vials for purification and 

characterization. Purification will follow same procedure from 3.B.2.  

 

Table 3.2: Estimated amounts of Zn(OAc)2·2H2O and thioacetamide needed to grow six 

ZnS layers on CdS nanoparticles.  
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3.C.2: Calculating amounts of zinc and thioacetamide needed to grow multiple ZnS 

layers 

 Due to the large number of particles synthesized using thioacetamide samples must 

be heavily diluted in order to obtain UV-vis data. Calculations for the amounts of sulfur 

and zinc needed for each layer are estimated using stoichiometry instead of absorbance 

peak from UV-vis. For our estimations we assumed that Cd(OAc)2·2H2O and 

thioacetamide fully reacted during CdS nanoparticle synthesis. Size determination of 

particles was obtained from TEM imaging. As stated in section 3.B.2, CdS nanoparticles 

are fully grown when synthesized with thioacetamide by the time they reach 180°C. 

Therefore, we can assume the size of the particles will be approximately the same during 

each synthesis. After sizing our CdS particles we determined their approximate size to be 

5nm in diameter (2.5nm radius).  This can then be converted into volume (using 4𝜋r3) then 

into mass by multiplying the volume by the density of CdS (4.8g/cm3). The moles of CdS 

per particle can be estimated by dividing the mass per particle by molar mass of CdS 

(144.47g/mol). By assuming all our Cd(OAc)2·2H2O reacted, we can divide the starting 

number of Cd(OAc)2·2H2O moles (0.9mmol) by the moles of CdS per particle to determine 

the number of CdS nanoparticles in solution. The radius of the CdS/ZnS core/shell particle 

can be estimated by adding 0.31nm to the radius of the CdS. Volume can then be calculated 

(using 4𝜋r3).  The volume of the ZnS shell can then be estimated by subtracting the CdS 

nanoparticle volume from the CdS/ZnS core/shell particle as shown in Figure 2.9. The 

mass of the ZnS shell can be estimated by multiplying the estimated volume of the ZnS 

shell with the density of ZnS (4.09g/cm3). Moles of ZnS per shell is estimated by dividing 

the mass per ZnS shell by the molar mass of ZnS (97.47g/mol). The moles of ZnS per shell 



53 
 

can then be multiplied by the number of CdS nanoparticles in solution to determine the 

moles of thioacetamide and Zn(OAc)2·2H2O needed to coat all particles. This process can 

be repeated with all the same numbers except for the radius of the next layered particle, 

which will have a radius 0.31nm longer than the last particle.  

 

Chapter 4: Conclusion 

 We were able to successfully synthesize CdS/ZnS core/shell nanoparticles 

in 1-octadecene with insulating ligands attached. We were able to determine what size 

nanoparticles we wished to synthesize. Characterization was performed to prove we had 

characterized the correct size particles as well as the correct composition. With this we 

could use these particles as a basis for comparison for subsequent experiments.  

CdS nanoparticles were also successfully synthesized using [BMIM][MeSO4] as a 

solvent and stabilizing agent. These particles were successfully extracted and characterized 

using UV-vis, fluorimetry, and TEM imaging. Purification process for extracting the 

particles was optimized to allow particles to be characterized. Addition of a ZnS shell for 

the synthesis of CdS/ZnS core/shell nanoparticles in [BMIM][MeSO4] has not yet been 

successfully performed. Calculations for estimates on the amount of zinc and sulfur needed 

for shell growth have been created along with a procedure for future attempts at shell 

growth.  
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