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Inflammatory bowel disease (IBD) is a set of disorders that involve chronic 

inflammation of digestive tracts, e.g., Crohn's disease (CD) and ulcerative colitis (UC). 

Millions of people around the world have inflammatory bowel disease. However, it is 

still difficult to treat IBD due to its unknown cause. In fact, accurately diagnosing 

inflammatory bowel disease (IBD) can be very challenging too since some of IBD 

symptoms can mimic those of other conditions. In this work, we apply classification 

methods to help improve the success rate of diagnosis. We study four formulations of 

IBD classification: i) IBD and non-IBD (binary classification), ii) CD and non-IBD 

(binary classification),  iii) UC and non-IBD (binary classification),  and iv) UC, and 

non-IBD (ternary classification). We have applied a number of classification methods, 

including decision tree, Naive Bayes, K-nearest neighbor, and rule-based classifier, to the 

two IBD classification problems using a metagenomic dataset collected from stool 

samples. Our study shows that a rule-based classifier achieves the best combination of 

classification accuracy and readability. We also explored the roles of attributes in the 

diagnosis of IBD based on interpretation of learned models. Studying the importance of 

specific attributes could lead to a better understanding of IBD by either discovering new 

connections or reinforcing known ones.
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Chapter 1. Introduction 

Inflammatory bowel disease (IBD) is a group of disorders that cause chronic 

inflammation of the gastrointestinal (GI) tract that causes an array of symptoms. Over 3.5 

million people are diagnosed with IBD and that number is still increasing, not only in 

North America and Europe where is it most common, but also around the world [1]. 

There are two main types of IBD with the majority of diagnoses: Crohn’s disease (CD) 

and ulcerative colitis (UC). While CD and UC are very similar, they do have specific 

difference. CD can affect anywhere along whole GI tract (from mouth to anus) with 

damaging inflammation appearing in patches and with the possibility of reaching 

multiple layers of the GI tract wall, while UC can only affect the large intestine (colon) 

and sometimes rectum, with damage continuous and inflammation is only in the 

innermost layer of the colon lining [2].  

CD and UC are very similar with their symptoms and most (but not all) treatment 

options. However, if surgery is required, the type of surgery and area operated on are 

different due to the difference in inflammation. Due to the continuous damage of UC, it is 

far easier to perform a removal surgery to remove only the parts of the colon that are 

affected. CD’s damage often cannot be simply removed because it only appears in 

scattered patches and/or it may appear in areas that cannot be removed. [3]. For this 

reason, the distinction between CD and UC in IBD diagnosis is important so that medical 

professionals and patients are aware of all options open to them. 

While IBD is not fatal (unless there are major complications), it has a large 

impact on the lives of those who have the disease, especially if remission cannot be 

reached. Common symptoms include but not limited to abdominal cramps and pain, 
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fatigue, diarrhea, and bloody stools. IBD also increases chances of having many other 

diseases or disorders such as, cardiovascular disease, respiratory disease, cancer, arthritis, 

weak or failing kidneys, any liver condition, and ulcer [4]. IBD can bring additional 

challenges from the symptoms and risk factors. With the lack of public understanding of 

IBD, patients can be treated with insensitivity to their condition, either by not 

understanding the severity of their condition or not believing their condition at all. This 

can cause them to keep their condition to themselves and fail to reach out for support 

which in turn leads to stress, anxiety, depression, and/or other mental health problems. 

The stress and cost of treatment and eve bathroom access can also provide more 

challenges to patients [5]. 

The previously mentioned symptoms and possible other condition that IBD 

patients can have may lead to a misunderstanding that a patient has other disorders such 

as Irritable Bowel Syndrome, celiac disease, tuberculous enteritis, duodenal ulcer, 

appendicitis, anal fistula, enterocolitis, hemorrhoids, rectal varix, and rheumatoid arthritis 

[2] [5]. In summary, IBD can be difficult to diagnose because its cause is unknown, and it 

can be easily diagnosed as other diseases with similar appearing conditions. This can 

cause many patients to go untreated while for medical professionals determine what 

might be causing their symptoms and provide a correct diagnosis. A study performed by 

Yong Hoon Kwon and Yong Joo Kim show that the average diagnostic time lag in 

children with CD was 3.36 months, and with UC was 2.2 months but this time can 

increase by month or years with an incorrect diagnosis [5]. This can cause patients to 

suffer with symptoms longer than necessarily and receive treatment for a condition that 
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they do not have which may harm them more. There are a few tests that medical 

professionals order which all have varying goals, success, and burden on the patients 

Although the exact cause of IBD is unknown, there are some known factors that 

increase the chance of someone having it and changes in gut microbiota are seen as well. 

These factors include, age, race/ethnicity, family history, smoking, and environment [6] 

[7]. The change in the gut microbiota is highly debated because it is unknown whether 

the change is the cause of the IBD or the consequence of it [8]. This debate between 

change and consequence of the gut microbiota change causes many different paths in 

treatments such as chemotherapy, complementary and alternative medicine, traditional 

Chinese herbal medicine, prebiotics, probiotics, synbiotics, and fecal microbiota 

transplantation.  Some of these tests include, general blood test, stool test, medical 

imaging, colonoscopy, and colon biopsy [9]. Despite the variety of test, the colonoscopy 

is considered to the benchmark for monitor any IBD activity because of its accuracy and 

the amount of the information that gained in comparison to the other tests. The 

colonoscopy has an 89% accuracy of diagnosis of CD or UC [10]. With the proper 

medication, many patients find remission and experience little to no symptoms. 

With the complexity of medical diagnosis and the human body, it can be quite 

difficult for humans to find the connects between the conditions of the human body and 

varies disorders. All the different conditions in the human body from DNA to heart rate 

to abundance of bacteria in a patient stool can be measured and recorded to produce large 

dataset that focus on the wellbeing of the body. With the use of machine learning 

techniques, these datasets can be processed to reveal knowledge the body that were not 

previously known and possibly quite hard for humans to detect on their own. While 
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machine learning technique cannot replace the knowledge, intuition, and experience of 

medical professionals, they can be used as another tool to extend our understanding of the 

problem. Just like any other tool, there is no tool that works for all problems. This is why 

various machine learning techniques should be tested to find which one is best suited for 

a specific problem or set of problems. 

 This thesis discusses the diagnosis of IBD using classification methods while 

looking at three binary classifications (IBD and nonIBD, CD and nonIBD, UC and 

nonIBD) and ternary classification (CD, UC, and nonIBD). The models used include 

C4.5 Decision Tree, Naïve Bayes, k-Nearest Neighbor, RIPPER, and Decision Table. 

The ensemble methods of bagging and boosting are also used on the C4.5 decision tree 

and the RIPPER algorithm. The use of these classification models to diagnose IBD using 

a Metagenomic dataset collected from stool samples. Waikato Environment for 

Knowledge Analysis (WEKA) is used in the implementation of the classification models. 

The findings of this thesis show that the RIPPER algorithm has great potential for 

diagnosing IBD because of its interpretability, a higher classification accuracy than a 

colonoscopy, and the rule set lines up with some known links between IBD and certain 

bacteria. 
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Chapter 2. Literature Review 

 
The use of data mining models and machine learning techniques in the medical 

field is not a new area of research and there is research that looks directly at diagnosing 

IBD. This allows for the comparisons of results, classification models, and datasets and 

also a comparison to the current test standards. While the combination of the 

classification models and metagenomic data is what being studied in the theis, the study 

of metagenomic data from stool samples has been used to learn more about a patient’s 

microbiota and test for infection. 

 

2.1 Current IBD Testing Methods 

 Isabelle Noiseux et al. discusses the various test methods being used today and 

studied the cost, refusal rates, comfort and fear levels, knowledge, etc. that patient 

associate with the different tests in their study, “Inflammatory bowel disease patient 

perceptions of diagnostic and monitoring tests and procedures” [9]. They collected survey 

data through the Crohn’s and Colitis Canada association about the five common tests 

used to test for IBD: general blood test, stool test, colonoscopy, colon biopsy and medical 

imaging. The survey received 210 responds where 145 had CD and the other 65 had UC.  

The study first looked at what tests were requested the most and were refused the most 

with both being the general blood test even when it provides the least information. They 

continued by investigating why patients refuse specific tests. The study continues by 

looking at patients’ comfort, understanding of the tests, and what information about the 

test was provided by the medical professional. This information can be used to help 

decide what tests to order, where medical professional can improve when interacting with 
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patients, and understand how patients view the tests. Patients appeared to be most 

comfortable with the stool sample and medical professionals need to provide more 

information about risks of having false positive or negative tests. 

 

2.2 Data Mining and Medicine 

Elahe Parva et al. discusses the emerges of data mining in the medical field, 

especially in emergency medicine in their paper, “The Necessity of Data Mining in 

Clinical Emergency Medicine; A Narrative Review of the Current Literature” [11]. Parva 

discusses the complexity of the body with its many systems and subsystems is much like 

the complexity and connectivity of economic and military problems that already use 

machine learning and statistics to effectively solve complex problems. Data mining 

would not only help with understanding the body and diagnosis problems but also reduce 

the waste of medical resources. Parva identifies the following areas of medical science as 

potential places data mining analysis can be applied [11]:  

 Identifying the complex mechanisms of different body subsystems and 

their interactions with each other 

 Identifying people who are at risk for diseases of a genetic predisposition 

or caused by environmental factors 

 Identifying disease mechanisms and their interactions with the problems 

of the body 

 Determining disease prognoses, and facilities management 

 Establishing decision support systems to make the best decision, 

especially when the disease is multi-factorial, when more factors are 
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involved in determining the course of the disease, in emergencies, or in 

acute phases of a disease 

 Evaluating diagnostic and treatment tasks and relationships and 

identifying shortcomings and capabilities 

 Finding the best screening methods for diseases and injuries, particularly 

for patients in critical conditions.  

The paper continues by discussing the studies that have already applied data 

mining in various medical areas including, cancer, prognosis of patients after lung 

transplantation, determining diseases and facilities management, and decision support 

system. 

 

2.3 Endoscopy and Histology 

E. Mossotto et al. studies the use of ensemble learners, linear discriminant 

analysis and support vector machine (SVM) for IBD diagnosis in their paper 

“Classification of Paediatric Inflammatory Bowel Disease using Machine Learning” [12]. 

Mossotto’s research uses data obtained from endoscopy and histology (study of the 

microscopic structure of tissues) at initial diagnosis from 287 IBD patients (178 CD, 80 

UC, and 29 unclassified IBD (IBDU)). This study has no healthy controls to provide a 

baseline for people with IBD, which means that this study only provide insight in the 

difference between types of IBD. This study investigates both unsupervised and 

supervised learning. The unsupervised clustering did not should significant separation 

between types of IBD. Hierarchical clustering is able to group most patients into 4 groups 

but there is not significant different between groups. The following models where tested 
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in order to decision which model to optimize; simple tree, medium tree, complex tree, 

linear discriminant analysis, linear SVM, quadratic SVM, cubic SVM, boosted trees, and 

bagged trees. Out of these models, linear discriminant analysis had the best accuracy with 

81.0% followed closely by linear SVM which was a half percent lower. The SVM was 

used for optimization for its adaptability and interpretability. The optimized SVM when 

looking at both the endoscopy and histology data had the best accuracy with 82.7%. 

 

2.4 Promteomic Mass Spectra 

Pierre Geurts al et. perform a study in “Proteomic mass spectra classification 

using decision tree-based ensemble methods” [13]. This study’s goal is to propose a 

flexible method to analysis and learn from proteomic mass spectra with the hopes of a 

framework that would be able to diagnosis multiple diseases. This study uses rheumatoid 

arthritis and IBD as proof of concept with the hopes of expanding to other diseases. 

Using rheumatoid arthritis and IBD have some shared characteristics and can treated with 

the same medication [14]. This demonstrates that similar problem, but different problems 

can be tackled by in a similar way. Geurts used the following models: single decision 

tree, bagging, random forests, extra-trees, boosting, k-nearest neighbors, and support 

vector machine. This paper uses a mass spectrometry data that generates protein profiles 

from body fluids with 240 instances with both IBD patients and healthy controls. Their 

experiments found that the model with the best error rate for the diagnosis of IBD was 

achieved by extra-tree with a 10.02% error rate with the best discretization. This study 

also investigates attribute importance ranking and biomarker selection. The attribute 

selection by boosting (r = 1%) decreasing the error rate to 6.68%. 
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2.5 Metagenomic Stool Sample 

Federica Gigliucci al et. looks at metagenomic data from stool samples to identify 

patients that are positive for Shiga toxin-producing Escherichia coli (STEC) in 

“Metagenomic Characterization of the Human Intestinal Microbiota in Fecal Samples 

from STEC-Infected Patients” [15]. The study shows that the subjects’ microbiota 

underwent a significant change between subjects with and without the STEC infection 

and even identify specific bacteria that are linked to the infection. This study has samples 

from patients with diarrhea, patients after 2 weeks from the restoration of the normal 

intestinal function, healthy subject, and patients with CD. The promising results of this 

study set a precedence for analysis the metagenomic data of stool sample when 

diagnosing diseases and infections that have major effect on the microbiota of a patient, 

including CD. 
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Chapter 3. Methodology and Dataset 

 
These experiments use the Metagenomic dataset was collected and distributed by 

the Inflammatory Bowel Disease Multi'omics Database (IBDMDB) [16] as a part of the 

Integrative Human Microbiome Project (HMP2) [17]. Metagenome is the complete 

sequencing of all genetic material in an environment. In this dataset, the environments are 

the stool samples of each participant. The analysis of the metagenomic data of a stool 

sample can give an insight into the microbiota of the participant without the having an 

endoscopy, like a colonoscopy, performed. The study has 132 participants that are 

collected from three pediatric facilities (Cincinnati Children’s Hospital, Massachusetts 

General Hospital (MGH) Pediatrics, and Emory University Hospital) and two adult 

facilities (MGH and Cedars-Sinai Medical Center). Multiple samples where taken from 

the participants creating a dataset has 1338 instances with 599 CD diagnoses, 375 UC 

diagnoses, and 364 nonIBD diagnoses as the control group of the study. The dataset has 

1453 attributes with one class attribute after preprocessing. The dataset comes in two 

part: metadata and metagenomic data.  

Table 1: HMP2: Metagenomes Dataset 

Dataset Name Number of 
Instances 

Number of 
Attributes 

Number 
of Classes Class Distribution 

HMP2: Metagenomes 1338 1454 3 
CD – 599 
UC – 375 

nonIBD – 364 

 

The metagenomic data in the dataset is sequences of bacteria, viruses, and other 

microbes found in a participants’ stool sample while ignoring any of the human RNA for 

the participant. This RNA sequence data is ran through on a Anadama pipeline to create 
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files that records the concentrations of the bacteria, viruses, and other microbes both as 

specific species and larger classifications [16]. These concentrations values are broken by 

according to the taxonomy of the microbes by not only looking at the concentration of 

specific species but also kingdom, phylum, class, order, family, genus, and trinomen 

(subspecies). There were about 540 different species identified but with filtering out of 

any species with less than 0.01% abundance, they narrowed the study do to 109 species 

[16]. 

The metadata contents attributes that were collected by having each participant 

fill out a form asking questions about their health, recent diet, and general information 

about themselves (age, sex, race, etc.). Some of these attributes were removed from the 

dataset during preprocessing because they had the same value for every data point and/or 

they were included for clerical purposes only and do not have any effect on the diagnosis 

(ex: Name of the testing center). The attribute “Age at diagnosis” was also remove 

because only the participants that have IBD have a diagnosis age. To allow for the both 

the binary and ternary classifications, the diagnosis attributes must make a new dataset 

where the diagnosis attributes was processed where any CD and UC labels to IBD, when 

looking at IBD and non IBD. Two other datasets were created by removing rows for 

either CD or UC, so comparisons between CD and nonIBD and between UC and 

nonIBD. 

The models that this paper focuses on is C4.5 decision tree, RIPPER, Decision 

Table, Naïve Bayes, and k-nearest neighbor built-in models in WEKA. The ensemble 

learning methods Bagging and Boosting are applied on C4.5 decision tree and RIPPER. 
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Each model is ran with the default parameters in WEKA including using 10-fold cross-

validation for their validation unless otherwise specified.   

The C4.5 decision tree (or J48 in WEKA) creates a binary tree that can also 

ignore missing values [18]. It selected for this study because of its use in the simple 

studies, its simplicity, and readability.  The RIPPER algorithm (or JRip in WEKA) and 

Decision Table were selected for their readability and to determine the effectiveness of 

rule-based classifiers on this diagnosis problem. The JRip classifier or sometimes IREP 

using reduced error pruning along with divide and conquer method of creating greedy 

rule set one rule at a time [19]. The Decision table or sometimes Decision table majority 

(DTM) is created by finding the optimal set of features that provide the highest accuracy 

[20]. Naïve Bayes was selected because it is known for being applied to medical 

diagnosis problems [21]. Naïve Bayes classifier provide a simple approach to calculating 

probabilities by counting the frequency and combinations of values with the assumption 

that the attributes are independent of the given class [18].  K-nearest neighbor (or IBk in 

WEKA) was selected for its simplicity allows for easy implementation and explanation to 

those who have not used the model before. When classifying new data points, k-nearest 

neighbor determines what the closer existing data points (or neighbors) are and determine 

the new point class based on the classes of its neighbors [22].  

The Bagging and Boosting ensemble learning models were picked because they 

are two of the most common ensemble methods used and to draw comparison with the 

related studies which also used bagging and boosting. Bagging (also known as bootstrap 

aggregating) generates multiple versions of the selected method using bootstrap replicates 

to make an aggregated predictor [23]. Boosting (or AdaBoost in WEKA) is used to 
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“boost” the accuracy of other algorithm by running the classifier multiple times with 

various distributions over the training data and then combines the runs to make a single 

composite classifier [24]. 

The decision tree and RIPPER are especially focused on due to their better 

readability which allows for additional information beyond their statistics (accuracy, 

ROC, etc.). The models can also be evaluated by investing if the models created make 

logical sense with the attributes used. Also, it allows users that might not be as familiar 

with data models, such as medical professions, to understand the model while using it for 

diagnosis. Other models such as neural networks were considered for this paper but since 

the dataset has discrete and non-discrete attributes, models like neural networks are not 

suited for this type of dataset. 

All of the models were tested on five subsets of the attributes: all, metagenomic, 

meta, race, and sex. These subsets help to determine the importance of varies attributes in 

the different classification problems and in the varies models used. The attribute race was 

selected because it is known risk factor. However, sex was selected because females are 

more likely to have CD even if the sex patient is not a specific risk factor [4]. The subset 

all consists of all the attribute not remove with preprocessing, metagenomic consists only 

of the numeric concentrations values from the metagenomic data and the diagnosis, 

metadata consists of all attributes from  the metadata, race consists of the metagenomic 

values, the diagnosis, and race, and sex consists of the metagenomic values, the 

diagnosis, and sex. The metadata subset is unlikely to provide a good diagnostic tool, but 

it may lead to a better understanding of what attributes from the metadata are important 

in the diagnosis problem. 
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Chapter 4. Binary Classification: IBD and nonIBD 

 
This section discusses the binary classification of instances as either IBD or 

nonIBD. This binary classification focus on whether a patient has IBD, in general, so 

future tests would have to be performed to given them a more specific diagnosis. This 

section will compare accuracies against those obtained by Geurt’s study [13]. A 

comparison is not been made to Mossotto’s study because the diagnosis is only between 

CD and UC without healthy controls [12]. 

 

4.1 Initial Results 

 Figure 1 shows a comparison between the different models on the different 

subsets on the IBD/nonIBD dataset. The dataset consists of 974 instances of IBD and 364 

instances of nonIBD. 

 4.1.1 Decision Table 

  At first glance, it appears that the decision table using the all subset is the best 

model option for the IBD and nonIBD model. The decision table has good readability and 

has the best accuracy of the models and subsets, but the rules created show that it is not a 

good option for this dataset. The table created with the all use following attributes: 

“consent_age”, “Immunosuppressants (e.g. oral corticosteroids)”, “In the past 2 weeks 

have you used an oral contrast”, “General wellbeing”, “Bowel frequency during the day”, 

and "Haemophilus pittmaniae”.  Generally a smaller decision table usually means a better 

decision table, but asking for a patients age, medications they are using, their general 

wellbeing, and looking at concentration of one bacteria, the is not going to be enough 

information to diagnosis someone with a complex disease like IBD. The decision table 
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using the metadata subset also has quite high accuracy, but it uses the same attributes as 

the all subset minus the "Haemophilus pittmaniae” attribute. The decision table has more 

reasonable attribute selection for the other subsets, however, these tables are not as 

attractive as a choice because they have lower accuracy than the models with similar 

accuracy.  

 4.1.2 K-Nearest Neighbor 

After the decision table, k-nearest neighbor has high accuracy in comparison to 

other models. The k-nearest neighbor with all the different subsets of this dataset also 

outperformed the k-nearest neighbor from Geurts’s study which has an error rate of 

20.21% (or accuracy of 79.79%) [13]. While the accuracy of the model is the highest, the 

model has low readability. While the concept of nearest neighbor is simple and easy for 

people to understand, it is hard to actually gain additional information from the model. 

This means that no addition information can be gathered from the model which in turn 

means fewer medical professionals would trust the model’s diagnosis.  

 4.1.3 Naïve Bayes 

The Naïve Bayes model does not perform very well for all the different subsets 

with the exception of the metadata subset. This model appears to not be equipped to work 

with the metagenomic abundance data because the accuracy of this model increases with 

the two subsets that include the metadata (all and metadata subsets). However, the 

specific metadata attributes of sex and race appear to have no effect on the model since 

the accuracy of the metagenomic, sex, and race subsets are the same. Despite the Naïve 
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Bayes model being popular for medical diagnosis problems, it is not a good fit for this 

specific problem. 

 4.1.4 C4.5 Decision Tree 

The C4.5 decision tree has the best accuracy when classifying IBD and nonIBD 

when looking at the sex subset. After the decision table and k-nearest neighbor models, 

C4.5 decision tree has the highest accuracy but only when using the sex subset. The C4.5 

decision tree is quite consistent across the different subsets with the exception of the 

metadata subset, since the accuracy between subset has less than a percent difference. 

The good readability of the decision tree also makes this model more trusted because the 

user knows why the model has made its prediction. The C4.5 decision using the sex 

outperforms the single tree in Geurts’s study, with a 26.67% error rate (or accuracy of 

73.3%) [13], and it also outperforms a colonoscopy by 3.75% [10]. However, the 

accuracy of the best method in Geurts’ study which is using attribute selection by 

boosting (r = 1%) outperformed the C4.5 decision tree but only by about 0.57% [13].  

 4.1.5 RIPPER 

The RIPPER algorithm also has merit for the classification between IBD and 

nonIBD. When using the all subset, the accuracy is the highest after the decision table 

and k-nearest neighbor. Since the RIPPER is a rule-based classifier, the readability is 

excellent even for individual with little to no experience with the model itself. The size of 

the RIPPER algorithm increases its attractiveness in comparison with the C4.5 decision 

tree. The RIPPER algorithm has 11 rules while the C4.5 decision tree has a size of 89 

with 45 leaves. The receiver operating characteristic area (ROC area) of the RIPPER 

algorithm (90.4%) is higher than the ROC area of the C4.5 decision tree (89.4%).  
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Because of these factors, RIPPER algorithm is a better model for the IBD and nonIBD 

classification problem, especially with it still outperforming the colonoscopy by 3.45% 

[10].  

   

Figure 1: IBD/nonIBD Classification Accuracy Chart 

 

4.2 Ensemble Learning 

 The ensemble methods improved the accuracy of both the C4.5 decision tree and 

the RIPPER algorithm. The increase between the single models and the bagging methods 

has a similar increase for both models with the RIPPER algorithm having a larger 

increase. The decision tree has an increase of about 3.66% while the RIPPER algorithm 

of about 4.26% while using the bagging method. The boosting, however, has a larger 

impact on the RIPPER algorithm’s accuracy then the accuracy for the decision tree (with 

about 6.05% and 4.71% change respectively). This study’s bagging and boosting for trees 

92
.2

27
2%

92
.6

75
6%

82
.5

85
9%

92
.5

26
2%

92
.7

50
4%

67
.7

87
7%

61
.8

83
4%

89
.0

13
5%

61
.8

83
4%

61
.8

83
4%

97
.6

08
4%

93
.7

96
7%

93
.4

97
8%

94
.4

69
4%

95
.3

66
2%

92
.4

51
4%

89
.3

12
4%

88
.4

90
3%

89
.3

12
4%

90
.4

33
5%

99
.2

52
6%

87
.3

69
2%

99
.3

27
4%

87
.2

94
5%

89
.1

62
9%

50%

55%

60%

65%

70%

75%

80%

85%

90%

95%

100%

all metagenomic metadata race sex

IBD/nonIBD Classification Accuracy

C4.5 Decision Tree Naïve Bayes K-Nearest Neighbor RIPPER Decision Table



 

18 
 

outperform Geurt’s study who’s bagging tree error rate is 16.25% (or accuracy of 

83.75%) and boosting tree’s error rate is 11.46% (or accuracy of 88.54%) [13].  

   

Figure 2: IBD/nonIBD Ensemble Methods Accuracy Chart 
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inceased significant and false positive rate decreases significantly. Using 10 runs has a 

sightly smaller false positive rate then using 20 runs but using 20 runs has better accuracy 

then using 10 runs (by 0.23%) and has two less rules which decrease the complex of the 

rule set. For different optimization runs performed, 20 runs is the best choice for binary 

classification. Using 20 optimization runs with the RIPPER algorithm outperforms the 

accuracy of a colonoscopy by almost 5% [10]. 

Table 2: RIPPER Optimization for IBD/nonIBD Classification 

Number of 
Optimizations Runs 

Accuracy FP Rate ROC Area Number of Rules 

2 92.45% 12.1% 90.5% 11 

3 92.45% 11.9% 90.5% 12 

4 91.93% 12.3% 90.2% 12 

5 92.90% 11.4% 90.8% 12 

10 93.72% 8.4% 93.0% 12 

20 93.95% 8.5% 93.0% 10 

 

 4.3.2 Improved Ensemble Learning 

 To continue improving accuracy, the RIPPER algortihm with 20 optizimation 

runs is used with the ensemble learning methods of bagging and boosting. As show 

above, bagging improves the 2 run RIPPER algortihm by about 4.26% and boosting 

improves it by 6.05%. From the 2 run RIPPER alogrithm,  there is an increase of about 

3.36% when using bagging and an increase of about 5.38% when using boosting on the 
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20 run RIPPER algorithm. While the ensemble learning with the increased number of 

optizimation runs has a high accuracy, it has a smaller increase of the accuracy.  

 

Figure 3: IBD/nonIBD Improved RIPPER Ensemble Accuracy 
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Chapter 5. Binary Classification: CD and nonIBD 

 
This section discusses the binary classification of instances as either CD or 

nonIBD. This binary classification focus on whether a patient has CD, so future tests 

would have to be performed to see if a patient has UC if the test comes up negative. This 

section will compare accuracies against those obtained by Geurt’s study but keep in mind 

that their study is comparing IBD and nonIBD [13]. A comparison is not been made to 

Mossotto’s study because the diagnosis is only between CD and UC without healthy 

controls [12]. 

 

5.1 Initial Results 

 Figure 4 shows a comparison between the different models on the different 

subsets on the CD/nonIBD dataset. The dataset consists of 599 instances of CD and 364 

instances of nonIBD. 

 5.1.1 Decision Table 

At first glance, it appears that the decision table using the all subset is the best 

model option for the CD and nonIBD model. The decision table has good readability and 

has the best accuracy of the models and subsets, but the rules created show that it is not a 

good option for this dataset. The table created with the all use following attributes: 

“consent_age”, “Have you ever had bowel surgery?” “General wellbeing”, and 

“Bacteroides dorei”. Generally a smaller decision table usually means a better decision 

table, but asking for a patients age, whether they have had bowel surgery, their general 

wellbeing, and looking at concentration of one bacteria, the is not going to be enough 

information to diagnosis someone with a complex disease like IBD. The decision table 
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using the metadata subset also has quite high accuracy, but it uses the same attributes as 

the all subset minus the " Bacteroides dorei” attribute. The decision table has more 

reasonable attribute selection for the other subsets, however, these tables are not as 

attractive as a choice because they have lower accuracy than the models with similar 

accuracy.  

 5.1.2 K-Nearest Neighbor 

After the decision table, k-nearest neighbor has high accuracy in comparison to 

other models. The k-nearest neighbor with all the different subsets of this dataset also 

outperformed the k-nearest neighbor from Geurts’s study which has an error rate of 

20.21% (or accuracy of 79.79%) [13]. While the accuracy of the model is the highest, the 

model has low readability. Due to the difficulty of reading the k-nearest neighbor, no 

addition information can be gathered from the model which in turn means fewer medical 

professionals would trust the model’s diagnosis.  

5.1.3 Naïve Bayes 

The Naïve Bayes model does not perform very well for all the different subsets 

with the exception of the metadata subset. This model appears to not be equipped to work 

with the metagenomic abundance data because the accuracy of this model increases with 

the two subsets that include the metadata (all and metadata subsets). However, the 

specific metadata attributes of sex and race appear to have no effect on the model since 

the accuracy of the metagenomic, sex, and race subsets are the same. Despite the Naïve 

Bayes model being popular for medical diagnosis problems, it is not a good fit for this 

specific problem. 
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 5.1.4 C4.5 Decision Tree 

 The C4.5 decision tree has the best accuracy when classifying CD and nonIBD 

when looking at the all subset. After the decision table and k-nearest neighbor models, 

C4.5 decision tree has the highest accuracy but only when using the all subset.  

The C4.5 decision tree is quite consistent across the different subsets with the exception 

of the metadata subset, since the accuracy between subset has less than a percent 

difference. The good readability of the decision tree also makes this model more trusted 

because the user knows why the model has made its prediction. The C4.5 decision tree 

using the all outperforms the single tree in Geurts’s study by about 17.77% [13], and it 

also outperforms a colonoscopy by 2.07% [10]. However, the accuracy of the best 

method in Geurts’ study which is using attribute selection by boosting (r = 1%) 

outperformed the C4.5 decision tree but only by about 1.41% [13]. 

 5.1.5 RIPPER 

The RIPPER algorithm also has merit with the classification between IBD and 

nonIBD. When using the all subset, the accuracy is the highest after the decision table 

and k-nearest neighbor. Since the RIPPER is a rule-based classifier, the readability is 

excellent even for individual with little to no experience with the model itself. The size of 

the RIPPER algorithm increases its attractiveness in comparison with the C4.5 decision 

tree. The RIPPER algorithm has 11 rules while the C4.5 decision tree has a size of 85 

with 48 leaves. Because of these factors, RIPPER algorithm is a better model for the CD 

and nonIBD classification problem, especially with it still outperforming the colonoscopy 

by 1.55% [10]. 
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Figure 4: CD/nonIBD Classification Accuracy 

 

5.2 Ensemble Learning 

 The ensemble methods improved the accuracy of both the C4.5 decision tree and 

the RIPPER algorithm. The boosting method performs better than bagging method. The 

C4.5 decision tree has a larger accuracy than RIPPER when using the boosting method, 

but the RIPPER algorithm performs better than C4.5 decision tree in the bagging method. 

In the bagging method, the decision tree has an increase of about 3.32% while the 

RIPPER algorithm of about 5.82%. The boosting, however, has a larger impact on the 

RIPPER algorithm’s accuracy then the accuracy for the decision tree (with about an 

7.17% and 6.65% respectively), but the C4.5 decision tree has larger accuracy then the 

RIPPER algorithm. This study’s bagging and boosting for trees outperform Geurt’s study 

by about 10.64% and outperforms the boosting by about 9.18% [13]. 
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Figure 5: CD/nonIBD Ensemble Methods Accuracy 
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Area increasing by 0.1%, the number of leaves decreasing by 7, and the size decreases by 

9. The confidence factors of 0.10 and 0.05 both have a decrease in accuracy with 0.05 

having the worse accuracy of the two trees created. The best accuracy made by the  

Table 3: C4.5 Decision Tree Optimization for CD/nonIBD Classification 

Confidence Factor Accuracy FP Rate ROC Area Number of Leaves Size 

0.25 91.07 % 10.2% 93.1% 48 85 

0.20 91.17% 10.0% 93.0% 48 85 

0.15 91.17% 9.9% 93.1% 41 76 

0.10 90.97% 10.4% 93.3% 41 76 

0.05 90.76% 10.7% 93.1% 41 76 

 

 5.3.2 “Improved” Ensemble Learning 

 In an attempt to increase the accuracy of the ensemble learning, the confidence 

factors of 0.20 and 0.15 are used on the C4.5 decision trees with boosting and bagging 

methods. Despite the increase in accuracy that is seen when using the confidence factor 

0.20 and 0.15, the ensemble methods had a decrease in accuracy in comparison to the 

default confidence factor. This is likely due to the decrease in size of the various trees 

created by when performing the bagging and boosting methods. The larger confidence 

factor produces the better accuracy for both the boosting and bagging methods. 
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Figure 6: CD/nonIBD “Improved” C4.5 Ensemble Accuracy 
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Chapter 6. Binary Classification: UC and nonIBD 

 
This section discusses the binary classification of instances as either UC or 

nonIBD. This binary classification focus on whether a patient has UC, so future tests 

would have to be performed to see if a patient has CD if the test comes up negative. This 

section will compare accuracies against those obtained by Geurt’s study but keep in mind 

that their study is comparing IBD and nonIBD [13]. A comparison is not been made to 

Mossotto’s study because the diagnosis is only between CD and UC without healthy 

controls [12].  

 

6.1 Initial Results 

Figure 5 shows a comparison between the different models on the different 

subsets on the UC/nonIBD dataset. The dataset consists of 374 instances of UC and 364 

instances of nonIBD. 

 6.1.1 Decision Table 

At first glance, it appears that the decision table using the all subset is the best 

model option for the CD and nonIBD model. The decision table has good readability and 

has the best accuracy of the models and subsets, but the rules created show that it is not a 

good option for this dataset. The table created with the all use following attributes: 

“Starch (white rice bread pizza potatoes yams cereals pancakes etc.) ”, “General 

wellbeing”, “Bowel frequency during the day”, “Eggerthella”, “Lactobacillus” and 

“Haemophilus pittmaniae”. Generally a smaller decision table usually means a better 

decision table, but asking for a patients age, whether they have had bowel surgery, their 

general wellbeing, and looking at concentration of one bacteria, the is not going to be 
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enough information to diagnosis someone with a complex disease like IBD. The decision 

table using the metadata subset also has quite high accuracy, but it uses the same 

attributes as the all subset minus the " Bacteroides dorei” attribute. The decision table has 

more reasonable attribute selection for the other subsets, however, these tables are not as 

attractive as a choice because they have lower accuracy than the models with similar 

accuracy.  

 6.1.2 K-Nearest Neighbor 

After the decision table, k-nearest neighbor has high accuracy in comparison to 

other models. The k-nearest neighbor with all the different subsets of this dataset also 

outperformed the k-nearest neighbor from Geurts’s study which has an error rate of 

20.21% (or accuracy of 79.79%) [13]. While the accuracy of the model is the highest, the 

model has low readability. Due to the difficulty of reading the k-nearest neighbor, no 

addition information can be gathered from the model which in turn means fewer medical 

professionals would trust the model’s diagnosis.  

 6.1.3 Naïve Bayes 

The Naïve Bayes model does not perform very well for all the different subsets 

with the exception of the metadata subset. This model appears to not be equipped to work 

with the metagenomic abundance data because the accuracy of this model increases with 

the two subsets that include the metadata (all and metadata subsets). However, the 

specific metadata attributes of sex and race appear to have no effect on the model since 

the accuracy of the metagenomic, sex, and race subsets are the same. Despite the Naïve 
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Bayes model being popular for medical diagnosis problems, it is not a good fit for this 

specific problem. 

 6.1.4 C4.5 Decision Tree 

 The C4.5 decision tree has the best accuracy when classifying UC and nonIBD 

when looking at the all subset. After the decision table and k-nearest neighbor models, 

C4.5 decision tree has the highest accuracy but only when using the all subset.  

The C4.5 decision tree is quite consistent across the different subsets with the exception 

of the metadata subset, since the accuracy between subset has less than a percent 

difference. The good readability of the decision tree also makes this model more trusted 

because the user knows why the model has made its prediction. The C4.5 decision tree 

using the all outperforms the single tree in Geurts’s study by about 17.74% [13], and it 

also outperforms a colonoscopy by 2.07% [10]. However, the accuracy of the best 

method in Geurts’ study which is using attribute selection by boosting (r = 1%) 

outperformed the C4.5 decision tree but only by about 2.25% [13]. 

6.1.5 RIPPER 

The RIPPER algorithm also has merit with the classification between IBD and 

nonIBD. When using the all subset, the accuracy is the highest after the decision table 

and k-nearest neighbor. Since the RIPPER is a rule-based classifier, the readability is 

excellent even for individual with little to no experience with the model itself. The size of 

the RIPPER algorithm increases its attractiveness in comparison with the C4.5 decision 

tree. The RIPPER algorithm has 9 rules while the C4.5 decision tree has a size of 42 with 

22 leaves. However, the RIPPER algorithm only outperforms the colonoscopy by about 

0.58% [10].  
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Figure 7: UC/nonIBD Classification Accuracy 

 

6.2 Ensemble Learning 

 The ensemble methods improved the accuracy of both the C4.5 decision tree and 

the RIPPER algorithm. The boosting method performs better than bagging method. The 

RIPPER has a larger accuracy than the C4.5 decision tree for both the boosting and 

bagging method. In the bagging method, the decision tree has an increase of about 4.74% 

while the RIPPER algorithm of about 9.07%. The boosting, however, has a larger impact 

on the RIPPER algorithm’s accuracy then the accuracy for the decision tree (with about 

9.47% and 6.90% respectively). This study’s bagging and boosting for trees outperform 

Geurt’s study by about 10.64% and outperforms the boosting by about 9.18% [13]. 
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Figure 8: UC/nonIBD Ensemble Methods Accuracy 

 

6.3 Accuracy Improvement  

 In an attempt to increase the accuracy of the C4.5 decision tree, the confidence 

factor related to pruning the tree has been changed. The default value in WEKA for the 

confidence factor is 0.25. The decrease of this number increases the amount of pruning. 

In this experiment, the confidence factor will only be lowered to guard against 

overfitting. 

 6.3.1 Best Model – C4.5 Decision Tree 
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decrease in the ROC Area to 91.4%, and an increase in the false positive rate by 0.4% 
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when using the confidence factor 0.10. The confidence factor 0.05 provides a slightly 

better tree then using 0.15 with an increase of about 0.13% in accuracy and 0.4% in ROC 

Area and decrease in the false positive rate (by about 0.1%), the size, and number of 

leaves. 

Table 4: C4.5 Decision Tree Optimization for UC/nonIBD Classification 

Confidence Factor Accuracy FP Rate ROC Area Number of Leaves Size 

0.25 91.07 % 8.9% 91.8% 22 42 

0.20 91.07 % 8.9% 91.9% 22 42 

0.15 91.07 % 8.9% 91.9% 22 42 

0.10 90.66% 9.3% 91.4% 22 42 

0.05 90.79% 9.2% 91.8% 20 38 

 

6.3.2 “Improved” Ensemble Learning 

 The confidence factors 0.20 and 0.15 were used to attempt to increase the 

accuracy of the ensemble learning methods. There was no increase in accuracy seen by 

the boosting or bagging methods when using either 0.20 or 0.15. Boosting sees no change 

in accuracy between using confidence factor 0.25 and 0.15 but there is a decrease in 

accuracy by about 0.54%. Bagging sees a decrease in accuracy of about 0.14% when 

using 0.20 and a decrease of about 0.41% when using 0.15. 
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Figure 9: UC/nonIBD “Improved” C4.5 Ensemble Accuracy  
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Chapter 7. Ternary Classification: CD, UC, and nonIBD 

 
This section discusses the ternary classification od instances as CD, UC or 

nonIBD. While the accuracy of the prediction does decreases but a ternary classification 

allows for the model give a more specific diagnosis between the specific types for IDB. 

In this section a comparison between the study and the study performed by Mossotto and 

the study performed by Geurts. Keep in mind that both studies are dealing with binary 

classifications and that Geurts’ study is IBD vs nonIBD while the Mossotto’s study is CD 

vs UC [12] [13]. 

 

7.1 Initial Results 

Figure 6 shows a comparison between the different models on the different 

subsets on the ternary dataset. The dataset consists of 599 instances of CD, 375 instances 

of UC, and 364 instances of nonIBD. 

 7.1.1 Decision Table 

At first glance, it appears when using the all subset is the best model option for 

the ternary classification model, but just like before the rules created show that it is not a 

good option for this dataset. The table created with the all use following attributes: 

“consent_age”, “General wellbeing”, “Bowel frequency during the day”, “Bacteroides 

fluxus”, and “Bacteroides sp 4 3 47FAA”.  Generally a smaller decision table usually 

means a better decision table, but asking for a patients age, their general wellbeing, the 

frequency of bowel movements during day and looking at concentration of two bacteria, 

the is not going to be enough information to diagnosis someone with a complex disease 

like IBD. The decision table using the metadata subset also has quite high accuracy, but 
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it uses the following attributes: “In the past 2 weeks have you had diarrhea?”, “General 

wellbeing”, “Arthralgias”, and “Bowel frequency during the day”. These attributes are 

also not enough to diagnosis a complex disease. The decision table has more reasonable 

attribute selection for the other subsets, however, these tables are not as attractive as a 

choice because they have lower accuracy than the models with similar accuracy.  

 7.1.2 K-Nearest Neighbor 

 The k-nearest neighbor has the second highest accuracy after the decision table. 

Due to the poor readiability of the model it is hard to trust with a task such as medical 

diagnosis especially when there are other models with signicantly high accuracy that are 

easily readiable. The k-nearest neighbor from all the subsets outperformed the k-nearest 

neighbor from Geurts’s study. The all subset outperformed Geurts’ study by about 

16.77% [13]. 

 7.1.3 Naïve Bayes 

The Naïve Bayes model does not perform very well for all the different subsets 

with the exception of the metadata subset. This model appears to not be equipped to work 

with the metagenomic abundance data because the accuracy of this model increases with 

the two subsets that include the metadata (all and metadata subsets). However, the 

specific metadata attributes of sex and race appear to have no effect on the model since 

the accuracy of the metagenomic, sex, and race subsets are the same. Despite the Naïve 
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Bayes model being popular for medical diagnosis problems, it is not a good fit for this 

specific problem. 

 7.1.4 RIPPER 

 The RIPPER algorithm has the best accuracy for ternary classification when using 

the all after the decision table and k-nearest neighbor. The RIPPER algorithm continues 

to provide a small resulting model than the C4.5 decision with the RIPPER algorithm 

creating 11 rules and the C4.5 decision tree with the best accuracy (using the race subset) 

has a size of 168 with 89 leaves. The RIPPER algoritm outperformed the optimizied 

SVM from Mossotto’s study be about 7.7% [12] and also outperformed colonoscopy’s 

accurracy by about 3.6% [10]. However, the accuracy of the best method in Geurts’ study 

which is using attribute selection by boosting (r = 1%) outperformed the C4.5 decision 

tree but only by about 0.72% [13]. 

 7.1.5 C4.5 Decision Tree 

While the C4.5 decision tree is not the best option for the ternary classification 

problem, it still has significant merit. The accuracy of the decision tree surpasses the 

RIPPER algorithm when using the metagenomic, race, and sex subsets with the best 

accuracy using the race subset. The readability of the C4.5 decision tree still makes it an 

attractive model for a diagnosis problem; however, the larger size and the lower accuracy 

means it is still not a good as a choose as the RIPPER algorithm. The RIPPER algorithm 

is still the better of the two models but the C4.5 decision tree is still an attractive model 

that should still be investigated further, especially because of itself result when looking at 

the CD/nonIBD and the UC/nonIBD classification problems. This study has better 

accuracy in comparison to Mossotto’s study by about 10.47% for the single tree model 
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and the Guerts’ study by 7.15% [12].  

   

Figure 10: Ternary Classification Accuracy 

7.2 Ensemble Learning 

 The ensemble methods improved the accuracy of both the C4.5 decision tree and 

the RIPPER algorithm when using the all subset. The bagging model increases the 
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Figure 11: Ternary Ensemble Method Accuracy 
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in false positive rate, and a decrease in ROC Area. 

Table 4:RIPPER Optimization for Ternary Classification 

Number of 
Optimizations Runs Accuracy FP Rate ROC Area Number of Rules 

2 92.60% 4.5% 95.4% 14 

3 92.75% 4.5% 95.5% 14 

4 93.27% 4.2% 95.8% 15 

5 93.27% 4.3% 95.9% 17 

10 93.35% 4.2% 96.0% 16 

20 92.83% 4.5% 95.2% 15 

 

 7.3.2 Improved Ensemble Learning 

 To continue improving accuracy, the RIPPER algortihm with 10 optizimation 

runs is used with the ensemble learning methods of bagging and boosting. As show 

above, bagging improves the 2 runs RIPPER algortihm by about 5.83% and boosting 

improves it by 7.40%. From the 2 run RIPPER alogrithm, there is an increase of about 

2.54% when using bagging and an increase of about 4.86% when using boosting on the 

20 run RIPPER algorithm. While the ensemble learning with the increased number of 

optizimation runs has a high accuracy, it has a smaller increase of the accuracy. The 

bagging method has very little change in accuracy with only around a 0.3% change 

between 2 runs and 10 runs. 
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Figure 12: Ternary Improved RIPPER Ensemble Accuracy 
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Chapter 8. Discussion 

 
8.1 Change in Bacteria Abundances 

 8.1.1 Genus Coprococcus 

The root of the decision trees for all of the subset, exclude the metadata subset, 

Coprococcus eutactus for both IBD/nonIBD and ternary classification. While 

Coprococcus eutactus is not the root of the CD/nonIBD tree, it is located on the second 

level. Coprococcus eutactus is not found in the decision tree created for UC/nonIBD. The 

bacterica Coprococcus comes is found in the rules created by the RIPPER algorithm for 

the IBD/nonIBD problem. The placement of this species of bacteria makes senses given 

knowledge about its genus. Studies show that the abundance of genus Coprococcus 

decrease when a patient has IBD [25] [26]. When Coprococcus eutactus is great than 

zero percent of the total microbiota the vast majority of the instances on that side of the 

tree are diagnosis nonIBD. While the genus Coprococcus has a decrease in abundance for 

IBD patients, my research shows that it may have a more important role in CD then UC. 

Coprococcus is also found to help protect patients against colon cancer which IBD 

patients are at a higher risk of getting [27]. 

 8.1.2 Genus Alistipes 

It also appears that the bacteria genus Alistipes is important in the classification of 

IBD.  All of the rules created by the RIPPER algorithm using the genus Alistipes classify 

as nonIBD if the abundance of bacteria is higher than a specific point. Multiple bacteria 

species in this genus also appear in the varies decision trees created. This genus appears 

in at least on rule creates by the RIPPER algorithm for all four of the classification 

problems. The genus Alistipes appears in the trees created by all the classification 
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problem except UC/nonIBD, with it appearing relatively high in the IBD/nonIBD tree. 

This would indicate that this genus may have a stronger link the CD then to UC. This 

pattern follows because multiple studies so that multiple bacteria species from this genus 

(alistipes finegoldii, alistipes putredinis, and alistipes shahii) decrease in amount and/or 

growth rate in people with IBD in comparison to healthy controls [28] [29]. All of the 

previously mention bacteria species have been specifically seen as a part of some of 

model created. 

 8.1.3 Genus Bacteroides 

 The bacteria genus Bacteroides is the genus that is found most often seen in the 

rules created by the RIPPER algorithm and the nodes of the C4.5 decision trees across all 

four classification problems. This observation does make sense because this genus has 

been shown to have a strong link to IBD [30]. Unlike the previous bacteria genera 

discussed, there is not a set pattern seen in the rule for an increase or decrease of 

abundance for any class in particular. This may be caused by different species in the 

genus acting in different ways then each other. However, in a meta-analysis performed by 

Yingting Zhou and Fachao Zhi, it was found that different studies have shown 

contradictory results when looking at genus Bacteroides and IBD. In the FISH study and 

conventional culture studies they looked at, CD and UC patient are shown to higher 

levels of Bacteroides then healthy controls, but in the Real-Time Quantitative PCR 

studies, CD and UC patient are shown to lower levels of Bacteroides then healthy 

controls [30]. Yingting Zhou and Fachao Zhi theorized that this difference may be caused 

difference in ethnicity because the FISH study and conventional culture studies received 

samples from mostly European patient while the Real-Time Quantitative PCR studies 
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were mostly Asian patients. This may explain the variety of levels seen in this study with 

a wider variety of different ethnic groups. 

 8.1.4 Specific Species 

Other bacteria that are known to decrease in abundance with patient diagnosed 

with IBD are Clostridium leptum and Faecalibacterium prausnitzi [31]. They are both 

present in the rules created by the RIPPER algorithm for ternary classification (with the 

all subset) and when the abundance is greater than or equal to a specific point then they 

are classified as nonIBD. This follows from a decrease seen in IBD patients.  However, in 

the C4.5 decision tree for ternary classification (with the all subset), Clostridium leptum 

is not present at all and the relation of Faecalibacterium prausnitzi between IBD patient 

and nonIBD is flipped. When the abundance is higher than a specific point then they are 

classified as UC and nonIBD when less than or equal to that specific point. 

 

8.2 Race and Ternary Classification 

 As previously stated, the ethnicity/race of a person can increase the chances of 

IBD [6]. However, race seems to play a bigger role when diagnosis on a ternary 

classification then IBD/nonIBD, CD/nonIBD, and UC/nonIBD classification. The best 

accuracy for the C4.5 decision tree on the ternary classification is when using the race 

subset. It increases the accuracy by about 3 percent when using the all subset and about 6 

percent when using the metagenomic subset. This increase can also be seen in the 

RIPPER algorithm. While the accuracy for RIPPER using the race subset is not larger 

than the accuracy of the all subset, there is little under a 3 percent increase in comparison 

to the metagenomic subset. In contrast, the accuracy between the all, metagenomic and 
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race do not even differ by a single percent when using the C4.5 tree with metagenomic 

subset having the best accuracy. The RIPPER algorithm has more variability with the all 

subset have about 2 percent higher than either the metagenomic or race subsets. The 

metagenomic and race subsets differ less than a percent. This relation to the race attribute 

is not seen in the UC/nonIBD problem and can only be seen in the CD/nonIBD problem 

in the accuracies of the RIPPER algorithm (by about 0.83%). This leads one to believe 

that the attribute race has more importance to distinguishing between CD and UC then 

diagnosing IBD itself or diagnosing one or the other individually, with slightly more 

importance to CD diagnosis. 

 

8.3 Study Comparison 

 When using the RIPPER algorithm with the all subset consistently suppressed the 

accuracy of diagnoses from the other studies discussed in the related work. It is likely for 

two reasons. The first reason is the size of the dataset is significantly larger than in 

previous studies. The Metagenomic dataset used for this study is about 60% larger than 

the two related studies discussed earlier in this paper combined. Even the smallest 

classification (UC/nonIBD) is about 29% larger than the other two studies combined. 

With a larger dataset, the models created will be better trained models. The second reason 

is the type of data. While the protein profiles generated by the mass spectrometry, does 

provide a diagnose data for a disease, metagenomic data from a stool sample provides 

information specific to IBD and patient’s microbiota. This shifts the focus specifically on 

the abundancies of bacteria in a patient’s GI tract provides insight specifically where IBD 
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affects. Of the these two reason is the more significant of the two reasons is the larger 

size of the dataset. 

 This study also allows for the investigation of ternary classification of IBD. The 

previous related studies only looks at binary classification (either IBD vs nonIBD or CD 

vs UC). This study also investigates multiple binary classification problems 

(IBD/nonIBD, CD/nonIBD, and UC/nonIBD). Looking at both of these two avenues 

provides a better look into the complexity of the larger diagnosis problem. The ternary 

classification continued to outperform the accuracy of the previous studies even with the 

added complexity with the addition to a third class. The discussion of the different 

classification problems in this study is investigated further in the next section. 

 

8.4 Classification Type Comparison  

As stated before, the ternary classification, in general, is going to have lower 

accuracy then that of the binary classification counterparts. One model, however, does 

not follow this tendency, which is the RIPPER algorithm. The IBD/nonIBD accuracy is 

similar to the Ternary RIPPER algorithm with the CD/nonIBD and UC/nonIBD trailing 

behind by about 1%. This section will draw a further comparison between IBD/nonIBD 

and Ternary classification and further comparison between CD/nonIBD and UC/nonIBD.  

 8.4.1 IBD/nonIBD vs Ternary 

The RIPPER algorithm when using the all dataset has a very slight increase (by 

0.1495% with two more instances properly classified) in its accuracy between 

IBD/nonIBD and ternary classification when using the default parameters. Not only is 

there an increase in accuracy but allows the precision (by 0.2%), recall (by 0.1%), F-
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measure (by 0.2%), MCC (by 7.7%), ROC area (by 4.9%), and (Precision Recall) PRC 

Area (by 0.6%) and a decrease in the false positive rate by 7.6%. This allows the ternary 

classification to be used for the RIPPER algorithm without losing accuracy but gaining 

more information for a more specific diagnosis between CD, UC, and nonIBD.  

Table 5: RIPPER Performance Metrics for Different Optimization Runs 

 TP 
Rate 

FP 
Rate Precision Recall F-Measure MCC ROC 

Area 
PRC 
Area 

IBD/N 
O = 2 

92.5% 12.1% 92.4% 92.5% 92.4% 80.8% 90.5% 90.6% 

IBD/N 
O = 20 

93.9% 8.5% 94.0% 93.9% 94.0% 84.8% 93.0% 92.6% 

Ternary 
O = 2 

92.6% 4.5% 92.8% 92.6% 92.6% 88.5% 95.4% 91.2% 

Ternary 
O = 10 

93.3% 4.2% 93.5% 93.3% 93.4% 89.6% 96.0% 92.3% 

 

This increase in accuracy of the ternary classification does not continue to hold 

when the number of optimizations runs (O) is adjusted (Table 5). The binary 

classification accuracy increases and suppresses the ternary classification but only by a 

fraction of a percent. However, the ternary classification still improves upon the binary 

classification with cutting the false positive rate in half and with and increase in the MCC 

and the ROC Area. With the difference in accuracy only being less than a percentage 

point, the decrease of the false positive rate by 4.3% still makes the ternary classification 

RIPPER algorithm the superior choice. 

 This flip in accuracy does not continue for the bagging technique. The ternary 

classification accuracy for bagging trailing the binary classification by 1.1% when using 



 

48 
 

only 2 optimization runs. When using their optimal number of optimization runs with the 

bagging method, binary classification beat ternary classification by about 1.4%. The false 

positive rates for the ternary classification continue to outperform that of the binary 

classification with the ternary improving by 4.5% when both using 2 runs and by 3% 

when using the optimal number of runs. We can also see a that MCC is higher for the 

ternary classification using bagging then binary by 1.4% when using 2 runs and by 0.3% 

when using the optimal number of runs. 

Table 6: RIPPER Performance Metrics for Bagging 

 
TP 

Rate 
FP 

Rate Precision Recall F-Measure MCC ROC 
Area 

PRC 
Area 

IBD/N 
O = 2 96.7% 7.6% 96.7% 96.7% 96.7% 91.6% 99.3% 99.3% 

IBD/N 
O = 20 97.3% 5.8% 97.3% 97.3% 97.3% 93.2% 99.4% 99.2% 

Ternary 
O = 2 95.6% 3.1% 95.7% 95.6% 95.65% 93.0% 99.2% 98.9% 

Ternary 
O = 10 95.9% 2.8% 96.0% 95.9% 93.9% 93.5% 99.3% 99.0% 

 

 This flip in accuracy does not continue for the boosting technique. The ternary 

classification accuracy for boosting trailing the binary classification by 1.3% when using 

only 2 optimization runs. When using their optimal number of optimization runs with the 

boosting method, binary classification beat ternary classification by about 1.1%. The 

false positive rates for the ternary classification continue to outperform that of the binary 

classification with the ternary improving by 1.2% when both using 2 runs but when using 
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the optimal number of runs, both binary and ternary classification have the same false 

positive rate.  

Table 7: RIPPER Performance Metrics for Boosting 

 TP 
Rate 

FP 
Rate Precision Recall F-Measure MCC ROC 

Area 
PRC 
Area 

IBD/N 
O = 2 

98.5% 3.1% 98.5% 98.5% 98.5% 96.2% 99.8% 99.8% 

IBD/N 
O = 20 

99.3% 1.1% 99.3% 99.3% 99.3% 98.3% 99.9% 99.9% 

Ternary 
O = 2 

97.2% 1.9% 97.2% 97.2% 97.2% 95.6% 99.6% 99.3% 

Ternary 
O = 10 

98.2% 1.1% 98.2% 98.2% 98.2% 97.2% 99.7% 99.6% 

 

Despite the binary classification methods having better accuracy when performing 

more optimization runs and when using ensemble learning methods, the ternary 

classification is still the better option. The ternary classification also for a more specific 

diagnosis and has consistently provide a lower false positive rate, except for using 

boosting on the optimal number of runs. While using the binary classification using 20 

optimization runs with boosting would provide the highest accuracy with a low false 

positive rate, it loses the ease of readability that is provided by the single model and, as 

previously said, IBD/nonIBD classification does not provide the specific diagnosis that 

ternary classification provides.   

 8.4.2 CD/nonIBD vs UC/nonIBD 

 The CD/nonIBD problem has a small increase in accuracy that UC/nonIBD does 

not see when the confidence factor decreases. The only change seen between confidence 
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factor 0.25, 0.20, and 0.15 is an increase of 0.01% in the ROC Area and PRC Area with 

0.20 and 0.15. Despite the slightly better accuracy seen in the CD/nonIBD problem 

(0.1%) the UC/nonIBD consistently see a better false positive rate with a decrease of 1% 

from the best CD/nonIBD tree and a better MCC with an increase of 0.9%. There is a 

small fluctuation in the ROC Area when looking at the change between 0.25, 0.20, and 

0.15 in the CD/nonIBD. There is a drop of 0.1% between 0.25 and 0.20 and gained that 

0.1% back when using 0.15. 

Table 8: C4.5 Performance Metrics using Different Confidence Factors 

 TP 
Rate 

FP 
Rate Precision Recall F-Measure MCC ROC 

Area 
PRC 
Area 

CD/N 
C=0.25 

91.1% 10.2% 91.1% 91.1% 91.1% 81.0% 93.1% 91.7% 

CD/N 
C=0.20 

91.2% 10.0% 91.2% 91.2% 91.2% 81.2% 93.0% 91.6% 

CD/N 
C=0.15 

91.2% 9.9% 91.2% 91.2% 91.2% 81.2% 93.1% 91.8% 

UC/N 
C=0.25 

91.1% 8.9% 91.1% 91.1% 91.1% 82.1% 91.8% 89.4% 

UC/N 
C=0.20 

91.1% 8.9% 91.1% 91.1% 91.1% 82.1% 91.9% 89.5% 

UC/N 
C=0.15 

91.1% 8.9% 91.1% 91.1% 91.1% 82.1% 91.9% 89.5% 

 

 The bagging method does not show much potential for the CD/nonIBD and 

UC/nonIBD with the smaller confidence factors. When investigating the bagging method, 

the adjusted confidence factors for both CD/nonIBD and UC/nonIBD does not provide 

promising results with none of the metrics improved. However, UC/nonIBD had a larger 
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increase in accuracy between the single tree and the bagging method than the 

CD/nonIBD despite its larger accuracy in the single trees. UC/nonIBD also continues to 

have a lower false positive rate than CD/nonIBD.  

Table 9: C4.5 Performance Metrics for Bagging 

 TP 
Rate 

FP 
Rate Precision Recall F-Measure MCC ROC 

Area 
PRC 
Area 

CD/N 
C=0.25 

94.4% 7.2% 94.4% 94.4% 94.4% 88.0% 98.7% 98.7% 

CD/N 
C=0.20 

94.3% 7.4% 94.3% 94.3% 94.3% 87.8% 98.6% 98.7% 

CD/N 
C=0.15 

93.8% 8.0% 93.8% 93.8% 93.7% 86.7% 98.6% 98.6% 

UC/N 
C=0.25 

95.8% 4.2% 95.8% 95.8% 95.8% 91.6% 98.9% 98.9% 

UC/N 
C=0.20 

95.7% 4.3% 95.7% 95.7% 95.7% 91.4% 98.9% 98.8% 

UC/N 
C=0.15 

95.4% 4.6% 95.4% 95.4% 95.4% 90.8% 98.8% 98.8% 

 

 The bagging method does not show much potential for the CD/nonIBD and 

UC/nonIBD with the smaller confidence factors. Just like the bagging method, the 

adjusted confidence factors for both CD/nonIBD and UC/nonIBD does not provide 

promising results with none of the metrics improved.  UC/nonIBD has better accuracy 

and false positive rate then CD/nonIBD just like is seen in the bagging method discussed 

before. There is a small fluctuation in the accuracy (TP Rate) when looking at the change 

between 0.25, 0.20, and 0.15 in the CD/nonIBD. There is a drop of 0.6% between 0.25 

and 0.20 and gained that 0.1% back when using 0.15. 
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Table 10: C4.5 Performance Metrics for Boosting 

 TP 
Rate 

FP 
Rate Precision Recall F-Measure MCC ROC 

Area 
PRC 
Area 

CD/N 
C=0.25 

97.7% 3.1% 97.7% 97.7% 97.7% 95.1% 99.6% 99.7%   

CD/N 
C=0.20 

96.9% 3.7% 96.9% 96.9% 96.9% 93.4% 99.4% 99.4% 

CD/N 
C=0.15 

96.7% 4.3% 96.7% 96.7% 96.7% 92.9% 99.5% 99.6% 

UC/N 
C=0.25 

98.0% 2.0% 98.0% 98.0% 98.0% 95.9% 99.8% 99.8% 

UC/N 
C=0.20 

97.4% 2.6% 97.4% 97.4% 97.4% 94.9% 99.8% 99.8% 

UC/N 
C=0.15 

98.0% 2.0% 98.0% 98.0% 98.0% 95.9% 99.8% 99.8% 

 

 Looking CD/nonIBD and UC/nonIBD using this dataset does not seem to be an 

avenue for future study for this particular dataset. While they do provide accuracies that 

are improvements to other studies, they do not complete with the ternary classification. 

The ternary classification provides a diagnosis that is more specific because it can 

determine if a patient has CD, UC, or nonIBD with a model that has higher accuracy and 

a lower false positive rate. 

 

8.5 Colonoscopy 

 The study produces many models that beat the accuracy of a colonoscopy. If one 

of these models or similar models could be incorporated or formed into medical 

diagnostic test, a stool test could be more accurate than an endoscopy like a colonoscopy. 
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Out of the current tests ordered to diagnosis, patients are most comfortable with a stool 

test. Patients have less anxiety about the pain, cost, outcome, and time of a stool test then 

a colonoscopy [9]. This would allow patients to only need to undergo a colonoscopy if it 

is truly necessary. If a diagnosis does come back as IBD positive, the patient would 

eventually need to have a colonoscopy perform, however this would allow for anyone 

without IBD to forgo the stress and expensive of a colonoscopy. The current stool test is 

also one of the test that patients are most comfortable with and is the least like to be 

refused by the patient when suggested by a medical professional [9]. This would allow 

medical professionals to have a test with higher accuracy that would be less likely refused 

by the patient and not increase the nerves of a patient without cause until more 

information can be collected. 

 

8.6 Future Work 

Future work will focus on attribute selection and importance. This would include 

making a data subset with only concentrations of bacteria genus and subset with only 

bacteria species concentrations, instead of looking at the concentrations of all the 

following: kingdom, phylum, class, order, family, genus, species, and trinomen 

(subspecies). This would determine if a bacteria genus has more or less of an impact on 

diagnosis then knowing the specific bacteria species. The only model that outperformed 

this study was using attribute selection by boosting (r = 1%) during the Geurts’ study [13] 

so attribute selection has potential to improve the accuracy.  

The investigation what attributes from the metadata are important to the diagnosis 

of the IBD. Also, the use of WEKA’s attribute evaluator, such as CfsSubsetEval and 
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InfoGainAttributeEval, to help determine the importance of different data subsets and/or 

the importance of specific attributes to the problem. 

Addition future work would also investigate the varies other datasets that are 

available on the IBDMDB. These datasets include 16S, Serology, Proteomics, Viromics, 

Metabolites, Metatranscriptomes, and Host Transriptomes datasets collected by the 

HMP2. This would allow for an investigation to what types of data is more useful for the 

diagnosis problem at hand. 
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Chapter 9. Conclusion 

 The RIPPER algorithm is the best choice for both IBD/nonIBD and Ternary 

classification. While there is a decision tree with a larger accuracy when looking at 

IBD/nonIBD classification, the size of the tree is significantly larger than the RIPPER 

algorithm which has accuracy that is roughly the same. The C4.5 decision tree provides a 

better model for CD/nonIBD and UC/nonIBD, however their accuracy cannot compete 

with the IBD/nonIBD and Ternary classification.  The RIPPER algorithm using the 

Ternary classification with the all subset is the best models given this problem given its 

accuracy, readability, and its ability to provide a more specific diagnosis.  

 The decrease of bacteria genus Alistipes, genus Coprococcus and other bacteria 

species have been shown to increase the chance of IBD in patients. These bacteria are 

present and important in the C4.5 decision trees and the rules created by the RIPPER 

algorithm across multiple classification problems. While race/ethnicity is known to have 

an effect on a patient likelihood of having IBD, it appears to have a larger impact on the 

CD/nonIBD and Ternary classification with a more significant impact on Ternary 

classification.  

 The models presented in this study have promise in the diagnosis of IBD because 

their accuracy surpass that of the colonoscopy. It would also have the potential to provide 

a test that is less costly and less stressful for patients and less likely to be refused when 

ordered by a medical professional. 
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