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    Equal weights are an alternative weighting procedure to the optimal weights offered 

by ordinary least squares regression analysis. Also called units weights, equal weights 

are formed by standardizing scores on the predictor variables and averaging these 

standardized scores to create a composite score. Research is limited regarding the 

conditions under which equal weights result in cross-validated 𝑅𝑅2 values that meet or 

exceed optimal weights. In this study, I explored the effect of various predictor-criterion 

correlations, predictor intercorrelations, and sample sizes to determine the relative 

performance of equal and optimal weighting schemes upon cross-validation. Results 

indicated that optimally weighted predictors explained more criterion variance upon 

cross-validation as the variability in predictor-criterion correlations increased. Similarly, 

it appears that as predictor intercorrelations and sample size increase, optimally weighted 

predictors cross-validate to explain more criterion variance than equally weighted 

predictors. Implications and directions for future research are discussed. 

EQUAL WEIGHTS



Regression analysis is a vital tool for research in the applied practice of 

industrial/organizational (I/O) psychology. As the cornerstone of predictive statistics, 

regression equations are equally applicable in studies ranging from predicting family 

wellbeing in hospitals (e.g., McAndrew et al., 2019) to the validation of statistical 

procedures and equations (e.g., Raju et al., 1999). Unfortunately, however, unavoidable 

sample differences cause a decrease in explained variance when a regression equation, 

developed with one sample, is applied to future samples (Pedhazur, 1982). To mitigate 

this reduction in explanatory power, researchers and practitioners should use the predictor 

weighting scheme that provides the best results in future groups of participants, not the 

original sample. This recommendation is especially important given that researchers and 

practitioners make their conclusions and recommendations for the benefit of future 

research and organizational processes. My study will highlight the importance of 

considering predictor-criterion correlations, predictor intercorrelations, and sample sizes 

to determine what type of regression analysis will produce the best result in subsequent 

samples.  

Literature Review 

Ordinary least squares (optimal weights) and equal weights are two foundational 

regression weighting techniques in I/O psychology. However, there is a dearth of 

research to indicate which technique will perform best in samples upon cross-validation. 

Advancements in technology make optimal weight calculations easy, but the field should 

not choose a statistical procedure simply because it is easier to conduct. Rather, 

researchers and practitioners should always implement the procedure that best fits their 

1 

Introduction
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purposes. Failure to do so could (among other outcomes) produce invalid applications of 

the results of a study (e.g., selecting unqualified job applicants). 

Regression Analyses 

Regression models are a powerful means of forecasting outcomes prior to 

selecting a course of action. This statistical procedure has an extensive history; sources 

such as Dawes and Corrigan (1974) recounted Benjamin Franklin’s use of regression by 

weighing pros and cons of various ideas, and then using the sum of these considerations  

to make the best choice. In Franklin’s case, such regression analyses are considered 

normative, meaning they inform the best decision in a given situation. Dawes and 

Corrigan (1974) also highlighted that regression may be used as a descriptive tool, which 

allows researchers to represent an individual’s behavior or standing on a construct (e.g., 

degree of emotional exhaustion; Bekker et al., 2005).  

Regardless of the application, regression analysis functions the same way on a 

basic level. Whether using regression analysis in a normative or descriptive application, 

one needs a meaningful composite of the variables that affect an outcome. This 

composite, called predicted Y (i.e., Y’), is calculated with the following equation. 

𝑌𝑌′ = 𝑏𝑏𝑏𝑏 + 𝑎𝑎 

Y’ represents the criterion variable, which is the result of the predictor, X, the correlation 

coefficient, b, and the equation constant, a (Pedhazur, 1982). Researchers can then 

correlate Y’ with actual scores on Y (rYY’) to assess the relationship between predicted and 

actual scores (Pedhazur, 1982). 

Regression equations may be expanded to account for as many variables as a 

researcher or practitioner desires. These larger regression equations can increase the 
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ability to predict or describe complex behaviors, such as job performance (Guion, 1998). 

A multivariate regression composite is calculated with the following equation. 

𝑌𝑌′ = 𝑏𝑏1𝑏𝑏1 + 𝑏𝑏2𝑏𝑏2 … + 𝑏𝑏𝑘𝑘𝑏𝑏𝑘𝑘 + 𝑎𝑎 

Many of the variables in this equation are the same, but this model provides a composite 

score based on different partial correlation coefficients (bk) for each predictor (Xk; 

Pedhazur, 1982). Furthermore, correlating Y’ with Y results in a multivariate correlation, 

R, which transforms into R2 when squared (Guion, 1998). These results are theoretically 

similar to the bivariate regression; the new notation simply denotes a multivariate 

analysis. In addition to providing the same benefits as a bivariate regression analysis, 

multivariate regression allows researchers to use a variety of weighting techniques to 

achieve the best prediction for their samples. Optimal weights and equal weights are two 

weighting techniques (Dawes & Corrigan, 1974), but the explanatory power of each 

technique can change drastically upon cross-validation. 

Cross-Validation and Shrinkage 

Guion (1998) highlighted the necessity of cross-validation in multiple regression 

analyses. The need for cross-validation is predicated on the fact that one sample of data 

may elicit a large, significant R2, whereas the same prediction equation applied to data 

from a new sample results in a lower, possibly insignificant result. Sampling error is the 

cause of this reduction in predictive accuracy. Sampling error results in regression 

weights that are specific to the sample which they are derived from, but do not generalize 

to other samples from that same population. 

Sampling error arises because aside from limited situations, researchers do not 

measure an entire population. Therefore, the distributional characteristics of a sample will 
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deviate from the distributional characteristics of its parent population and subsequent 

samples. Wainer (1976) cited outliers as an example of sample-specific data, which could 

present issues to a researcher upon cross-validation. 

To determine how well the results from a regression analysis generalize to 

different samples, the regression equation must be applied to a new, independent sample 

(Guion, 1998). The Society for Industrial and Organizational Psychology’s (SIOP) 

Principles for the Validation and Use of Personnel Selection Procedures states that 

“Testing professionals [use] as unbiased an estimate as possible of the operational 

validity of the predictor in the population in which it is used” (American Psychological 

Association; APA, 2018, p. 14). This cross-validation process proceeds as follows. 

Scores from the new sample are inserted into the prediction equation that was derived 

from the original regression analysis, which results in a predicted criterion score that is 

the composite of the predictor scores. These composite scores are then correlated with the 

actual criterion scores in that sample. The resultant correlation (once squared) is the 

cross-validated R2. The uncontrollable differences that are due to sampling error will 

result in a reduced (i.e., shrunken) R2 (Guion, 1998). 

To ensure that regression analyses do not suffer from a significant degree of 

shrinkage, researchers and practitioners have a few options. One method of reducing the 

degree of regression overfitting is by maximizing the ratio of study participants to 

predictor variables (Pedhazur, 1982). A simple way of operationalizing this statistical 

effect is by increasing the sample size. Sampling error inversely relates to sample size, as 

larger samples more accurately represent their population (Trochim & Donnelly, 2008). 

Aside from this ratio, predictors are more likely to work well if they are supported by a 
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sound hypothesis (e.g., using a theoretical model to suggest certain predictors will 

perform well; Guion, 1998). These principles should work with both optimally and 

equally weighted regression, but it is important to understand the mathematic foundation 

of each option to fully understand how they might affect a particular application. 

Ordinary Least Squares 

Optimally weighted regression equations maximize the variance explained for a 

particular dataset. In other words, the regression coefficients are chosen to achieve the 

most accurate prediction for that sample (Pedhazur, 1982). This regression technique 

achieves such accuracy by assigning stronger weights to predictors that have stronger 

relationships with the criterion (Guion, 1998). These weights, or partial regression 

coefficients, are calculated with the following equation. 

𝑏𝑏𝑘𝑘 =  
𝑟𝑟𝑌𝑌𝑋𝑋𝑘𝑘 − 𝑟𝑟𝑌𝑌𝑋𝑋𝑘𝑘+1 ∙ 𝑟𝑟𝑋𝑋𝑘𝑘𝑋𝑋𝑘𝑘+1

1 − 𝑟𝑟𝑋𝑋𝑘𝑘𝑋𝑋𝑘𝑘+1
2 ∙

𝑆𝑆𝑌𝑌
𝑆𝑆𝑋𝑋𝑘𝑘

 

The above equation computes an unstandardized partial regression coefficient; 

standardized partial regression coefficients are obtained by deleting the standard 

deviations. An inspection of the equation reveals the following. First, a stronger 

correlation between the criterion and predictor (𝑟𝑟𝑌𝑌𝑋𝑋𝑘𝑘) will result in a stronger regression 

coefficient. Second, the correlations of other predictors with the criterion (𝑟𝑟𝑌𝑌𝑋𝑋𝑘𝑘) and 

among themselves (𝑟𝑟𝑋𝑋𝑘𝑘𝑋𝑋𝑘𝑘+1) will decrease the predictive power of the resulting partial 

regression coefficient. Moreover, unstandardized regression coefficients can be 

dramatically affected by their standard deviations (𝑆𝑆𝑌𝑌 and 𝑆𝑆𝑋𝑋𝑘𝑘). The partial regression 

coefficient will increase as the standard deviation of the criterion increases, and the 

opposite is true as the standard deviation of the predictor increases.  



6 

 As with partial regression coefficients, the total variance explained in the criterion 

variable is a function of the individual predictor-criterion correlations and the predictor 

intercorrelations. Pedhazur (1982) stated that uncorrelated predictors explain criterion 

variance equal to the sum of the explanatory power for each predictor (i.e., 𝑅𝑅2 = 𝑟𝑟𝑋𝑋12 +

𝑟𝑟𝑋𝑋22 + ⋯𝑟𝑟𝑋𝑋𝑘𝑘2 ). For instance, if X1 and X2 are perfectly uncorrelated, and the explanatory 

power of these predictors are .25 and .30, respectively, then the total variance explained 

in the regression equation would be .55. However, explanatory power with 

intercorrelating predictors is not this simple. Intercorrelating predictors provide 

superfluous information by providing similar information on the criterion (Pedhazur, 

1982). As further evidence to this point, it becomes impossible to use regression analyses 

with extreme predictor intercorrelations (e.g., 𝑟𝑟𝑋𝑋𝑘𝑘𝑋𝑋𝑘𝑘+1= 1.00). 

Equal Weights 

 Relative to optimal weights, equal weights are simpler to calculate and implement 

in a study. Raju et al. (1997) discussed two procedures for calculating equal weights. The 

first involves dividing each predictor observation by its standard deviation and then 

averaging all of the predictor quotients to form a composite. The second procedure, 

which will be used in my study, involves standardizing each of the predictors (i.e., z 

scores) and then calculating the mean of these standardized scores to form a composite 

(Guion, 1998; Raju et al., 1997). In either procedure, the composite is correlated with the 

criterion to determine R and R2 (Guion, 1998; Raju et al., 1997).  

Ordinary Least Squares versus Equal Weights 

Assuming linear relations, equal weights cannot outperform the predictive power 

of optimal weights in the original sample. However, it is possible for equal weights to 
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have a greater cross-validated R2 than optimal weights. The better performance of equal 

weights relative to optimal weights occurs when an optimally weighted regression 

equation capitalizes upon chance distributional characteristics (Wainer, 1976). Critically, 

other samples may not reflect these distributional characteristics, resulting in greater 

shrinkage. Equal weights are not as strongly affected by sample specific characteristics 

(Cattin, 1980). Dawes and Corrigan (1974) documented that unit weights may be 

preferred when working with a changing population (e.g., changing employee pools), 

which is a highly salient issue in organizational activities such as personnel selection. 

Wainer (1976) has gone so far as to recommend using equally weighted predictors in all 

situations. 

In a Monte Carlo study of various regression and cross-validation procedures, 

Raju et al. (1999) observed greater cross-validated 𝑅𝑅2 values for equal weights across all 

sample sizes. Because Raju et al. (1999) investigated only one population dataset, other 

factors remain to be investigated. 

Sample Size 

 As mentioned, sample size affects the amount of error in a study, and high 

degrees of error relate to instability in 𝑅𝑅2. Consequently, researchers and practitioners 

may find it beneficial to consider how sample size affects the utility of their analyses. In a 

study of regression efficiencies, Schmidt (1971) found that optimal weights were not 

superior to equal weights upon cross-validation until samples met or exceeded 200 

observations, and Dorans and Drasgow (1978) found that larger sample sizes (i.e., 120 

observations) were required before optimal weights began to cross-validate as well as 

equal weights. Similarly, Claudy (1972) found that in small samples (i.e., 20 
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observations), equally weighted predictors produced the highest cross-validated 

population validity in 16 of his 18 generated populations. Furthermore, the population 

validities produced with the optimally weighted regression procedure had considerably 

more variance when there were fewer observations. 

Predictor-Criterion Relationships 

Another factor that researchers or practitioners should consider is the strength of 

the relationship between a predictor and its criterion. Claudy (1972) highlighted the value 

of predictor-criterion relationships after classifying his pre-generated populations by their 

characteristics. The equal weighting technique produced the highest population validities, 

regardless of sample size, in populations with low variability in predictor-criterion 

correlations and low to moderate (i.e., .00 to .40 predictor intercorrelations.). Smaller 

sample sizes (i.e., fewer than 50 observations) continued to perform better with equal 

weights in populations that retained low variability in predictor-criterion correlations but 

had predictor intercorrelations between -.20 and .00 or .40 and above (Claudy, 1972). 

However, larger sample sizes performed better with optimally weighted regression 

equations. Finally, Claudy (1972) reported that optimal weights performed best in 

populations with high variability in predictor-criterion correlations and predictor 

intercorrelations between -.30 and .40. Claudy (1972) closed with a discussion on the 

boundary condition that existed in conditions of 200 observations, wherein optimal 

weights based on smaller samples were overly complicated and less fruitful than simpler 

methods (e.g., equal weights).  
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Number of Predictors 

 When considering the number of predictors in a regression analysis, it is 

important to remember that parsimony is key; more is not necessarily better. A major 

advantage of multiple regression analyses, relative to bivariate regression, is the ability to 

include more predictors for increased explanation of criterion variance. However, at least 

with respect to optimally weighted regression weights, a major disadvantage with using a 

large number of predictors is that partial regression coefficients become less stable 

(Herzberg, 1967). Browne (2000) supported this point, finding that increasing the number 

of predictors benefitted the regression model to an extent, but additional predictors 

actually reduced the predictive power of the regression equation upon cross-validation. 

Regression analyses are prone to capitalizing upon chance distribution characteristics 

when there are many parameters (i.e., predictors) and the initial sample size is small 

(Browne, 2000). Therefore, researchers should maximize the ratio of study participants to 

predictor variables.  

 Although varying the number of predictors would be a valuable avenue of study, I 

should note that I will not assess the effects of this variable due to the multiplicative 

effect that it would have on my analyses. Furthermore, I implement various predictor-

criterion correlations within each condition of this study, which presents methodological 

and explanatory issues for the retention of variables in smaller regression models. 

Predictor Intercorrelation 

The final factor that researchers and practitioners should consider is the 

correlation among predictors. The equation for partial regression coefficients indicates 

that stronger intercorrelations will result in lowered coefficients. Raju et al. (1999) 
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speculated that the observed superiority of equal weights over optimal weights upon 

cross-validation was due to the low and moderate predictor-criterion relationships; thus, 

future research should investigate predictive accuracy with varied predictor 

intercorrelations. 

The Present Study 

 To follow in the path of Raju et al. (1999), my study will use Monte Carlo 

analyses to investigate factors that lead optimal weights to outperform equal weights 

upon cross-validation. Monte Carlo techniques have the benefit of allowing for 

relationships to be tested under a variety of conditions. Furthermore, Monte Carlo 

analyses can run the analyses many times to reduce the likelihood that the results are the 

product of sampling error. I make the following hypotheses: 

Hypothesis 1: Optimal weights will have greater cross-validated R2 values than 

will equal weights when predictor intercorrelations are high. 

Hypothesis 2: Optimal weights will have greater cross-validated R2 values than 

will equal weights when there is greater variability in bivariate predictor-criterion 

correlations. 

Hypothesis 3: Optimal weights will have greater cross-validated R2 values than 

will equal weights when sample sizes are large. 

Method 

Sample 

 The statistics program SAS University Edition® (SAS, 2020) was used to generate 

and analyze the datasets for this study. Scores were generated on five variables: a single 
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criterion variable and four predictor variables. All variables were standardized in the 

population dataset. 

Design 

 I tested ten different populations with two different sample sizes. The populations 

were the result of five predictor-criterion conditions and two intercorrelation conditions. 

Each of these three variables (predictor-criterion correlation, predictor intercorrelation, 

and sample size) are explained below.  

Predictor-criterion correlations 

The predictor-criterion correlations were set as follows.  

Condition 1: Four moderate. rxy = .30 for all four predictors. 

Condition 2: Half strong, half weak. rxy = .40 for two predictors and rxy = .20 for 

two predictors. 

Condition 3: Half very strong, half very weak. rxy = .50 for two predictors and 

rxy = .10 for two predictors. 

Condition 4: One strong, three weak. rxy = .40 for one predictor and rxy = .20 for 

three predictors. 

Condition 5: Three strong, one weak. rxy = .40 for three predictors and rxy = .20 

for one predictor. 

Predictor Intercorrelation 

To address the effect of intercorrelation among predictor variables, I tested two 

levels of correlation among the predictor variables, moderate (.30) and strong (.50). 
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Sample Size 

Increases in sample size decrease the effect of sampling error, which subsequently 

improves predictor weights while decreasing the detrimental effects of regression 

overfitting. To address this effect, I implemented two sample sizes in each of the 

conditions. These sample size conditions included 150 and 200 observations. It is well-

established (e.g., Claudy, 1972; Dorans & Drasgow, 1978; Schmidt, 1971) that equal 

weights are superior in smaller sample sizes. Therefore, I chose to implement larger 

samples to better understand how my study’s factors affected regression analyses when 

optimal weights could be expected to start cross-validating as well as equal weights. 

Each observation consisted of a criterion score as well as four predictor scores. 

Each population consisted of one million cases. The ten population correlation matrices 

are listed in Appendix A. Each population was sampled 1,000 times. Composite scores 

for the four predictors were computed two different ways in each condition, via optimal 

weights and equal weights. 

Cross-Validation Analysis 

Empirical cross-validation of the optimally weighted and equally weighted 

composites occurred in two steps. First, predictor scores from the population were 

applied to both prediction equations to generate predictor composite scores. Second, 

these composite scores were correlated with the actual scores on the criterion in the 

population to determine the cross-validated R (and R2). Results were averaged across 

1,000 replications. 
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Results 

Tables 1 and 2 report the average predictive power of the initial (𝑅𝑅𝑂𝑂𝑂𝑂𝑂𝑂2  and 𝑅𝑅𝐸𝐸𝐸𝐸2 ) and 

cross-validated (𝑅𝑅𝑂𝑂𝑂𝑂𝑂𝑂,𝐶𝐶𝐶𝐶
2  and 𝑅𝑅𝐸𝐸𝐸𝐸,𝐶𝐶𝐶𝐶

2 ) regression models across the ten population 

matrices. Although my hypotheses did not test the relative performance of optimal versus 

equal weights within the initial (i.e., derivation) sample, it is worth examining the 

predictive power of these two weighting schemes. Unsurprisingly, in the derivation 

sample, optimally weighted regression analyses outperformed the equally weighted 

alternative in every condition, regardless of sample size. In some conditions, the 

difference in predictive power between the analyses was trivial (e.g., .016 in Condition 

1), but in other conditions, the difference was quite large (e.g., .238 in Condition 5). 

Table 1 

Average Predictive Power of Initial and Cross-Validated Regression Models with a 

Sample Size of 150 

 𝑅𝑅𝑂𝑂𝑂𝑂𝑂𝑂2  𝑅𝑅𝑂𝑂𝑂𝑂𝑂𝑂,𝐶𝐶𝐶𝐶
2   𝑅𝑅𝐸𝐸𝐸𝐸2  𝑅𝑅𝐸𝐸𝐸𝐸,𝐶𝐶𝐶𝐶

2  
Condition 1 0.210 0.174  0.194 0.189 
Condition 2 0.166 0.128  0.148 0.144 
Condition 3 0.263 0.232  0.193 0.189 
Condition 4 0.241 0.209  0.147 0.144 
Condition 5 0.430 0.406  0.192 0.189 
Condition 6 0.473 0.453  0.145 0.144 
Condition 7 0.195 0.158  0.135 0.131 
Condition 8 0.181 0.143  0.106 0.100 
Condition 9 0.318 0.287  0.261 0.258 
Condition 10 0.274 0.241  0.200 0.196 

Note. 𝑅𝑅𝑂𝑂𝑂𝑂𝑂𝑂2  = initial R2 with optimally weighted predictors; 𝑅𝑅𝑂𝑂𝑂𝑂𝑂𝑂,𝐶𝐶𝐶𝐶
2  = cross-validated R2 

with optimally weighted predictors; 𝑅𝑅𝐸𝐸𝐸𝐸2  = initial R2 with equally weighted predictors; 

𝑅𝑅𝐸𝐸𝐸𝐸,𝐶𝐶𝐶𝐶
2  = cross-validated R2 with equally weighted predictors. 
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Overall, with samples of 150 observations (Table 1), optimally weighted predictors 

(𝑅𝑅𝑂𝑂𝑂𝑂𝑂𝑂2 ) explained, on average, 10.3% more criterion variance than equally weighted 

predictors. The 200-observation sampling condition (Table 2) reflects a similar result, 

with optimal weights explaining 10.0% more criterion variance on average in the initial 

(i.e., derivation) sample. However, Conditions 5 and 6 (i.e., rxy = .50 for two predictors 

and rxy = .10 for two predictors) appear to inflate the average predictive power of the 

cross-validated optimal weights in both sampling conditions. This trend indicates that the 

optimal weighting technique is a more powerful regression technique as predictors have 

varying relationships with the criterion because optimally weighted models weigh 

predictors according to their predictive power. Consequentially, the optimally weighted  

Table 2 

Average Predictive Power of Raw and Cross-Validated Regression Models with a 

Sample Size of 200 

 𝑅𝑅𝑂𝑂𝑂𝑂𝑂𝑂2  𝑅𝑅𝑂𝑂𝑂𝑂𝑂𝑂,𝐶𝐶𝐶𝐶
2   𝑅𝑅𝐸𝐸𝐸𝐸2  𝑅𝑅𝐸𝐸𝐸𝐸,𝐶𝐶𝐶𝐶

2  
Condition 1 0.204 0.177  0.191 0.189 
Condition 2 0.159 0.132  0.147 0.144 
Condition 3 0.256 0.235  0.189 0.189 
Condition 4 0.236 0.213  0.147 0.144 
Condition 5 0.428 0.409  0.191 0.190 
Condition 6 0.472 0.456  0.147 0.144 
Condition 7 0.190 0.163  0.135 0.132 
Condition 8 0.178 0.148  0.104 0.100 
Condition 9 0.311 0.290  0.259 0.258 
Condition 10 0.269 0.245  0.197 0.196 

Note. 𝑅𝑅𝑂𝑂𝑂𝑂𝑂𝑂2  = initial R2 with optimally weighted predictors; 𝑅𝑅𝑂𝑂𝑂𝑂𝑂𝑂,𝐶𝐶𝐶𝐶
2  = cross-validated R2 

with optimally weighted predictors; 𝑅𝑅𝐸𝐸𝐸𝐸2  = initial R2 with equally weighted predictors; 

𝑅𝑅𝐸𝐸𝐸𝐸,𝐶𝐶𝐶𝐶
2  = cross-validated R2 with equally weighted predictors. 
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predictor composite explained (on average across Condition 6) 32.7% more criterion 

variance than equally weighted predictors. Optimal weights continued to outperform the 

equal weighting technique after removing Conditions 5 and 6 from consideration, but by 

much lower margins (5.8% with samples of 150 and 5.4% with samples of 200). 

Predictive Power Upon Cross-Validation 

Results demonstrate that there was less shrinkage for equally weighted 

composites upon cross-validation. This result reflects past research (e.g., Dawes & 

Corrigan, 1974). With 150 observations, the adjusted R2 for optimally weighted 

regression equations averaged losses of .032 (i.e., 3.2% less criterion variance), but the 

adjusted R2 for equal weights was only .004 (i.e., .4% less criterion variance). 

Furthermore, increasing the sample size supported past literature (e.g., Pedhazur, 1982; 

Trochim & Donnelly, 2008), which indicated that more observations would positively 

relate to predictive stability. With samples of 200 observations, the adjusted R2 for 

optimal weights decreased to .024, and the average loss in predictive ability for equally 

weighted predictors was only .002. However, shrinkage is only one component of 

addressing the advantages and disadvantages of optimally and equally weighted 

regression techniques. Researchers and practitioners are arguably more concerned with 

the final cross-validated predictive ability of their regression analysis. 

Optimally weighted predictors explained more criterion variance in every cross-

validation sample except those in Conditions 1 and 2. The uniform predictor-criterion 

correlations of Conditions 1 and 2 distinguish them from the other study populations. 

According to the equation for partial correlation coefficients (Guion, 1998), predictors 

with the same validity and predictor intercorrelations will have partial correlation 
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coefficients of similar magnitude, so the optimally weighted regression actually operates 

analogously to the equally weighted technique. Therefore, the results of this study 

provide support for Hypothesis 2. Greater variability among bivariate predictor-criterion 

correlations is associated with greater cross-validated 𝑅𝑅2 values for optimally weighted 

(versus equally weighted) predictor composites.  

 The evidence for Hypothesis 2 relegates Hypothesis 1 (i.e., optimal weights will 

have greater cross-validated R2 values than will equal weights when predictor 

intercorrelations are high) to secondary importance. Optimally weighted predictors 

outperformed equally weighted predictors in all but the same two conditions, regardless 

of predictor intercorrelation. However, certain data trends are interesting. In Conditions 1 

and 2, equally weighted composites remained the superior technique regardless of 

predictor intercorrelations. Therefore, it appears that in the absence of variability in 

predictor-criterion correlations, equally weighted regression analyses may perform as 

well as optimally weighted regression analyses. However, in every other condition, 

increasing predictor intercorrelations resulted in optimal weights explaining greater 

criterion variance than equally weighted predictors. With predictor intercorrelations of 

.30, optimally weighted predictors explained 6.0% and 6.3% more criterion variance with 

samples of 150 and 200 observations, respectively. Increasing the predictor 

intercorrelation to .50 resulted in optimally weighted predictors explaining 8.9% and 

9.3% more criterion variance with samples of 150 and 200 observations, respectively. In 

Condition 5 (N = 150), optimally weighted regression procedures explained 21.7% more 

criterion variance than equally weighted predictors, and this predictive superiority 

increases by 9.2% in Condition 6 (i.e., 30.9% more criterion variance). In conclusion, 
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there is support for Hypothesis 2. In general, optimal weights will have greater cross-

validated R2 values than will equal weights when predictor intercorrelations are high. 

 Finally, as with Hypothesis 1, the results for Hypothesis 3 failed to surpass those 

for Hypothesis 2 in importance; there were not any major changes between the two 

sampling conditions. The weighting technique that cross-validated best with a sample of 

150 observations continued to perform best with 200 observations. However, one trend 

was apparent; there was less shrinkage for optimal weights when sample sizes were 

greater. With samples of 150 observations, 𝑅𝑅2 values decreased by 3.2% upon cross-

validation for optimal weights. However, with 200 observations, this loss in predictive 

power was only 2.4%. By comparison, equal weights were almost unaffected by sample 

size (the difference in average shrinkage was only .2%). Therefore, there is some 

supporting evidence for Hypothesis 3; optimal weights may achieve greater cross-

validated R2 values than will equal weights when sample sizes are large. 

Discussion 

My study has several important implications for researchers and practitioners. My 

results cast doubt on the accepted wisdom (e.g., Claudy, 1972; Dorans & Drasgow, 1978; 

Schmidt, 1971) that equally weighted predictors should be considered the default for 

regression analyses. In 16 of the 20 conditions examined, the cross-validated 𝑅𝑅2 values 

were greater for optimally weighted composites than for equally weighted composites. 

These results are most useful to those who may have otherwise ignored the potential 

value of optimally weighted regressions, instead preferring the advantages they 

associated with the equally weighted alternative. Critically, these individuals may be 

missing out on the incremental validity afforded by optimal weights when there is a large 
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degree of predictor-criterion variability. However, noting this variability is just one factor 

to consider prior to conducting one’s regression analysis. 

In addition to the variability in predictor-criterion relationships, it would be wise 

to account for the entire bivariate correlation matrix and sample size of a dataset. The 

results of this study indicate that when predictor-criterion correlation variability is 

nominal, then equally weighted composites should be preferred. However, as predictors 

inevitably correlate with one another, and when predictor-criterion correlations differ by 

non-trivial levels, then researchers should favor optimally weighted regression equations. 

Not only do equally weighted procedures fail to account for various predictor validities, 

but this technique will also fail to address increasing communalities among the 

predictors, therefore resulting in subpar cross-validation. Finally, given the size of the 

sampling conditions in my study, organizations that select many (i.e., 150 or more) 

applicants at one time (e.g., colleges or military services) should be wary of defaulting to 

an equally weighted regression. In these applications, the precision afforded by an 

optimally weighted regression may provide incremental validity for predicting 

performance (e.g., college GPA). However, there are many other situations that my study 

does not account for, so there is an impetus for future research. 

Directions for Future Research 

I concur with previous Monte Carlo studies (e.g., Raju, 1999), which direct future 

research to explore other factors that affect our studies. My study addressed three critical 

variables for researchers and practitioners: sample size, predictor-criterion relationships, 

and predictor intercorrelations. However, it only addresses a small fraction of the infinite 

possibilities that researchers and practitioners may face. Critically, I did not even attempt 
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to examine how varying numbers of predictors affected optimally and equally weighted 

regression models. Future research should address this factor. Furthermore, future 

research should study smaller variations in the predictor-criterion correlations to better 

understand when optimal weights are a more powerful regression technique, relative to 

equal weights. 

The results of my study indicate that optimally weighted regression equations are 

more useful than was suggested by previous research. However, these results may not 

have been practical if it had not been for modern advancements in computing power. 

Furthermore, the results from this study would not be achievable for those who do not 

possess the technical skill to run Monte Carlo analyses. Therefore, my final suggestion 

for future research is for the design of a web-based tool that can simulate (just as my 

study did) any condition that a researcher or practitioner faces. I envision this product 

taking one of two forms. First, a database could be produced with enough datapoints to 

allow someone to extrapolate his or her data characteristics and determine the most 

appropriate regression weights. However, the second, more accurate option would be the 

development of a Cloud-based server that operates exactly as my study does to calculate 

the predictive power of optimal and equally weighted regression techniques. In either 

scenario, any researcher or practitioner could make the implications or policy decisions 

best suited to their study. Moreover, given the fact that regression analyses are not 

isolated to the I/O profession, this program could also become an important tool for many 

other professionals, promoting “science for a smarter workplace” (SIOP, n.d.). 
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APPENDIX A 

Correlation Matrices for Each Study Population 

Matrix 1 

Moderate Predictor Validity, Moderate Predictor Intercorrelation 

1 2 3 4 5 

1. Y 1.00 

2. X1 .30 1.00 

3. X2 .30 .30 1.00 

4. X3 .30 .30 .30 1.00 

5. X4 .30 .30 .30 .30 1.00 

Matrix 2 

Moderate Predictor Validity, High Predictor Intercorrelation 

1 2 3 4 5 

1. Y 1.00 

2. X1 .30 1.00 

3. X2 .30 .50 1.00 

4. X3 .30 .50 .50 1.00 

5. X4 .30 .50 .50 .50 1.00 
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Matrix 3 

Low/High Predictor Validity, Moderate Predictor Intercorrelation 

    1 2 3 4 5 

1. Y 1.00 
    

2. X1 .20 1.00 
   

3. X2 .20 .30 1.00 
  

4. X3 .40 .30 .30 1.00 
 

5. X4 .40 .30 .30 .30 1.00 

Matrix 4 

Low/High Predictor Validity, High Predictor Intercorrelation 

    1 2 3 4 5 

1. Y 1.00 
    

2. X1 .20 1.00 
   

3. X2 .20 .50 1.00 
  

4. X3 .40 .50 .50 1.00 
 

5. X4 .40 .50 .50 .50 1.00 
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Matrix 5 

Very Low/High Predictor Validity, Moderate Predictor Intercorrelation 

    1 2 3 4 5 

1. Y 1.00 
    

2. X1 .10 1.00 
   

3. X2 .10 .30 1.00 
  

4. X3 .50 .30 .30 1.00 
 

5. X4 .50 .30 .30 .30 1.00 

Matrix 6 

Very Low/High Predictor Validity, High Predictor Intercorrelation 

    1 2 3 4 5 

1. Y 1.00 
    

2. X1 .10 1.00 
   

3. X2 .10 .50 1.00 
  

4. X3 .50 .50 .50 1.00 
 

5. X4 .50 .50 .50 .50 1.00 
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Matrix 7 

3 Low/1 High Predictor Validity, Moderate Predictor Intercorrelation 

    1 2 3 4 5 

1. Y 1.00 
    

2. X1 .20 1.00 
   

3. X2 .20 .30 1.00 
  

4. X3 .20 .30 .30 1.00 
 

5. X4 .40 .30 .30 .30 1.00 

Matrix 8 

3 Low/1 High Predictor Validity, High Predictor Intercorrelation 

    1 2 3 4 5 

1. Y 1.00 
    

2. X1 .20 1.00 
   

3. X2 .20 .50 1.00 
  

4. X3 .20 .50 .50 1.00 
 

5. X4 .40 .50 .50 .50 1.00 
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Matrix 9 

1 Low/3 High Predictor Validity, Moderate Predictor Intercorrelation 

    1 2 3 4 5 

1. Y 1.00 
    

2. X1 .20 1.00 
   

3. X2 .40 .30 1.00 
  

4. X3 .40 .30 .30 1.00 
 

5. X4 .40 .30 .30 .30 1.00 

Matrix 10 

1 Low/3 High Predictor Validity, High Predictor Intercorrelation 

    1 2 3 4 5 

1. Y 1.00 
    

2. X1 .20 1.00 
   

3. X2 .40 .50 1.00 
  

4. X3 .40 .50 .50 1.00 
 

5. X4 .40 .50 .50 .50 1.00 
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