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 The Ste. Genevieve Limestone is a Mississippian-aged, carbonate-dominated 

stratigraphic unit that is a prominent hydrocarbon producer in the Illinois Basin, and is 

widely distributed in states such as Missouri, Kentucky, Indiana, and Illinois. There has 

been relatively limited study focused on characterizing the Ste. Genevieve Limestone in 

terms of lithofacies, stacking patterns, and sequence stratigraphic context via analysis of 

roadcut exposures of the unit in western Kentucky. 

 The focus of this study is to use lithologic data collected from roadcuts and draft 

these data into cross sections for presentation of detailed stratigraphic columns that are 

locally correlative. Seven roadcuts were used in the study, five in Warren County 

Kentucky and two in Barren County Kentucky. The goal of this study is to characterize 

the lithofacies, stacking patterns, and sequence stratigraphy of the Ste. Genevieve 

Limestone. Another goal is to identify intervals in the unit that have a high potential to be 

hydrocarbon reservoirs and by extension, determine associated rocks that may function as 

seals or traps for reservoirs.  

The results of this study show that the characteristics of the Ste. Genevieve 

Limestone in western Kentucky are:  

 Roadcut consists of three stratigraphically distinct stacking patterns: 1) alternating 

coarse-grained units and fine-grained units, 2) a backstepping, retrogradational, 

shoal-building pattern, and 3) static, thick coarse-grained intervals.  
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 The roadcuts are dominated by limestone units, with coarse intervals consisting of 

mainly skeletal-ooid grainstones and fine-grained intervals representative of 

mudstones and wackestones. 

 Dolomitized limestone is present, with dolomitized mudstone making up the 

majority of dolomitic units and fine-grain units in general. 

 Oolitic and skeletal units are the most ideal hydrocarbon reservoir rocks in the 

roadcuts with paleokarst intervals such as brecciated limestone also being viable 

potential reservoirs. 

 The presence of thick skeletal and skeletal-ooid grainstones are indicative of High 

Stand System Tracts (HSTs), which make up the majority of roadcut exposures 

and brecciated limestone in contrast, is indicative of a Falling Stage System Tract 

(FSST). 

 Overall, the rocks exposed in the roadcuts are representative of shoal or shoaling 

upward environments yet possess localized partitioning of units based on 

identification of depositional and diagenetic facies changes. 
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1.0 INTRODUCTION  

The Ste. Genevieve Limestone is a stratigraphic unit that is one of the most 

productive hydrocarbon reservoirs in the Illinois Basin (Bethke, Reed, and Olitz, 1991). 

Despite multiple studies that characterize the Ste. Genevieve Limestone at various 

localities (Short, 1962 and Stevenson, 1987), there has been limited study of the unit in 

western Kentucky that analyzes the lithofacies in the context of reservoir considerations 

in outcrop or in roadcuts. Additionally, there has been limited research conducted 

documenting lithofacies stacking patterns in a sequence stratigraphic context or 

minimally related to base-level changes in western Kentucky. Such information could aid 

in identifying potential hydrocarbon reservoirs that exist in the Ste. Genevieve Limestone 

in western Kentucky areas such as Warren, Butler, and Barren counties.  

1.1 Problem Statement 

 

In regard to the Ste. Genevieve Limestone in western Kentucky, there are many 

questions about the characteristics of these rocks in the region. Some of these questions 

include: which intervals comprise viable reservoir rock facies?, which units represent the 

seal or trap facies?, what are the stratigraphic stacking patterns?, what is the sequence 

stratigraphic context?, and in general, what is the lithological variation of the Ste. 

Genevieve Limestone in western Kentucky?        

Hydrocarbon reservoirs in carbonate systems are differentiated from siliciclastic 

systems in that siliciclastic reservoir systems are predominately shale and sandstone 

(Galloway and Hobday, 1983), whereas carbonate-reservoir systems are mainly coarse-

grained limestones. Sedimentary characteristics such as grain size, fossil/organic content, 

oolite abundance, etc. are lithostratigraphic parameters that aid in distinguishing between 



2 
 

a viable hydrocarbon reservoir and nonviable unit (i.e. traps or seals) and thus, must be 

considered during exploration or field development. Such sedimentary characteristics are 

important in identifying hydrocarbon-reservoir potential. It is obviously important to 

understand the depositional environments responsible for the formation of viable 

reservoir units and their distribution. Furthermore, post-depositional or diagenetic 

features are also important to note in surface exposures as they can provide understanding 

of potential reservoir partitioning or boundary conditions such as exposure 

surfaces/unconformities and stylolites. 

The identification of reservoir units is important, but additionally this information 

must be used in conjunction with documenting stacking patterns of the units. Stacking 

patterns of stratigraphic units refer to how these strata are positioned vertically within the 

overall geographic trend of the units.  For example, identifying shoaling/coarsening 

upward, fining upward, and layering of mixed coarse- and fine-grained intervals is 

important. Study of such stacking patterns provides insight into the depositional 

environment and how they change over time and space. These stacking patterns in turn, 

can be placed in the context of “sequence stratigraphy” (e.g., Van Wagoner et al., 1988). 

Patterns in sequence stratigraphy represent the overall trend of depositional facies and are 

relatable to transgressive and regressive cycles or relative base-level changes in a given 

depositional system. Study of these sequence stratigraphic trends, coupled with 

lithofacies analysis, can be of great aid in hydrocarbon exploration and development.  
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1.2 Objectives of Thesis  

The main objectives of this study are to: 1) identify the lithofacies that constitute 

the Ste. Genevieve Limestone, 2) identify units that have hydrocarbon reservoir potential, 

3) analyze the stacking patterns, and by extension, the sequence stratigraphy of the Ste. 

Genevieve Limestone, 4) analyze the depositional environment of the subunits and how 

the environment changes over time and 5) identify salient diagenetic or other features that 

may be important for better understanding potential reservoir spatial limitations. To 

accomplish these objectives, a study was conducted that incorporates sedimentary, 

stratigraphic, and lithologic analysis. The main method for the study was the analysis of 

various roadcuts in western Kentucky (Figure 1.1) which included measuring 

stratigraphic sections, sampling, and describing and interpreting prepared slabbed hand 

samples retrieved from measured sections.   

Figure 1.1. Map showing location of field study that was focused on two counties – 

Warren and Barren. Created using KGS map services (July 2019). 
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  2.0 LITERATURE REVIEW 

2.1 Illinois Basin  

The Ste. Genevieve Limestone is a stratigraphic unit that was formed from 

sediments deposited in a shallow-marine environment in the Illinois Basin, a depositional 

basin that encompasses most of Illinois, southwestern Indiana, western Kentucky, eastern 

Missouri, and northwestern Tennessee (Figure 2.1). The Illinois Basin began as a failed 

rift concurrent with the breakup of a supercontinent during the Lower/Middle Cambrian. 

The basin eventually evolved into a cratonic embayment that subsided by the Upper 

Cambrian (Kolata and Nelson, 1990).  

 

Figure 2.1. Map showing the extent of the Illinois Basin (after Swezey, 2007). 
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The Paleozoic Era was a time of major deposition and preservation of sediments 

within the Illinois Basin, with several depositional sequences accumulating during this 

time. During the Paleozoic, the Illinois Basin was connected to open ocean which 

resulted in a greater influence of fluctuating sea levels in the basin. Six primary 

sequences represent several complete transgressive-regressive cycles in the Paleozoic. 

These sequences in ascending stratigraphic order are the classic Sauk, Tippecanoe, 

Kaskaskia, Absaroka, Zuni and Tejas (Sloss, 1963).        

The Illinois Basin is positioned near the New Madrid Rift Complex, a failed 

intercontinental rift system originating in the Precambrian that has influenced the 

geometry of the basin. The New Madrid Rift Complex is the primary control on sediment 

accumulation rates and depositional environments in the southern Illinois Basin. This 

resulted in episodic subsidence along normal faults that accommodated sedimentation 

and punctuated sedimentary sequences in the basin (Kolata and John, 1990). This 

complex can be subdivided into smaller failed rift or crustal extensional systems, with the 

main systems of interest in western Kentucky being the Reelfoot Rift system and the 

Rough Creek Graben system (Figure 2.2).  
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Figure 2.2. Major structural features of the Illinois Basin and bounding areas 

(after Buschbach and Kolata, 1991). 

 

The dominant lithology of the geologic units in the Illinois Basin depends on 

which portion of the stratigraphy of the basin is inspected. The oldest rocks in the basin 

are predominantly granite and rhyolite basement rocks that are about 1,420 to 1,500 Ma 

old. As the basin transitioned into the Paleozoic, the lithology became dominated by 

carbonates with interbedded layers of siliciclastics resultant from tectonic activity 

(Swann, 1968).  

In the study areas (Barren and Warren counties), the stratigraphy is mainly 

Mississippian-age rocks, with stratigraphic units mostly belonging to the Valmeyeran and 

Chesterian Series (Figure 2.3). The Valmeyeran Series makes up most of the units in the 
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lowest part of the sections observed for this study. The main stratigraphic units of the 

Valmeyeran Series exposed are the St. Louis Limestone and the Ste. Genevieve 

Limestone. The Chesterian Series is commonly exposed in western Kentucky generally 

topographically above the karst areas such as in the Dripping Springs or Chester 

Escarpment areas with units such as the Girkin Limestone and the Big Clifty Sandstone. 

Lower to Middle Mississippian units are dominated by carbonates and in contrast, and the 

lithology becomes more siliciclastic rich as units approach the basal Pennsylvanian 

(Treworgy, 1991).    

 

Figure 2.3. Stratigraphic columns of units in Illinois, Kentucky, and Indiana (after 

Nelson, Smith, and Treworgy, 2002).   
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2.2 Carbonate Depositional Environments  

 

2.2.1 Standard Environments 

 Stratigraphic units such as the Ste. Genevieve Limestone were formed mainly by 

carbonate sediments being deposited in shallow-marine environments. It must be noted 

that there are numerous sub-environments and variations possible and thus, discussion of 

a series of detailed depositional models illustrating these sub-environments is warranted.  

A generalized depositional model for carbonates consists of sub-environments including 

a tidal flat region, lagoonal region, barrier/reef, a marine shelf, and a basin region (Figure 

2.4). The differences between these subdivisions are basically a function of water depth 

and associated energy conditions.  It should be noted that most of the Mississippian units 

are considered carbonate ramp deposits (Bachtel and Dorobek, 1998, and Smith and 

Read, 1999) but adjacent areas are tangentially discussed such as deep shelf to relatively 

deeper basinal areas.      

  
Figure 2.4. Standard model for a carbonate depositional environment and its subdivisions 

(after Harris, Moore, and Wilson, 1985) 

https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&ved=2ahUKEwj2tsTO4O7gAhWLTN8KHa_LAdkQjRx6BAgBEAU&url=/url?sa%3Di%26rct%3Dj%26q%3D%26esrc%3Ds%26source%3Dimages%26cd%3D%26ved%3D2ahUKEwiXxo3K4O7gAhVyS98KHdP6CQsQjRx6BAgBEAU%26url%3Dhttp://csmgeo.csm.jmu.edu/geollab/fichter/sedrx/carbdepoenvir.html%26psig%3DAOvVaw2tHEUlV1BnwvhyrVRZzm13%26ust%3D1552004070286824&psig=AOvVaw2tHEUlV1BnwvhyrVRZzm13&ust=1552004070286824
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2.2.1.1 Tidal Flats 

  

The tidal flat region is the part of the environment that is closest to the terrestrial 

environment and thus is the most susceptible to terrestrial influence. A tidal flat is the 

most exposed of the carbonate environments, with tidal water waves being very small due 

to the shallow water and short fetch of the area (Fan, 2012). Tidal waters enter and leave 

a tidal flat through fairly straight, major channels, with minor channels serving as 

tributaries as well as distributaries (Murray et al., 2018; Desjardins, Buatois, and 

Mangano, 2012). Minor channels generally migrate and meander considerably over a 

period of several years. With the influence of both fresh terrestrial water and saline 

marine waters on the tidal flat, physical conditions such as temperature, salinity, and 

acidity tend to vary more widely than as are observed in other shallow-marine 

environments. Vegetation is minimal on a tidal flat and the biology of the environment 

consists of small marine animals such as crabs, burrowing organisms, shrimp, mollusks, 

encrusting foraminifera etc.   

The tidal flat region is notable for the presence of both terrestrial and marine 

derived units which are associated with a great variety of lithofacies. Limestones and 

dolomites are common in this region, with limestones being relatively coarse grained, 

consisting of mostly packstones and grainstones with some small inclusions of muddier 

units, and dolomites consisting of fine-grained rocks (Matter, 1967). There are some 

deposits of quartz-rich sand in this region although these are usually fine grains deposited 

from bedload transport from terrestrial sources but with some influx of marine sands 

(Desjardins et al., 2012; Hantzschel, 1955). Sedimentary structures and other features that 

typify this region include laminations, mudcracks, burrows, pellets, and fossils (mainly 
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brachiopods, gastropods, and ostracods). Overall, units in the tidal flat region are 

commonly thin and mixed with a few thicker units and significant intraclasts and 

inclusions (Daidu, Yuan, and Min, 2013). 

2.2.1.2 Lagoons  

 

 The lagoon is the depositional environment that separates the tidal flat from the 

barrier reef or bioherm areas. A lagoon is best described as an area of relatively shallow, 

quiet water situated in a coastal environment and having access to the sea but separated 

from the open marine conditions by a barrier, usually a coral reef or a sandbar/barrier 

island. Lagoonal waters can possess a varying salinity, with brackish waters allowing for 

the growth of substantial vegetation and the formation of salt marshes, peat swamps and 

algal mats. Saline waters in contrast, allow for the deposition of evaporite minerals and 

stagnate anaerobic waters that may form black, organic-rich muds (Prothero and Schwab, 

2004). Factors that control the formation and proliferation of lagoons are 1) sea-level 

fluctuation, with lagoons shifting landward as sea level transgresses and seaward as sea-

level regresses, 2) shoreface dynamics, with the greater influence by terrestrial sediment 

as it is transported into a lagoonal setting (yielding significant sand deposits), and 3) tidal 

range, with the greater the influence by marine tides reflected in more marine sediments 

in the environment (Martin and Dominquez, 1994).  

 A lagoon is where marine influence starts to have a much greater effect on 

sedimentation and terrestrial influence begins to diminish. If a given lagoon is situated 

relatively far away from the shoreline, then any terrestrial sediments that are transported 

into the environment will be clay and silt from suspended load transport. Fine-grained, 

well sorted sands in contrast, will be deposited by tidal influence, and coarse sands will 
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be deposited by high-energy storm events (Levy, 1974). Plentiful or dense vegetation and 

organic content of a lagoon results in dark organic-rich mud and peat. Due to the 

influence of organic and biologic components of the environment, sedimentary structures 

are rarely preserved in lagoonal facies (Brady, 1978).  

2.2.1.3 Barrier/Reef  

 

 The depositional environment associated in a seaward direction from lagoonal 

facies usually falls within two categories, either a reef or a barrier. A reef is a ridge or 

hummock formed in shallow ocean areas by algae and the calcareous skeletons of certain 

coelenterates, of which corals are the most important. A barrier is a submerged or partly 

exposed ridge of sand or coarse sediment that is built by waves offshore from a beach, 

with buildup of barriers commonly growing to such an extent that they form barrier 

islands. 

 Depending on whether or not a reef or barrier develops, each depositional 

environment possesses a distinctive geological character that separates one from the 

other. Reefs are most distinctive for their extensive biological development, with coral 

reefs being a dominant expression of reefs or biological buildups on the sea floor. Reef 

deposits are characterized by very fossiliferous, skeletal carbonates (typically grainy 

deposits such as packstones and grainstones), with entire networks of coral being 

preserved in the geologic record (Boss and Liddell, 1987). A byproduct of coral-reef 

development is that the corals take in silica from the quartz sand in the environment, 

which results in the presence of silica concentration in the geological record (Perry, 

2005). Additionally, silica-rich sediments can be contributed by sponges and similar 
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organisms. These silica sources may be raw material for cherty intervals within the Ste. 

Genevieve Limestone.     

  A most distinctive characteristic of barrier environments is that their 

development is controlled by wave proliferation and thus result from a high-energy 

environment relative to other shallow-marine environments. With high-energy waves 

continually pounding, sand material is carried and eventually deposited where it 

encounters an area of relatively lower energy and if this happens continuously, then a 

barrier build up will result (Reynaud and Dalrymple, 2012). As a result of wave action, 

barrier deposition is dominated by sandy material such as fine-grained sandstones, but 

also grainy limestones (mostly grainstones), with the limestone units usually being oolitic 

(Colman, Berquist, and Hobb, 1988). The Ste. Genevieve Limestone is part of such a 

limestone unit, possessing skeletal and ooid intervals in the form of O’Hara and 

McClosky “sands.”  “Sands” are a driller’s terms and are not to be confused with 

siliciclastic sand designations.     

2.2.1.4 Marine Shelf  

 

 A marine shelf is a depositional setting composed of a broad, relatively shallow 

submarine terrace of continental crust forming the edge of a continental landmass. With 

the marine shelf being positioned so far from the shoreline, there is less influence from 

terrestrial sediment influx than in other marine environments and thus, deposition of units 

is dominated by marine processes. Marine shelves are subdivided into two parts: 1) 

shallow-marine shelf, where the water level is so shallow that marine waves have a great 

influence and 2) deep marine shelf, where water is so deep that marine tides have a 

relatively lesser influence on the deposition environment.           
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 Deposits that characterize a marine shelf vary depending on whether they are 

associated with a shallow or deep shelf. In a shallow shelf environment, deposits are 

mainly fine-grained limestone units originating in the marine realm, with some fine silt 

and clay contributed by the terrestrial suspended load (Weimer, Porter, and Land, 1985). 

Typically, on a shallow shelf (such as along the Eastern Shelf of the Illinois Basin), there 

will be fine-grained sand deposits that are the result of waves scouring sand from the 

ocean floor and redepositing the material (Swift, 1974). In contrast to a shallow shelf, a 

deep shelf is not influenced by waves so there is a paucity of fine-grained sand deposits 

attributed to wave action however, submarine fans can develop at the slope break or at 

the edge of the shelf.  Submarine fan deposits are typified by a mixture of fine- and 

medium-grained sand (Trumbull, Lyman, Pepper, and Thomasson, 1958). Similar to a 

shallow shelf, a deep shelf is dominated by limestone, but deep shelf limestones tend to 

be fine grained relative to the coarse-grained material typical of shallow shelf limestones.  

2.2.1.2 Carbonate Ramp  

 Although the Harris and others’ (1985) model is a good overview of the standard 

carbonate depositional environments (Figure 2.4), a more specific depositional model 

pertinent to the Ste. Genevieve Limestone is needed to be included in discussion to fully 

characterize the most typical environments expected or associated with deposition. With 

the Ste. Genevieve Limestone’s depositional environments confined to shallow-marine 

environments, a carbonate-ramp model is the most appropriate for the unit.  

 A carbonate ramp is a type of carbonate platform where there is no major break in 

the slope between the shoreline and deep water. Carbonate ramps are typically 
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characterized by sands in the inner ramp and muddy sands and mud in the outer ramp 

(Tucker, Calvet, and Hunt, 1993).  

 A carbonate ramp model can be divided into three parts (Figure 2.5) (Tucker, 

1991): 1) back ramp, 2) shallow ramp, and 3) deep ramp. The back ramp is typically the 

closest to the shoreline and is thus close to sea level. Back ramp deposits are 

characterized by subaerial deposits such as lagoonal-tidal flat supratidal carbonates, 

evaporites, paleosols, and paelokarst modification. Dunham lithologies of back ramp 

deposits are most commonly wackestone and mudstone. The shallow ramp typically is 

positioned between the fair-weather wave base and sea level. Shallow-ramp deposits are 

characterized by wave-dominated deposits such as beach-barrier deposits, strandplain 

deposits, sand shoals, and patch reefs. Dunham Classification lithology of shallow ramp 

deposits are typically grainstones. The deep ramp is the most submerged of the ramp 

subdivisions, demarcating the area between the fair-weather wave base and the storm 

wave base. Deep-ramp deposits are characterized by thin bedded limestones, storm 

deposits, and mud mounds. Due to the variation in depositional environments, Dunham 

Classification of deep ramp deposits can range from mudstones to grainstones.                         
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Figure 2.5. General model for a carbonate ramp. sl: sea level, fwwb: fair-weather wave 

base, and swb: storm wave base. (after Tucker, 1991) 

 

2.3 Sequence Stratigraphic Concepts 

 Sequence stratigraphy is a branch of sedimentary geology that is focused on the 

punctuated order or sequence of depositionally related stratigraphic successions (time-

rock) units that were laid down in the available space, termed accommodation. Sequence 

stratigraphy provides tools for interpreting the depositional origin and for predicting the 

heterogeneity, extent and character of lithofacies of interest (Catuneanu et al., 2011).  

 The idea behind sequence stratigraphy is based on the fact that successions of 

strata are bounded by a framework of major depositional and erosional surfaces (the latter 

termed sequence boundaries) and that successive strata have a characteristic depositional 

geometry. This depositional framework can be interpreted to be in part the result of 

relative sea-level change (termed relative coastal onlap, downlap, etc.), with depositional 

and erosional surfaces developing during the deposition and erosion of strata (Christie-
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Blick and Driscoll, 1995). Transgressive surfaces are formed as a result of sea-level rise, 

with a maximum flooding surface (MFS) being the surface created when water in an 

environment attains its highest level in any given sea-level cycle, and a sequence 

boundary represents the lowest point in a sea-level cycle.     

 A sequence is best described as the collection of strata that are deposited (and 

partially eroded in some cases) in a complete sea-level rise and fall cycle. Strata in a 

sequence are divided into system tracts (STs) depending on which point in a sea-level 

cycle that the strata are deposited in and associated with as depositional units. The system 

tracts are (sensu Hunt and Tucker, 1995) (Figure 2.6):  

1. Falling Stage System Tract (FSST): includes all the regressional deposits that 

accumulated after the onset of a relative sea-level fall and before the start of the 

next relative sea-level rise. A FSST rests directly atop a sequence boundary (SB).   

2. Lowstand System Tract (LST): includes deposits that accumulate after the onset 

of relative sea-level rise. The LST lies directly on the upper surface of the FSST 

and is capped by a transgressive surface.  

3. Transgressive System Tract (TST): comprises deposits that accumulated from the 

onset of coastal transgression until the time of maximum transgression of the 

coast, just prior to the renewed regression of the HST. The TST lies directly on 

the transgressive surface of the LST and is overlain by an MFS.  

4. Highstand System Tract (HST):  An HST constitutes the upper system tract of a 

stratigraphic sequence and lies directly on the MFS formed when marine 

sediments reached their most landward position. The HST is capped by a 

sequence boundary.  
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Figure 2.6. Diagram of a complete relative sea-level cycle, the corresponding system 

tracts, and bounding surfaces (after Wright et al., 2013).  

   

Sequence stratigraphy is applicable to both siliciclastic- and carbonate-stratigraphic 

units, however, there are key differences between clastic- and carbonate-sequence 

stratigraphy. One of the main differences between siliciclastic- and carbonate-sequence 

stratigraphy is that carbonate units are formed via “in situ production” as opposed to 

siliciclastics that possess transported grains commonly deposited distally from a sediment 

source area in a given basinal setting (Wang, Shi, Cheng, and Zang, 2018).    

Siliciclastic units are transported to their depositional setting through processes such 

as weathering, erosion, transportation and deposition and thus only respond to 

hydrodynamic thresholds and are limited by their physical accommodation space. 
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Carbonate rocks in contrast, result mainly from buildup of skeletal remains of marine 

organisms (such as phytoplankton, corals, mollusks, etc.) which reflects that the units are 

formed within their depositional environment. With carbonate formation being dependent 

on marine organisms, water depth is a substantial factor in carbonate production (e.g., 

such as those associated with the photic zone) and specific types of sediments. There of 

course can be many possible microfacies in carbonates (Flugel, 2010). 

Carbonate production is described as being necessarily intrabasinal, with a 

generalized model of the depositional environment defined as a carbonate ramp. 

Carbonate production is mostly limited to the photic zone, with changing water level 

controlling the alternating facies (Pomar and Ward, 1995). As sea level lowers, the 

carbonate platform is exposed, resulting in erosion and karstification of the platform and 

simultaneously, formation of evaporites in the lower basin waters or restricted lagoons.  

Accommodation is generated for the carbonate ramp as sea level rises, however, if sea 

level rises too rapidly, this will drown the platform, resulting in carbonate production 

ceasing. Such a process in turn, can lead to siliciclastics being introduced into the 

environment (Pomar and Ward, 1994). 

Carbonate-sequence stratigraphy uses the same system tracts as in siliciclastic-

sequence stratigraphy but there are key differences between them (Figure 2.7). The HST 

is associated with the most favorable conditions for carbonate production on the platform 

and the deep-water setting, with carbonate formation outpacing accommodation. This 

results in excess carbonate sediment transferring to the basin. The HST is the case in 

which carbonate sand production is highest and thus most likely to produce grainy, high-

porosity hydrocarbon reservoirs. In a carbonate system, the FSST and the LST are 
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usually considered as a single systems tract (Plint and Nummedal, 2000). This is because 

any fall in base level, even of relatively low magnitude leads to rapid regression and 

subaerial exposure of the platform. The LST-FSST is a case in which carbonate 

production ceases and karstification of the platform occurs, generally being a function of 

global climate change that forces a change in base level (e.g., eustatic sea-level change). 

The TST in a carbonate system has sea level rising via two stages: slow transgression and 

rapid transgression. Slow transgression is associated with internal cycles of carbonate 

successions, which do not interrupt carbonate production. Rapid transgressions 

alternatively are associated with terminal cycles of carbonate successions, which leads to 

the drowning of carbonate platforms and a change from carbonate to clastic systems. The 

SB and MFS are present in a carbonate system; however, the stratigraphic sequences are 

commonly truncated and incomplete, thus these boundaries may not be present in a 

carbonate system that are under investigation (Petty, 2010). 

Figure 2.7. Diagram of system tracts in a carbonate system and their corresponding 

makeup of the carbonate platform (after Catuneau et al., 2011). 
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2.4 Ste. Genevieve Limestone 

 

2.4.1 Stratigraphy  

 

 The Ste. Genevieve Limestone is a Mississippian-age unit named after the town 

of Ste. Genevieve, Missouri, where the unit was first documented at the type section 

established by Shumard (1859). The unit is present in outcrop or surface exposures in 

states such as Missouri, Illinois, Indiana, Kentucky, and Tennessee and in the subsurface 

of the Midcontinent such as in Kansas among others.  

 The Ste. Genevieve Limestone overlies the St. Louis Limestone, with the latter 

being dominated by limestone with a scattering of interbedded chert layers (Fielding, 

1971; Marcher, 1962). The Ste. Genevieve Limestone is overlain by the Girkin 

Limestone, a carbonate unit with interbedded shales and sandstones (Craig and Conner, 

1980) (Figure 2.8). A notable aspect of the stratigraphic relationship between various 

Mississippian units is that the shift from the St. Louis Limestone to the Ste. Genevieve 

Limestone is marked by a transitional environment that shares characteristics with both 

the underlying and overlying units (Fielding, 1971). The stratigraphy of the St Louis, Ste. 

Genevieve, and Girkin Limestones for example is dominated by carbonates, primarily 

limestones, with the main difference between the units being their lithology (fine to 

coarse limestone etc.), fossil content (biostratigraphic zonation), and other characteristics. 

The lithofacies that constitute these units tend to be grainstones, packstones and 

mudstones/wackestones, with the few non-carbonate units usually being shales (Metzger, 

Fike, Osburn, Guo, and Addison, 2015).    
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Figure 2.8. A stratigraphic column in the Mammoth Cave region in western Kentucky 

(after Metzger et al., 2015).  Note that part of study area near Park City is close to 

Mammoth Cave.  
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2.4.2 Ste. Genevieve Limestone in Various Localities 

   

Western Kentucky, specifically Warren County and Barren County, is the focus 

area for this study, however, it is important to note the differences in the Ste. Genevieve 

Limestone in other localities in order to account for regional differences. Table 1 below is 

a summation of different localities of the Ste. Genevieve Limestone and the dominant 

lithofacies determined by various researchers.  

Table 1. Equivalent outcrops organized by state, dominant lithofacies and references.   

Equivalent 

Outcrops   

Dominant facies  References   

Missouri Cross-bedded skeletal limestone, 

argillaceous limestone, shale, fine-grained 

sandstone    

(Short, 1962) 

Southern Illinois  Ooid grainstone, skeletal-ooid grainstone, 

skeletal grainstone, skeletal packstone, 

skeletal wackestone, lime mud 

(Rao and 

Mann, 1972) 

Southern Indiana Cross-laminated bioclastic grainstone, 

bioclastic mudstone, fossiliferous 

grainstone, nonfossiliferous mudstone  

(Hunter, 

1993) 

South-central 

Kentucky  

Very fined to coarse grained cross-

laminated bioclastic grainstone with very 

thin stingers of chert towards the base, 

mudstone containing very fined to very 

coarse bioclastic grains, 

very fine to very coarse fossiliferous 

bioclastic grainstone,  

nonfossiliferous grainstone and mudstone 

containing thin beds of chert 

(Dever, 1999) 

Western Kentucky  Brachiopod grainstones,  

oolitic and bioclastic grainstone,  

chert replacing limestone,  

dolostone, 

intraclastic conglomerate and breccia,  

supratidal limestone with typical fenestral 

porosity (birdseye vugs)  

 

(May et al., 

2007) 

Southern Illinois 

and Eastern 

Missouri  

21 distinct depositional environments, 

suggest numerous different facies   

(Rao and 

Mann, 1972) 
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2.4.3 Potential Hydrocarbon Reservoirs and Associated Traps/Seals 

 

 The Ste. Genevieve Limestone is classified as a carbonate reservoir that produces 

significant hydrocarbons in the Illinois Basin. The lithologic facies that are of great 

interest historically include oolitic shoals, dolostone units, and skeletal grainstones but 

many workers have concentrated solely on oolitic rocks (e.g., Keith and Zuppan, 1993, 

and Zuppan, 1989).  

 Oolitic shoals are carbonate rocks that are made up primarily of ooids, sand-sized 

carbonate particles that have concentric rings of CaCO3, hence the “drillers” term “sands” 

for the O’Hara and McClosky reservoirs (Cliff, 1984). These concentric spherical bands 

are formed around grains of sand or shell fragments that were rolled around on the 

shallow sea floor, gathering layer after layer of carbonate material. This happens because 

as the shoal builds up in the shallow sea floor, CO2 is released due to agitation by tidal 

currents and this in turn drives CaCO3 precipitation. Oolitic shoals are primarily present 

in shallow-marine depositional settings that are typically proximal to tidal flats that are 

constantly impacted by the influence of tides. Such a repeated back and forth motion of 

the tidal current creates the optimal environment for the occurrence of ooids (Ball, 1967). 

Modern day examples of ooid shoals occur in parts of the Great Bahama Bank. The 

depositional environments for oolitic shoals are typified by prograding shorelines, 

lagoonal areas, tidal inlets, and open shelf areas of ocean (Figure 2.9). With oolitic shoals 

being deposited in wave influenced environments, they likely originate in association 

with HSTs.     
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Figure 2.9. Typical ooid shoal depositional environment (after Hanford, 1988)  

 

 According to Carr (1973), oolitic shoals make up roughly 22% of the Ste. 

Genevieve Limestone in the Illinois Basin, with equivalent stratigraphic units present  in 

southern Missouri, Kentucky, Illinois and beyond (e.g., in the subsurface of western 

Kansas) (Slamal, 1999). The oolitic shoal roadcuts studied originated as a sand belt with 

similar features as oolitic shoals in parts of the western side of the Great Bahama Bank. 

Oolitic shoals studied were observed to have a high porosity in both the central part of the 

oolite deposit as well as the exterior edge, which is very similar to other oolitic shoals 

researched in the Illinois Basin, suggesting these are significant petroleum reservoirs. 

There are structural (i.e. fold and fault) trends that affect the orientation and 

formation of ooid shoals. Fouke and Gibson (2002) state that due to strong NW-SE tidal 

currents at the time of deposition, ooid shoals in the Ste. Genevieve Limestone in 

Lawrence County Indiana for example characteristically are oriented NW-SE. The result 
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of this is that ooid shoals that are hydrocarbon reservoirs orient in these similar 

directions, showing how tidal currents affect the spatial distribution of ooid shoals. There 

are some overall structural trends associated with the orientation of ooid shoal 

hydrocarbon reservoirs. Productive hydrocarbon reservoirs tend to be oriented around 

faults and folds (Zuppan, 1989) (Figure 2.10).  

 

Figure 2.10. Structure contour and oil well map on top of Ste. Genevieve Limestone in 

the Folsomville, Warrick County, Indiana field area. The overall distribution pattern of 

wells in the area closely aligns with folds, particularly in the northeastern area. Note 

closure on structure drawn on top of an unknown Mississippian strata, defining the 

anticline in section 34 with a 10-ft contour interval shown (after Zuppan, 1989).   

Oolitic shoals are commonly observed as the main hydrocarbon reservoir that 

appears in limestone stratigraphic units (Keith and Zuppan, 1993). However, there are 
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other facies that can occur that have significant hydrocarbon reservoir potential. Other 

units of potential interest for hydrocarbon development in the Ste. Genevieve Limestone 

are dolomitic units and skeletal grainstones. Dolostone is a sedimentary rock that is 

composed primarily of the mineral dolomite [CaMg(CO3)2]. 

Sediments accumulating to form dolostone are deposited in an environment as 

calcium carbonate but are chemically transformed into dolostone by a process called 

dolomitization. Dolomitization occurs when calcite, (CaCO3), the main mineral in 

limestone, is transformed by magnesium-rich water and then recrystallizes into a solid 

rock again through a process of dissolution and precipitation or by chemical 

“replacement.” This influx of magnesium causes the calcite in the limestone to be 

changed into dolomite and thus the limestone becomes dolostone. Dolomitization can 

occur in varying degrees, with partially dolomitized limestone being classified as 

dolomitic limestone and limestone that has been completely dolomitized classified as 

dolostone (Choquette and Steinen, 1980). There have been numerous models proposed 

for dolomitization processes (Table 2). A relatively recent model is recrystallization, in 

which a favorable environment for calcite replacement by dolomite builds up into layers 

and then crystalizes to form dolomitic limestones through many cycles of deposition and 

recrystallization of previous units (Machel, 1997).       
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Table 2. Models of dolomitization organized by Mg2+ source, delivery mechanism, 

hydrologic model and predicted patterns (after Machel, 2005). 

 

Dolostone acts as a hydrocarbon reservoir in a geologic unit under very specific 

circumstances. When a limestone is dolomitized, the skeletal grains that are contained in 

the limestone are not removed from the unit and the resulting dolostone is of less volume 

than the original limestone. As a result, grains and matrix material in the dolostone are 

concentrated in a much smaller volume. An ideal dolostone reservoir will possess fine-

grained limestone overlaying and underlying it, with the relatively fine-grained 

limestones units acting as a “trap” that seals the dolostone layer, preventing emplaced 

hydrocarbons from moving laterally (Ray, Sharma, and Chopra, 2014).  

Dolostone units have been shown to be productive hydrocarbon reservoirs in 

various localities ranging from Ohio (Miken and Castagna, 2003) to China (Xiao et al. 

2017). Choquette and Steinen (1985) conducted research on hydrocarbon reservoirs in the 



28 
 

Ste. Genevieve Limestone at North Bridgepoint, Illinois. They discovered that the two 

prominent hydrocarbon reservoir facies at this location were oolitic limestones and 

microbial dolostone (dolomitization resulting from microbial action). Their research 

shows that there are productive dolostone reservoirs in the Ste. Genevieve Limestone. 

Skeletal grainstones are stratigraphic units of interest that have some commonality 

with dolostone/dolomitic units. Skeletal grainstones are carbonate units that were 

deposited in relatively high-energy marine environments that led to the deposition of 

coarse grains. Skeletal grainstones are defined by their abundant fossil content. Similar to 

dolostone units, skeletal grainstone units are ideal hydrocarbon reservoirs in the case in 

which these rocks are enclosed by fine-grained units, such as mudstone/wackestone or 

shales. In the case of skeletal grainstone, when the unit is positioned like this, 

hydrocarbon material is prevented from migrating outward.  The enveloping fine-grained 

units may act as a “trap” and this permits hydrocarbon accumulation as in the case of 

dolomite reservoirs. Skeletal grainstones appear to have some overlap with ooid shoals, 

with studies showing hydrocarbon reservoirs consisting of skeletal grainstones with high 

ooid content and ooid shoals comprising grainstones (Bebout, Major, and Harris, 1994).  

It must be noted that an important parameter for identifying potential hydrocarbon 

reservoirs is the enveloping stratigraphic layers that underlay and overlay the potential 

reservoir. As previously referenced in regard to dolomitic  and grainy limestone 

reservoirs, the ideal stratigraphic setting for a potential hydrocarbon reservoir is one in 

which the reservoir is enclosed by fine-grained material with low porosity and 

permeability such as by either siliciclastic or carbonate mudstone (Ray et al., 2014). 

Within such a scenario, hydrocarbons will be confined into the reservoir unit and thus 
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will not migrate out unless the confining layers are penetrated. A notable aspect of this is 

that with a confining layer necessarily possessing low permeability and porosity, units 

that have traditionally been considered as reservoir units can instead act as confining 

units, such as shales (Downey, 1984). An example of this is fine-grained dolostone, with 

dolostone units behaving as if comparable to mudstone and wackestone limestone units in 

the sense of a stratigraphic trap (Lan and Lu, 2013).   

Diagenetic controls are important characteristics to consider in reservoir rocks, with examples 

such as stylolites and paelokarst.  Stylolites are serrated surfaces within a rock mass at which 

minerals have been removed by pressure dissolution, resulting in a decrease in total rock 

volume (Toussaint et al. 2018). Insoluble minerals or material, such as clays, pyrite and 

sequioxides, remain within the stylolites and make them visible. This process commonly 

results in the formation of thin layers of low permeable material that impede fluid flow 

and thus act as confining layers (Padmanabhan, Sivapriya, Huang, Askury, and Chow, 

2015; Tada and Siever, 1989).  

Paelokarst is karst (limestone) features that represent ancient exposure and 

dissolution surfaces that are subsequently buried in sediment that becomes lithified. The 

result of such preservation of paleokarst features results in an increase in porosity of the 

affected unit while largely maintaining their mineral/hydrocarbon content (Hollis, 2011). 

An example of a paelokarst unit is brecciated limestone. Brecciated limestone is a unit 

composed of eroded limestone clasts reincorporated or included into a geologic unit. 

Studies have shown that paelokarst lithologies such as breccia are key reservoirs in 

numerous locales such as west Texas (Kerans, 1988), the Middle East (Hollis, 2011), and 

China (Tian et al., 2017).           
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3.0 METHODS 

 

The methods that were used to analyze the lithological character of the Ste. 

Genevieve Limestone are typical of other field focused studies. At each of the roadcuts, 

exposed rocks were measured and the different lithologies encountered were analyzed 

and classified by their grain size, mineralogy, fossil content, sedimentary structures, 

sedimentary facies, color and other characteristics.  These data were placed within the 

graphics, photographs and text descriptions generated as part of the stratigraphic section 

measurement effort. With the Ste. Genevieve Limestone being composed of primarily 

carbonates, it is important to differentiate the types of carbonates in the roadcuts to better 

understand their characteristics. To accomplish this, the carbonates in roadcuts were 

classified using the modified Dunham Classification (Dunham, 1962, and Embry and 

Klovan, 1971). In this system, carbonates are classified primarily on the basis of being 

mud-supported versus grain-supported or by what is referred to as depositional texture. 

The classification used for this study uses only the mudstone, wackestone, packstone, and 

grainstone monikers because the other distinctions are not pertinent to this study (such as 

boundstone, bindstone etc.). This classification is used because it is the standard for 

classifying carbonates in the field since it conveys the original depositional texture of 

rocks at a hand-sample scale (Table. 3). In order to make descriptions of the lithofacies 

more systematic and consistent, the Munsell soil color chart (Macbeth, 1998) is used to 

describe the colors of the lithofacies.    
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Table 3. Modified Dunham Classification (after Embry and Klovan, 1971).  

 

To understand the characteristics of the Ste. Genevieve Limestone in study areas, 

roadcuts were analyzed in both vertical and horizontal dimensions. Using whatever tools 

were convenient to measure the units  (in the case of this study, a yard stick or Jacob’s 

staff for the roadcuts that are few feet high and a tape measure for the larger roadcuts and 

a ladder), the vertical dimension was measured for stacking patterns and horizontal extent 

was studied for facies changes in units. By understanding the vertical and horizontal 

transitions in the Ste. Genevieve Limestone roadcuts, this aids understand of the 

depositional environments and how depositional processes changed over time. This was 

accomplished with study of seven roadcuts to reduce uncertainly in the characterization 

of the Ste. Genevieve Limestone. These roadcuts are typically eight hundred to one-

thousand feet long and ten- to thirty-feet high, with a few larger roadcuts. Each roadcut 

was in turn subdivided into three different measured stratigraphic sections, for a total of 

twenty-one for the entire study. With a key aspect of this study focusing on the 

hydrocarbon potential of certain stratigraphic intervals, it is imperative that results are 

https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwie7ZHP56naAhVI64MKHZHYAGYQjRx6BAgAEAU&url=http://www.sepmstrata.org/page.aspx?pageid%3D290&psig=AOvVaw155X5or1jhlrRrmYKYeYrl&ust=1523247053904232
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comparable to existing databases (such as the Kentucky Geological Survey well log 

database). To accomplish this, the roadcuts were measured in feet, as were the 

stratigraphic column cross sections instead of the SI or metric standard.  This fieldwork 

was conducted to make it easier to compare the lateral and vertical transition between the 

roadcuts. An alphabetical naming scheme is used to identify units in the roadcuts, with A 

being the lowest in a given roadcut and subsequent units named in ascending order (A, B, 

C, D, etc.).  This scheme is used individually in each roadcut, meaning that a given unit A 

in one roadcut doesn’t necessarily correlate to a designated unit A in another roadcut.         

In order to adequately analyze the lithofacies in the roadcuts, samples were 

retrieved to be cut into slabs.  At each roadcut, a sample was taken from each of the 

identified stratigraphic units, with the samples marked for their stratigraphic unit context 

and vertical orientation. Samples collected were then taken to the WKU Geography & 

Geology rock prep lab where they were cut into slabs. Once the slabs were cut, they were 

then hand sanded first using 200 grit and then 400 grit. This was done to remove any saw 

blade cutting marks and overall just to make the slabs more presentable. This cutting and 

grinding work on the slabs was conducted in order to study the internal structure of the 

rocks and for observing, describing and interpreting details such as fossil content, grain 

size, Munsell color, and to provide a Dunham Classification name. Finally, for 

photographing the slabs, each was sprayed with two layers of clear acrylic or shellac 

spray in order to make the details of the slabs easy to identify providing a pseudo-

polished look. 
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4.0 STUDY AREA 

  

This study focuses on roadcuts in Warren and Barren counties in Kentucky, with 

the intent that these exposures could be correlated and placed in stratigraphic context 

within this portion of the Illinois Basin. Originally, this study was to focus solely on 

roadcuts in Warren County however, it was eventually decided based on initial field work 

that there are too few roadcuts available for study of the Ste. Genevieve Limestone in 

Warren County. As a consequence, roadcuts in the Barren County were also included to 

create a better analysis of the studied stratigraphic unit. 

4.1 Warren County Roadcuts  

 

  A total of five roadcuts were analyzed as part of this study. These roadcuts are 

found in three primary locations: 1) Kentucky State Highway (Hwy) 1435, Barren River 

Road, 2) Kentucky State Highway 185 (Hwy 185), north of Bowling Green, and 3) US 

Interstate 65 (I-65) (Figure 4.1).  
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Figure 4.1. Map of Warren County with general locations of roadcuts shown within 

rectangles. Map created by author using Google Maps (March 2019). 

 

4.1.1 Barren River Road Roadcuts  

 

 The Barren River Road area is located in the northwestern outskirts of Bowling 

Green, with the road following its namesake, the Barren River. Stratigraphically, the area 

is dominated by the Ste. Genevieve Limestone, with the Girkin Limestone and Big Clifty 

Sandstone becoming pronounced further northwest of the area and Quaternary alluvium 

(not part of this study) present along the Barren River (Figure 4.2). There are two 

roadcuts that were studied in this area, one at mile marker 2 and the second near Belle 

Rive Circle (approximately mile marker 3). The Mile 2 Roadcut is a moderate sized 

roadcut at roughly 20 feet high, but the Belle Rive Circle Roadcut is notable for being the 

largest of the roadcuts analyzed for this study at approximately 70 feet in height cut along 

several benches.      
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Figure 4.2. Geologic map of the Barren River Road area. The subdivisions for geologic 

material in the area are: Msg (dark blue) Ste. Genevieve Limestone, Qal (light yellow) 

Quaternary Alluvium, Mg (green) Girkin Limestone, and Mgb (magenta) Big Clifty 

Sandstone. Map was created by the author using the KGS (Kentucky Geological Survey) 

map information service accessed March 2019.  

 

Structurally, the stratigraphic units of the Barren River Road area dip toward the 

northwest, expressed as structural contours declined to the northwest (Figure 4.3). The 

contours represent the elevation at the base of the Big Clifty Sandstone, which decrease 

to the northwest with an elevation high of less than 720 feet. There is an abrupt break 

southeast of the area where the contours change from positive to negative values (i.e. 

from above sea level to subsea elevations) ranging from -260 feet to -300 feet, with these 
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contours (red lines on map) being drawn on the top of the Chattanooga Shale as the 

structural datum.   

Figure 4.3. Structural contour map of the Barren River Road area (March 2019). 

Chattanooga Shale contours occupy the southeastern part of the map and the Big Clifty 

Sandston contours are in the northwestern part of the map. There is an abrupt change 

from the Chattanooga Shale to the Big Clifty Sandstone contours halfway along Barren 

River Road in this view. With the KGS map information service data (such as structural 

contours and scale) being in English measurement units, these units were not converted to 

metric to make the figures comparable to the database. Map was created by the author 

using the KGS map information service.  

 

 

A helpful feature of the Barren River area is that there is a large limestone quarry 

near the studied roadcuts (one mile to the southeast of bottom of Figure 4.3). The Martin 

Marietta Materials, Bowling Green South Quarry is a quarry that shares data with 

Kentucky Geological Survey (KGS) which allows data collected from the site to be 

accessed by the public through the KGS map information service. The data analysis of 

the quarry shows that there are samples from the Ste. Genevieve Limestone that have a 

range of mineralogical compositions. Some intervals have a high percentage of MgCO3, 
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which suggests the presence of dolostone, and SiO2, which is indicative of chert deposits 

(Table 4). While it is unfortunate that these are bulk (i.e. whole rock analysis) samples, 

these data however, provide some insight into the detailed potential lithology that can be 

observed in roadcuts.    

 

Table 4. Chemical analysis of Ste. Genevieve Limestone quarry samples from the Martin 

Marietta Materials Bowling Green South Quarry. Data table acquired directly from KGS 

Limestone and Dolostone resources database (accessed March 2019).      

 

4.1.2 Kentucky State Highway 185 Roadcuts 

   

 The Hwy 185 roadcuts are located in the northern outskirts of Bowling Green. 

The stratigraphy of the area is dominated by the Ste. Genevieve Limestone in the south, 

but further north the Girkin Limestone and Big Clifty Sandstone are exposed, mainly a 

result of the increase in elevation as one traverses out of the karst plain and up the 

Chester Escarpment (Figure 4.4). There are two roadcuts analyzed from this area, the 

Eversole Rd. Roadcut and another about half a mile down the road by a Crossroads (IGA) 

fuel station. The Eversole Rd. Roadcut is the larger of the two with the roadcut being 25 

feet high, and the Crossroads Roadcut is roughly 10 feet in vertical extent. A notable 

aspect of both roadcuts is the dramatic change in elevation from one end of one roadcut 

to another. The Eversole Rd. Roadcut goes from 551 feet to 571 feet whereas the 

crossroads roadcut extends from 522 feet to 591 feet in elevation.  
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Figure 4.4. Geologic map of the Hwy 185 area. Subdivisions are the same as the Barren 

River Road map (Fig 4.3). Map was created by the author using the KGS map 

information service accessed in March 2019.  

 

 Structurally, the Hwy 185 area is similar to the Barren River Road area. The 

bedrock of the area dips to the north to slightly northwest, with the structurally highest 

contour being 740 feet (with Big Clifty Sandstone as the structural datum). The structural 

datum shift from one datum to another previously mentioned also applies to this area, 

with the lowest elevation contour being at -300 feet with the top of the Chattanooga Shale 

as the datum (Figure 4.5).  
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Figure 4.5. Structural contour map of the Hwy 185 area. Map was created by the author 

using the KGS map information service accessed March 2019. 

 

4.1.3 Interstate Highway 65, Mile 40 Roadcuts 

 

 The Interstate 65 Mile 40 Roadcut is the easternmost roadcut from Warren 

County used in this study. The roadcut is located in the far eastern part of the county, 

near the borders of Barren, Warren, and Edmonson counties. The stratigraphy is 

dominated by the St. Louis Limestone, with deposits of Ste. Genevieve Limestone and 

Girkin Limestone representing the very few higher elevations in an otherwise relatively 

flat area (Figure 4.6). The I-65 roadcut is approximately 17 feet high, with a relatively 

constant elevation throughout the exposure. It must be noted that this roadcut has been 

weathered extensively by water dissolution.  
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Figure 4.6. Geologic map of I-65 area near Mile Marker 40. Subdivisions are the same as 

the Barren River Road map, with Msl (Green) representing the St. Louis Limestone. Map 

was created by the author using the KGS map information service accessed March 2019.  

 

 Structurally, the area dips toward the west to northwestern part of the map (Figure 

4.7). Contours of the area range from a high of 180 feet to negative values such as -20 

feet and -40 feet. The contours of the area are tightly compacted compared to the other 

areas, representing the relatively uniform bedrock topography of the region.      
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Figure 4.7. Structural contour map of I-65 area near Mile Marker 40. Map was created by 

the author using the KGS map information service accessed March 2019.  

 

4.2 Barren County Roadcuts  

 

The Barren County Roadcuts are located along I-65 off of US Exit 48, near Park 

City, KY. There are two roadcuts in this area, one on the southwestern part of the exit and 

the other on the northeastern part of the exit. Although these roadcuts are very close to 

each other, they represent two different sets of lithologies so for clarity, they are 

discussed separately. The area’s stratigraphy is dominated by the Ste. Genevieve 

Limestone, but the Girkin Limestone and Big Clifty Sandstone are observable in the 

northern part of the area and the St. Louis Limestone is exposed to the south (Figure 4.8).       
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Figure 4.8. Geologic map of the Barren County area at Exit 48 on I-65 (Park City, KY). 

Subdivisions are the same as the Barren River Road map (Fig 4.3). Map was created by 

the author using the KGS map information service accessed March 2019. 

The area is structurally positioned very close to the l break between the top of the 

Chattanooga Shale and base of the Big Clifty Sandstone contours in the north and the 

south (Figure 4.9). The contours in the south are very close to each other, with contour 

values ranging from -40 feet to 140 feet in a span of less than a mile with bedrock 

dipping toward the north. The contours in the north are substantially more spread apart in 

comparison, ranging from 920 feet to 720 feet over a few miles, with rock dipping toward 

the northwest which is consistent with regional dip in this portion of the Illinois Basin.  
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Figure 4.9. Structural contour map of the Barren County area at Exit 48 on I-65 (Park 

City, KY). Map was created by the author using the KGS map information service 

accessed March 2019. 

 

4.3 Roadcut Locations in Regional Stratigraphic Context  

 

The focus of this study is to analyze the Ste. Genevieve Limestone in western 

Kentucky, and thus the roadcut locations (i.e. seven main areas discussed above) must be 

known in regional stratigraphic context rather than merely as disparate, physically 

separated measured sections. Using the base of the Big Clifty Sandstone as a structural 

datum and determining the elevation of the base of the roadcuts, one can discern any 

given individual roadcut’s measured section placement into the regional stratigraphy.  

Furthermore, the thickness of roadcuts can be used to document vertical extent. Based on 

their contextual placement in the stratigraphy (Figure 4.10), most of the roadcuts are 
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positioned in the middle to upper part of the Ste. Genevieve Limestone, with the I-65 

Mile 40 Roadcut  (roadcut #5) representing the lower part of the unit.  

    
Figure 4.10. Roadcut locations (numbered after #) studied in stratigraphic context of the 

Ste. Genevieve Limestone. The numbers on the right represent the distance from the base 

of the Big Clifty Sandstone.  On left-hand side of scale, units are in feet (e.g., 240, 220 

etc.) and meters on right-hand side of scale (e.g., 70, 60 etc.). (Stratigraphic framework 

modified from Palmer, 1998). 
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5.0 RESULTS 

 

5.1 Barren River Road, Mile 2 Roadcut 

 

5.1.1 Lithofacies  

 

The Mile 2 Roadcut reveals six distinct stratigraphic units. These lithofacies (Figure 

5.1) constitute the exposure in ascending stratigraphic order as follows:  

 A. Chert-Bearing Dolomitic Mudstone: A light olive brown (2.5Y 5/3) dolomitic 

mudstone with sparse deposits of chert with little to no fossils or skeletal content, 

and little to no preserved sedimentary structures. Overall, the unit is very fine 

grained, almost entirely mud, with few nodular chert deposits. There are 

numerous calcite veins in the unit (fracture filled in exposures).   

 B. Skeletal Grainstone: A light gray (2.5Y 6/2) skeletal grainstone unit with 

bryozoans, crinoids, and brachiopods. Skeletal fragments make up the vast 

majority of grains. There is a minor tint of orange coloring that is likely the result 

of iron-oxide replacement.  

 C. Chert-Bearing Dolomitic Mudstone: A light yellowish brown (2.5Y 6/3) unit 

with sparse deposits of chert. Very similar to unit A, and most likely the same 

unit with the only difference being light gray (2.5Y 6/2) deposits.  

 D. Packstone: A gray (2.5Y 6/1) packstone unit with little to no fossils and no 

sedimentary structures. In the upper part of the unit, laminations of grainy 

material become prevalent.  
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 E. Dolomitic Mudstone: A light gray (2.5Y 7/1) mudstone with sparse deposits of 

brachiopods and a few small sedimentary structures present such as ripples. Unit 

is dolomitized somewhat.  

 F. Skeletal-Ooid Grainstone: A light brownish gray (2.5Y 6/2) skeletal grainstone 

unit with the dominant feature being ooids. Fossil content includes bryozoans, 

crinoids, and brachiopods. Ooids are not distributed throughout but occur in 

concentrated pockets.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



47 
 

 

 

 

 

 

 

 

 

 

 

F
ig

u
re 5

.1
. L

ith
o
facies (A

 th
ro

u
g
h
 F

) o
f th

e B
arren

 R
iv

er R
o
ad

, M
ile 2

 R
o
ad

cu
t. A

rro
w

s sh
o
w

 stratig
rap

h
ic u

p
 an

d
 scale b

ars a
re 

in
 cen

tim
eters (left sid

e o
f scale) an

d
 in

ch
es (rig

h
t sid

e o
f th

e scale). A
. C

h
ert-B

earin
g
 D

o
lo

m
itic M

u
d
sto

n
e, B

. S
k
eletal 

G
rain

sto
n
e, C

. C
h
ert-B

earin
g
 D

o
lo

m
itic M

u
d
sto

n
e, D

. P
ack

sto
n

e, E
. D

o
lo

m
itic M

u
d
sto

n
e, an

d
 F

. S
k
eletal-O

o
id

 G
rain

sto
n
e 

 



48 
 

5.1.2 Stratigraphy 

The stratigraphy of the Barren River Road, Mile 2 Roadcut can be best described 

as a coarsening upward sequence (Figure 5.2). Unit A is the lowest stratigraphic unit, 

measuring on average three feet thick, but is only present on the southern part of the 

roadcut (Figure 5.3). The stratigraphy transitions into coarse-grained unit B but is only 

present along the edges of the roadcut, averaging two feet thick on the southern part of 

the roadcut and three feet thick along the north (Figure 5.4). Unit B transitions into the 

dolomitic unit C, which is present along the edges of the roadcut, averaging three feet in 

thickness on the south and seven feet thick on the north. This transitions into unit D, the 

most dominant unit in the roadcut. The thickness of the unit varies, averaging six feet on 

the edges of the roadcut and 11 feet in the center. In the center of the roadcut, there are 

remnants of unit E, with the thickest the unit being observed at two feet, with shale 

mantling the rest of the roadcut at this stratigraphic level. The roadcut is capped by unit F 

which is only present in the center (Figure 5.5), where it averages 13 feet in thickness.   
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Figure 5.2. Stratigraphic cross section of the Barren River Road, Mile 2 Roadcut. 

Designations of M, W, P and G correspond to Dunham Classification names (mudstone, 

wackestone, packstone, and grainstone).  

Figure 5.3. Annotated view of the southern edge of the Barren River Road, Mile 2 

Roadcut. Carbonate units are lettered and interbedded clastics are not lettered (e.g. shale).  
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Figure 5.4. Annotated view of the northern edge of the Barren River Road, Mile 2 

Roadcut. Carbonate units are lettered and interbedded clastics are not lettered (e.g. shale). 

Figure 5.5. Annotated view of the center of the Barren River Road, Mile 2 Roadcut. 

Carbonate units are lettered and interbedded clastics are not lettered (e.g. shale).  
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5.2 Barren River Road, Belle Rive Circle Roadcut 

5.2.1 Lithofacies 

The Belle Rive Circle Roadcut investigated consists of ten distinct stratigraphic units. 

The lithofacies that constitute the exposure (Figure 5.6), in ascending stratigraphic order 

are (with the exception of units B1 and B2 due to the close proximity in the roadcut): 

 A. Chert-Bearing Dolomitic Mudstone: A grayish brown (2.5Y 5/2) unit with 

beds of chert. There are a few deposits of skeletal material, consisting of 

fragmentary fossils. 

 B1. Partially-Dolomitic Wackestone: A greenish gray (GLEY 1 6/1) unit with a 

mix of very muddy material and slightly coarser material. HCl acid tests show 

that the coarse material is non-dolomitic whereas the muddy material is dolomitic.   

 B2. Skeletal Grainstone: A light gray (2.5Y 7/1) fragmentary skeletal unit. There 

are a few clay laminations in the lower part. Identifiable fossils consist of mostly 

brachiopods.  

 C. Skeletal Grainstone: A greenish gray (GLEY 1 6/2) fragmentary skeletal unit. 

There are a few layers of less coarse material, but overall, the unit becomes 

progressively coarser upwards. It is very similar to unit B2 and is possibly the 

same unit.  

 D. Skeletal-Ooid Grainstone: A pale yellow (2.5Y 8/2) unit made up primarily of 

ooids. There are dark gray (2.5Y 4/1) layers that represent purely skeletal 

material, with the layers characterized by their disarticulated or broken skeletal 

grains.  
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 E. Brecciated Limestone: A very dark grayish brown (2.5Y 3/2) consisting of 

large fragments of limestone. Rock fragment sizes range from >1 cm to 2 cm or 

larger in diameter.  

 F. Mudstone: A greenish gray (GLEY 1 6/2) unit consisting of mainly mud with a 

few deposits of coarse grains sparsely distributed in the unit. Little to no skeletal 

content and no identifiable fossils. 

 G: Skeletal Wackestone: A light brownish gray (2.5Y 6/2) unit, mainly mud 

supported with skeletal material evenly distributed. Most of the skeletal materials 

are fragments, with the few identifiable fossils consisting of crinoids.  

 H: Skeletal-Ooid Grainstone: a light-gray (2.5Y 7/1) unit consisting mostly of 

ooids. There are beds of concentrated skeletal material in the form of fragmentary 

skeletal grains.   

 I: Skeletal Wackestone: A light-gray (2.5Y 7/1) unit, mainly mud supported with 

well distributed skeletal material. Unit I is very similar to unit G, however, unit I 

has a greater skeletal content, with identifiable fossils including crinoids, horn 

corals, and bryozoans.     
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5.2.2 Stratigraphy 

 

The stratigraphy of the Belle Rive Circle Roadcut can be best described as a static 

sequence (relative to base-level), with the roadcut not fitting the profile of a definitive 

fining or coarsening upward trend or stacking pattern (Figure 5.7). The lowest unit is Unit 

A with a thickness ranging from four feet on the southern and northern edges to nine feet 

in the center, with a small area in the roadcut near the center measuring two feet. Unit A 

transitions into units B1 and B2, with units B1 and B2 found in the similar locations in 

the roadcut and thus it cannot be adequately determined which unit is the older. Units B1 

and B2 are present only along the northern edge of the roadcut (Figure 5.8), suggesting 

that they are localized units. 

Units A, B1, and B2 are separated from the overlying units by a scour (or 

potential exposure) surface, with the surface having a wavy character that suggests it is 

an erosional surface that certainly has been modified by post-depositional pressure 

dissolution. The surface is lined with a thin claystone layer in the northern edge of the 

roadcut. The interpretative exposure surface shows distinct evidence of being modified 

by pressure dissolution with the claystone layer being contorted and twisted relative to 

horizontal. In some locations, this claystone may be vertical, but in other locations it is 

obliquely inclined and subhorizontal, suggesting similarity to stylolites (Figure 5.9). 

The next depositional event ascending the roadcut is unit C, with thickness of the 

unit measuring nine feet along the southern edge (Figure 5.10) of the roadcut, eight feet 

on the northern edge, and 16 feet in the center (Figure 5.11) of the roadcut. Unit C 

transitions into units D and E with the units being fairly consistent in the roadcut, with 

unit D measuring eight feet thick except along the southern edge where it measured six 
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feet and unit E measures 10 feet throughout the roadcut. Unit E is followed by a very thin 

shale unit, measuring only one-foot thick and this shale and all units deposited after it are 

not present in the western edge of the roadcut. Unit E transitions to the muddy unit F, 

with the unit’s thickness consistently measuring seven feet throughout the roadcut. The 

roadcut then transitions into units G, H, and I, with these rocks only being exposed in the 

center of the roadcut. The thickness of unit G was measured to be four feet, unit H 

measured six feet, and unit I measured nine feet. The only ideal potential hydrocarbon 

reservoir is unit H, a skeletal-ooid grainstone, enclosed by two muddy units (i.e. units G 

and I).    

Figure 5.7. Stratigraphic cross section of the Belle Rive Circle Roadcut. Dunham 

Classification as previously noted in Figure 5.2. 
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Figure 5.8. Annotated view of the northern edge of Belle Rive Circle Roadcut. 

Figure 5.9. View of claystone layer and its different orientations in the northern edge of 

the road cut.   
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Figure 5.10. Annotated view of the southern edge of Belle Rive Circle Roadcut. 

Figure 5.11. Annotated view of the center of Belle Rive Circle Roadcut. 
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5.3 Hwy 185, Eversole Road Roadcut 

5.3.1 Lithofacies 

The Hwy 185, Eversole Road Roadcut, consists of nine distinct stratigraphic units. 

The lithofacies (Figure 5.12) that constitute these layers are, in ascending stratigraphic 

order: 

 A. Skeletal-Ooid Grainstone: A unit composed of skeletal fragments and ooids. 

Grains deposited are interbedded, with alternating layers of lighter, white (2.5Y 

8/1) colored fragments and gray (2.5Y 6/1) ooid layers. The defining 

characteristic of the unit is the presence of stylolites, serrated surfaces within a 

rock mass within which minerals have been removed by pressure dissolution (via-

post depositional processes).  

 B. Chert-Bearing Dolomitic Mudstone: A light olive brown (2.5Y 5/2) dolostone 

unit with sparse deposits of chert. There are small deposits of light gray (2.5Y 

7/1) material that are differentiated from the rest of the unit by the lack of chert.  

 C. Skeletal-Ooid Grainstone: A light gray (2.5Y 7/1) grainstone unit composed of 

skeletal fragments and ooids. The unit is composed of mainly ooids, with few 

deposits of skeletal fragments and fossils. Fossils consists of mainly brachiopods 

and bryozoans.   

 D. Dolomitic Mudstone: A light greenish gray (GLEY 1 7/1) dolostone unit. 

There is a small quantity of skeletal material with a few brachiopods.  
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 E. Skeletal Wackestone:  A light brownish gray (2.5Y 6/2) wackestone unit. The 

unit is composed of mostly mud, but there are fragmental skeletal materials. There 

are a few identifiable fossils such as brachiopods.  

 F. Skeletal Packstone: A gray (2.5Y 6/1) packstone unit. The unit is composed of 

mostly skeletal fragments, with some mud deposits. Skeletal content is mostly 

skeletal fragments with the identifiable fossils consisting of brachiopods.  

 G. Skeletal Grainstone: A grayish-brown (2.5Y 5/2) grainstone unit. The unit is 

mostly composed of skeletal fragments, with identifiable fossils consisting of 

brachiopods and bryozoans.  

 H. Skeletal-Ooid Grainstone: A white (2.5Y 8/1) grainstone unit. The lowest part 

of the unit is white and composed of mostly ooids. Further up stratigraphically, 

the unit becomes darker with a greater presence of skeletal fragments. In the top 

part of this unit, there are muddy deposits. Fossils consist of mainly brachiopods.       

 I. Brecciated Limestone: A very dark-gray (2.5Y 3/1) brecciated limestone unit. 

The unit is composed of large limestone fragments, with breccia fragments 

ranging from >1 cm to 2 cm or more in diameter, with there being significantly 

less fragments than as observed in Belle Rive Circle unit E. Sedimentary 

structures are limited to distinctive planar beds best defined by chert layers.  
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5.3.2 Stratigraphy 

 

The stratigraphy of the Eversole Road Roadcut consists of three different stacking 

patterns: 1) alternating skeletal-ooid grainstone units and dolostone units from units A to 

D, 2) a backstepping pattern from units D to G, and 3) a static, coarse-grained sequence 

from units G to I (Figure 5.13).  

Units A through D are  present only on the southwestern edge of the roadcut 

(Figure 5.14),  units E and F are only present on the southwestern edge and center of the 

roadcut (Figures 5.14 and 5.15), and units G through I are only present in the center and 

northeastern edge of the roadcut (Figures 5.15 and 5.16). Unit A is the lowest unit in the 

roadcut, only measuring one feet thick. Unit A transitions into unit B, with a thickness of 

four feet. Unit B transitions into unit C, which measures five feet in thickness. Unit C 

transitions into unit D, which measures six feet in thickness. The next unit in the 

stratigraphy is unit E, which measures five feet on the southwestern edge and four feet in 

the center of the roadcut. Unit E transitions into unit F, with the latter measuring four feet 

in thickness on the southwestern edge and in the center of the roadcut. Unit F transitions 

into unit G, along which measures four feet on the southwestern edge of the roadcut, 

seven feet in the center, and five feet along the northeastern edge of the roadcut. Unit G 

transitions into unit H, which measures 11 feet in the center and also along the 

northeastern edge. The stratigraphy of the roadcut is capped by unit I, which measures 

four feet in both the center and northeastern edge of the exposure.  
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Figure 5.13. Stratigraphic cross section of the Eversole Road Roadcut.  Dunham 

Classification as in Figure 5.2. 

 

Figure 5.14. Annotated view of the southwest wing of the Eversole Road Roadcut.  
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Figure 5.15. Annotated view of the center of Eversole Road Roadcut.  

 

Figure 5.16. Annotated view of the northeast wing of Eversole Road Roadcut.  
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5.4 Hwy 185, Crossroads Roadcut  

5.4.1 Lithofacies 

The Hwy 185, Crossroads Roadcut investigated consists of seven distinct 

stratigraphic units. The lithofacies that constitute these layers are, in ascending 

stratigraphic order (Figure 5.17):  

 A. Skeletal Mudstone: A light brownish-gray (2.5Y 6/2) mudstone unit. The unit 

is composed of mostly mud, with the few observable grains consisting of skeletal 

material. Skeletal materials are brachiopods and fragments. A notable feature is 

the presence of fractures that are filled with calcite veins.  

 B. Skeletal Wackestone: A grayish-brown (2.5Y 5/2) wackestone unit. The unit is 

composed of mud and skeletal material in roughly equal proportions. Skeletal 

material is mostly fragments, with identifiable fossils consisting of brachiopods.  

 C. Tidally-Influenced Skeletal Packstone: A grayish-brown (2.5Y 5/2) packstone 

unit. Skeletal fragments make up the majority of material in the unit, with little to 

no identifiable fossils. Notable are rhythmic beds (termed rhythmites or tidalites) 

o) capped with “supratidal” limestone replete with “birdseye vugs” or fenestral-

porosity networks. 

 D. Partially-Dolomitized Skeletal Wackestone: A wackestone unit with 

alternating light gray (2.5Y 7/2) and brownish-gray (2.5Y 6/2) material. Skeletal 

material consists of fragments and identifiable fossils such as bryozoans and 

brachiopods. HCl acid tests show that the light gray material is dolomitic and dark 

brownish-gray material is calcite.  
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 E. Skeletal-Ooid Grainstone: A grayish-brown (2.5Y 5/2) grainstone unit. Skeletal 

material is mostly composed of skeletal fragments with little to no identifiable 

fossils. Ooids are present throughout in roughly equal proportions.  

 F. Skeletal Wackestone: A light-gray (2.5Y 7/2) wackestone unit. The unit is 

mainly composed of mud, with skeletal material scattered throughout. Skeletal 

material in the unit is mostly fragments, with some identifiable brachiopods.   

 G. Skeletal Packstone: A light brownish-gray (2.5Y 6/2) packstone unit. The unit 

is mainly composed of skeletal fragments with little to no identifiable fossils, with 

deposits of mud material. Further up stratigraphically, mud becomes more 

common, with planar cross bedding also exhibited.  
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5.4.2 Stratigraphy 

The stratigraphy of the Crossroads Roadcut can be best described as a back 

stepping, retrogradational pattern, with two separate identifiable stacking patterns (Figure 

5.18). Unit A is the lowest unit in the stratigraphy, documented only on the northern edge 

of the roadcut (Figure 5.19), and measures two feet in thickness. Unit B is found on the 

northern edge, measuring four feet in thickness. Unit C is found on the northern edge and 

center of the roadcut, measuring four feet and five feet respectively. Unit D and Unit E 

are only present in the center of the roadcut (Figure 5.20), with Unit D measuring five 

feet in thickness and Unit E measuring four feet. Unit F and Unit G are only present on 

the southern edge of the unit (Figure 5.21), with Unit F measuring four feet in thickness 

and Unit G measuring three feet. 

Figure 5.18. Stratigraphic cross section of the Crossroads Roadcut.  Dunham 

Classification as in Figure 5.2. 
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Figure 5.19. Annotated view of northern edge of Crossroads Roadcut.   

Figure 5.20. Annotated view of the center of the Crossroads Roadcut.   
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Figure 5.21. Annotated view of southern edge of the Crossroads Roadcut.  

 

5.5 Interstate 65, Mile 40 Roadcut 

  

5.5.1 Lithofacies  

 

The I-65, Mile 40 Roadcut possesses six distinct stratigraphic units. The lithofacies 

(Figure 5.22) that constitute these layers are, in ascending stratigraphic order:  

 A. Skeletal Packstone: A dark gray (2.5Y 4/1) packstone unit. The unit is 

dominated by skeletal material with notable deposits of carbonate mud 

throughout. A large portion of skeletal material possesses recognizable fossils, 

mostly brachiopods and bryozoans.  

 B. Wackestone: A grayish-brown (2.5Y 5/2) wackestone unit. The unit is 

composed of mostly mud, with a few skeletal deposits. The skeletal material is 

mostly bryozoans. The lower part of the unit is muddier, and the upper part is 
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relatively coarse grained. A notable feature is the presence of a thin chert layer, 

roughly 0.4 feet to 0.6 feet (12 cm to 18 cm) thick in the middle of the unit.  

 C. Packstone: A dark grayish-brown (2.5Y 4/2) packstone unit. There is fracturing 

throughout the unit, with calcite veins in the fractures. A notable feature is muddy 

material in the center, roughly 0.33 feet to 0.4 feet (10 to 12 cm) thick, 

characterized by laminar bedding.  

 D. Skeletal Grainstone: A gray (2.5Y 6/1) grainstone unit. The unit is dominated 

by skeletal material in the form of skeletal fragments, with little to no 

recognizable fossils. There are few deposits of light gray (2.5YR 7/1) muddy 

material, but these are rare.  

 E: Mudstone: A dark-gray (2.5Y 4/1) mudstone unit. The unit is composed of 

almost entirely of dark mud. There is significant fracturing, with calcite veins 

filling fractures.  

 F. Grainstone: A grayish-brown (2.5Y 5/2) grainstone unit. The unit is dominated 

by coarse material, with thin layers of orange indicative of Fe-oxide with chert 

replacement. Coarse-grained material is present throughout, however, toward the 

top there are concentrated deposits of comparably coarse skeletal material.  
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5.5.2 Stratigraphy 

 

The stratigraphy of the I-65, Mile 40 Roadcut can be best described as a 

backstepping, retrogradational stacking pattern with some deviations from such a model 

in the lowest and highest units (Figure 5.23). Unit A is the lowest unit of the exposed the 

stratigraphy, measuring only one foot. Unit A transitions to unit B, measuring four feet in 

thickness.  Both units A and unit B are only found in the western edge of the roadcut 

(Figure 5.24). The next unit in the stratigraphy is unit C, measuring five feet in thickness 

and is only present in the center of the roadcut (Figure 5.25). Unit C transitions into units 

D, E, and F, with these units are found in both the center and eastern edge of the roadcut 

(Figures 5.25 and 5.26). The thickness of these units vary, with unit D measuring seven 

feet in the center of the roadcut and three feet in the eastern edge, unit E measuring four 

feet in the center and six feet in the eastern edge, and unit F measuring two feet in the 

center and three feet along the eastern edge.  
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Figure 5.23. Stratigraphic cross section of the I-65, Mile 40 Roadcut.  Dunham 

Classification as in Figure 5.2. 

Figure 5.24. Annotated view of western edge of I-65, Mile 40 Roadcut.  
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Figure 5.25. Annotated view of center of I-65, Mile 40 Roadcut.   

Figure 5.26. Annotated view of the eastern edge of the I-65, Mile 40 Roadcut.  
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5.6 I-65 Southwest Exit 48 Roadcut  

 

5.6.1 Lithofacies  

 

The Southwest Exit 48 Roadcut investigated consists of ten distinct stratigraphic 

units. The lithofacies (Figure 5.27) that constitute these layers are, in ascending 

stratigraphic order:  

 A. Dolomitic Mudstone: A light-gray (2.5Y 7/1) dolostone unit. Unit is mostly 

composed of light-gray dolomitic material, however, there is a significant 

presence of dark mud material. HCl acid test shows that the dark material is 

calcite.  

 B. Ooid Grainstone: A gray (2.5Y 5/1) grainstone unit. The unit is composed of 

almost exclusively ooids, with little other material in the unit. The only other 

notable feature is the presence of small (less than 0.3 meters or 1 foot) amplitude 

stylolites. 

 C. Skeletal-Ooid Grainstone: A dark-gray (2.5Y 4/1) grainstone unit. The unit is 

composed of mostly skeletal fragments, with sparse ooids throughout. 

 D. Mudstone: A light brownish-gray (2.5Y 6/2) mudstone unit. The unit is mostly 

composed of muddy material, with a few skeletal deposits. Skeletal material is 

made up of recognizable fossils in the form of brachiopods. There is significant 

fracturing in the unit.  

 E. Dolomitic Mudstone: A light-gray (2.5Y 7/2) dolostone unit. The unit is 

composed of almost entirely dolomitic material, with some thin, light orange 

layers most likely the result of Fe-oxide stained chert replacement.  
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 F: Mudstone: A dark grayish-brown (2.5Y 4/2) mudstone unit. The unit is mostly 

composed of mud, with a few skeletal grains. There are thin, light orange layers 

present, most likely the result of Fe-oxide stained chert replacement.  

 G: Packstone: A grayish-brown (2.5Y 5/2) packstone unit. The unit is mostly 

composed of skeletal fragments in layers, with thin layers of fine-grained material 

in between coarse-grained layers. Toward the upper part of the unit, thicker layers 

of larger fragments become more evident.  

 H: Skeletal-Ooid Grainstone: light gray (2.5Y 7/2) grainstone unit. The unit is 

composed of equal amounts of ooids and skeletal material. Skeletal material in the 

unit has a significant amount of identifiable fossils, mostly brachiopods, 

bryozoans, and crinoids.  

 I: Supratidal Wackestone: An olive-yellow (2.5Y 6/6) wackestone unit. The unit 

is mostly composed of mud with significant fossil content. Fossils include 

bryozoans and brachiopods. The unit contains fenestral porosity, informally 

known as “birdseye vugs”, typical of supratidal limestones.  

 J. Skeletal-Ooid Grainstone: A light-gray (2.5Y 7/2) grainstone unit. The unit is 

mostly composed of skeletal fragments with ooids present throughout.  
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5.6.2 Stratigraphy 

 

The stratigraphy of the Southwest Exit 48 Roadcut can be best described as 

alternating thick layers of fine-grained units and coarse-grained units (Figure 5.28). Units 

A and B are only present on the western edge of the roadcut (Figure 5.29), with both 

units measuring four feet in thickness. Units C through H are present throughout the 

roadcut, with varying thickness depending on the location. Unit C measures five feet on 

the western edge and center of the roadcut, and two feet on the eastern edge. Unit D 

measures five feet on the western edge and center, and four feet along the eastern edge. 

Unit E measures five feet on the western and eastern edges, and four feet in the center of 

the roadcut. Unit F measures two feet on the western and eastern edges, and three feet in 

the center. Unit G measures five feet on the western edge and four feet in the center and 

eastern edge of the roadcut. Unit H measures two feet on the western edge, five feet in 

the center, and six feet along the eastern edge. Unit I is only present in the center (Figure 

5.30) and eastern edge of the roadcut, measuring three feet and three and a half feet 

respectively. Unit J is only present on the eastern edge of the roadcut (Figure 5.31), and 

measures six and a half feet in thickness.  
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Figure 5.28. Stratigraphic cross section of the Southwest Exit 48 Roadcut. 

 

 
Figure 5.29. Annotated view of the western edge of Southwest Exit 48 Roadcut.   
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Figure 5.30. Annotated view of the center of Southwest Exit 48 Roadcut. 

 

Figure 5.31. Annotated view of the eastern edge of Southwest Exit 48 Roadcut. 
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5.7 I-65 Northeast Exit 48 Roadcut 

 

5.7.1 Lithofacies 

  

  The Northeast Exit 48 Roadcut investigated consists of five distinct stratigraphic 

units. The lithofacies that constitute these layers are, in ascending stratigraphic order 

(Figure 5.32):  

 A. Chert-Bearing Mudstone: A dark grayish-brown (2.5Y 4/2) mudstone unit. The 

unit is composed almost entirely of dark grayish-brown material, with small 

orange/brown deposits in the unit representative of chert replacement. There is 

fracturing in the unit, with calcite veins precipitating in the fractures.  

 B. Partially-Dolomitic Chert-Bearing Mudstone: A light-gray (2.5Y 7/1) 

mudstone unit. The majority of the unit is composed of light-gray material, 

however, there are layers of white material that HCl acid tests shows are at least 

partially dolomitic. Small orange/brown deposits are present that are 

representative of Fe-oxide stained chert deposits.  

 C. Chert-Bearing Wackestone: A light brownish-gray (2.5Y 6/2) wackestone unit. 

The unit is mainly composed of mud with sparse coarse material, with chert 

present throughout. There are crinoid-stem molds present that have a gray (2.5Y 

6/1) coloring.  

 D. Skeletal-Ooid Grainstone: A white (2.5Y 8/1) grainstone unit. The unit is 

composed of skeletal material and ooids in roughly equal proportions. Skeletal 

material is mostly fragments, but there are identifiable fossils, mostly 

brachiopods. 
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 E. Skeletal Packstone: A gray-brownish (2.5Y 5/2) packstone unit. The unit is 

composed mostly of skeletal material with sparse deposits of mud. The skeletal 

material is mostly fragmentary with the few identifiable fossils consisting of 

brachiopods.  
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  5.7.2 Stratigraphy 

  

The stratigraphy of the Northeast Exit 48 Roadcut (Figure 5.33) are described as a 

shoaling upward sequence. Unit A is presently exclusively along the western edge of the 

roadcut, measuring two and a half feet thick (Figure 5.34). Unit B occurs on the western 

edge and center of the roadcut (Figure 5.34 and 5.35), measuring seven feet on the 

western edge and six feet in the center. Unit C is present throughout the unit, measuring 

roughly eight feet on each section of the roadcut. Unit D occurs in the center and eastern 

edge of the exposure (Figures 5.35 and 5.36), measuring five feet on both sections where 

it occurs. Unit E is only found on the eastern edge of the roadcut, measuring four feet.  

Figure 5.33. Stratigraphic cross section of the Northeast Exit 48 Roadcut.  Dunham 

Classification as in Figure 5.2.  
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Figure 5.34. Annotated view of eastern edge of the Northeast Exit 48 Roadcut. 

 

 
Figure 5.35. Annotated view of center of Northeast Exit 48 Roadcut.  
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Figure 5.36. Annotated view of western edge of Northeast Exit 48 Roadcut.  
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6.0 DISCUSSION 

 

Based on the data compiled for this study, the general trends and characteristics of 

the Ste. Genevieve Limestone in western Kentucky become apparent, with variation 

exhibited via specific roadcut location as well as stratigraphic position. These trends and 

variations from established generalizations are discussed in detail in the following 

sections.  

6.1 Barren River Road, Mile 2 Roadcut 

 

The Mile 2 Roadcut overall has a coarsening upward stacking pattern, but the 

roadcut is characterized by alternating layers of coarse-grained and fine-grained units. In 

the stratigraphic sequence from unit A to unit D, the roadcut alternates from dolostone to 

grainstone to dolostone to packstone (Figure 5.2). This suggests that the depositional 

setting experienced drastic changes from relatively low-energy environments to high-

energy environments in a relatively short period of geologic time. This pattern persists for 

units E through F; however, the difference is that whereas unit E (and the correlating 

shale layer) represents a similar time period as do the other fine-grained units, unit F is a 

much thicker and a coarse-grained unit and may represent a much longer period of high-

energy deposition. With Unit F being characterized by oolitic deposits, such a deposit 

represents the peak in high-energy level in the stratigraphy of this roadcut.  

 A salient feature of this roadcut is that the deposition of the units resulted in the 

formation of a channel with “wings” near the edges of the roadcut (Figures 6.1 and 6.2). 

The roadcut is dominated by unit D in the center (due to channeling into older 

depositional units), with units B and C best exposed toward the edges of the roadcut. 
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Such depositional geometry produces a superficial synform-like pattern with younger 

units in the center and older ones on the edges. This suggests that the rocks in this roadcut 

are the result of deposition in a marine channel, with the channel incising into the pre-

existing stratigraphic units with sediments in turn, being deposited into the low spots of 

the scoured or incised strata.  

An alternative explanation for the “channel” deposits found in the Barren River 

Road, Mile 2 Roadcut can be found in a seminal paper on the sequence stratigraphy of 

the Mississippian age strata in the Illinois Basin. Nelson and others (2002) described how 

sequence boundaries in the Mississippian strata are typically categorized by incised 

valleys (with the valley fills characterized by coarse quartz sands) and paleosols. They 

state that “incised valleys can be confused with local tidal and fluvial channels”, raising 

the possibility that these “channel” deposits are evidence of a sequence boundary. 

However, these incised valleys as Nelson and others (2002) studied are typically 

classified as measuring in the tens of kilometers and contain paleosols. The Barren River 

Road, Mile 2 Roadcut is significantly smaller and possesses no evidence of paleosols; 

however, with my study focusing on reservoirs, fine-grained rocks were not the focus of 

this study and thus fine-grained paleosols could be present but not seen. Based on the 

evidence available, it can be suggested that the Barren River Road, Mile 2 Roadcut is 

characterized by “channel” deposits and not a sequence boundary.               

The only unit in the roadcut possessing hydrocarbon reservoir potential is unit B, 

with the skeletal grainstone acting as an ideal reservoir rock.  The muddy dolostone units 

overlying (unit C) and underlying (unit A) the potential reservoir unit (unit B) act as ideal 

confining layers or seals. Unit F is also a potential hydrocarbon reservoir, with the 
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underlying shale acting as a confining layer; however, with the overlaying layer eroded 

off or blasted off during road construction, it is not possible to discern regarding the 

viability of the unit’s potential as a hydrocarbon reservoir or aquifer.   

Figure 6.1. Annotated view of the south “wing” of the Barren River Road, Mile 2 

Roadcut.  View to the northwest. 

Figure 6.2. Annotated view of the north “wing” of the Barren River Road, Mile 2 

Roadcut. View to northwest.   
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6.2 Barren River Road, Belle Rive Circle Roadcut 

 

A distinct characteristic of the Belle Rive Circle Roadcut is a scour surface that 

separates Units A, B1, and B2 from the upper units. The scour surface is described as a 

wavy, continuous surface that is present throughout the roadcut. Along the scour surface 

in the northern edge of the roadcut there is a very thin, pale green (GLEY 2, 8/1) 

claystone. It must be noted that there is a point in the roadcut where the claystone layer 

encloses a lower part of unit C (Figure 6.3), which suggests that the claystone layer is the 

result of pressure dissolution along the scour or diastem/unconformity surface.  

Based on the characteristics of the scour surface, it is possible that the surface is 

an unconformity. However, this feature is not solely an erosional surface and 

characterization beyond a mere scour surface is supported by available data. There are 

also for example, indications that this surface or contact has been modified by pressure 

dissolution (i.e. mega stylolitization). Evidence for this is that the claystone layer’s 

orientation varies from horizontal to oblique to vertical (Figure 5.9). This shows that the 

original horizontality of the layer or surface was locally disturbed. Additionally, evidence 

presented by May and others (2007) shows calcite veinlets being terminated by this 

surface. Such mineralogic terminations are suggestive of a “fractured and solutioned 

surface” formed during exposure in the Mississippian and then in turn, deposition of 

marine units above this surface that lack such calcite veins in fractures. These 

observations are suggestive that these features (i.e. fractures) were present before the 

formation of the scour surface. Based on the extent of the scour surface and the presence 

of the clay layer, it is surmised that the surface acts as a confining layer in the roadcut 

exposure (Padmanabhan et al., 2015; Tada and Siever, 1989).The pressure-dissolution 
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modified scour surface covers the entire extent of the Belle Rive Circle Roadcut (Figures 

5.8, 5.10, and 5.11), with the claystone layer covering the entire extent.      

  
Figure 6.3. View of enclosed unit C in the Belle Rive Circle Roadcut. View is to the 

northwest. 

   Two distinct units in the Belle Rive Circle Roadcut are units B1 and B2. These 

units are located only in the northern part of the roadcut and occupy a similar 

stratigraphic position of the roadcut, suggesting that they are coeval localized units. Unit 

B1 is a partially-dolomitized wackestone unit and unit B2 is a skeletal grainstone unit. 

Unit B2 is of importance to this study because its location in the stratigraphy of the 

roadcut makes it a near textbook example of an ideal hydrocarbon reservoir unit, being 

enclosed by the dolomitic unit A (Figures 6.4 and 6.5).     
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Figure 6.4. Annotated view of unit B2 enclosed by unit A in east side of Belle Rive 

Roadcut. Jacob staff for scale is approximately five feet, view to the east side of the 

roadcut.   
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Figure 6.5. Annotated view of unit B2 enclosed by unit A in west side of the Belle Rive 

Circle Roadcut. Jacob staff for scale is approximately five feet. Unit B2 shown is 

correlative to unit B2 shown in Figure 6.4. Distance between the two roadcut exposures is 

approximately 75 feet.       

 

Another distinct unit in the Belle Rive Circle Roadcut is a brecciated limestone 

unit, unit E. The size of brecciated fragments in the unit range from less than a centimeter 

to two centimeters or more (cobble size), with the fragments being karstified or showing 

evidence of dissolution. Since the Belle Rive Circle Roadcut represents the upper part of 

the Ste. Genevieve Limestone, it is likely that this unit is correlative with the Bryantsville 

Breccia, named after a well exposed locality in Indiana (Hunter, 1993). With the 

brecciated limestone (Figure 5.11) being the result of exposure and weathering of a 
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previous carbonate unit, it is likely that this rock was formed during a regressive cycle 

and thus is indicative of a Falling Stage System Tract (FSST).   

  There are characteristics of the Belle Rive Circle Roadcut that reflect deposition 

in an HST environment. The stacking pattern of units C and D is suggestive of carbonate 

depositional processes associated with an HST and are characterized by high-energy, 

coarse-grained units, with ooid grainstones being especially indicative of an HST (Tucker 

et al., 1993). Units C through E constitute roughly one-half of the stratigraphy in the 

roadcut, with these units measuring 25 feet to 32 feet in thickness (Figure 5.8). All of 

these units consist of coarse-grained lithofacies (skeletal grainstones and skeletal-ooid 

grainstone), indicating that they were deposited in a relatively high-energy, shallow-

marine setting consist with an HST. 

 The stacking pattern for units F through I represents a stratigraphic sequence 

distinct from the rest of the roadcut (Figure 5.7). From the shale layer underlying unit F 

to unit G, there is approximately 12 feet of fine-grained material indicative of a low 

energy, shallow-marine setting. In unit H, the depositional setting changes to a shallow, 

high-energy setting similar to that of units C through. Finally, within unit I, the roadcut 

exposes a setting similar to units F through G, indicating a relatively dynamic setting in 

comparison to the lower stratigraphic units (units A and B).   

    Overall the units in the Belle Rive Circle Roadcut that have the greatest 

hydrocarbon reservoir potential are units B2, C, D, E, and H. Unit B2 is enclosed by the 

dolomitic unit A, representing an ideal reservoir. The skeletal unit C, oolitic unit D, and 

brecciated unit E are enclosed by the shale layer above the units and the stylolitic scour 

surface below. The oolitic unit H is enclosed by wackestone units G and I.      
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6.3 Hwy 185, Eversole Road Roadcut  

 

The Eversole Road Roadcut is an approximately 27-feet thick exposure, with the 

roadcut being one of the larger exposures used in this study. The roadcut shares certain 

characteristics with the Belle Rive Circle Roadcut (Figures 5.7 and 5.13).    

The Eversole Road Roadcut consist of three differentiable units: 1) alternating 

skeletal-ooid grainstone and dolostone from units A to D, 2) a backstepping, 

retrogradational pattern from units D to G, and 3) a static, coarse-grained sequence from 

units G to I. Each of these stacking patterns represents three distinct phases in the 

depositional environment exposure at this roadcut (Figure 5.13). The alternating ooid 

skeletal grainstone and dolostone layers of the first stacking pattern represents a dynamic 

depositional setting, alternating between shallow, high-energy shallow-marine settings 

and relatively more protected, low energy, static marine settings. The backstepping 

setting of the second stacking pattern is indicative of a shoaling upward, with a 

shallowing of the setting and/or a transition into a relatively high-energy environment. 

The third stacking pattern, characterized by substantial layers of coarse-grained material, 

is suggestive of a high-energy, shallow-marine setting, most likely a shoal environment. 

The unit with the most ideal hydrocarbon reservoir potential is the skeletal-ooid 

limestone, unit C, with dolostone units B and D acting as confining layers around the 

grainy reservoir rock.   

One of the most distinctive units found at Eversole Road is the brecciated 

limestone represented by unit I. Unit I is the stratigraphically highest in the roadcut 

(Figure 5.13) and it is at the stratigraphic level correlative to the upper part of the Ste. 

Genevieve Limestone (Figure 4.10). It is likely that unit I can be correlated to unit E from 
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the Belle Rive Circle Roadcut and thus, unit I is a local stratigraphic equivalent of the 

Bryantsville Breccia.  

Similar to the depositional characteristic found in the Mile Marker 2 Barren River 

Road Roadcut, there is indication of “channel” deposits in the Eversole Road Roadcut. In 

the southwestern edge of the roadcut (Figure 6.6), there is portion of unit 3C that exhibits 

a synform-like channel form but not to the extent as is observable in the Mile Marker 2 

Barren River Road Roadcut. With the increase in elevation that occurs between the 

southwestern edge and northeastern edge of the cut, it is possible that part of the channel 

is covered. Similar to the Mile Marker 2 Roadcut, the extent of this channel body is 

limited and thus is most likely the result of channelization and not a sequence boundary.  

 
Figure 6.6. Annotated view of channel “wing” in the Eversole Road Roadcut. View is to 

the northwest. 

 

The third stacking pattern of the Eversole Road (thick units of coarse-grained 

material) is very similar to units C, D, and E stacking pattern present in the Belle Rive 
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Circle Roadcut. The Belle Rive Circle vertical stacking pattern consists of a skeletal 

grainstone, skeletal-ooid grainstone, and brecciated limestone in ascending stratigraphic 

order. The third Eversole Road stacking pattern exhibits the same pattern in similar units’ 

thickness as the Belle Rive Circle section, suggesting that these units can be correlated 

with each other (Figures 5.7 and 5.13). In both cases, the staking patterns represent a 

profile that is typical of deposition consistent with an HST. 

6.4 Hwy 185, Crossroads Roadcut  

 

 The Crossroads Roadcut is the shortest exposure analyzed for this study, 

measuring only 14 feet at its thickest and seven feet at its thinnest. A notable feature of 

this roadcut is that the northern and center stratigraphic columns are positioned much 

lower in the Ste. Genevieve Limestone in comparison to the southern stratigraphic 

column which is much higher in the unit, with there being about a 70-feet difference in 

elevation from the base of the units (Figure 5.18).   

  The Crossroads Roadcut is representative of an overall backstepping, 

retrogradational pattern series of facies, however, there are some minor deviations that 

must be noted. From units A to C there is a typical retrogradation stacking pattern, 

transitioning from mudstone (unit A) to wackestone (unit B) and finally packstone (unit 

C), indicative of a shoaling upward depositional setting. However, unit D, a wackestone 

unit, exhibits a break in this pattern, representative of a change to a low-energy marine 

setting. The transition to unit E shows a transition back to a shallow, high-energy 

environment represented by a skeletal-ooid grainstone. Units F and G in turn, reflect a 

change back to a shoaling-upward setting.  
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6.5 Interstate 65, Mile 40 Roadcut  

 

 The Mile 40 Roadcut is a medium-sized roadcut for this study, ranging from 12 

feet to 18 feet in height. The analysis of the stacking patterns of the lithofacies indicates 

the depositional environment of the roadcut and how it changed over time. This cut is 

especially useful in my field investigation as the exposure is one of the few 

representatives of the lower stratigraphic intervals of the Ste. Genevieve Limestone 

(Figure 4.10).    

 Unit A represents the depositional setting of the roadcut initially in a shallow, 

high-energy environment indicated by the coarse-grained material. The transition from 

unit A to unit B represents a depositional setting with increasing water depth and thus a 

decrease in energy. Study of the sequence from units B through D suggests a shoaling 

upward setting, transitioning from a relatively low-energy, static marine setting to a high-

energy environment. The transition from unit D to unit E reflects a similar change to that 

of unit A to unit B, albeit to a greater degree due to the transition from grainstone to 

mudstone (in units D and E), relative to the packstone to wackestone lithologic change 

represented by units A and B. The transition from unit E to unit F represents a deep, low-

energy environment to a much shallower, high-energy environment.  

 A characteristic that differentiates the Interstate 65 Mile 40 Roadcut from the rest 

of the roadcuts studied is the lack of oolitic limestone (Figure 5.23). Most of the other 

roadcuts are located in the upper-middle to upper stratigraphic intervals of the Ste. 

Genevieve Limestone (Figure 4.10), with oolitic limestone units and especially skeletal-

ooid limestone being present in the other roadcuts. This suggests that oolitic units are 

more prevalent in the middle/upper Ste. Genevieve Limestone as opposed to the lower 
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portion, which is consistent with the literature on the Ste. Genevieve Limestone (Zuppan, 

1989; Cooper, 2004).   

6.6 I-65 Southwest Exit 48 Roadcut  

 

 The I-65 Southwest Exit 48 Roadcut is one of the larger roadcuts that were used 

in this study, measuring 33 feet at the roadcut’s thickest and 26 feet at its thinnest (Figure 

5.28). The I-65 Southwest and Northeast Exit 48 roadcuts are important in this study due 

to the great distance that separates them from the rest of the roadcuts and thus indicate the 

regional differences between the roadcuts.  

Unit A represents the lowest unit exposed in the roadcut, with the unit 

representing deposition within a relatively low-energy environment. The transition into 

units B and C shows the depositional setting being a much shallower, high-energy shoal 

setting. Units D, E, and F shows the roadcut’s depositional setting reverting back to an 

environment similar to that of unit A but with the substantial increase in the units’ 

thickness, possibly reflecting a depositional setting that was maintained for a much larger 

period of time. The transition into units G through J suggests the depositional setting 

changing back into a shallow, high-energy environment. The units that are the most ideal 

hydrocarbon reservoirs are B and C, with A and D functioning as confining layers or 

seals.   

The Southwest Exit 48 Roadcut is mainly dominated by coarse-grained units, with 

skeletal-ooid limestones making up the majority (Figure 5.28). This suggests that the 

depositional environment associated with rocks at this roadcut was mainly a shoal, 
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indicative of an HST. The thick, fine-grained stratigraphy represented by units D through 

F show a substantial deviation from this trend. 

 

6.7 I-65 Northeast Exit 48 Roadcut 

 

 The I-65 Northeast Exit 48 Roadcut is a roadcut measuring 19 feet at its thickest 

and 17 feet at its thinnest (Figure 5.33). Although the I-65 Northeast Exit 48 Roadcut is 

very close to the I-65 Southwest Exit 48 roadcut, both cuts each have a distinct set of 

lithofacies that and thus, are treated as entirely separate.      

The I-65 Northeast Exit 48 Roadcut is a shoaling upward sequence and thus the 

roadcut’s depositional setting is indicative of this entire sequence. Units A and B show 

that the initial environment is a relatively low-energy setting due to units consisting 

almost entirely of mud. This depositional setting was maintained for a relatively long 

time due to the thickness of the units (assuming relatively constant accommodation and 

sedimentation rates for all units). Unit C shows the depositional setting somewhat 

shallowing and/or increasing in energy. Units D and E shows the roadcut’s depositional 

setting transitioning into a shoal environment, indicated by the coarseness of the units and 

the presence of ooids in unit D. 

In comparison to the I-65 Southwest Exit 48 Roadcut (Figures 5.28 and 5.29), the 

study of the I-65 Northeast Exit 48 Roadcut (Figures 5.33 and 5.34) exhibit key 

differences. The Southwest Exit 48 Roadcut consists of a much greater variety of 

lithofacies contained within a thick exposure. Although the two roadcuts are in close 

proximity, they consist of two different sets of lithofacies, with the Northeast Exit 48 

Roadcut possessing a shoaling upward pattern and the Southwestern Exit 48 Roadcut is 
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represented by a more dynamic depositional environment. This is likely the result of the 

difference in elevation and facies transition of the units.    

6.8 Lithofacies Variation 

 The roadcuts included in this study of the Ste. Genevieve Limestone were found 

to be composed of several different lithofacies individually. Based on the fieldwork 

conducted for this study, it was discovered that there are a total of 53 distinct lithofacies 

in the seven roadcuts studied. A breakdown of the classifications of the lithofacies are 

presented based on these data (Table 5).   

Lithofacies 

Classification 

 

Mudstone 1A, 1C, 1E, 2A, 2F, 3B, 3D, 4A, 5E, 6A, 6D, 6E, 6F, 7A, 7B  

Wackestone  2B1, 2G, 2I, 3E, 4B, 4D, 4F, 5B, 6I, 7C  

Packstone 1D, 3F, 4C, 4G, 5A, 5C, 6G, 7E  

Grainstone  1B, 1F, 2B2, 2C, 2D, 2H, 3A, 3C, 3G, 3H, 4E, 5D, 5F, 6B, 

6C, 6H, 6J, 7D  

Brecciated limestone 2E, 3I 

Table 5. Table of lithofacies present in roadcuts subdivided based on their respective 

Dunham Classifications. Brecciated limestone is not a Dunham Classification moniker 

but is included for completion of observed lithologic variety. Blue units are 

representative of dolomitic lithofacies and Bolded units are representative of oolitic 

units.    

 

 Based on this subdivision of the lithofacies classification, the general trends of the 

lithofacies are reportable. Mudstones make up fourteen of the lithofacies present in the 

roadcuts, constituting roughly 28% of the total number of lithofacies. Ten out of the 

fourteen mudstone units are dolomitic, or approximately 73% of the mudstone present, 

meaning that dolomitic units make up the vast majority of mudstone lithofacies 

encountered.  
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 Wackestones make up eleven of the lithofacies present in the roadcuts, 

constituting about 19% of the total number of lithofacies. Three out of the eleven 

wackestone units present are dolomitic, making up only 20% of the total wackestone 

units, with non-dolomitic units comprising the vast majority of wackestone units.  

 Packstone units represent eight of the lithofacies present in the roadcuts, 

constituting roughly 15% of the total number of lithofacies. Packstone units in the 

roadcuts have no distinguishing characteristics such as oolitic deposits and dolomitic 

replacement.  

 Grainstone units constitute eighteen of the lithofacies present in the roadcuts, 

constituting roughly 34% of the total number of the lithofacies. Twelve out of the 

eighteen grainstone units are oolitic grainstones, making up about 67% of the grainstone 

units, and this translates into oolitic grainstones constituting the vast majority of 

grainstone units.   

 Brecciated limestone units contribute to only two of the lithofacies present in the 

roadcuts, constituting roughly 4% of the total number of the lithofacies. The two 

brecciated limestone units occupy similar stratigraphic positions, with the units likely 

being the same unit.   

 Key conclusions on the lithofacies in the roadcuts can be made based on these 

general trends of the lithofacies discussed above. These conclusions include: 1) The 

majority of lithofacies present are grainstones, with most of these being skeletal-ooid 

grainstones, 2) The second most prominent lithofacies are mudstones, with the vast 

majority of these being dolomitic (i.e. dolomitized) mudstones, 3) Wackestone units are 
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the third most abundant lithofacies, with only a small minority of these being dolomitic, 

4) Packstones are the fourth most abundant of the lithofacies, with the packstones present 

having no distinguishing secondary characteristics (i.e. dolomitic replacement and 

diagenetic features) and 5) Brecciated limestone units are the least abundant lithofacies, 

with the two units encountered in the field most likely being the same stratigraphic unit.  

6.9 Stacking Patterns and Sequence Stratigraphy  

Based on the data compiled from the results of this study, stacking patterns and 

sequence stratigraphic characteristics of the roadcuts studied become apparent. 

Lithofacies of the roadcuts represent three stacking patterns (with minor variations): 1) 

static, thick coarse-grained intervals, 2) backstepping, shoal-building patterns, and 3) 

alternating coarse-grained and fine-grained units.  

The static, coarse-grained intervals range in thickness from as little as 10 feet to 

approximately 22 feet, with lithofacies being dominated by grainstones and packstones. 

These coarse-grained intervals typically have abundant ooids, with the oolitic material 

usually making up at least one-half of the lithofacies in the interval. This interval, with 

the presence of oolitic shoals is likely a representation of an HST. Nelson and others 

(2002) state that the HST is the most common systems tract in the Ste. Genevieve 

Limestone, making up the bulk of most sequences.  

The backstepping, shoal-building pattern primarily consists of stacking of 

progressively coarsening units, typically starting with mudstones and wackestones, then 

transitioning upward into packstones and grainstones. Within these intervals, they 

precede a static, coarse interval, suggesting that the shoal-building intervals were 
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deposited in a similar time frame and environment as were the coarse intervals. The 

presence of mudstones and wackestones suggest that the intervals were initially deposited 

in a comparably deeper water or low-energy environment. These intervals overall likely 

encompass the late part of a TST and the beginning of an HST. 

Alternating fine-grained and coarse-grained intervals are the most important in 

regard to hydrocarbon reservoir potential. Potential reservoir intervals are typically 

characterized by a coarse-grained unit, usually an ooid or skeletal-ooid grainstone, with 

brecciated and solely skeletal units also being possible reservoirs. Confining layers 

consist of fine-grained units, usually mudstones (both calcitic and dolomitic) but in some 

cases wackestones. The coarse-grained units act as ideal reservoirs and the fine-grained 

units act as ideal confining layers for potential hydrocarbon reservoirs. 

Based on the data available, the roadcuts studied are dominated by HST deposits. 

Nelson and others (2002) stated that the Ste. Genevieve Limestone is made up of two 

sequences, with each measuring roughly 50 m each. In the case of both sequences, the 

HST and TST are the only systems tracts that are adequately preserved in the geological 

record, with HST deposits being substantially more common. The HST is typically 

characterized by limestone units and shoal deposits whereas the TST is characterized by 

sandstone and shale deposits with thin limestone intervals. The lack of sandstone deposits 

and the few shale deposits in the stratigraphy studied suggest HST deposits dominate 

roadcuts.            
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7.0 CONCLUSIONS 

The Ste. Genevieve Limestone in western Kentucky has several characteristics that 

are best represented by the roadcuts that are found throughout the area. These 

characteristics include:  

 Lithofacies tend to represent three stacking patterns (with minor variations): 1) 

alternating coarse-grained units and fine-grained units (characterized by 

hydrocarbon reservoir potential and confining layers) (Figures 5.2, 5.13, and 

5.28), 2) backstepping, retrogradational, shoal-building pattern (indicative of the 

beginning of HSTs and the late portion of TSTs) (Figures 5.13, 5.18, 5.23, and 

5.33), and 3) static, thick coarse-grained intervals (indicative of HSTs) (Figures 

5.7, 5.13, 5.28 in upper and lower parts).  

 The stratigraphy is dominated by limestone units, with other common lithofacies 

consisting of dolomitic units, with a few intercalated shales, and little to no coarse 

siliciclastic units, suggesting a shallow-marine environment (Table 5).   

 Dolomitic units in the stratigraphy are dominated by fine-grained rocks 

(mudstones), with a few comparably coarser (wackestone) units consisting of 

partially dolomitized intervals, suggesting dolomitic replacement (Table 5).  

 Coarse-grained units in the stratigraphy are dominated by skeletal grainstones, 

with skeletal-ooid grainstone intervals making up more than half of these units, 

suggesting extensive shoal build ups (Table 5).   

 Fine-grained material tends to be dominated by mudstones, primarily dolomitic, 

with wackestones (primary calcitic) making up the remainder (Table 5).   
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 Ooid units tend to be present more in the upper most part of the Ste. Genevieve 

Limestone than in the lowermost stratigraphic intervals, suggesting that shoal 

development is more prominent in the upper stratigraphy (Figures 2.8 and 5.23).    

 The units present in the stratigraphy with the greatest hydrocarbon reservoir 

potential tend to be skeletal-ooid grainstones (Figures 5.1F, 5.6D, 5.6H, 5.12A, 

5.12C, 5.17E, 5.27B,  5.27H, 5.27J, and 5.32D), with skeletal grainstones 

(Figures 5.1B, 5.6B2, 5.6C, 5.12G, and 5.22D) and brecciated limestones (Figures 

5.6E and 5.12I)   also having potential.   

 The units that act as confining layers to reservoir units are fine-grained dolomitic 

units (Figures 5.1A, 5.1C, 5.6A, 5.12B, 5.12D, and 5.27A), with other confining 

layers including shales (Figures 5.2, 5.3, 5.7 and 5.8) and non-dolomitic fine-

grained rocks (Figure 5.6G, 5.6B1, 5.6I, and5.27D). 

 The pressure-dissolution modified scour surface (megastylolite) and its 

corresponding clay layer act as a confining layer in the Belle Rive Circle Roadcut, 

and such surfaces may be important as reservoir partitions throughout the Illinois 

Basin (Figures 5.8, 5.9, 5.10, 5.11, and 6.3). 

 The depositional environments for the roadcuts are either a shoal environment, 

dominated by coarse-grained limestone (Figures 5.7, 5.13, 5.28), or a shoaling 

upward environment, characterized by fine-grained material transitioning into 

coarse-grained material (Figures 5.13, 5.18, 5.23, and 5.33).  

 The presence of thick sections of coarse-grained units in the stratigraphy of 

roadcuts suggests that they were deposited in an HST (Figures 5.7, 5.13, and 



107 
 

5.28), with the exception of brecciated limestone intervals (representative of the 

Bryantsville Breccia) (Figures 5.7 and 5.13) which are indicative of an FSST.  

 Study of the roadcuts indicates that the units were deposited in tidally influenced 

depositional environment with siliciclastic intervals not becoming prominent until 

the upper part of the unit (Figures 2.8, 5.2, and 5.7), similar to what is described 

in Smith and Read (1999). 

 

7.1 Study Limitations and Future Research 

   

 Information gained from this study overall is valuable for the continuing 

investigation of the Ste. Genevieve Limestone; however, it must be noted that there are 

limitations to this study. The main limitation of this study is the relatively small number 

of roadcuts used for data collection and interpretation. Seven roadcuts from Warren and 

Barren counties were analyzed to characterize the Ste. Genevieve Limestone. While this 

does create an adequate localized profile for the Ste. Genevieve Limestone, if additional 

roadcuts were included from different areas as well as cores, this would permit a more 

detailed study and also would also enhance discovering characteristics that are unique to 

a specific locality.  

 A limitation that is intrinsic to the nature of my study is that it focuses almost 

exclusively on roadcuts. Roadcuts are an important avenue for analysis of lithology and 

stratigraphy, but they are limited in the amount of the stratigraphy that is exposed. Future 

studies of the Ste. Genevieve Limestone in western Kentucky should consider data from 

different sources in order to better characterize the unit on a more regional basis. An 

example of this would be to study subsurface data from geophysical well logs from oil 
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and gas wells in the area (e.g., Figure 7.1). When a well is drilled, geophysical well logs 

and drillers sample logs are generated for a given well. A well log is a detailed diagram 

or vertically plotted graphic of the units that constitute the subsurface geology 

encountered by drilling and the characteristics of the units. Well logs cover substantially 

more of the stratigraphy than do roadcuts. Such logs also have associated measuring 

parameters such as gamma ray (radiation) and neutron porosity, density porosity, and 

resistivity that all provide a greater insight into the hydrocarbon potential of units.  

Figure 7.1. Example of a typical well log. The measurement in the middle is in feet (each 

rectangle represents two feet). Well number 3, permit number 48026, and KGS record 

number 17395. Accessed from the KGS (June 2019).   

 

The downside of using drillers’ sampling logs or verbal description well logs is 

that they may not provide sufficiently detailed descriptions of the lithology. However, 
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when an exploration or development well is drilled, there may be a core available for 

study such as which are available from the KGS Core Library in Lexington. A core is a 

part of the subsurface that presents an avenue for conducting a detailed analysis of 

subsurface lithofacies tantamount to analysis as can be conducted in roadcuts or other 

surface exposures.  

Another example of different data sources is petrofacies analyses using 

petrographic thin sections. An example of this is a study conducted to document more 

details of facies relationships not possible with just surface study and observation, 

description and interpretation of rock slabs. 

 A future study of the Ste. Genevieve Limestone in western Kentucky could take 

well-log data from wells and cores in the area and correlate them to create profiles. Well 

logs from wells are usually open for academic research from sources such as the KGS 

and the core samples can be requested if available from core libraries. If one was to take ¨ 

few tens of wells and correlate them this would allow for a more detailed analysis of the 

hydrocarbon potential of units in the Ste. Genevieve that could be tied or correlated to my 

presented roadcut study. It would also form the basis for a more complete 

characterization of the sequence stratigraphy of the unit and analyze a much wider scope 

of the Ste. Genevieve Limestone.                   
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