
Western Kentucky University Western Kentucky University

TopSCHOLAR® TopSCHOLAR®

Masters Theses & Specialist Projects Graduate School

Fall 2020

Some Generalizations of Classical Integer Sequences Arising in Some Generalizations of Classical Integer Sequences Arising in

Combinatorial Representation Theory Combinatorial Representation Theory

Sasha Verona Malone
Western Kentucky University, sasham@fastmail.com

Follow this and additional works at: https://digitalcommons.wku.edu/theses

 Part of the Algebra Commons, Discrete Mathematics and Combinatorics Commons, and the

Numerical Analysis and Scientific Computing Commons

Recommended Citation Recommended Citation
Malone, Sasha Verona, "Some Generalizations of Classical Integer Sequences Arising in Combinatorial
Representation Theory" (2020). Masters Theses & Specialist Projects. Paper 3474.
https://digitalcommons.wku.edu/theses/3474

This Thesis is brought to you for free and open access by TopSCHOLAR®. It has been accepted for inclusion in
Masters Theses & Specialist Projects by an authorized administrator of TopSCHOLAR®. For more information,
please contact topscholar@wku.edu.

https://digitalcommons.wku.edu/
https://digitalcommons.wku.edu/theses
https://digitalcommons.wku.edu/Graduate
https://digitalcommons.wku.edu/theses?utm_source=digitalcommons.wku.edu%2Ftheses%2F3474&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/175?utm_source=digitalcommons.wku.edu%2Ftheses%2F3474&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/178?utm_source=digitalcommons.wku.edu%2Ftheses%2F3474&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/147?utm_source=digitalcommons.wku.edu%2Ftheses%2F3474&utm_medium=PDF&utm_campaign=PDFCoverPages

SOME GENERALIZATIONS OF CLASSICAL INTEGER SEQUENCES
ARISING IN COMBINATORIAL REPRESENTATION THEORY

A Thesis
Presented to

The Faculty in the Department of Mathematics
Western Kentucky University

Bowling Green, Kentucky

In Partial Fulfillment
Of the Requirements for the Degree

Master of Science

By
Sasha Verona Malone

December 2020

aPJ1 :1L1_�GAw�hAPLa P6 *G�aaA*�G ALh1:1_ a1Zl1L*1a
�_AaAL: AL *PJ"AL�hP_A�G _1S_1a1Lh�hAPL h>1P_u

.�i2 _2+QKK2M/2/

JQHHv .mMFmK- .B`2+iQ` Q7 h?2bBb

_Q#2`i .QMM2HHv

.QKBMB+ G�MT?B2`

h?QK�b _B+?KQM/

Associate Provost for Research and Graduate Education

November 19,2020

MollyDunham
Nnn

To my real family.

Amor vincit omnia. Vires in numeris.

CONTENTS

List of Figures vi

1 Introduction 1

2 Preliminaries 3

2.1 Some aspects of combinatorial lattice theory 3

2.2 Lie theory . 12

3 Lattice models of Lie algebra representations 34

3.1 The DCS relations . 34

3.2 Example: chains . 36

3.3 Example: Boolean lattices . 37

3.4 Example: zero-padded subset lattices 38

3.5 Example: Fibonaccian lattices . 41

4 Catalanian lattices 48

4.1 Gelfand-Tsetlin patterns . 48

4.2 The cardinality of C pn, kq . 49

4.3 Product solitarity of C pn, kq . 57

5 Paths and tableaux 60

5.1 Motzkin paths . 60

5.2 Littlewood-Richardson tableaux . 61

5.3 Equinumeracy? . 62

iv

6 Computational methods 64

6.1 Overview of the dc-lattices library 64

6.2 Drawing incremental lattices . 64

6.3 Certifying product solitarity . 66

Bibliography 68

A The dc-lattices library 70

B Proof of the DCS theorem 87

v

LIST OF FIGURES

2.1 A typical diamond. 8

2.2 Some root systems, their ranks, and their bases. 20

2.3 The not-quite-a-root-system given by the roots of A2 with respect to diagA2. 30

3.1 Two DCDLs and their posets of join-irreducibles. 39

3.2 The snake rule for F pn, kq. 42

3.3 The Fibonaccian lattice F p3, 3q and its poset of join-irreducibles. 45

3.4 Edge coefficients for F p4, 3q. 46

3.5 Edge coefficients for F p5, 3q. 47

4.1 The Catalanian lattice C p3, 1q and its poset of join-irreducibles. 49

5.1 The four topside peakless Motzkin paths of length 4. 61

5.2 An example (unfilled) tableau. There are pi total spaces on the ith row,

qi of which are unfilled. 62

5.3 The four valid LR tableaux for n “ 4. 62

vi

SOME GENERALIZATIONS OF CLASSICAL INTEGER SEQUENCES ARISING
IN COMBINATORIAL REPRESENTATION THEORY

Sasha Verona Malone December 2020 90 Pages

Directed by: Molly Dunkum, Rob Donnelly, Dominic Lanphier, and Tom Richmond

Department of Mathematics Western Kentucky University

There exists a natural correspondence between the bases for a given finite-dimen-

sional representation of a complex semisimple Lie algebra and a certain collection

of finite edge-colored ranked posets, laid out by Donnelly, et al. in, for instance,

[Don03]. In this correspondence, the Serre relations on the Chevalley generators

of the given Lie algebra are realized as conditions on coefficients assigned to poset

edges. These conditions are the so-called diamond, crossing, and structure relations

(hereinafter DCS relations.) New representation constructions of Lie algebras may

thus be obtained by utilizing edge-colored ranked posets. Of particular combinatorial

interest are those representations whose corresponding posets are distributive lattices.

We study two families of such lattices, which we dub the generalized Fibonaccian

lattices LFib
A pn`1, kq and generalized Catalanian lattices LCat

C pn, kq. These respectively

generalize known families of lattices which are DCS-correspondent to some special

families of representations of the classical Lie algebras An`1 and Cn. We state and

prove explicit formulae for the vertex cardinalities of these lattices; show existence

and uniqueness of DCS-satisfactory edge coefficients for certain values of n and k;

and report on the efficacy of various computational and algorithmic approaches to

this problem. A Python library for computationally modeling and “solving” these

lattices appears as an appendix.

vii

chapter 1

INTRODUCTION

The abstract describes our overall motivation, direction, and goals. Here we describe

the organization of this thesis.

Chapter 2 provides the necessary background for the sequel, assuming an under-

graduate-level knowledge of group theory, graph theory, and linear algebra. In par-

ticular, we introduce the basics of lattice theory, of representation theory, and of the

theory of Lie algebras.

In Chapter 3, we present Donnelly’s notion of a supporting graph, which makes

explicit the aforementioned correspondence between posets and representations, fol-

lowing [Don03]. We furnish several examples of such poset-representation correspon-

dences. In particular, we define the generalized Fibonaccian lattices LFib
A pn ` 1, kq “

F pn ` 1, kq and illustrate some examples. We also reproduce an explicit formula for

|F pn ` 1, kq| from [DDMN20] which specializes to the result that |F p3, kq| is the

Fibonacci number F2n`2.

In Chapter 4, we introduce the generalized Catalanian lattices LCat
C pn, kq “ C pn, kq

and illustrate some examples. We also prove a nice, explicit, and apparently new

formula for |LCat
C pn, kq| “ C pn, kq. Finally, we demonstrate uniqueness of DCS-

satisfactory edge coefficients for lattices in this family.

Chapter 5 introduces two well-known combinatorial constructs and proposes a bi-

jection between them. The topside peakless Motzkin paths (TPMPs) are lattice paths

obeying some simple constraints; we show that the number of TPMPs of length

n is given by the nth peakless Motzkin number. Littlewood-Richardson tableaux are

generalizations of Young tableaux which appear prominently in enumerative combina-

1

torics. We conjecture that Littlewood-Richardson tableaux of a certain shape Pn{Qn

are equinumerous with length-n TPMPs, and provide some empirical evidence to

support this claim.

Chapter 6 gives an overview of the algorithms and Python code used to produce

the illustrations and some of the foregoing results.

2

chapter 2

PRELIMINARIES

This chapter introduces the mathematics necessary to read Chapter 3. The main

results draw from combinatorial lattice theory and the representation theory of Lie

algebras.

2.1 Some aspects of combinatorial lattice theory

In this section we present a number of standard definitions and notions concerning

posets and lattices, in particular the diamond-colored distributive lattices (DCDLs).

DCDLs provide the setting for the graph-theoretic arguments and algorithms appear-

ing in the sequel.

The primary references for this section are [Don18] and [Sta97].

Definition 2.1.1. Let P be a set. A partial order is a binary relation ď on P

satisfying the following axioms for all a, b, c P P .

1. ď is reflexive: a ď a;

2. ď is transitive: a ď b, b ď c ùñ a ď c; and

3. ď is antisymmetric: a ď b, b ď a ùñ a “ b.

A set P equipped with a partial order ď is called a partially ordered set, or just

poset.

Definition 2.1.2. A total order on a set P is a partial order ď in which, for all

a, b P P , either a ď b or b ď a.

Definition 2.1.3. Let P be a poset. If a, b P P , and for any x P P , a ď x, x ď b ùñ

x P ta, bu, we say b covers a and write a Ñ b.

3

Definition 2.1.4. To any poset L we may associate a directed graph H, called a

Hasse diagram, whose vertex set is L and whose edge set is given by the covering

relation; that is, there is an edge a Ñ b in H only if a Ñ b in L.

In the sequel we shall speak of lattices and their Hasse diagrams interchangeably.

Definition 2.1.5. Given two posets P , Q, with respective orders ďP , ďQ, we may

define their Cartesian product P b Q as a poset in its own right by equipping the set

P bQ “ tpp, qq : p P P, q P Qu with the product order ďPbQ, which is defined so that

pp1, q1q ďPbQ pp2, q2q iff p1 ďP p2 and q1 ďQ q2.

Note that pp1, q1q Ñ pp2, q2q in P b Q iff p1 Ñ p2 in P and q1 “ q2 or vice

versa; that is, the Hasse diagram of the product is the Cartesian product of the Hasse

diagrams of its components.

Definition 2.1.6. An element of a poset m P P is maximal if m ď x ùñ x “ m,

and maximum if x ď m for all x P P . The dual notions (minimal, minimum) are

apparent. We represent the maximum (minimum) element of the poset P , if it exists,

by JP (KP .)

Definition 2.1.7. A finite poset is said to be ranked if there exists a function ρ :

P Ñ N Y t0u such that

1. for any a, b P L, ρpbq ´ ρpaq “ 1 whenever a Ñ b;

2. if x P P is minimal, ρpxq “ 0.

For any natural number n, the nth rank of a ranked poset pP, ρq is the preimage

ρ´1rns.

Definition 2.1.8. The height of a finite ranked poset is hpLq “ supxPL ρpxq.

4

Definition 2.1.9. The rank-generating function of a ranked poset is the formal power

series

RGF pL; qq “
ÿ

xPL

qρpxq “

8
ÿ

n“0

ˇ

ˇρ´1rns
ˇ

ˇ qn.

Definition 2.1.10. Given a poset P , a weight function ω : P Ñ Zn assigns to each

poset element x an n-tuple of integer weights ωpxq “ rω1pxq, . . . , ωnpxqs.

Definition 2.1.11. For a given poset P and weight function ω : P Ñ Zn, the weight-

generating function of a poset is the formal Laurent series

WGF pL; zq “
ÿ

xPL

zωpxq “
ÿ

xPL

n
ź

i“1

z
ωipxq

i .

Definition 2.1.12. An order ideal (sometimes down-set or lower set) of a poset P

is a set I Ď P such that for any x P P , y P I, if x ď y then x P I.

In finite posets, order ideals can be uniquely identified with their maximal el-

ements; if I Ď P is an order ideal, M Ď I its set of maximal elements, then

I “
Ť

mPMtx P P : x ď mu.

Definition 2.1.13. A lattice L is a partially ordered set such that for any a, b P L,

1. the set tx P L : x ď a, x ď bu has a maximum element a ^ b, and

2. the set tx P L : a ď x, b ď xu has a minimum element a _ b.

The symbols ^, _ are read as “meet” and “join” respectively.

Definition 2.1.14. A lattice L is distributive if for any a, b, c P L, we have pa^bq_c “

pa_cq^pb_cq, or equivalently, pa_bq^c “ pa^cq_pb^cq; that is, if meet distributes

over join, or vice versa.

Definition 2.1.15. Let P be a poset. The poset JpP q is the set of all order ideals

of P ordered by containment.

Proposition 2.1. For any poset P , JpP q is a distributive lattice.

5

Proof. To show JpP q is a lattice, let I, J Ď P be order ideals of P . We claim

I _ J “ I Y J and I ^ J “ I X J .

First we show that I Y J , I X J are actually order ideals. Suppose x P I Y J

and y ď x. Without loss of generality assume x P I. Then since I is an order ideal,

y P I Ă I Y J .

Similarly, suppose x P I X J and y ď x. Then x P I and x P J , so y P I, y P J .

Thus y P I X J .

Now we must show I Y J “ I _ J . Suppose K is an order ideal of P such that

I Ă K, J Ă K. Then clearly I Y J Ă K. Thus I Y J is the minimum element of the

set tK P JpP q : K ď I,K ď Ju.

Similarly, if K is an order ideal of P such that K Ă I, K Ă J , then K Ă I X J .

Thus I X J is the maximum element of the set tK P JpP q : I ď K, J ď Ku.

Therefore JpP q is a lattice. Showing that JpP q is distributive amounts to proving

that intersections distribute over unions and vice versa, which is well-known.

In fact, a sort of converse holds; any finite distributive lattice is representable as

JpP q for some poset P .

Definition 2.1.16. An element x P L is said to be join-irreducible if x “ minL and

x cannot be written as u _ v, where u, v “ x.

Proposition 2.2. In a finite lattice L, an element x is join-irreducible iff it covers

exactly one element.

Proof. If : By contraposition; if x covers distinct elements u, v P L, then x “ u _ v,

so x is not join-irreducible. If x covers zero elements of L, then x “ minL and so is

not join-irreducible.

Only if : Suppose x covers exactly one element y P L. Then clearly x “ minL.

Now suppose contrariwise that x “ u _ v, where u, v “ x. Since u, v ď x, we must

have u, v ď y. But then u _ v “ y, which is a contradiction.

6

Definition 2.1.17. We denote the subposet of all join-irreducible elements of L, with

order induced by L, by jpLq.

The following theorem is called the Fundamental Theorem for Finite Distributive

Lattices (or FTFDL) by [Sta01].

Theorem 2.1 (Birkhoff). For any finite poset P , jpJpP qq « P . For any finite

distributive lattice L, JpjpLqq is order isomorphic to L.

The “function”1 J maps order ideals of P to elements in L; the “function” j goes

the other way. Thus, for I Ď P , x P L, we can consider JpIq P L and jpxq Ď P .

The preceding theorem assures that every finite distributive lattice is ranked,

viz. ρpxq “ |jpxq|. It follows that for any two elements x, y P L with x ď y,

ρpyq ´ ρpxq “ |jpyqzjpxq|.

Colors and components

Definition 2.1.18. A k-coloring of a poset P is a function c : P Ñ pN X r1, ksq. We

say P is colored by c.

Definition 2.1.19. Let a poset P be colored by some function c, and consider the

Hasse diagram H of JpP q as a directed graph. This graph has an edge from order

ideal I to order ideal J iff J “ I Y tvu for some v P P . Thus we may naturally color

the edge I Ñ J by cpvq. When we regard the edges of JpP q as being colored (by c)

in this way, we shall call it a diamond-colored distributive lattice, or just a DCDL.

Definition 2.1.20. A diamond of a distributive lattice is the sublattice induced by

four elements w, x, y, z such that w Ñ x Ñ z, w Ñ y Ñ z. In the Hasse diagram, we

say the edge w Ñ x is parallel to y Ñ z. Similarly, w Ñ y is parallel to x Ñ z. (See

Figure 2.1.)

1We stop short of defining these as functions for technical issues; strictly speaking, the “set” of
all posets is actually a proper class.

7

b

w

bx b y

b
z

Figure 2.1: A typical diamond.

We may regard parallelism as being naturally transitive; then the parallel edges

of any DCDL fall into “monochromatic” equivalence classes.

Proposition 2.3. In a DCDL, parallel edges have the same color.

Proof. Let L be a DCDL colored by c, and let w, x, y, z be the vertices of a diamond,

identified as in the above definition. Consider the order ideals jpwq, jpzq. The set

jpzqzjpwq Ă P has two elements u, v. Without loss of generality, write jpxq “ jpwq Y

tuu and jpyq “ jpwq Y tvu. Then jpzq “ jpxq Y tvu “ jpyq Y tuu. Thus the edges

w Ñ x and y Ñ z have color cpuq while the other two edges have color cpvq.

Definition 2.1.21. Let L be a DCDL whose edges are colored by rns, and let k P rns.

A k-monochromatic component of L or just k-component is a subset C Ă L such that

1. C is a subposet of L under the induced order;

2. if x Ñ y in C, then x Ñ y in L;

3. C is maximal with respect to the property that all edges have color k.

Next, we prove the (nontrivial) fact that any k-component of a DCDL has a

distributive lattice structure. The following definition, which describes the “preimage”

under J of a k-component, will be necessary.

Definition 2.1.22. Let P be a poset with vertices colored by rns, and let k P rns. A

k-subordinate of P is a subset S Ď P such that

8

1. S is a subposet of P under the induced order;

2. all elements of S have color k;

3. there exist order ideals I, J Ă P where no maximal element of I has color k

and no minimal element of P zJ has color k and S “ J Ă I.

We say that I and J are bounding ideals for S; I is lower bounding and J is upper

bounding.

The next proposition establishes a one-to-one correspondence between k-subordin-

ates of a poset P and k-components of its corresponding lattice L “ JpP q.

Proposition 2.4. Let L “ JpP q be a DCDL. Let k be an edge or vertex color.

1. Let C be a k-component of L. Then C is a (distributive) sublattice of L,

S “ JCzKC is a k-subordinate of P with bounding ideals JC and KC , and

C « JpSq.

2. Let S be a k-subordinate of P with lower bounding ideal I and upper bounding

ideal J . Then I and J are the minimum and maximum elements of some k-

component C Ă L, and jpCq « S.

Proof. See [Don18], Proposition 13 and Theorem 14.

Proposition 2.5. Let C be a k-component of L. Then C can be written as a

Cartesian product of chains if and only if its corresponding k-subordinate S Ď jpLq

can be written as a disjoint union of chains.

Proof. If: Suppose S Ď P “ jpLq can be written as a disjoint union of chains:

S “
Ůn

i“1Ci. We make the following claims.

1. C « JpSq “ Jp
Ůn

i“1Ciq. This follows from the FTFDL and the preceding

proposition.

2. Jp
Ůn

i“1Ciq “
Òn

i“1 JpCiq. To see this, note that every order ideal of
Ůn

i“1Ci

corresponds uniquely to a choice of at most one element from each Ci.

9

3. Each JpCiq is a chain with |JpCiq| “ |Ci| ` 1.

Only if: Since the correspondences between order ideals of S and choices of ele-

ments from each Ci and between S and C are both one-to-one, this proof reverses.

Incremental lattices

This section characterizes distributivity in a way more genial to our needs.

Definition 2.1.23. The n-dimensional integer lattice Zn is the set of all integer

n-tuples ordered elementwise.

If x,y P Zn, then x_y (resp. x^y) is given by the elementwise maximum (resp.

minimum) of x and y.

Lemma 2.1. Any sublattice of Zn is distributive.

Proof. It suffices to show that, for x, y, z P Z, we have mintmaxtx, yu,maxtx, zuu “

maxtx,minty, zuu. By symmetry we need only check the cases x ď y ď z, y ď x ď z,

y ď z ď x. This verification is left to the reader.

Definition 2.1.24. A lattice L is incremental if there is an injective homomorphism

ϕ : L Ñ Zn for some n. We say that L embeds into Zn and call the function ϕ an

embedding.

Proposition 2.6. A finite lattice is incremental if and only if it is distributive.

Proof. If. Suppose L is a finite distributive lattice. By the FTFDL, L is the lattice of

order ideals of some poset P “ jpLq. Write the vertex set of P as a union of disjoint

chains, say P “
Ťn

i“1Ci “
Ťn

i“1tci,kuk, where ci,1 Ñ ci,2 Ñ . . .

Now define ϕ : L Ñ Zn as follows: for each x P L and i “ 1, . . . , n, the ith

component of ϕpxq is ϕpxqi “ |CiXjpxq|. It is apparent that this value is the maximum

k “ 1, 2, . . . for which ci,k P jpxq, or 0 if Cn and jpxq are disjoint.

Since P “ jpLq is finite, ϕ is well-defined. We make the following claims.

10

1. ϕ is injective. Suppose ϕpxq “ ϕpyq; then the maximal elements of jpxq and

jpyq are the same, so x “ y.

2. ϕ is a homomorphism. Let x, y P L. Then for any i,

ϕpx _ yqi “ |Ci X jpx _ yq|

“ |Ci X pjpxq Y jpyqq|

“ |pCi X jpxqq Y pCi X jpyqq|

“ maxt|Ci X jpxq|, |Ci X jpyq|u

“ maxtϕpxqi, ϕpyqiu.

An analogous argument shows that ϕpx ^ yqi “ mintϕpxqi, ϕpyqiu.

Only if. Suppose L is a finite incremental lattice. Let ϕ : L Ñ Zn be an injective

homomorphism. Suppose contrariwise that L is not distributive. Then there exist

x, y, z P L so that px _ yq ^ px _ zq “ x _ py ^ zq. Since ϕ is injective, we must

have ϕppx _ yq ^ px _ zqq “ ϕpx _ py ^ zqq. Since ϕ is a homomorphism, we have

pϕpxq _ ϕpyqq ^ pϕpxq _ ϕpzqq “ ϕpxq _ pϕpyq ^ ϕpzqq. But ϕpLq is a sublattice of Zn,

and so is distributive; so this is a contradiction.

Therefore it suffices to study the distributive lattices in Chapter 3 as sublattices

of Zn. Doing so gives us a nice characterization of their join-irreducible elements.

Proposition 2.7. Let L be a finite distributive lattice, and let ϕ : L Ñ Zn be an

embedding. Write ϕ as a vector rϕ1, ϕ2, . . . , ϕns, where ϕk : L Ñ Z. Say x P L is

k-decrementable if there is another element y P L such that ϕipxq “ ϕipyq if i “ k and

ϕkpxq “ ϕkpyq ` 1. Then x P L is join-irreducible if and only if it is k-decrementable

for exactly one k.

Proof. x P L is k-decrementable for exactly one k if and only if it covers exactly one

element.

11

Corollary 2.1. With the above setup, let ϕkpLq “ tmk,mk `1, ...,Mku be the image

of ϕk in Z. For each l P ϕkpLq, let Lk,l be the sublattice of l formed by those elements

that have kth coordinate l. Let Kk,l “ minLk,l. Then

jpLq “

n
ď

k“1

Mk
ď

l“mk`1

tKk,lu.

Proof. First, we claim that any element Kk,l covers at most one element. Suppose

contrariwise that Kk,l covers two elements; then it is decrementable in two positions

k, k1. But since L is distributive, decrementing k1 gives an element K1
k,l ď Kk,l, and

by construction K1
k,l P Lk,l, which contradicts the minimality of Kk,l.

Obviously xk,mk
“ K, which is not join-irreducible. Thus the right-hand set is

included in the left-hand set.

By the proposition, any join-irreducible element y P L is k-decrementable for

exactly one k. We then have y “ Kk,ϕkpyq, and ϕkpyq ą mk. Thus the left-hand set is

included in the right-hand set.

Definition 2.1.25. Let C be a chain-factorizable lattice; i.e., let C “
śn

i“1Cn where

the Ci are chains. Let ϕ “ rϕ1, ϕ2, . . . , ϕns be an embedding of C into Zn, and let

ϕkpCq “ tmk,mk ` 1, . . .Mku be the image of ϕk in Z. Then

1. the k-slice through j is the set Ck,j :“ tc P C : ϕkpcq “ ju, and

2. if j P tmk,Mku (that is, j is extremal,) Ck,j is called a face of C.

Faces of chain-factorizable lattices (specifically, chain-factorizable monochromatic

components) play an important role in Chapter 3.

2.2 Lie theory

A full exposition of the theory of Lie algebras and their representations is well beyond

the scope of this paper. We provide here only the necessary definitions and theorems

to read §3.

12

We loosely follow [Hum72]. An introduction to the subject more suitable for

advanced undergraduates is [EW06].

Definition 2.2.1. A Lie algebra is a vector space g together with a bracket operation

r¨, ¨s : g ˆ g Ñ g satisfying the following axioms for each x, y, z P g and scalars a, b:

1. bilinearity: rax ` by, zs “ arx, zs ` bry, zs;

2. anticommutativity: rx, ys “ ´ry, xs;

3. the Jacobi identity: rx, ry, zss ` ry, rz, xss ` rz, rx, yss “ 0.

When no confusion can result, we shall sometimes write the bracket operator

rX,Y s as just rXY s, omitting the comma.

A familiar example of a Lie algebra is the vector space R3 with the cross product

as bracket. We leave the verification of the above axioms in this case to the reader.

We shall now produce some more relevant examples.

Definition 2.2.2. The general linear algebra over an abstract vector space V , written

glpV q, is the algebra of linear endomorphisms over V with function composition as

multiplication. For n P N and a field F, we identify glpV q with the algebra of n ˆ n

matrices over V by fixing a basis.

Proposition 2.8. Any nonempty subset of glpV q closed under the commutator op-

eration defined by rX,Y s :“ XY ´ Y X forms a Lie algebra, with the commutator as

bracket.

Proof. Clearly the commutator is bilinear, viz.

raX ` bY, Zs “ paX ` bY qZ ´ ZpaX ` bY q

“ aXZ ` bY Z ´ aZX ` bZY

“ apXZ ´ ZXq ` bpY Z ´ ZY q

“ arXZs ` brY Zs,

13

and anticommutative, viz. rXY s “ XY ´ Y X “ ´rY Xs.

Thus we have to show that arbitrary elements X,Y, Z of glpV q obey the Jacobi

law rX, rY Zss ` rY, rZXss ` rZ, rXY ss “ 0. We calculate:

rX, rY Zss ` rY, rZXss ` rZ, rXY ss

“ rX, pY Z ´ ZY qs ` rY, pZX ´ XZqs ` rZ, pXY ´ Y Xqs

“ XpY Z ´ ZY q ´ pY Z ´ ZY qX

` Y pZX ´ XZq ´ pZX ´ XZqY

` ZpXY ´ Y Xq ´ pXY ´ Y XqZ

“ XY Z ´ XZY ´ Y ZX ` ZY X

` Y ZX ´ Y XZ ´ ZXY ` XZY

` ZXY ´ ZY X ´ XY Z ` Y XZ

“ 0.

Thus we can furnish examples of Lie algebras simply by producing collections of

matrices closed under the bracket.

Classical Lie algebras

The theory of general Lie algebras is quite rich. For our purposes it will suffice to

limit our field of view to the following four families, which for historical reasons are

collectively referred to as the classical Lie algebras.

1. The special linear algebra An

The trace of a square matrix M “ pmijq1ďi,jďn is the sum of its diagonal elements

trM “
řn

i“1mii.

Proposition 2.9. Let M be an n ˆ n matrix. Then trM is invariant under

changes of basis.

14

Proof. Let B be an invertible n ˆ n matrix, and let MB “ B´1MB. Denote

the pijq entry of M by rM sij. We have

trMB “

n
ÿ

i“1

rB´1MBsii

“

n
ÿ

i“1

n
ÿ

j“1

rB´1sijrMBsji

“

n
ÿ

i“1

n
ÿ

j“1

rB´1sij

n
ÿ

k“1

rM sjkrBski

“

n
ÿ

k“1

n
ÿ

j“1

rM sjk

n
ÿ

i“1

rBskirB
´1sij

“

n
ÿ

k“1

n
ÿ

j“1

rM sjkrInskj

“

n
ÿ

k“1

n
ÿ

j“1

rM sjkδjk

“ trM.

Proposition 2.10. The set of n ˆ n matrices with zero trace forms a Lie

algebra.

Proof. Let M,M 1 be n ˆ n matrices.2 Then

trrMM 1s “ trpMM 1 ´ M 1Mq

“

n
ÿ

i“1

pMM 1 ´ M 1Mqii

“

n
ÿ

i“1

pMM 1qii ´ pM 1Mqii

“

n
ÿ

i“1

n
ÿ

j“1

MijM
1
ji ´

n
ÿ

i“1

n
ÿ

j“1

M 1
ijMji

“

n
ÿ

i“1

n
ÿ

j“1

MijM
1
ji ´

n
ÿ

j“1

n
ÿ

i“1

MjiM
1
ij

“

n
ÿ

i“1

pMM 1qii ´

n
ÿ

j“1

pMM 1qjj “ 0.

2It suffices to show that if two matrices each have zero trace, so does their commutator. In fact
the commutator of any two matrices has zero trace, which is what we actually show.

15

Definition 2.2.3. The Lie algebra of pn`1q ˆ pn` 1q matrices with zero trace

is called the special linear algebra of rank n and denoted An.

2. The orthogonal algebras Bn, Dn

Definition 2.2.4. A matrix M is skew-symmetric if MJ “ ´M .

Proposition 2.11. Let S be a symmetric matrix. Then the set of all matrices

M such that SM is skew-symmetric forms a Lie algebra.

Proof. Suppose pSMqJ “ ´SM , pSNqJ “ ´SN . We need to show that

pSrMN sqJ “ ´SrMN s. We have

pSrMN sqJ “ pSMNqJ ´ pSNMqJ

“ NJMJSJ ´ MJNJSJ

“ NJMJS ´ MJNJS

“ NJp´SMq ´ MJp´SNq

“ ´NJSM ` MJSN

“ pSNqM ´ pSMqN “ ´SrMN s.

Definition 2.2.5. If n “ 2k ` 1 is odd, let S “

»

–

1 0 0
0 0 Ik
0 Ik 0

fi

fl . Then the set of

all matrices M such that SM is skew-symmetric forms the odd orthogonal Lie

algebra of rank k, denoted Bk.

Definition 2.2.6. If n “ 2k is even, let S “

„

0 Ik
Ik 0

ȷ

. Then the set of all

matrices M such that SM is skew-symmetric forms the even orthogonal Lie

algebra of rank k, denoted Dk.

3. The symplectic algebra Cn

16

Definition 2.2.7. A 2n ˆ 2n matrix M is symplectic if the matrix SM “
„

0n In
´In 0n

ȷ

M is symmetric.

Proposition 2.12. The set of 2nˆ2n symplectic matrices forms a Lie algebra,

called the symplectic algebra of rank n and denoted Cn.

Proof. Suppose M,N are 2n ˆ 2n matrices such that SM “ pSMqJ, SN “

pSNqJ. Then

SrMN s “ SMN ´ SNM

“ pSMqJN ´ pSNqJM

“ MJSJN ´ NJSJM

“ ´MJSN ` NJSM

“ ´MJpSNqJ ` NJpSMqJ

“ ´pSNMqJ ` pSMNqJ

“ pSMN ´ SNMqJ “ pSrMN sqJ.

Ideals and simplicity

Definition 2.2.8. Given a Lie algebra g, a subalgebra h is an ideal of g provided

that for any h P h, g P g, rghs P h.

Definition 2.2.9. A function ϕ : g Ñ g1 is a homomorphism of Lie algebras provided

that it is linear and it preserves the bracket.

The usual homomorphism theorems hold, in particular the following:

Theorem 2.2. Let ϕ : g Ñ g1 be a homomorphism of Lie algebras. Then kerϕ “

tx P g : ϕpxq “ 0u is an ideal of g.

Proof. Left to reader.

17

Definition 2.2.10. A Lie algebra g is said to be simple if its only ideals are 0 and g

(and it is not the one-dimensional algebra.)

Definition 2.2.11. A Lie algebra is said to be semisimple if it can be written as a

direct sum of simple Lie algebras.

For the purposes of this paper, it will suffice to think of semisimple Lie algebras

as being well-behaved. The examples we consider in the sequel are all semisimple.

Toral subalgebras and roots

We take a short recess here to discuss certain combinatorial-geometric objects called

root systems. This discussion, while appearing somewhat unmotivated, turns out to

be crucial to understanding the structure of semisimple Lie algebras.

Definition 2.2.12. Consider Rn as a vector space with the standard (Euclidean)

inner product. The normal hyperplane to v P Rn, denoted vK, is the set of all vectors

orthogonal to v.

Proposition 2.13. For any v P Rn, there exists a unique endomorphism rv such that

1. rvpwq “ w for every w P vK, and

2. rvpvq “ ´v,

which we shall call the reflection through vK.

Proof. Let B be a basis of Rn containing v. Orthogonalizing B with respect to

v gives a basis B1 “ pv, w1, . . . , wn´1q. Note vK is a pn ´ 1q-dimensional vector

space spanned by B1ztvu. Let rv be the endomorphism whose matrix relative to B1

is diagp´1, 1, . . . , 1q. Then it is easily checked that rvpwq “ w for w P vK and

rvpvq “ ´v.

The above proof makes clear that r2v “ In, as befits its name. We now give an

explicit formula for rv.

18

Proposition 2.14. For any v P Rn, rvpwq “ w ´ 2 projv w.

Proof. Without loss of generality, take w relative to the basis B1. Then

rv “ diagp´1, 1, . . . , 1q “ In ´ 2 diagp1, 0, . . . , 0q;

rvpwq “ w ´ 2 diagp1, 0, 0, 0qw “ w ´ 2 projv w.

The number xv, wy “ 2 }projv w}

}v}
“ 2v¨w

v¨v
denotes the scalar multiple of v separating

w and rvpwq.

We are now ready for the central definition.

Definition 2.2.13. Let Rn be a vector space with the usual inner product. Then a

finite spanning set of vectors Φ Ă Rn is said to be a root system if

1. 0 R Φ.

2. For any α P Φ, the only other scalar multiple of α belonging to Φ is ´α.

3. For any α P Φ, rαpΦq “ Φ; that is, Φ is symmetric about α.

4. For any α, β P Φ, xα, βy is an integer.

19

b α

(a) A1, rank 1

b α

β

(b) A2, rank 2

b α

β

(c) B2, rank 2

b α

β

(d) G2, rank 2

Figure 2.2: Some root systems, their ranks, and their bases.

Definition 2.2.14. A base of a rank-n root system Φ is a subset ∆ Ă Φ such that

1. ∆ is a basis for Rn;

2. the nonzero basis coefficients, relative to ∆, of any ϕ P Φ are either all positive

(in which case ϕ is called a positive root) or all negative.

For completeness we mention the following fact:

Theorem 2.3. Every root system has a base.

Proof. See [Hum72] §10.1.

The usual bases of each root system are indicated above with the labels α and β.

At this point we return to our discussion of Lie algebras, which for the remainder

of this section we will take to be finite-dimensional over a field F.

20

Definition 2.2.15. The center of a Lie algebra g is the set

Zpgq :“ tz P g : rzgs “ 0 @g P gu.

Proposition 2.15. Any subalgebra of Zpgq, including Zpgq itself, is an ideal of g.

Proof. Left to reader.

Lemma 2.2. If g is a simple Lie algebra, then Zpgq “ t0u.

Proof. Let z P Zpgq. span z, the one-dimensional subalgebra spanned by z, is an ideal

of g. Since g is not one-dimensional (by definition,) span z “ g. But since g is simple,

this implies span z “ t0u. Thus z “ 0.

Proposition 2.16. If g is a semisimple Lie algebra, then Zpgq “ t0u.

Proof. Write g as a direct sum of simple algebras, say g “
Àn

k“1 gi. Any z P Zpgq

can then be written as z “
řn

k“1 zi, where zi P gi.

We claim that, in fact, zi P Zpgiq. To see this, note that for any g P gi, 0 “ rzgs “

řn
k“1rzkgs. Since gi and gj are orthogonal if i “ j, we have rzigs “ 0.

Since gi is simple, Zpgiq “ t0u, so zi “ 0. Thus z “ 0.

Definition 2.2.16. For a subalgebra h of g, define the dual space h˚ to be the space

of linear functionals α : h Ñ F. For any α P h˚, define gα :“ tx P g : rhxs “

αphqx @h P hu, and define Φ :“ tα P h˚ : α “ 0, gα “ 0u.

If g “
À

αPΦYt0u gα, the subalgebra h is called toral. Additionally, if this condition

is met,

1. elements of Φ are called roots of g (relative to h;)

2. for any α P Φ, gα is called a root space;

3. the equality g “
À

αPΦYt0u gα is called the root space decomposition of g (relative

to h.)

21

At this point the reader may be forgiven for finding this definition intimidating.

We defang it thus.

Example 2.1. Consider g “ A1, the Lie algebra of 2 ˆ 2 matrices over R with zero

trace. We claim that the subalgebra of diagonal matrices h “ diagA1 “ spanp1,´1q

is toral. To show this, we calculate the functionals α P h˚ for which gα is not the zero

algebra.

Since h is one-dimensional, an element α P h˚ is just a mapping h ÞÑ ch, where

c P R. So we look for scalars k and x P g such that rhxs “ khx, where

khx “ k

„

d
´d

ȷ „

a b
c ´a

ȷ

“ k

„

ad bd
´cd ad

ȷ

,

rhxs “ hx ´ xh “

„

d
´d

ȷ „

a b
c ´a

ȷ

´

„

a b
c ´a

ȷ „

d
´d

ȷ

“

„

0 2bd
´2cd 0

ȷ

.

By inspection, if k R t0,˘2u, there are no nonzero satisfactory elements x; and

1. if k “ 0, any satisfactory x has the form diagpa,´aq;

2. if k “ 2, any satisfactory x has the form
„

0 b
0 0

ȷ

;

3. if k “ ´2, any satisfactory x has the form
„

0 0
c 0

ȷ

.

Thus, Φ “ t2,´2u. (Remember, 0 is never a root.) Observe that
À

αPt0uYΦ gα “ g.

Thus h is toral in g, with root spaces g˘2 spanned by
„

0 1
0 0

ȷ

,
„

0 0
1 0

ȷ

respectively.

Proposition 2.17. Let h be a toral subalgebra of g, and let k, l P h. Then rkls P Zpgq.

Proof. Let α P Φ be a root, and let gα be its corresponding (nonzero) root space. Fix

a basis tgα,iu of gα. Then by the Jacobi identity, we have

rrk, ls, gα,is ` rrl, gα,is, ks ` rrgα,i, ks, ls “ 0.

22

We focus just on the latter two terms. Since α is a root, rh, gα,is “ αphqgα,i for any

h P h, and we have

rrl, gα,is, ks ` rrgα,i, ks, ls “ rαplqgα,i, ks ´ rαpkqgα,i, ls

“ αplqrgα,i, ks ´ αpkqrgα,i, ls

“ ´αplqαpkqgα,i ` αpkqαplqgα,i “ 0.

Thus rrk, ls, gα,is “ 0. Since this is true for any choice of α, rrk, ls, gs “ 0 for any g P g.

Therefore rk, ls P Zpgq.

Corollary 2.2. A toral subalgebra h of a semisimple Lie algebra g is abelian.

At this point, we assume the following theorem.

Theorem 2.4 (Cartan semisimplicity criterion). Let F be an algebraically closed

field of characteristic zero. Let g be a Lie algebra over F.

Then g is semisimple if and only if there exists a bilinear form κ : gˆ g Ñ F such

that

1. κ is symmetric: κpx, yq “ κpy, xq for all x, y P g;

2. κ is nondegenerate: If κpx, yq “ 0 for all y P g, then x “ 0;

3. κprxys, zq “ κpx, ryzsq for all x, y, z P g.

If such a form κ (called the Cartan-Killing form or sometimes just the Killing form)

exists, g has a nontrivial toral subalgebra. If a toral subalgebra h of g is maximal,

that is, not properly contained in any other toral subalgebra, we have h “ g0, so that

g “ h ‘
à

aPΦ

gα.

Such a maximal toral subalgebra is called a Cartan subalgebra, or just CSA.

Proof. See [Hum72].

23

We now present some consequences. The next theorem lists some properties en-

joyed by semisimple Lie algebras which will be needed shortly.

Theorem 2.5. Let F be an algebraically closed field of characteristic zero, g a

semisimple Lie algebra over F, and h a CSA of g. Then the following are true.

1. The restriction of κ to h ˆ h is nondegenerate.

2. For each α P Φ, there is a unique nonzero ta P h such that αphq “ κph, tαq for

all h P h.

3. The dual space h˚ is (F-)spanned by Φ.

4. α P Φ if and only if ´α P Φ.

5. For each α P Φ and each x P gα, y P g´α, we have rxys “ κpx, yqtα. If x “ 0,

there exists y such that κpx, yq “ 0, and vice versa.

Proof. See [Hum72] §8.

Finally, we state that the roots indeed form a root system.

Theorem 2.6. Let g and h be as above. For roots α, β, let xα, βy :“ κptα, tβq. Then

the following are true.

1. xα, αy ą 0.

2. The only scalar multiples of α belonging to Φ are α and ´α.

3. 2xβ, αy

xα, αy
P Z.

4. β ´
2xβ, αy

xα, αy
α P Φ.

5. xα, βy P Q.

Proof. See [Hum72] §8.

We have the following important corollary which describes in detail the structure

of semisimple Lie algebras.

Corollary 2.3. Let α P Φ. Then gα ‘ g´α ‘ rgα, g´αs « A1.

24

Proof. Let x P gα. By consequence 5 of Theorem 2.5, we can choose y P g´α such

that κpx, yq “ 2{xα, αy.

Set h “ rxys “ κpx, yqtα “
2

xα, αy
tα. Observe that

rhxs “

„

2

xα, αy
tα, x

ȷ

“
2

xα, αy
¨ rtα, xs “

2

xα, αy
¨ αptαqx “

2

xα, αy
¨ κptα, tαqx

“
2

xα, αy
¨ xα, αyx “ 2x.

Similarly, rhys “ ´2y. Therefore spanFtx, y, hu « A1.

We claim now that x spans gα. Let x1 be another element of gα. By the Jacobi

identity, we have

rh, rx, x1ss “ ´rx, rx1, hss ´ rx1, rh, xss

“ ´rx,´αphqx1s ´ rx1, αphqxs

“ αphqrx, x1s ´ αphqrx1, xs

“ αphqrx, x1s ` αphqrx, x1s

“ 2αphqrx, x1s “ p2αqphqrx, x1s.

However, by consequence (2) of the preceding theorem, 2α is not a root, so rx, x1s “

0. Consider now rx1, ys “ κpx1, yqtα. By the Jacobi identity we have

0 “ r0, ys “ rrx, x1s, ys “ ´rrx1, ys, xs ´ rry, xs, x1s

“ ´rκpx1, yqtα, xs ´ r´h, x1s

“ ´κpx1, yqrtα, xs ´ r´h, x1s

“ ´κpx1, yqκptα, tαqx ` 2x1,

and ´κpx1, yqκptα, tαq “ 0. Thus x1 is a scalar multiple of x, so spanF x “ gα. Similarly,

we have spanF y “ g´α. Finally, by consequence 5 of Theorem 2.5, spanF h “ rgα, g´αs.

Putting these together, we have that x, y, and h span gα, g´α, and rgα, g´αs re-

spectively. So we have gα ‘ g´α ‘ rgα, g´αs « A1.

25

Theorem 2.7. Φ is a root system in the sense of Definition 2.2.13.

Proof. Let EQ :“ spanQ Φ. By consequences 1 and 5 of Theorem 2.6, x¨, ¨y : EQˆEQ Ñ

Q is a symmetric, positive-definite bilinear form. Let E be the extension of EQ to

a vector space over R. The inner product x¨, ¨y then naturally extends to an inner

product on R.

Furthermore, we have E “ spanR Φ. Also:

1. Φ spans the Euclidean space E “ R|Φ|, by construction;

2. 0 R Φ, by definition;

3. the only scalar multiples of α P Φ belonging to Φ are ˘α, by consequence 2 of

Theorem 2.6;

4. for α, β P Φ, rαpβq :“ β ´
2xβ,αy

xα,αy
α P Φ, by consequence 4 of Theorem 2.6;

5. for α, β P Φ, 2xβ,αy

xα,αy
P Z, by consequence 3 of Theorem 2.6.

So, from a semisimple Lie algebra (and a choice of Cartan subalgebra,) we have

obtained a root system. It turns out that the root system so obtained depends only

on the choice of Lie algebra. See [Hum72].

The next sections explore further the correspondence between semisimple Lie al-

gebras and root systems.

Cartan matrices

Definition 2.2.17. Let Φ be a rank-n root system with base ∆ “ tϕkunk“1. The

Cartan matrix of Φ is the n ˆ n matrix whose ijth entry is given by xϕi, ϕjy.

Since every root system corresponds to a semisimple Lie algebra, we can also

speak of the Cartan matrix of a Lie algebra. In the next theorem, we will see that

the Cartan matrix encodes crucial information that connects a given root system to

its associated semisimple Lie algebra.

26

Example 2.2. From before, we know that the root system Φ associated to A2 has

rank 2. If we take the roots α, β in the given diagram to be unit vectors, their

components are α “

„

1
0

ȷ

, β “

„

´1{2?
3{2

ȷ

. We compute xα, αy “ xβ, βy “ 2, xα, βy “

xβ, αy “ ´1. So the Cartan matrix of A2 is
„

2 ´1
´1 2

ȷ

.

Some general representation theory

Definition 2.2.18. A representation of a Lie algebra is a homomorphism ϕ : g Ñ

glpV q; that is, a linear map that preserves the bracket.

Given a representation ϕ : g Ñ glpV q, we make the representing space V into

a g-module by defining x.v “ ϕpxqpvq for every x P g, v P V. Observe that for all

v, w P V , scalars c P F, and x, y P g,

1. x.pcv ` wq “ cx.v ` x.w and

2. rxys.v “ x.y.v ´ y.x.v.

Conversely, if an action of g on V satisfies these conditions, the mapping ϕ : g Ñ glpV q

defined by ϕpxqpvq :“ v is a representation of g.

When the target space of a representation of g is a general linear matrix algebra,

we may think of the homomorphism ϕ as encoding some of the structure of g into a

matrix algebra.

Definition 2.2.19. The adjoint of an element x P g is the function adx : g Ñ g that

sends y ÞÑ rxys.

Definition 2.2.20. The adjoint representation of a Lie algebra g is the function

ad : g Ñ glpgq that sends x ÞÑ adx.

Proposition 2.18. For any Lie algebra g, ad is actually a representation.

Proof. We have to show that radx, ad ys “ adrxys “ adrxys . For any z P g,

adrxys z “ rrxyszs “ ´rzrxyss,

27

which by the Jacobi identity is equal to

“ rxryzss ` ryrzxss

“ rxryzs ´ ryrxzss

“ rx, ady zs ´ ry, adx zs

“ adxpady zq ´ adypadx zq

“ padx ˝ ady ´ ady ˝ adxqpzq

“ radx, ad yspzq.

Representation theory gives us another way to think of, and a much simpler way

to compute, the roots of a semisimple Lie algebra. For the remainder of this section,

assume g is semisimple over an algebraically closed field F of characteristic zero.3

Proposition 2.19. Let h be a maximal toral subalgebra of g. The roots of g with

respect to h are precisely the nonzero functionals ϕ : h Ñ F that annihilate detpadh´

ϕphqIq, where I P glpgq denotes the identity transformation.

Proof. Suppose ϕ is a root. By definition, ϕ is not identically zero, and there is a

nonzero x P g such that rhxs ´ ϕphqx “ 0. Since rhxs ´ ϕphqx “ padh´ ϕphqIqx, and

x “ 0, we must have detpadh ´ ϕphqIq “ 0.

Suppose ϕ “ 0 and detpadh ´ ϕphqIq “ 0. Then, since the matrix adh ´ ϕphqI

is singular, there is a nonzero x P g such that padh ´ ϕphqIqx “ 0; which is to say,

rhxs ´ ϕphqx “ 0. Hence, ϕ is a root.

In the language of §2.2.9 below, this proposition says that roots are the “weights”

of the adjoint representation, and thus the root spaces are the “weight spaces.”

Example 2.3. We shall compute the roots of A1 again (with respect to its diagonal

subalgebra) using the above proposition.
3Taking F “ R will suffice.

28

For any element of diagA1, say h “ diagpd,´dq, adh is the linear map that sends

x “

„

a b
c ´a

ȷ

ÞÑ rhxs “

„

0 ´2db
2dc 0

ȷ

.

So adh “ diagp0,´2d, dq, and the nonzero functionals that annihilate the character-

istic polynomial of adh are exactly ϕ1phq “ ´2d, ϕ2phq “ 2d.

Example 2.4. Using the same method, we shall compute the roots of A2 with respect

to its diagonal subalgebra.

An element of diagA2 looks like h “ diagph1, h2,´ph1 ` h2qq. So adh : R8 Ñ R8

is the linear map that sends

x “

»

–

a b c
d e f
g i ´pa ` eq

fi

fl ÞÑ rhxs “

»

–

0 ph1 ´ h2qb p2h1 ` h2qc
ph2 ´ h1qd 0 ph1 ` 2h2qf

p´2h1 ´ h2qg p´h1 ´ 2h2qi 0

fi

fl .

We can put this in matrix form:

adh “ diag

»

—

—

—

—

—

—

—

—

—

—

–

0
h1 ´ h2

2h1 ` h2

h2 ´ h1

0
h1 ` 2h2

´2h1 ´ h2

´h1 ´ 2h2

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

So the roots of A2 are the linear functionals ϕi : R2 Ñ R for which ϕiph1, h2q

annihilates this matrix’s characteristic polynomial. In vector form, they are as follows:
„

1
´1

ȷ

,

„

2
1

ȷ

,

„

´1
1

ȷ

,

„

1
2

ȷ

,

„

´2
´1

ȷ

,

„

´1
´2

ȷ

.

Plotting these gives Figure 2.3, which is not a root system taken as-is. (Why?)

There exists an invertible linear transformation, which we leave to the reader to work

out, that maps this picture onto the root system A2 given previously. In fact this is

true more generally, as we will see.

29

b

Figure 2.3: The not-quite-a-root-system given by the roots of A2 with respect to
diagA2.

Serre relations and Chevalley generators

The Serre relations provide a way to reconstruct a Lie algebra from its root system.

In a sense, they encode the construction of a root system from a Lie algebra given

previously into a presentation of that Lie algebra by generators and relations.

Theorem 2.8 (Serre). Let Φ be a rank-n root system with base ∆ “ tϕiu
n
i“1. Then

the Lie algebra with generators txi, yi, hiu
n
i“1 subject to the relations

1. rhi, hjs “ 0;

2. rxi, yjs “ 1i“jhi;

3. rhi, xjs “ xϕj, ϕiyxj;

4. rhi, yjs “ ´xϕj, ϕiyyj;

5. padxiq
1´xϕj ,ϕiypxjq “ pad yiq

1´xϕj ,ϕiypyjq “ 0

is semisimple and has root system Φ.

Proof. See [Hum72] §18.

Due to a theorem of Chevalley, every semisimple Lie algebra can be generated in

this manner. Thus, the elements of the generating set txi, yi, hiu
n
i“1 are usually called

the Chevalley generators.

30

Combinatorial structure of semisimple Lie algebra representations*

This section may be skipped on a first reading. It bridges the preceding material with

papers such as [Don03].

Let g be semisimple over an algebraically closed field F of characteristic zero.

Fix a Cartan subalgebra h of g, and let Φ be the corresponding root system of rank

n “ dim h. Let ∆ “ tαiu
n
i“1 be a base for Φ, and let txi, yi, hiu

n
i“1 be the corresponding

set of Chevalley generators of g.

In the n-dimensional Euclidean space of which Φ is a basis, let ε “ tεiu
n
i“1 be the

dual basis to Φ. Then if M is the associated Cartan matrix, we have ε “ MΦ.

Definition 2.2.21. Let Λ be the Z-span of ε; that is, the set of all integral linear

combinations of εi. Elements of Λ are called weights, and Λ itself is called the weight

lattice. A weight λ P Λ is called dominant if it is a positive integral linear combination

of εi.

Definition 2.2.22. Make a finite-dimensional vector space V over F into a g-module

as stated in Definition 2.2.18. A subspace W ď V is called g-stable (sometimes g-

invariant if gW Ď W for any g P g. If v P V is nonzero, g.v denotes the smallest

g-stable subspace containing v.

With the above setup, the following two theorems specify the structure of V.

Theorem 2.9. For a weight λ P Λ, let the λ-weight space of V be given by

Vλ :“ tv P V : hi.v “ xλ, α_
i yvu.

Then V “
À

λPΛ Vλ. Furthermore, for any v P Vλ, we have xi.v P Vλ`αi
and yi.v P

Vλ´αi
.

Proof. See [Hum72] §21.

31

Let ΠpV q :“ tλ P Λ : dimVλ ą 0u. We call the equality V “
À

λPΠpV q Vλ the

weight space decomposition of V. Any basis of V whose vectors lie in
Ť

λPΠpV q is called

a weight basis.

Theorem 2.10. There are independent vectors tviu
n
i“1 with vi P Vλi

such that

1. vi is “maximal,” in the sense xi.vj “ 0 for each i, j P rns and

2. V “
Àn

i“1 g.vi.

If V “ g.vi, we say V is irreducible. In this case, if v1
i is any other maximal vector,

v1
i “ cvi for some scalar c, and if W “ g.wi is another irreducible g-module, then

V « W are isomorphic g-modules.

Let gpλq be an indeterminate, irreducible g-module with maximal vector of dom-

inant weight λ. The preceding theorem assures that we can write V «
Àn

i“1 gpλiq.

This decomposition completely determines the module, up to isomorphism.

Proof. See [Hum72] §21.

We combinatorialize this information as follows.

Definition 2.2.23. Let tvrurPR be a weight basis for a g-module V , indexed by the

set R, as above. Let p, q P R, let i P rns, and write

xi.vp “
ÿ

rPR

cr,pvr, yi.vq “
ÿ

rPR

dr,qvr.

The supporting graph for V is the edge-colored directed graph with vertex set R such

that for any p, q P R, p i
Ñ s provided that in the above decomposition, cq,p and dp,q

are not both zero. If we also associate the edge coefficients cq,p and dp,q with each

edge, then we have a representation diagram for V .

For each r P R, we set ωprq “ λ if vr P Vλ.

Theorem 2.11. Consider R as the Hasse diagram of a ranked poset. Then

1. If r i
Ñ s in R, then ωpsq ´ ωprq “ αi.

32

2. xωprq, α_
i y “ 2ρiprq ´ liprq, where ρiprq, liprq are respectively the rank of r

within its i-component and the length of that i-component.

3. Define the weight-generating function of R as

WGF pR; zq :“
ÿ

rPR

zωprq “
ÿ

rPR

n
ź

i“1

z
xωprq,α_

i y

i .

Then the g-module V is completely determined, up to isomorphism, by the

weight-generating function of its supporting graph R.

Proof. See [Don03] and [Don18].

33

chapter 3

LATTICE MODELS OF LIE ALGEBRA REPRESENTATIONS

We now present the centerpiece of the work. Throughout, write rns “ N X r1, ns.

3.1 The DCS relations

Definition 3.1.1. Let L be a diamond-colored distributive lattice with edges colored

by rns, and let x P L. For each i P N, let Jipxq P L be the maximum element of the

i-component in which x lies.

Define a weight function1 ωpxq “ rωipxqsni“1 by

ωipxq “ ρipxq ´ pρipJipxqq ´ ρipxqq “ 2ρipxq ´ ρipJipxqq.

Definition 3.1.2. Let Φ be a rank-n root system with base ∆, and let g be the

corresponding semisimple Lie algebra with Chevalley generators txi, yi, hiu
n
i“1. Let M

be the Cartan matrix of g. Let L be a diamond-colored distributive lattice with edge

colors corresponding to ∆.

Then L is said to be g-structured if for any edge x
i

Ñ y in L, ωpyq ´ ωpxq gives

the ith row of M .

Theorem 3.1 (Donnelly). Let L be a g-structured DCDL. If for any edge x Ñ y

there exist cyx, dxy P C such that

1. if w, x, y, z P L form a diamond with w Ñ x Ñ z, w Ñ y Ñ z, we have the

diamond relations cywdwx “ dxzczy, cxwdwy “ dyzczx,

1The quantity pρipJipxqq´ρipxqq is the distance of x “from the top” of its i-component, whereas
ρipxq is the distance of x “from the bottom.” Thus we sometimes call the former quantity the depth
of x, whereupon the color-i weight of x is “rank minus depth.”

34

2. and for any x P L and any i P rns, we have the crossing relation

ÿ

wPL

w
i

ÝÑx

cxwdwx ´
ÿ

zPL

x
i

ÝÑz

czxdxz “ ωipxq,

then g is homomorphic to the Lie algebra l generated by the 3n |L|-dimensional

matrices tEi, Fi, Hiu
n
i“1 (whose rows and columns are indexed by the elements of L)

defined as follows:

1. rEisyx :“ cyx if x i
ÝÑ y, or 0 otherwise;

2. rFisxy :“ dxy if x i
ÝÑ y, or 0 otherwise;

3. Hi :“ rEiFis.

We say that

1. the coefficients tcyx, dxyux,yPL are DCS-satisfactory for g, and that

2. L realizes a representation of g.

Additionally, if g is simple, the representation so realized is faithful.

Proof. See Appendix B.

Definition 3.1.3. If a DCDL L realizes a representation of g, and the associated DCS-

satisfactory coefficients tcyx, dxyu are uniquely determined, we say that the lattice L

is solitary.

If instead the edge products πxy :“ cyxdxy are uniquely determined, then L is said

to be product solitary.

If we work with edge products rather than edge coefficients, the DCS relations be-

come the following. (The structure relations, which deal with vertex weights, remain

unchanged.)

1. If w, x, y, z P L form a diamond with w Ñ x Ñ z, w Ñ y Ñ z, we have the

diamond relation πxzπyz “ πwxπwy.

35

2. For any x P L and any i P rns, we have the crossing relation

ÿ

wPL

w
i

ÝÑx

πwx ´
ÿ

zPL

x
i

ÝÑz

πxz “ ωipxq.

Proposition 3.1. Suppose a lattice L is chain-factorizable, and suppose there exist

a set of positive rational DCS-satisfactory edge products. If the edge products on one

face of L are uniquely determined, then L is product solitary.

Proof. Let Lk,j be a face of L, and suppose the edge coefficients on Lk,j are uniquely

determined.

1. Let x P Lk,j. Since j is extremal, there is exactly one edge incident to x that

does not belong to the face Lk,j. Call it x Ñ x1. Its edge product is uniquely

determined by a crossing relation at x.

2. Suppose without loss of generality that j is minimal. Consider an edge x1 Ñ y1

in Lk,j`1. Since L is chain-factorizable, x1 Ñ y1 is part of a diamond x Ñ x1 Ñ y1,

x Ñ y Ñ y1. The edges x Ñ x1, y Ñ y1 are determined uniquely by (1), and

the edge x Ñ y is determined uniquely by assumption. Thus the edge x1 Ñ y1

is determined uniquely by the diamond relation.

If j ` 1 is nonmaximal, this argument can be repeated to show that the edge

products in Lk,j`2 and the edge products of the edges connecting Lk,j`1 and Lk,j`2 are

uniquely determined, and similarly for successive slices. Since L is chain-factorizable,

this process determines every edge product in L.

3.2 Example: chains

Definition 3.2.1. The n-edge chain is the lattice with vertex set tv0, v1, . . . , vnu and

a total ordering. Every edge is assigned the same color, so that the Hasse diagram of

the lattice is

v0
1

Ñ v1
1

Ñ . . .
1

Ñ vn.

36

Proposition 3.2. The n-edge chain realizes a representation of the Lie algebra A1,

whose Cartan matrix is diagp2q.

Proof. That the n-edge chain is A1-structured is immediate from ω1pviq “ 2i ´ n.

The reader may verify that choosing cvi,vi´1
“ n ´ i ` 1 and dvi´1,vi “ i gives a

DCS-satisfactory set of coefficients.

Example 3.1. Let’s verify the DCS theorem for a 2-edge chain: v0
1

Ñ v1
1

Ñ v2. We

have the following information.

i ω1pviq x
i

Ñ y cyx dxy

0 ´2 v0
1

Ñ v1 2 1

1 0 v1
1

Ñ v2 1 2
2 2

Table 3.1: Vertex and edge data for a 2-edge chain.

We can then fill out the matrices

E “

v0 v1 v2
« ff0 0 0 v0
2 0 0 v1
0 1 0 v2

, F “

v0 v1 v2
« ff0 1 0 v0
0 0 2 v1
0 0 0 v2

,

H “ rEF s “

v0 v1 v2
« ff

´2 0 0 v0
0 0 0 v1
0 0 2 v2

.

To show that a representation of A1 is actually realized, we verify the Serre rela-

tions rHEs “ 2E, rHF s “ ´2F. This step is left to the reader.

3.3 Example: Boolean lattices

Definition 3.3.1. The Boolean lattice Bn is defined as follows.

1. Vertices of Bn are subsets x Ď rns.

2. Bn is ordered by containment; if x, y P Bn, x ď y if x Ď y.

37

3. If x, y P Bn, ρpxq “ |x|, and consequently x Ñ y if and only if |yzx| “ 1.

4. Edges in Bn are colored by rns; the edge x Ñ y has color given by the element

of the singleton set yzx.

5. Bn embeds into Zn as follows: if x P Bn, let ϕpxq be the n-vector whose ith

element is 1 if i P x and 0 otherwise.

Proposition 3.3. The join-irreducible elements of Bn are the singleton sets tiu for

each i P rns.

Proof. Left to reader.

Corollary 3.1. jpBnq is a poset of n mutually incomparable elements.2 The Hasse

diagram of the lattice Bn is an n-hypercube.

Proposition 3.4. The Boolean lattice Bn realizes a representation of the Lie algebra

An
1 “

Àn
i“1A1, whose Cartan matrix is diagp2, 2, . . . , 2q.

Proof. First we show that Bn is A1
n-structured. Take i, j P rns with i “ j; it suffices

to show that Mij “ 0.

Observe that every i-component of Bn is a one-edge chain. Thus consider an

edge x
i

Ñ y. Evidently ωipxq “ ´1 and ωipyq “ 1. We need to show that Mij “

ωjpyq ´ ωjpxq “ 0. This is apparent since j P x if and only if j P y.

Since every i-component of Bn is a one-edge chain, taking cyx “ dxy “ 1 for every

x Ñ y gives a DCS-satisfactory set of coefficients.

3.4 Example: zero-padded subset lattices

Definition 3.4.1. The zero-padded subset lattice Zn (hereinafter ZPS lattice) is de-

fined as follows.

1. Vertices of Zn are subsets x Ď rns.

2Called an antichain of length n.

38

b {1,2,3}

b{1,2}

3

b {1,3}
2

b {2,3}

1

b{1}

2

3

b {2}

1
3

b {3}

1 2

b ∅

1

2

3

(a) The Boolean lattice B3.

b 1 b 2 b 3

(b) The antichain jpB3q.

b 1234

4

b 0234

3

b 0134

b 0034

4

2

b 0124

b 0024

2

4

b 0123

1

b 0014

3

b 0023

1

b 0004

4

4

b 0013

1

3

b 0003

1

4

b 0012

2

b 0002

2

4

b 0001

3

b 0000

4

(c) The zero-padded subset lattice Z4.

b (1, 1)

b (1, 2)

b (2, 2) b (1, 3)

b (2, 3) b (1, 4)

b (3, 3) b (2, 4)

b (3, 4)

b (4, 4)

(d) The “angelfish” poset jpZ4q.

Figure 3.1: Two DCDLs and their posets of join-irreducibles.

39

2. If x, y P Zn, enumerate the elements of (for instance) x by x1 ě ¨ ¨ ¨ ě xn, letting

xj “ 0 if j ą |x|. Then x ď y if xi ď yi for all i P rns.

3. If x, y P Zn, ρpxq “
řn

i“1 xi; we have x Ñ y if and only if x, y differ in exactly

one index i P rns, with xi ` 1 “ yi.

4. Edges in Zn are colored by rns. Keeping the above setup, the edge x Ñ y has

color n ´ xi.

5. Zn embeds directly into Zn using the enumeration in (2) above.

The ZPS lattices were used in [Pro82] (in which Zn is called Mpnq) to prove a

conjecture of Erdős concerning subset sums.

Proposition 3.5. The join-irreducible elements of Zn are those whose nonzero ele-

ments are consecutive.

Proof. Follows from Corollary 2.1; left to reader.

Thus Zn is the lattice of order ideals of the “angelfish” poset given by ordering

the set tpi, jq : 1 ď i ď j ď nu componentwise.

Proposition 3.6. The ZPS lattice Zn realizes a representation of the Lie algebra

Bn, whose Cartan matrix is

M :“

»

—

—

—

—

—

—

—

–

2 ´1
´1 2 ´1 0

´1 2
. . .

. ´1

0 ´1 2 ´2
´1 2

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

Proof. We first show that Zn is Bn-structured.

1. As before, it is clear that if x i
Ñ y, then ωipyq ´ ωipxq “ 2 “ Mii.

2. If x n´1
Ñ y, then x and y differ in exactly one coordinate, which increments from

1 (in x) to 2 (in y.) Consider the preceding coordinate as well; write ˝1
n´1
Ñ ˝2.

40

(If there is no preceding coordinate, then x is maximal and there is no edge

x
n´1
Ñ y.)

It is apparent that the square must be a 0. Thus, there must be a pattern of

edges 00 n
Ñ 01

n´1
Ñ 02

n
Ñ 12. Since every component of Zn is a length-one chain,

this implies that ωnpxq “ 1, ωnpyq “ ´1, so ωnpyq ´ ωnpxq “ ´2 “ Mn´1,n.

3. If x
n´2
Ñ y, then we have ˝2

n´2
Ñ ˝3. (Note that there must be a preceding

coordinate in this case.) The square is either 0 or 1.

a) If the square is a 0, there is a pattern of edges 01
n´1
Ñ 02

n´2
Ñ 03. Observe

that there can be no color-pn ´ 1q edge incident to 03. So in this case

ωn´1pyq ´ ωn´1pxq “ 0 ´ 1 “ Mn´2,n´1.

b) If the square is a 1, there is a pattern of edges 12
n´2
Ñ 13

n´3
Ñ 23. Observe

that there can be no color-pn ´ 1q edge incident to 12. So in this case

ωn´1pyq ´ ωn´1pxq “ ´1 ´ 0 “ Mn´2,n´1.

This argument goes through for any entry Mn´k´1,n´k, k “ 1, . . . , n´ 2. A dual

argument, considering succeeding coordinates, goes through for Mn´k`1,n´k,

k “ 1, . . . , n ´ 1. We leave this to the reader.

Since every k-component of Zn is a length-one chain, taking cyx “ dxy “ 1 for

every edge x Ñ y satisfies the DCS relations.

3.5 Example: Fibonaccian lattices

Definition 3.5.1. The Fibonaccian lattice LFib
A pn, kq “ F pn, kq is defined as follows.

1. Vertices of F pn, kq are k-tuples x P Zk such that

a) xi P tnpi ´ 1q ` 1, . . . , niu for each i P rks;

b) if xi “ ni, then xi`1 “ ni ` 1.3

2. F pn, kq is ordered componentwise: x ď y if xi ď yi for each i P rks.

3That is, x contains no consecutive integers.

41

n
r
o
w
s

k
c
o
lu
m
n
s

b 1

1

b 2

b
n− 2

n − 2

b
n− 1

n − 1

b n

b

2n− 1

1

b 2n

b
n+ 3

n − 2

b
n+ 2

n − 1

b
n+ 1

Figure 3.2: The snake rule for F pn, kq.

3. If x, y P F pn, kq, x Ñ y if and only if x and y differ in exactly one component

i P rks, with xi ` 1 “ yi.

4. Edges in F pn, kq are colored by rn´ 1s depending on the value of xi, using the

snake rule diagrammed in Figure 3.2.

5. F pn, kq embeds directly into Zk.

We now reproduce some results in [DDMN20].

Proposition 3.7. The vertex cardinality of F pn, kq is prn`1
1 ´ rn`1

2 q{pr1 ´ r2q, where

r1,2 are respectively the positive and negative roots of x2 ´ nx ´ 1.

Proof. The elements of F pn, k ` 1q come about by appending an extra “space” at

the end of an element of F pn, kq. Clearly there are n possible choices for this space.

However, appending nk ` 1 to those elements of F pn, kq whose last element is nk,

of which there are |F pn, k ´ 1q|, violates the consecutive-integer rule. Clearly every

other choice is valid. Thus

|F pn, k ` 1q| “ n|F pn, kq| ´ |F pn, k ´ 1q|.

The explicit formula then follows from a standard inductive argument4, which we
4It can also be derived using generating functions.

42

leave to the reader.

Corollary 3.2. |F pn, 3q| is the Fibonacci number F2n`2.

Theorem 3.2 (Donnelly-Dunkum). For n ą 1, F pn, kq realizes a representation of

the Lie algebra An´1, whose Cartan matrix is

M :“

»

—

—

—

—

—

—

—

–

2 ´1
´1 2 ´1 0

´1 2
. . .

. ´1

0 ´1 2 ´1
´1 2

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

Proof. See [DDMN20].

Product solitarity of F pn, 3q

In this subsection, we consider the lattices F pn, 3q, depicted in Figure 3.3.

Proposition 3.8. F p3, 3q is product solitary.

Proof. Let π147,157 “ α. Then we can deduce the contents of Table 3.2.

Having done this, the diamond relation π148,149π148,248 “ π248,249π149,249 becomes

8

6 ´ α
¨ p2 ´ αq “

6 ´ α

2 ` α
¨ 1

ðñ 8p2 ´ αqp2 ` αq “ p6 ´ αq2

ðñ 8p4 ´ α2q “ α2 ´ 12α ` 36

ðñ 0 “ 9α2 ´ 12α ` 4 “ p3α ´ 2q2.

Thus α “ 2{3. The remaining coefficients are now uniquely determined as positive

rational numbers, as the reader may verify.

Theorem 3.3. F p4, 3q and F p5, 3q are product solitary.

43

x Ñ y πx,y Justification
247

1
Ñ 248 α Color-1 crossing relation at 247

147
1

Ñ 148 2 ´ α Color-1 crossing relation at 147

148
1

Ñ 248 2 ´ α Color-1 crossing relation at 148

147
2

Ñ 157 1 Length-1 chain
247

2
Ñ 257 2 Length-2 chain

157
1

Ñ 257 α{2 Diamond relation between 157, 257, 147, 247

157
1

Ñ 158 3 ´ α{2 Color-1 crossing relation at 157

257
1

Ñ 258 1 ` α{2 Color-1 crossing relation at 257

158
1

Ñ 258
αp6 ´ αq

4 ` 2α
Diamond relation between 157, 257, 158, 258

148
2

Ñ 158
4 ´ 2α

6 ´ α
Diamond relation between 147, 148, 157, 158

148
2

Ñ 149
8

6 ´ α
Color-2 crossing relation at 148

158
1

Ñ 168
8

2 ` α
Color-1 crossing relation at 158

258
1

Ñ 268
4α

2 ` α
Color-1 crossing relation at 258

168
1

Ñ 268
6 ´ α

2 ` α
Color-1 crossing relation at 268

149
1

Ñ 249 1 Length-1 chain

248
2

Ñ 249
6 ´ α

2 ` α
Left to reader

Table 3.2: Edge coefficient data for F p3, 3q.

Proof by computer. Figures 3.4 and 3.5 were generated by the author by using the

software library SAGE to generate a Groebner basis for the nonlinear system of

equations given by the diamond and crossing relations for each lattice. No other

solutions exist.

Conjecture 3.1. F pn, 3q is product solitary for any n ą 1.

44

b 369

b 368 b 359 b 269

b 358 b 268 b 259
b 169

b 357 b 258 b 249
b168 b 159

b 257 b 248 b 158 b 149

b 247 b 157 b 148

b 147

(a) F p3, 3q. Solid edges are color 1. Dashed edges are color 2.

b 1

b 2

b 2

b 1

b 1

b 2

(b) jpF p3, 3qq.

Figure 3.3: The Fibonaccian lattice F p3, 3q and its poset of join-irreducibles.

45

Figure 3.4: Edge coefficients for F p4, 3q.

46

Figure 3.5: Edge coefficients for F p5, 3q.

47

chapter 4

CATALANIAN LATTICES

This section introduces and proves the author’s main results.

4.1 Gelfand-Tsetlin patterns

Definition 4.1.1. A Gelfand-Tsetlin pattern or just GT pattern of order n is an nˆn

lower triangular matrix with integer entries that satisfies gi`1,j ď gij ď gi`1,j`1 for

any 1 ď j ď i ď n.1

Visually, this says that entries in a GT pattern weakly decrease when moving

northwest or down.

Definition 4.1.2. A GT pattern of order n is symplectic if gnj is even for any j.

Definition 4.1.3. The Catalanian lattice of order n, k LCat
C pn, kq “ C pn, kq is defined

as follows.

1. Vertices of C pn, kq are symplectic GT patterns of order n and maximum entry

2k.

2. C pn, kq is ordered componentwise.

3. If x, y P C pn, kq, x Ñ y if and only if x and y differ in exactly one entry

pi, jq P rns2, with xij ` 1 “ yij if i ă n or xij ` 2 “ yij if i “ n.

4. Edges of C pn, kq are colored by rns according to the value of i.

5. Upon concatenating rows (and dividing the final row by 2), C pn, kq embeds

directly into Zpn
2
q.

1This definition is equivalent to that given in [Sta01] §7.10. We represent GT patterns as matrices
here for ease of computation and typesetting.

48

b

0

0 0

0 0 0

b

0

0 0

0 0 2

b

0

0 1

0 0 2

b

0

0 2

0 0 2 b

1

0 1

0 0 2

b

1

0 2

0 0 2b

0

0 2

0 2 2

b

1

0 2

0 2 2 b

2

0 2

0 0 2

b

2

0 2

0 2 2b

1

1 2

0 2 2

b

2

1 2

0 2 2

b

2

2 2

0 2 2

b

2

2 2

2 2 2

(a) C p3, 1q

b ⊥33,2

b ⊥22,1

b ⊥22,2

b⊥11,1

b⊥11,2
b ⊥32,2

b ⊥21,1

b ⊥21,2

b ⊥31,2

(b) jpC p3, 1qq

Figure 4.1: The Catalanian lattice C p3, 1q and its poset of join-irreducibles.

4.2 The cardinality of C pn, kq

Definition 4.2.1. The Catalan sequence2 tcnu8
n“0 is given by cn “

1

n ` 1

ˆ

2n

n

˙

.

We shall have cause to represent the Catalan numbers in a slightly different form:

Proposition 4.1. cn “ 4n
n

ź

k“1

k ´ 1{2

k ` 1
.

Proof. Hereinafter, define the double factorial n!! :“
tpn´1q{2u

ź

k“0

pn´2kq “ n ¨pn´2q¨ ... ¨1.

We have

cn “
1

n ` 1

ˆ

2n

n

˙

“
p2nq!

n!pn ` 1q!
2The Catalan sequence counts, among other things, the number of valid arrangements of n left

and n right parentheses; that is, the number of permutations in which every left parenthesis has a
matching right parenthesis.

49

“
p2nq!!p2n ´ 1q!!

n!pn ` 1q!

“ 2n
p2n ´ 1q!!

pn ` 1q!

“ 4n
n

ź

k“1

k ´ 1{2

k ` 1
.

In [Don03], it was shown that |C pn, 1q| “ cn. This section generalizes that result.

Theorem 4.1 (Malone). The vertex cardinality of the Catalanian lattice of order

n, k is given by the k ˆ k Hankel determinant

|C pn, kq| “ detM “

∣∣∣∣∣∣∣∣∣
cn cn`1 ¨ ¨ ¨ cn`k´1

cn`1 cn`2 ¨ ¨ ¨ cn`k
...

cn`k´1 cn`k ¨ ¨ ¨ cn`2k´2

∣∣∣∣∣∣∣∣∣ .
If we index this matrix by i, j “ 0, 1, . . . , k ´ 1, then mij, i.e., the ijth entry of M , is

cn`i`j.

Before we prove this theorem, we reproduce, more legibly, a result from [GV89].

Lemma 4.1. detM “

k´1
ź

j“0

p2n ` 2jq!p2j ` 1q!

pn ` j ` 1q!pk ´ 1 ` n ` jq!
.

Proof. First, note that

mij “ cn`i`j “ 4n`i`j
n`i`j
ź

l“1

l ´ 1{2

l ` 1

“ 4i4n`j

˜

n`j
ź

l“1

l ´ 1{2

l ` 1

¸

¨

˜

n`j`i
ź

l“n`j`1

l ´ 1{2

l ` 1

¸

“ 4i4n`j

˜

n`j
ź

l“1

l ´ 1{2

l ` 1

¸

¨

˜

i
ź

l“1

n ` j ` l ´ 1{2

n ` j ` l ` 1

¸

“ 4icn`j

i
ź

l“1

n ` j ` l ´ 1{2

n ` j ` l ` 1

Now consider the n ˆ n matrix N whose ijth entry is

nij “
cn`i`j

4icn`j

“

i
ź

l“1

n ` j ` l ´ 1{2

n ` j ` l ` 1

50

“
Γpn ` j ` i ´ 1{2qΓpn ` j ` 1q

Γpn ` j ´ 1{2qΓpn ` j ` i ` 1q

Applying Gauss’ hypergeometric identity with γ “ n ` j ` 1, α “ ´i, β “ 3{2, we

have

nij “

8
ÿ

r“0

r´1
ź

l“0

pl ´ iqpl ` 3{2q

pl ` n ` j ` 1qpl ` 1q
.

Now if r ´ 1 ´ i ě 0, the product becomes zero. The maximum value of i is k ´ 1, so

the series terminates at or before the point when r ´ 1 “ k ´ 1. Thus it suffices to

cut the series off at r “ k ´ 1, and we have

nij “

k´1
ÿ

r“0

r´1
ź

l“0

pl ´ iqpl ` 3{2q

pl ` n ` j ` 1qpl ` 1q

“

k´1
ÿ

r“0

˜

r´1
ź

l“0

1

l ` n ` j ` 1

¸ ˜

r´1
ź

l“0

pl ´ iqpl ` 3{2q

l ` 1

¸

.

Therefore, N can be written as a matrix product AB, with nij “
ř

r airbrj, where

aij “

j´1
ź

l“0

pl ´ iqpl ` 3{2q

l ` 1
,

bij “

j´1
ź

l“0

1

l ` n ` j ` 1
.

In particular, we have detN “ detA detB. We tackle these determinants separately.

To compute detA, note that aij “ 0 if j ą i; that is, A is lower triangular. Thus

detA “

k´1
ź

i“0

aii “

k´1
ź

i“0

i´1
ź

l“0

pl ´ iqpl ` 3{2q

l ` 1

“

k´1
ź

i“0

˜

p´1qii!

i!

i´1
ź

l“0

l ` 3{2

¸

“

k´1
ź

i“0

p´1qi

˜

i´1
ź

l“0

l ` 3{2

¸

“

k´1
ź

i“0

p´1qi2´i
k´1
ź

i“0

2l ` 3

“

k´1
ź

i“0

p´1qi2´i p2i ` 1q!

i! ¨ 2i

51

“

k´1
ź

i“0

p´1qi4´i p2i ` 1q!

i!
.

To compute detB, note that the maximum value taken on by l is k ´ 2, and write

bij “

śk´2
l“j l ` n ` i ` 1

śk´2
l“0 l ` n ` i ` 1

.

If we factor out the denominator from each row j, then the matrix B looks like this:

B “

˜

k´1
ź

j“0

1
śk´2

l“0 l ` n ` j ` 1

¸

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

k´2
ź

l“0

pl ` n ` 1q ¨ ¨ ¨

k´2
ź

l“0

pl ` n ` k ´ 2 ` 1q

k´2
ź

l“1

pl ` n ` 1q ¨ ¨ ¨

k´2
ź

l“1

pl ` n ` k ´ 2 ` 1q

...
k´2
ź

l“k´2

pl ` n ` 1q ¨ ¨ ¨

k´2
ź

l“k´2

pl ` n ` k ´ 2 ` 1q

k´2
ź

l“k´1

pl ` n ` 1q ¨ ¨ ¨

k´2
ź

l“k´1

pl ` n ` k ´ 2 ` 1q

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

Note that the bottom row is composed of empty products, i.e., 1s, and going

up one row adds one additional term to the product. In addition, this product

is unchanged across columns, except for the value of i. Therefore, subtracting an

appropriate multiple of the bottom row from the penultimate row, we obtain pk `

n ´ 1q, pk ` nq, . . . , p2k ` n ´ 3q. Doing similarly with the antepenultimate row and

the bottom two rows, we obtain pk ` n ´ 1q2, . . . , p2k ` n ´ 3q2. This process can be

repeated for every row without ever changing the determinant. So we conclude that

B has the same determinant as

B1 “

˜

k´1
ź

j“0

1
śk´2

l“0 l ` n ` j ` 1

¸

»

—

—

—

—

—

–

pk ` n ´ 1qk´1 ¨ ¨ ¨ p2k ` n ´ 3qk´1

pk ` n ´ 1qk´2 ¨ ¨ ¨ p2k ` n ´ 3qk´2

...
pk ` n ´ 1q ¨ ¨ ¨ p2k ` n ´ 3q

1 ¨ ¨ ¨ 1

fi

ffi

ffi

ffi

ffi

ffi

fl

.

52

The Vandermonde matrix on the right, whose ijth entry is pk ` n ´ 1 ` jqk´1´i, has

determinant
k´1
ź

i“0

k´1
ź

j“i`1

rpk ` n ´ 1 ` iq ´ pk ` n ´ 1 ` jqs

“

k´1
ź

i“0

k´1
ź

j“i`1

pi ´ jq

“

k´1
ź

i“0

k´1´i
ź

j“1

p´jq

“

k´1
ź

i“0

p´1qk´1´ipk ´ 1 ´ iq!

“

k´1
ź

i“0

p´1qii!.

So we conclude that

detB “

˜

k´1
ź

j“0

1
śk´2

l“0 l ` n ` j ` 1

¸

¨

k´1
ź

i“0

p´1qii!

“

˜

k´1
ź

j“0

pn ` jq!

pk ´ 1 ` n ` jq!

¸

¨

k´1
ź

i“0

p´1qii!,

and thus that

detN “ detA detB

“

˜

k´1
ź

i“0

p´1qi4´i p2i ` 1q!

i!

¸

¨

˜

k´1
ź

j“0

pn ` jq!

pk ´ 1 ` n ` jq!

¸

¨

k´1
ź

i“0

p´1qii!

“

˜

k´1
ź

i“0

p´1qi4´ip2i ` 1q!

¸

¨

˜

k´1
ź

j“0

pn ` jq!

pk ´ 1 ` n ` jq!

¸

.

Now to obtain M from N , we must multiply each row by 4i and each column by

cn`j “
p2n ` 2jq!

pn ` j ` 1q!pn ` jq!
. So we finally obtain

detM “

˜

k´1
ź

i“0

4i

¸

¨

˜

k´1
ź

j“0

p2n ` 2jq!

pn ` j ` 1q!pn ` jq!

¸

¨ detN

“

˜

k´1
ź

i“0

4i

¸

¨

˜

k´1
ź

j“0

p2n ` 2jq!

pn ` j ` 1q!pn ` jq!

¸

¨

˜

k´1
ź

i“0

4´ip2i ` 1q!

¸

53

¨

˜

k´1
ź

j“0

pn ` jq!

pk ´ 1 ` n ` jq!

¸

“

˜

k´1
ź

j“0

p2n ` 2jq!

pn ` j ` 1q!pk ´ 1 ` n ` jq!

¸

¨

˜

k´1
ź

i“0

p2i ` 1q!

¸

“

k´1
ź

j“0

p2j ` 1q!p2n ` 2jq!

pn ` j ` 1q!pk ´ 1 ` n ` jq!
.

Lemma 4.2. |LCat
C pn, kq| “

ˆ

n ` k

k

˙ n
ź

i“1

i!p2k ` 2i ´ 1q!

p2i ´ 1q!p2k ` iq!
.

Proof. [Don18], §8.10, §B.23 gives

|LCat
C pn, kq| “

ˆ

n ` k

k

˙ n
ź

i“1

n´i´1
ź

j“0

2k ` 2n ` 1 ´ 2i ´ j

2n ` 1 ´ 2i ´ j

“

ˆ

n ` k

k

˙ n
ź

i“1

pn ´ i ` 1q!p2k ` 2n ´ 2i ` 1q!

p2n ´ 2i ` 1q!p2k ` n ´ i ` 1q!
.

Making the substitution i1 “ n ´ i ` 1, we obtain

|LCat
C pn, kq| “

ˆ

n ` k

k

˙ n
ź

i“1

i!p2k ` 2i ´ 1q!

p2i ´ 1q!p2k ` iq!
.

Therefore, the proof of the foregoing theorem is a matter of showing that this

expression agrees with the one previously obtained for detM .

Lemma 4.3.
N

ź

k“1

p2k ´ 1q!

pN ` kq!
“

N
ź

k“1

k!

p2kq!
.

Proof. Cross-multiply. Then both sides are equal to
ś2N

k“1 k!.

Theorem 4.2. For all positive integers n, k,
k

ź

i“1

p2n ` 2iq!p2i ´ 1q!

pn ` iq!pn ` i ` kq!
“

ˆ

n ` k

n

˙ n
ź

i“1

i!p2k ` 2i ´ 1q!

p2i ´ 1q!p2k ` iq!
.

Proof. We proceed by induction on the difference k´n in either direction. There will

be two separate inductive cases, each depending on the basis (B) as follows:

n/k 1 2 3 4 5
1 B Ð Ð Ð Ð

2 Ñ B Ð Ð Ð

3 Ñ Ñ B Ð Ð

4 Ñ Ñ Ñ B Ð

5 Ñ Ñ Ñ Ñ B

54

Basis: k ´ n “ 0. So k “ n and we must show
n

ź

i“1

p2n ` 2iq!p2i ´ 1q!

pn ` iq!p2n ` iq!
“

ˆ

2n

n

˙ n
ź

i“1

i!p2n ` 2i ´ 1q!

p2i ´ 1q!p2n ` iq!
.

Applying Lemma 4.3 to the left-hand side, with N “ n, k “ i, we obtain
n

ź

i“1

p2n ` 2iq!p2i ´ 1q!

pn ` iq!p2n ` iq!
“

n
ź

i“1

i!p2n ` 2iq!

p2iq!p2n ` iq!

“

n
ź

i“1

ˆ

i!p2n ` 2i ´ 1q!

p2i ´ 1q!p2n ` iq!
¨
2n ` 2i

2i

˙

“

n
ź

i“1

i!p2n ` 2i ´ 1q!

p2i ´ 1q!p2n ` iq!
¨

n
ź

i“1

n ` i

i

“

ˆ

2n

n

˙ n
ź

i“1

i!p2n ` 2i ´ 1q!

p2i ´ 1q!p2n ` iq!
,

which was to be shown.

Inductive case 1: k ´ n ą 0. Assume inductively that the theorem holds for

k “ n ` r, r “ 0, 1, Explicitly, assume
n`r
ź

i“1

p2n ` 2iq!p2i ´ 1q!

pn ` iq!p2n ` i ` rq!
“

ˆ

2n ` r

n

˙ n
ź

i“1

i!p2n ` 2r ` 2i ´ 1q!

p2i ´ 1q!p2n ` 2r ` iq!
.

We must show that the theorem holds for k “ n ` r ` 1; explicitly, that
n`r`1
ź

i“1

p2n ` 2iq!p2i ´ 1q!

pn ` iq!p2n ` i ` r ` 1q!
“

ˆ

2n ` r ` 1

n

˙ n
ź

i“1

i!p2n ` 2r ` 2i ` 1q!

p2i ´ 1q!p2n ` 2r ` i ` 2q!
.

By the inductive hypothesis, it suffices to show that the quotient of the k “ n` r ` 1

case by the k “ n ` r case on both sides is equal.

On the left, we have

p4n ` 2r ` 2q!p2n ` 2r ` 1q!

p2n ` r ` 1q!
¨

śn`r`1
i“1 p1{2n ` i ` r ` 1q!q
śn`r

i“1 p2n ` i ` r ` 1q!

“
p4n ` 2r ` 2q!p2n ` 2r ` 1q!

p2n ` r ` 1q!p3n ` 2r ` 2q!
¨

śn`r
i“1 p2n ` i ` rq!

śn`r
i“1 p2n ` i ` r ` 1q!

“
p4n ` 2r ` 2q!p2n ` 2r ` 1q!

p2n ` r ` 1q!p3n ` 2r ` 2q!
¨

n`r
ź

i“1

1

2n ` i ` r ` 1

“
p4n ` 2r ` 2q!p2n ` 2r ` 1q!

p2n ` r ` 1q!p3n ` 2r ` 2q!
¨

p2n ` r ` 1q!

p3n ` 2r ` 1q!

55

“
p4n ` 2r ` 2q!p2n ` 2r ` 1q!

p3n ` 2r ` 1q!p3n ` 2r ` 2q!
.

On the right, we have
`

2n`r`1
n

˘

`

2n`r
n

˘ ¨

n
ź

i“1

n
ź

i“1

p2n ` 2r ` 2i ` 1q!p2n ` 2r ` iq!

p2n ` 2r ` 2i ´ 1q!p2n ` 2r ` i ` 1q!

“
2n ` r ` 1

n ` r ` 1
¨

n
ź

i“1

p2n ` 2r ` 2i ` 1qp2n ` 2r ` 2iq

p2n ` 2r ` i ` 2qp2n ` 2r ` i ` 1q

Turning the terms depending on 2i into double factorials and the other terms into

single factorials, we have

“
2n ` r ` 1

n ` r ` 1
¨

p4n ` 2r ` 1q!!p4n ` 2rq!!

p2n ` 2r ` 1q!!p2n ` 2rq!!
¨

p2n ` 2r ` 2q!p2n ` 2r ` 1q!

p3n ` 2r ` 2q!p3n ` 2r ` 1q!

“
2n ` r ` 1

n ` r ` 1
¨

p4n ` 2r ` 1q!

p2n ` 2r ` 1q!
¨

p2n ` 2r ` 2q!p2n ` 2r ` 1q!

p3n ` 2r ` 2q!p3n ` 2r ` 1q!

“
2n ` r ` 1

n ` r ` 1
¨

p4n ` 2r ` 1q!p2n ` 2r ` 2q!

p3n ` 2r ` 2q!p3n ` 2r ` 1q!

“
4n ` 2r ` 2

2n ` 2r ` 2
¨

p4n ` 2r ` 1q!p2n ` 2r ` 2q!

p3n ` 2r ` 2q!p3n ` 2r ` 1q!

“
p4n ` 2r ` 2q!p2n ` 2r ` 1q!

p3n ` 2r ` 2q!p3n ` 2r ` 1q!
.

This completes the first inductive case.

Inductive case 2: k ´ n ă 0. This proceeds analogously to the previous inductive

case, except the induction runs backwards.

Assume inductively that the theorem holds for k “ n ´ r, r “ 0, 1, . . . , n ´ 2.

Explicitly, assume

n´r
ź

i“1

p2n ` 2iq!p2i ´ 1q!

pn ` iq!p2n ` i ´ rq!
“

ˆ

2n ´ r

n

˙ n
ź

i“1

i!p2n ´ 2r ` 2i ´ 1q!

p2i ´ 1q!p2n ´ 2r ` iq!

We must show that the theorem holds for k “ n ´ r ´ 1; explicitly,

n´r´1
ź

i“1

p2n ` 2iq!p2i ´ 1q!

pn ` iq!p2n ` i ´ r ´ 1q!
“

ˆ

2n ´ r ´ 1

n

˙ n
ź

i“1

i!p2n ´ 2r ` 2i ´ 3q!

p2i ´ 1q!p2n ´ 2r ` i ´ 2q!

As before, we show that the quotient of the n ´ r case by the n ´ r ´ 1 case is the

same on both sides.

56

On the left, we have:

p4n ´ 2rq!p2n ´ 2r ´ 1q!

p2n ´ rq!
¨

śn´r
i“1 p1{p2n ` i ´ rq!q

śn´r´1
i“1 p1{p2n ` i ´ r ´ 1q!q

“
p4n ´ 2rq!p2n ´ 2r ´ 1q!

p2n ´ rq!
¨

śn´r´1
i“1 p2n ` i ´ r ´ 1q!
śn´r

i“1 p2n ` i ´ rq!

“
p4n ´ 2rq!p2n ´ 2r ´ 1q!

p2n ´ rq!p3n ´ 2rq!
¨

śn´r´1
i“1 p2n ` i ´ r ´ 1q!
śn´r´1

i“1 p2n ` i ´ rq!

“
p4n ´ 2rq!p2n ´ 2r ´ 1q!

p2n ´ rq!p3n ´ 2rq!
¨

n´r´1
ź

i“1

1

2n ` i ´ r

“
p4n ´ 2rq!p2n ´ 2r ´ 1q!

p2n ´ rq!p3n ´ 2rq!
¨

p2n ´ rq!

p3n ´ 2r ´ 1q!

“
p4n ´ 2rq!p2n ´ 2r ´ 1q!

p3n ´ 2rq!p3n ´ 2r ´ 1q!
.

And on the right, we have
`

2n´r
n

˘

`

2n´r´1
n

˘ ¨

n
ź

i“1

p2n ´ 2r ` 2i ´ 1q!p2n ´ 2r ` i ´ 2q!

p2n ´ 2r ` 2i ´ 3q!p2n ´ 2r ` iq!

“
2n ´ r

n ´ r
¨

n
ź

i“1

p2n ´ 2r ` 2i ´ 1qp2n ´ 2r ` 2i ´ 2q

p2n ´ 2r ` iqp2n ´ 2r ` i ´ 1q

“
2n ´ r

n ´ r
¨

p4n ´ 2r ´ 1q!!p4n ´ 2r ´ 2q!!

p2n ´ 2r ´ 1q!!p2n ´ 2r ´ 2q!!
¨

p2n ´ 2rq!p2n ´ 2r ´ 1q!

p3n ´ 2rq!p3n ´ 2r ´ 1q!

“
2n ´ r

n ´ r
¨

p4n ´ 2r ´ 1q!

p2n ´ 2r ´ 1q!
¨

p2n ´ 2rq!p2n ´ 2r ´ 1q!

p3n ´ 2rq!p3n ´ 2r ´ 1q!

“
2n ´ r

n ´ r
¨

p4n ´ 2r ´ 1q!p2n ´ 2rq!

p3n ´ 2rq!p3n ´ 2r ´ 1q!

“
4n ´ 2r

2n ´ 2r
¨

p4n ´ 2r ´ 1q!p2n ´ 2rq!

p3n ´ 2rq!p3n ´ 2r ´ 1q!

“
p4n ´ 2rq!p2n ´ 2r ´ 1q!

p3n ´ 2rq!p3n ´ 2r ´ 1q!

This completes the proof.

4.3 Product solitarity of C pn, kq

In this section, we show the following result.

57

Theorem 4.3 (Dunkum-Donnelly-Malone). If there exists a set of positive, ratio-

nal, and DCS-satisfactory coefficients for the lattice C pn, kq, then C pn, kq is product

solitary.

Key to this result is a lemma appearing in [GT50].

Lemma 4.4 (Gelfand-Tsetlin 1950). A color-k component of C pn, kq, k “ 1, . . . , n´1,

realizes a representation of the Lie algebra Ak. Furthermore, the edge coefficients are

uniquely determined as positive rationals.

Proof of Theorem 4.3. By Lemma 4.4, any component of color 1, . . . , n´1 is product

solitary.

We induct over color-n components. First we must assign an integer spCq to each

color-n component. Observe that all vertices of a given color-n component differ only

in the nth row. Therefore, if p ă n, then cp,q is identical for every c P C. The quantity

we induct over will be the sum of these identical entries spCq :“
řn´1

p“1

řp
q“1 cp,q.

Basis, spCq “ 0. In this case, the nth row must be all zeros, with the exception of

the bottom right entry, which must be one of 0, 2, . . . , 2k. So C is a chain of length k,

and its edge coefficients are uniquely determined positive rational numbers, as shown

previously.

Induction. Assume inductively that for some nonnegative integer S, if C is a

color-n component and spCq ď S, then C is product solitary.

Suppose we have a component C with spCq “ S`1. Let K “ minC. Let r P rns be

the index of the first column for which Kn,r “ xn,r for some x P C. Then F “ Cpn,rq,Kn,r

is a face of C; we claim its edge products are uniquely determined positive rationals.

List the identical elements of C by columns, left-to-right and bottom-to-top; i.e.,

cn´1,1, cn´2,1, . . . , c1,1; cn´1,2, . . . , c2,2; . . . cn´1,n´1.

Since spCq ą 0, there is a nonzero entry in this list. Let cp,q be the first nonzero entry.

For any x P F , x is pp, qq-decrementable, since otherwise cp,q would equal one of cp`1,q

58

or cp´1,q´1, both of which precede it in the list. Therefore if x n
Ñ y for x, y P F , there

must be edges x1 p
Ñ x, y1 p

Ñ y, and x1 n
Ñ y1. Now we have the following.

1. πx1,y1 is uniquely determined as a positive rational by the inductive assumption,

since x1 n
Ñ y1 belongs to an n-component C 1 with spC 1q “ S.

2. πx,x1 and πy,y1 are uniquely determined as positive rationals by Lemma 4.4.

3. πx,y is uniquely determined as a positive rational by the diamond relation at

x1 Ñ x Ñ y, x1 Ñ y1 Ñ y.

Now, in view of Proposition 3.1, C is product solitary. This completes the induction.

We close this chapter with the natural counterpart to a uniqueness theorem.

Conjecture 4.1. There exists a set of positive rational DCS-satisfactory coefficients

for C pn, kq.

In theory, the inductive framework used in Theorem 4.3 should hold. However, it is

unknown whether nonpositive numbers arise while carrying out the process described

in the proof of Proposition 3.1. In other words, the following question is open.

Question. Let C be a chain-factorizable monochromatic lattice. Let F be a face of

C, and suppose a set ΠF of positive rational edge products for F is known a priori.

Under what conditions does ΠF propagate to a set of positive rational edge products

for C?

59

chapter 5

PATHS AND TABLEAUX

5.1 Motzkin paths

Definition 5.1.1. A topside peakless Motzkin path of length n is a sequence tpiu
n
i“1

such that for each 1 ď i ď n,

1. pi P t´1, 0, 1u;

2.
ři

k“1 pk ě 0;

3. if pi´1 “ 1, pi “ ´1,

and for which
řn

i“1 pi “ 0.

By calling tpiu
n
i“1 a “path,” we mean to identify it with the series of points

tpi,
ři

k“1 pkquni“1. The above definition then says that the path goes from p0, 0q to

pn, 0q; that it remains on or above the x-axis (topside); and that no step Õ is imme-

diately followed by a step Œ (peakless).

There are four topside peakless Motzkin paths of length 4, depicted in Figure 5.1.

Proposition 5.1. Denote the number of topside peakless Motzkin paths of length n

by Pn. Then we have the recurrence

Pn “

$

’

’

&

’

’

%

1, n “ 0

Pn´1 `
řn

i“3 Pi´2Pn´i, n “ 1, 2, . . .

.

Proof. It is obvious that P0 “ 1. Consider an arbitrary path of length n ą 0. Consider

the first index i at which
ři

k“1 pk “ 0, and let Pnpiq be the number of length-n paths

for which this occurs given some choice of i. Clearly i is well-defined for any path, so

Pn “
řn

i“1 Pnpiq.

60

b b b b b b b

b b

b

b

b b

b b b

b b b

b

Figure 5.1: The four topside peakless Motzkin paths of length 4.

1. If i “ 1, then p1 “ 0, and tpkunk“2 is a valid path of length n´1, so Pnp1q “ Pn´1.

2. Pnp2q “ 0. (Why?)

3. Otherwise, 3 ď i ď n, and the subpaths Q “ tpkuik“1 and R “ tpkunk“i`1

are themselves two valid paths of lengths i and n ´ i respectively. Since by

hypothesis i was the first index at which
ři

k“1 pk “ 0, Q1 “ tpkui´1
k“2 is also a

valid path of length i´ 2. Since the choices of Q1 and R are completely free, we

have Pnpiq “ Pi´2Pn´i.

This completes the proof.

The sequence Pn is A004148 in the OEIS [oei] and runs 1, 1, 1, 2, 4, 8, 17, 37, ….

5.2 Littlewood-Richardson tableaux

Definition 5.2.1. Let P,Q P Zn be weakly decreasing n-tuples of nonnegative in-

tegers with pi ą qi for each i P rns. A Littlewood-Richardson tableau of shape P {Q

is an assignment of 1, 2, or 3 to each empty square in a diagram such as Figure 5.2

satisfying the following conditions:

1. each row is weakly increasing, read left to right;

61

2. each column is strongly increasing, read top to bottom;

3. when following the diagram by rows, right to left, top to bottom, it is always

true that the count of 1s is at least the count of 2s is at least the count of 3s.

...

Figure 5.2: An example (unfilled) tableau. There are pi total spaces on the ith row,
qi of which are unfilled.

We will mainly be concerned with tableaux of the shape pn, n´ 1, n´ 3, . . . q{pn´

2, n´ 4, . . . q. (The dots indicate that the shape vector entries decrease to zero rather

than becoming negative.) When n “ 4, there are four valid LR tableaux of this shape,

depicted in Figure 5.3.

1 1

1 1 2

2

1 1

1 1 2

3

1 1

1 2 2

2

1 1

1 2 2

3

Figure 5.3: The four valid LR tableaux for n “ 4.

5.3 Equinumeracy?

The alert reader will notice that the sequence that counts peakless Motzkin paths

also apparently counts LR tableaux of the shape pn, n ´ 1, n ´ 3q{pn ´ 2, n ´ 4, . . . q.

Conjecture 5.1. For any n ě 0, the number of LR tableaux of the given shape is

given by Pn.

This is confirmed computationally (see Chapter 6) up to at least n “ 26 (at which

both sequences number 560954047.)

62

One possible attack on this conjecture is as follows. Define the maximal prefix

of any LR tableau to be the largest n such that the first 1, 2, . . . , n columns of the

tableau (read from left to right) themselves form a valid tableau. Necessarily, if the

maximal prefix is less than n, taking the first n ` 1 columns must violate one of the

LR conditions.

The reader may verify that the tableaux in Figure 5.3 above, from left to right,

have maximal prefixes 4, 0, 1, and 0. It is clear that exactly one tableau, the one

given by taking the smallest allowable choice for each number, has maximal prefix n.

Observe that exactly 2 “ 4 ´ 2 “ P4 ´ P3 tableaux have maximal prefix 0; exactly

1 “ P3 ´ P2 tableau has maximal prefix 1; and 0 “ P2 ´ P1 “ P1 ´ P0 tableaux have

maximal prefix 2 or 3.

Conjecture 5.2. The number of n-column LR tableaux having maximal prefix k “

0, 1, . . . , n ´ 1 is given by Pn´k ´ Pn´k´1.

Since the maximal prefix is well-defined, this would immediately imply Conjecture

5.1. There is also computational evidence to support this pattern.

Since we have Pn´k ´ Pn´k´1 “
řn´k

i“3 Pi´2Pn´k´i, a characterization of a tableau

having maximal prefix k as a concatenation of two freely chosen tableaux of the

appropriate lengths, in the spirit of Proposition 5.1, would suffice.

63

chapter 6

COMPUTATIONAL METHODS

This chapter outlines the Python code provided in Appendix A.

6.1 Overview of the dc-lattices library

In this section we describe the contents of each file listed in Appendix A.

1. dc_lattice.py contains the abstract initialization and population routines for

generic DCDLs. We model a DCDL as a graph using the networkx library.

2. incremental_lattice.py overrides some methods in dc_lattice.py to handle

generic incremental lattices (which, it should be noted, includes every example

in this thesis.)

3. boolean_lattice.py, zps_lattice.py, and fibonacci_lattice.py implement

the lattices described in Chapter 3.

4. catalan_lattice.py implements the lattices described in Chapter 4.

5. gt_pattern.py contains routines to generate all Gelfand-Tsetlin patterns of a

prescribed size using a standard backtracking search.1

6. lr_tableaux.py contains routines to generate all Littlewood-Richardson tab-

leaux of the shape described in Chapter 5, again using backtracking search.

7. eppstein_layout.py is described in the next section.

6.2 Drawing incremental lattices

Most of the figures in this document were generated by the networkx and matplotlib

libraries, using in particular the force-directed graph drawing algorithm (see [KK89].)
1Nota bene: The constructor for CatalanLattice assumes the second argument is 2k, not k.

Calling, for instance, CatalanLattice(3, 1) will not work.

64

Implementation details appear in the file dc_lattice.py under the method draw().

Eppstein’s graph drawing algorithm

We also implement an algorithm due to [EFO08] that is tailored specifically to incre-

mental lattices, which Eppstein calls media. Implementation details appear in the

file eppstein_layout.py.

The idea is to linearly project a graph G onto Z2; that is, to produce vectors

x,y P Zn so that, given an embedding ϕ : G Ñ Zn of G, the vertex v P G is

positioned at x ¨ ϕpvq,y ¨ ϕpvq.

We would like to choose x and y so as to satisfy the following properties:

1. The entries of x and y should be distinct, so that the product structure of the

graph is made apparent in the projection; that is, graph edges which correspond

to increments in the same coordinate should be represented by the same vector.

2. Collinear edges should not overlap.

3. No edge should come within a fixed distance d of any vertex to which it is not

incident.

Eppstein accomplishes this as follows. Fix an embedding ϕ : G Ñ Zn and let its

components be denoted by ϕ1, . . . , ϕn. Note that the pullback ϕ´1
k rjs is simply the

k-slice through j. Now define

xk “

$

’

’

’

’

&

’

’

’

’

%

0, k “ 1

max
ϕ´1
k rjs“∅

ϕ´1
k rj´1s“∅

˜

min
vPϕ´1

k rjs

k´1
ř

i“1

xiϕipvq ´ max
vPϕ´1

k rj´1s

k´1
ř

i“1

xiϕipvq

¸

` d, 1 ă k ď n;

yk “

$

’

’

’

’

&

’

’

’

’

%

0, k “ n

max
ϕ´1
k rjs“∅

ϕ´1
k rj´1s“∅

˜

min
vPϕ´1

k rjs

n
ř

i“k`1

yiϕipvq ´ max
vPϕ´1

k rj´1s

n
ř

i“k`1

yiϕipvq

¸

` d, 1 ď k ă n.

65

These values generally must be computed recursively. Intuitively, the quantity

inside the parentheses is the amount by which the consecutive k-slices ϕ´1
k rj ´ 1s,

ϕ´1
k rjs would overlap if G were projected with all of xk, xk`1, . . . , xn (or yk, yk´1, . . . , y1)

set to zero. Thus, setting Xk (or Yk) to that value plus d guarantees d units of

separation.

6.3 Certifying product solitarity

By certifying the product solitarity of a given DCDL L, we mean to answer the

following question. Suppose a set of positive rational edge products exist for L. What

is the largest subset of L with verifiably unique edge products?2

The algorithm we use, which is implemented in dc_lattice.py under the routines

solvable_from() and solvable_subgraph(), is fairly crude. It relies on three facts

which we have already shown:

1. The set of edge products for a chain are uniquely determined.

2. Once the edge products for one face of a monochromatic component are uniquely

determined, the edge products for the entire component are.

3. Once the edge products on three edges of a diamond are determined, so is the

fourth.

It proceeds as follows.

1. Initialize a queue Q of known-solvable edges, and a list S of “visited” solved

edges.

2. Push any edges known a priori onto Q.

3. Determine all chains. Push their edges onto Q.

4. If Q is empty, halt and return S.

5. Pop an edge e from Q. Add it to S.
2Note that we need not actually calculate these edge products.

66

6. Check if the component e belongs to has a solvable face. If so, push all of that

component’s edges onto Q.

7. Check for any diamonds having three edges in S. If any are found, add those

diamonds’ fourth edges to Q.

8. Set Q “ QzS.

9. Go to 4.

The foregoing facts assure that at any stage during the execution of this algorithm,

the set S consists only of edges with uniquely determined products. It should also be

clear that this algorithm halts, since step 8 ensures that any edge is handled at most

once.

Note that this algorithm does not find a maximal subset on which edge products

are uniquely determined. For instance, while F p3, 3q is product solitary, this fact

depends on the zero discriminant of a quadratic equation arising from a diamond rela-

tion, which is not one of the criteria used by the algorithm. So calling solvable_from

on F p3, 3q without any known edges fails. However, if the edge product π147,157 is

assumed known, the routine succeeds.

Some further improvements to this code should be fairly straightforward. For

instance, the framework provided should make it simple to actually calculate the

edge products. Doing so may provide empirical insight into the question asked at the

end of Chapter 4. It should also be easy to produce interactive visualizations of the

lattices generated, perhaps using an appropriate JavaScript library.

67

BIBLIOGRAPHY

[DDMN20] Robert G. Donnelly, Molly W. Dunkum, Sasha V. Malone, and Alexandra

Nance. Symmetric Fibonaccian distributive lattices and representations

of the special linear Lie algebras. In preparation, 2020.

[Don03] Robert G. Donnelly. Extremal properties of bases for representations of

semisimple Lie algebras. Journal of Algebraic Combinatorics, 17, 2003.

[Don18] Robert G. Donnelly. Poset models for Weyl group analogs of symmetric

functions and Schur functions, 2018.

[EFO08] David Eppstein, Jean-Claude Falmagne, and Sergei Ovchinnikov. Media

Theory: Interdisciplinary Applied Mathematics, chapter 11. Springer-

Verlag, 2008.

[EW06] Karin Erdmann and Mark J. Wildon. Introduction to Lie algebras.

Springer-Verlag, 2006.

[GT50] Israel M. Gelfand and Michael L. Tsetlin. Finite-dimensional representa-

tions of the group of unimodular matrices. 71:825–8, 1950.

[GV89] Ira M. Gessel and Xavier G. Viennot. Determinants, paths and plane

partitions. Unpublished preprint, 1989.

[Hum72] James E. Humphreys. Introduction to Lie algebras and representation

theory. Springer-Verlag, 1972.

[KK89] Tomihisa Kamada and Satoru Kawai. An algorithm for drawing general

undirected graphs. Information Processing Letters, 31, 1989.

68

[oei] The Online Encyclopedia of Integer Sequences. http://oeis.org/A004148.

[Pro82] Robert A. Proctor. Solution of two difficult combinatorial problems with

linear algebra. American Mathematical Monthly, 89(10), 1982.

[Sta97] Richard P. Stanley. Enumerative Combinatorics, volume 1. Cambridge

University Press, 1997.

[Sta01] Richard P. Stanley. Enumerative Combinatorics, volume 2. Cambridge

University Press, 2001.

69

http://oeis.org/A004148

appendix a

THE DC-LATTICES LIBRARY

This code is up to date as of November 16, 2020. A more recent revision may be

available at gitlab.com/sverona/thesis.

Listing A.1: dc_lattice.py
#!/usr/bin/env python3

""" Computationally models generic diamond-crossing ("DC") lattices.
"""
from itertools import combinations

import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt
import networkx as nx

class DCLattice(nx.Graph):
def __init__(self):

super().__init__()

self.add_edges_from(self.generate_edges())

def generate_vertices(self):
"""Should be overridden.
"""
pass

def potential_children(self, vertex):
"""Should be overridden.
"""
pass

def generate_edges(self):
"""Generate all edges in this lattice.
"""
for vertex in self.generate_vertices():

for potential_child in self.potential_children(
vertex

):
if self.is_valid_label(potential_child):

yield (
vertex,
potential_child ,
{

"color": self.edge_color(
vertex, potential_child

)
},

)

def edge_color(self, vertex1, vertex2):

70

"""Return the color the edge between `vertex1` and `vertex2`
should have, or None

if they are nonadjacent.

Should be overridden.
"""
pass

def solvable_from(self, edge):
sc = self.solvable_subgraph(edge)

remaining_nodes = self.nodes() - sc.nodes()
remaining_edges = self.edges() - sc.edges()
solvable = not (remaining_nodes or remaining_edges)

if not solvable:
print("Remaining vertices:")
for node in remaining_nodes:

print("\t", node)
print("Remaining edges:")
for edge in remaining_edges:

print("\t", edge)

return solvable

def solvable_subgraph(self, edge, return_order=False):
total_edges = len(self.edges())
solvable_edges = []

Q = []

unsolved_diamonds = list(self.diamonds())

def push(Q, edge):
edge = (min(edge), max(edge))

if edge not in Q and edge not in solvable_edges:
return [edge] + Q

else:
return Q

if edge:
Q = push(Q, edge)

for chain in self.chains():
for edge in chain.edges():

print("Pushing chain edge", edge)
Q = push(Q, edge)

while Q:
"""
print("Q is:")
for edge in Q:

print(edge)
print()

print("solvable is:")
for edge in solvable_edges:

print(edge)
print()
"""
edge = Q.pop()
print("Popping", edge, len(solvable_edges), "/",

total_edges , len(unsolved_diamonds))
solvable_edges.append(edge)

71

Check if edge's component is solvable.
component = self.component(

min(edge), self.edge_color(*edge)
)

def component_is_solvable_now(component):
for face in self.faces(component):

edges = face.edges()
edges = [

(min(edge), max(edge))
for edge in edges

]

if not set(edges) - set(solvable_edges):
return True

return False

if component_is_solvable_now(component):
for edge in component.edges():

print("Pushing solvable component edge", edge)
Q = push(Q, edge)

Check for solvable diamonds.
for diamond in unsolved_diamonds:

top, left, right, bottom = diamond
diamond_edges = set(

(
(top, left),
(top, right),
(left, bottom),
(right, bottom),

)
)

unsolved_edges = list(
diamond_edges - set(solvable_edges)

)

if len(unsolved_edges) == 1:
print("Pushing lone diamond edge", edge)
Q = push(Q, unsolved_edges[0])
unsolved_diamonds.remove(diamond)

if return_order:
return solvable_edges

return nx.Graph(solvable_edges)

def colors(self):
"""Should be overridden.
"""
pass

def diamonds(self):
for vertex in self:

yield from self.diamonds_at_vertex(vertex)

def diamonds_at_vertex(self, vertex):
covers = [

nbr for nbr in self[vertex] if nbr > vertex
]
for left, right in combinations(covers, 2):

yield (
vertex,
left,
right,

72

self.meet(left, right),
)

def meet(self, vertex, neighbor):
"""Should be overridden.
"""
pass

def join(self, vertex, neighbor):
"""Should be overridden.
"""
pass

def coordinates(self, vertex):
return vertex

def chains(self):
"""Return an iterator over all chains in this lattice.

A color-component is a chain iff its vertex cardinality exceeds
its

edge cardinality by one.
"""

chain_list = set()

for vertex in self:
for color in self.colors():

component = self.component(vertex, color)
if (

len(component)
== len(component.edges()) + 1

):
chain_list.add(component)

return chain_list

def breadth_first_search(self, node, key, graph=None):
if not graph:

graph = self

found = set()
found_edges = []
frontier = set([node])

while frontier:
next_frontier = set()
for fnode in frontier:

found.add(fnode)

for fnbr in graph[fnode]:
if fnbr not in found:

if key(fnode, fnbr):
if fnode < fnbr:

found_edges.append(
(fnode, fnbr)

)
else:

found_edges.append(
(fnbr, fnode)

)
next_frontier.add(fnbr)

frontier = next_frontier

found_edges = list(set(found_edges))

73

return nx.Graph(graph).subgraph(found)
return nx.Graph(found_edges)

def component(self, node, color):
"""Return the `color`-component in which `node` lies.
"""

def search_key(fnode, fnbr):
return self.edge_color(fnode, fnbr) == color

return self.breadth_first_search(node, search_key)

def coord(self, vertex1, vertex2):
return min(

i
for i in range(len(vertex1))
if vertex1[i] != vertex2[i]

)

def chain_factorization(self, component):
"""Return a chain factorization of `component `.
"""

if not component:
return [tuple()]

chains = [
[(min(component), nbr)]
for nbr in component[min(component)]

]

edge_added = True
while edge_added:

edge_added = False
for chain in chains:

tip = chain[-1][-1]

for candidate_vtx in component[tip]:
if candidate_vtx > tip:

candidate_edge = (
tip,
candidate_vtx ,

)
matching_edges = set(

tuple(edge)
for chain2 in chains
for edge in chain2
if self.coord(*edge)
== self.coord(*candidate_edge)
and chain2 != chain

)
if not matching_edges:

edge_added = True
chain.append(candidate_edge)

return tuple(tuple(chain) for chain in chains)

def chain_changes(self, component):
cf = self.chain_factorization(component)

changes = [
set(self.coord(*e) for e in chain)
for chain in cf

]

return changes

74

def faces(self, component):
if not component:

return []

top, bot = min(component), max(component)

changes = self.chain_changes(component)

for change in changes:

def search_key(fnode, fnbr):
return self.coord(fnode, fnbr) not in change

yield self.breadth_first_search(
top, search_key , graph=component

)
yield self.breadth_first_search(

bot, search_key , graph=component
)

def vertex_weight(self, node):
"""Return the weight of `node` in this lattice.
"""
weight = []
for color in self.colors():

component = self.component(node, color)
ranks = [self.rank(node) for node in component]
top_rank , bottom_rank = min(ranks), max(ranks)

rank = top_rank - self.rank(node)
depth = self.rank(node) - bottom_rank

this_weight = rank - depth
weight.append(this_weight)

return tuple(weight)

def node_label(self, node):
return "".join(str(c) for c in node)

def draw(self, eppstein=False, coordinates=None, cmap="Blues"):
if coordinates is None:

coordinates = self.coordinates

if eppstein:
from eppstein_layout import eppstein_layout

pos = eppstein_layout(
self, coordinates=coordinates

)
else:

pos = nx.kamada_kawai_layout(self)

cmap = plt.cm.get_cmap(cmap, len(self.colors()))

node_labels = {v: self.node_label(v) for v in self}

edge_colors = {
(v1, v2): c
for v1, v2, c in self.edges(data="color")

}

nx.draw_networkx(
self,
pos,

75

edge_color=edge_colors.values(),
edge_cmap=cmap,
vmin=min(self.colors()),
vmax=max(self.colors()),
node_size=0,
labels=node_labels ,
font_size=8,
font_family="serif",

)

sm = plt.cm.ScalarMappable(
cmap=cmap,
norm=plt.Normalize(

vmin=min(self.colors()) - 1,
vmax=max(self.colors()),

),
)

cbar = plt.colorbar(
sm, ticks=[c - 0.5 for c in self.colors()]

)

cbar.ax.set_yticklabels(
[str(x) for x in self.colors()]

)

plt.show()

Listing A.2: incremental_lattice.py
from dc_lattice import DCLattice

class IncrementalLattice(DCLattice):
def __init__(self):

super().__init__()

def potential_children(self, vertex):
for idx, value in enumerate(vertex):

vertexcopy = [x for x in vertex]
vertexcopy[idx] += 1

yield tuple(vertexcopy)

def meet(self, vertex1, vertex2):
return tuple(max(x) for x in zip(vertex1, vertex2))

def join(self, vertex1, vertex2):
return tuple(min(x) for x in zip(vertex1, vertex2))

def edge_color(self, vertex1, vertex2):
for idx, value in enumerate(vertex1):

if abs(vertex1[idx] - vertex2[idx]) == 1:
return idx + 1

return None

def is_adjacent(self, vertex1, vertex2):
for idx, value in enumerate(vertex1):

if abs(vertex1[idx] - vertex2[idx]) == 1:
return True

return False

76

Listing A.3: boolean_lattice.py
#!/usr/bin/env python3

from itertools import product

from incremental_lattice import IncrementalLattice

class BooleanLattice(IncrementalLattice):
def __init__(self, n):

self.n = n

super().__init__()

def generate_vertices(self):
yield from product([0, 1], repeat=self.n)

def colors(self):
return range(self.n)

def is_valid_label(self, potential_child):
return len(potential_child) == self.n and all(

i in [0, 1] for i in potential_child
)

def edge_color(self, vertex1, vertex2):
return min(

i
for i in range(len(vertex1))
if vertex1[i] != vertex2[i]

)

Listing A.4: zps_lattice.py
#!/usr/bin/env python3

from itertools import product

from incremental_lattice import IncrementalLattice

class ZPSLattice(IncrementalLattice):
def __init__(self, n):

self.n = n

super().__init__()

def generate_vertices(self):
for bools in product([True, False], repeat=self.n):

members = [
x if b else 0
for x, b in zip(range(1, self.n + 1), bools)

]

members = tuple(sorted(members))
yield members

def colors(self):
return range(1, self.n + 1)

def is_valid_label(self, potential_child):
for idx in range(self.n - 1):

if potential_child[idx] not in range(
0, self.n + 1

77

):
return False

if (
0
< potential_child[idx]
== potential_child[idx + 1]

):
return False

if (
potential_child[idx]
> potential_child[idx + 1]

):
return False

if potential_child[-1] not in range(0, self.n + 1):
return False

return True

def edge_color(self, vertex1, vertex2):
diff_idx = min(

i
for i in range(len(vertex1))
if vertex1[i] != vertex2[i]

)

min_coord = min(
vertex1[diff_idx], vertex2[diff_idx]

)

return self.n - min_coord

Listing A.5: fibonacci_lattice.py
#!/usr/bin/env python3

"""Computationally models the Fibonaccian lattice $$L_A^{Fib}(n + 1, k).
$$

Throughout , we refer to the parameters $$n + 1$$, $$k$$ as the _width_
and _length_.

"""

from itertools import product, starmap

from incremental_lattice import IncrementalLattice

class FibonacciLattice(IncrementalLattice):
def __init__(self, n, k):

self.width = n
self.length = k

super().__init__()

def generate_vertices(self):
r"""Return all vertices in this lattice.
A vertex of $$L_A^{Fib}(n + 1, k)$$ is a $$k$$-tuple $$v \in \

mathbb Z^k$$ satisfying

- $$(i - 1) < v_i / k \leq i $$;
- $$v_{i + 1} - v_i > 1 $$ for each $$i = 1, dots, k - 1$$.

"""

min_tab = [
1 + self.width * i for i in range(self.length)

]

78

offsets = product(
range(self.width), repeat=self.length

)

for offset in offsets:
tab = tuple(

map(lambda c, o: c + o, min_tab, offset)
)

if self.is_valid_label(tab):
yield tab

def colors(self):
return range(1, self.width)

def edge_color(self, vertex1, vertex2):
if not self.is_adjacent(vertex1, vertex2):

return None

diffs = [
(comp1, comp2)
for comp1, comp2 in zip(vertex1, vertex2)
if comp1 != comp2

][0]

lower_label = min(diffs)

The following variables refer to this zero-indexed grid.
1 n-1 1 n-1 (k columns)
2 n-2 2 n-2 ...
...
n-1 1 n-1 1
The color is given by the element in column lower_label // n
and row lower_label % n.

col = lower_label // self.width
row = lower_label - self.width * col
if col % 2 == 0:

return row
return self.width - row

def is_valid_label(self, tableau):
"""Check if `tableau` is a valid vertex for this lattice.
"""

for idx in range(1, len(tableau)):
if tableau[idx] - tableau[idx - 1] == 1:

return False

for idx, coord in enumerate(tableau):
if (

not idx * self.width
< coord
<= (1 + idx) * self.width

):
return False

return True

Listing A.6: catalan_lattice.py
#!/usr/bin/env python3

import numpy as np

79

from dc_lattice import DCLattice
from gt_pattern import gt_patterns , is_gt

class CatalanLattice(DCLattice):
def __init__(self, size, cap):

self.size = size
self.cap = cap

super().__init__()

def node_label(self, node):
return "\n".join(

"".join(str(i) for i in row) for row in node
)

def generate_vertices(self):
for mat in gt_patterns(self.size, cap=self.cap):

yield tuple(tuple(row) for row in mat)

def is_valid_label(self, vertex):
return is_gt(vertex, cap=self.cap)

def potential_children(self, vertex):
for x, row in enumerate(vertex):

for y, entry in enumerate(row):
if entry is not None:

if x == self.size - 1:
delta = 2

else:
delta = 1

yield tuple(
tuple(

c + delta
if (x == x2 and y == y2)
else c
for y2, c in enumerate(row2)

)
for x2, row2 in enumerate(vertex)

)

def rank(self, vertex):
return sum(sum(row) for row in vertex)

def colors(self):
return range(self.size)

def is_adjacent(self, vertex1, vertex2):
differences = 0
for x in range(self.size):

for y in range(x + 1):
if vertex1[x][y] != vertex2[x][y]:

if x == self.size - 1:
delta = 2

else:
delta = 1

if (
abs(vertex1[x][y] - vertex2[x][y])
!= delta

):
return False

else:
differences += 1

return differences == 1

80

def edge_color(self, vertex1, vertex2):
if self.is_adjacent(vertex1, vertex2):

for x in range(self.size):
for y in range(x + 1):

if vertex1[x][y] != vertex2[x][y]:
return x

def meet(self, vertex1, vertex2):
return tuple(

tuple(max(c1, c2) for c1, c2 in zip(row1, row2))
for row1, row2 in zip(vertex1, vertex2)

)

def join(self, vertex1, vertex2):
return tuple(

tuple(min(c1, c2) for c1, c2 in zip(row1, row2))
for row1, row2 in zip(vertex1, vertex2)

)

def edge_color(self, vertex1, vertex2):
for row_idx, row in enumerate(vertex1):

if row_idx == self.size - 1:
delta = 2

else:
delta = 1

for col_idx, entry in enumerate(row):
if (

abs(entry - vertex2[row_idx][col_idx])
== delta

):
return row_idx + 1

return None

def is_adjacent(self, vertex1, vertex2):
for row_idx, row in enumerate(vertex1):

if row_idx == self.size - 1:
delta = 2

else:
delta = 1

for col_idx, entry in enumerate(row):
if (

abs(entry - vertex2[row_idx][col_idx])
== delta

):
return row_idx + 1

return None

def coord(self, vertex1, vertex2):
if self.is_adjacent(vertex1, vertex2):

for x in range(self.size):
for y in range(x + 1):

if vertex1[x][y] != vertex2[x][y]:
return (x, y)

def coordinates(self, vertex):
coords = list(list(row[:(idx + 1)]) for idx, row in enumerate(

vertex))
coords[-1] = list(coord // 2 for coord in coords[-1])
return np.concatenate(coords)

Listing A.7: gt_pattern.py

81

#!/usr/bin/env python3

def is_lower_triangular(mat):
for row_idx, row in enumerate(mat):

for col_idx, entry in enumerate(row):
if (

col_idx > row_idx
and entry is not None
and entry != 0

):
return False

return True

def is_positive_and_under_cap(mat, cap=2):
for row_idx, row in enumerate(mat):

for col_idx, entry in enumerate(row):
if entry is not None and not (

0 <= entry <= cap
):

return False
return True

def is_symplectic(mat):
for col_idx, entry in enumerate(mat[-1]):

if entry is not None and entry % 2 != 0:
return False

return True

def has_gt_property(mat):
for row_idx, row in enumerate(mat):

if row_idx == len(mat) - 1:
continue

for col_idx, entry in enumerate(row):
if col_idx > row_idx:

continue
south_of_us = mat[row_idx + 1][col_idx]
se_of_us = mat[row_idx + 1][col_idx + 1]
if None in [entry, south_of_us , se_of_us]:

continue
if not (south_of_us <= entry <= se_of_us):

return False
return True

def is_gt(mat, cap=2):
return (

is_positive_and_under_cap(mat, cap=cap)
and is_symplectic(mat)
and is_lower_triangular(mat)
and has_gt_property(mat)

)

def is_complete(mat):
for row in mat:

if None in row:
return False

return True

def first_incrementable_entry(mat):
for row_idx, row in enumerate(mat):

82

for col_idx, entry in enumerate(row):
if entry is None:

return [row_idx, col_idx]
return None

def backtrack(candidate , cap=2):
if not is_gt(candidate , cap=cap):

return
elif is_complete(candidate):

yield candidate

first_increment = first_incrementable_entry(candidate)

if first_increment is None:
return

else:
(

first_increment_row ,
first_increment_col ,

) = first_increment
for val in range(cap + 1):

copy_of_candidate = [
[x for x in row] for row in candidate

]
copy_of_candidate[first_increment_row][

first_increment_col
] = val
yield from backtrack(copy_of_candidate , cap=cap)

def gt_patterns(size, cap=2):
initial = [

[0 if col > row else None for col in range(size)]
for row in range(size)

]

yield from backtrack(initial, cap=cap)

Listing A.8: lr_tableaux.py
def columns_are_strongly_increasing(tab):

for col in tab:
if None in col:

continue
if len(col) == 2 and not (col[0] < col[1]):

return False
return True

def rows_are_weakly_decreasing(tab):
if len(tab) < 2:

return True

if len(tab) % 2 == 0:
num_rows_to_check = len(tab) // 2

else:
num_rows_to_check = len(tab) // 2 + 1

for row_idx in range(num_rows_to_check):
if row_idx == 0:

row = [tab[0][0], tab[1][0]]
elif row_idx * 2 + 1 == len(tab):

row = [tab[-2][1], tab[-1][0]]
else:

83

row = [
tab[row_idx * 2 - 1][1],
tab[row_idx * 2][0],
tab[row_idx * 2 + 1][0],

]

if None in row:
continue

for n in range(len(row) - 1):
if not (row[n] >= row[n + 1]):

return False
return True

def is_lattice_word(tab):
frequencies = [0, 0, 0]
for col in tab:

for entry in col:
if entry is not None:

frequencies[entry - 1] += 1

if not (
frequencies[0]
>= frequencies[1]
>= frequencies[2]

):
return False

return True

def is_lr(tab):
return (

columns_are_strongly_increasing(tab)
and rows_are_weakly_decreasing(tab)
and is_lattice_word(tab)

)

def first_incrementable_entry(tab):
for col_idx, col in enumerate(tab):

if None in col:
return tuple([col_idx, col.index(None)])

return None

def is_complete(tab):
for col_idx, col in enumerate(tab):

if None in col:
return False

return True

def backtrack(candidate):
if not is_lr(candidate):

return
elif is_complete(candidate):

yield candidate

first_increment = first_incrementable_entry(candidate)
if first_increment is None:

return
else:

(
first_increment_row ,
first_increment_col ,

84

) = first_increment

for val in [1, 2, 3]:
copy_of_candidate = [

[x for x in row] for row in candidate
]
copy_of_candidate[first_increment_row][

first_increment_col
] = val
yield from backtrack(copy_of_candidate)

def lr_tableaux(size):
columns = [1 + x % 2 for x in range(size)]
initial = [

[None for _ in range(col)] for col in columns
]
yield from backtrack(initial)

Listing A.9: eppstein_layout.py
import numpy as np
import networkx as nx

def dot_product(a, b, range_=None):
if not range_:

range_ = range(len(a))
return sum(a[k] * b[k] for k in range_)

def eppstein_layout(G, coordinates=np.concatenate):
X, Y = eppstein_projection(G, coordinates)

return {
v: tuple(

[
dot_product(X, coordinates(v)),
dot_product(Y, coordinates(v)),

]
)
for v in G

}

def eppstein_projection(G, coordinates=np.concatenate):
def possible_entries(G, i):

return [coordinates(v)[i] for v in G]

def slice(G, i, j):
for v in G:

if coordinates(v)[i] == j:
yield v

for v in G:
d = len(coordinates(v))
break

X = [None for _ in range(d)]
Y = [None for _ in range(d)]

X[0] = 0
for i in range(1, d):

current_max = None
for j in sorted(possible_entries(G, i)):

85

this_slice = list(slice(G, i, j))
last_slice = list(slice(G, i, j - 1))
if len(this_slice) == 0 or len(last_slice) == 0:

continue
candidate_max_min = min(

dot_product(coordinates(v), X, range(i))
for v in this_slice

)
candidate_max_max = max(

dot_product(coordinates(v), X, range(i))
for v in last_slice

)
candidate_max = (

candidate_max_max - candidate_max_min + 1
)
if (

current_max is None
) or candidate_max > current_max:

current_max = candidate_max
X[i] = current_max

Y[-1] = 0
y_range = list(range(d - 1))[::-1]
for i in y_range:

current_max = None
for j in sorted(possible_entries(G, i)):

this_slice = list(slice(G, i, j))
last_slice = list(slice(G, i, j - 1))
if len(this_slice) == 0 or len(last_slice) == 0:

continue
candidate_max_min = min(

dot_product(
coordinates(v), X, range(i + 1, d)

)
for v in this_slice

)
candidate_max_max = max(

dot_product(
coordinates(v), X, range(i + 1, d)

)
for v in last_slice

)
candidate_max = (

candidate_max_max - candidate_max_min + 1
)
if (

current_max is None
) or candidate_max > current_max:

current_max = candidate_max
Y[i] = current_max

return (X, Y)

86

appendix b

PROOF OF THE DCS THEOREM

We reproduce the DCS theorem here for convenience:

Theorem B.1 (Donnelly). Let L be a g-structured DCDL. If for any edge x Ñ y

there exist cyx, dxy P Q` such that

1. if w, x, y, z P L form a diamond with w Ñ x Ñ z, w Ñ y Ñ z, we have the

diamond relations cywdwx “ dxzczy, cxwdwy “ dyzczx,

2. and for any x P L and any i P rns, we have the crossing relation

ÿ

wPL

w
i

ÝÑx

cxwdwx ´
ÿ

zPL

x
i

ÝÑz

czxdxz “ ωipxq,

then g is homomorphic to the Lie algebra l generated by the 3n |L|-dimensional

matrices tEi, Fi, Hiu
n
i“1 (whose rows and columns are indexed by the elements of L)

defined as follows:

1. rEisyx :“ cyx if x i
ÝÑ y, or 0 otherwise;

2. rFisxy :“ dxy if x i
ÝÑ y, or 0 otherwise;

3. Hi :“ rEiFis.

We say that L realizes a representation of g. Additionally, if g is simple, the repre-

sentation so realized is faithful.

We will need the following lemma about the structure of Hi.

Lemma B.1. Consider Ei, Fi, Hi as elements of GLp|L|,Rq, and let B “ tvxuxPL be

a standard basis. Then relative to B, Hi “ diagtωipxquxPL.

87

Proof of lemma. First, we compute

pEiFiqxy “
ÿ

wPL

pEiqxwpFiqwy

“
ÿ

wPL

p1
w

i
ÝÑx

cxwqp1
w

i
ÝÑy

dwyq

“
ÿ

wPL

1
x

i
ÐÝw

i
ÝÑy

cxwdwy

“
ÿ

wPL

x
i

ÐÝw
i

ÝÑy

cxwdwy,

pFiEiqxy “
ÿ

zPL

pFiqxzpEiqzy

“
ÿ

zPL

p1
x

i
ÝÑz

dxzqp1
y

i
ÝÑz

czyq

“
ÿ

zPL

1
x

i
ÝÑz

i
ÐÝy

dxzczy

“
ÿ

zPL

x
i

ÝÑz
i

ÐÝy

dxzczy.

Now consider an entry in Hi, say pHiqxy. If x “ y, then we have

pHiqxy “
ÿ

wPL

x
i

ÐÝw
i

ÝÑy

cxwdwy ´
ÿ

zPL

x
i

ÝÑz
i

ÐÝy

dxzczy.

Since L is distributive and diamond-colored, for every w P L such that x
i

ÐÝ w
i

ÝÑ y

there is exactly one z P L with x
i

ÝÑ z
i

ÐÝ y. Then w, x, y, z form a diamond of color-i

edges, and we have

pHiqxy “
ÿ

diamonds
w,x,y,z

cxwdwy ´ dxzczy “ 0

by the diamond relations. If x “ y, then we have

pHiqxx “
ÿ

wPL

w
i

ÝÑx

cxwdwx ´
ÿ

zPL

x
i

ÝÑz

dxzczx “ ωipxq

by the crossing relation.

88

Proof of DCS theorem. First we need to show that Ei, Fi, Hi satisfy the Serre rela-

tions.

1. rHiHjs “ 0 for any i, j.

Since the Hi are diagonal matrices, they commute.

2. rEiFjs “ 0 for i “ j.

Consider an entry

prEiFjsqxy “
ÿ

wPL

x
i

ÐÝw
j

ÝÑy

cxwdwy ´
ÿ

zPL

x
j

ÝÑz
i

ÐÝy

dxzczy.

Note that if x “ y the sums are empty. As before, for every w P L such that

x
i

ÐÝ w
j

ÝÑ y there is exactly one z P L such that x
j

ÝÑ z
i

ÐÝ y, and we have

prEiFjsqxy “
ÿ

diamonds
w,x,y,z

cxwdwy ´ dxzczy “ 0

by diamond relations.

3. rHiEjs “ MjiEj for any i, j.

As before, we have

prHiEjsqxy “
ÿ

zPL

pHiqxzpEjqzy ´
ÿ

zPL

pEjqxzpHiqzy “ ppHiqxx ´ pHiqyyq pEjqxy

Thus prHiEjsqxy “ pωipxq ´ ωipyqq ¨ pEjqxy. Now if it is not the case that y j
ÝÑ x,

then pEjqxy “ 0 “ prHiEjsqxy. So assume y
i

ÝÑ x; then, since L is g-structured,

ωipxq ´ ωipyq “ Mji, which was to be shown.

4. rHiFjs “ ´MjiFj for any i, j.

Entirely analogous to the previous item.

5. padEiq
1´MjipEjq “ padFiq

1´MjipFjq “ 0 for i “ j.

89

A completely rigorous proof that these two relations hold is outside our scope;

we direct the interested reader to [Don03], Proposition 3.4, and [Hum72], Propo-

sition 18.1. Here we content ourselves with intuition.

Consider padEiqEj “ rEiEjs. An entry of this matrix looks like

prEiEjsqxy “
ÿ

zPL

pEiqxzpEjqzy ´ pEjqxzpEiqzy.

Necessary for this entry to be nonzero is that there exist a vertex z with either

y
i

ÝÑ z
j

ÝÑ x or y j
ÝÑ z

i
ÝÑ x. Now consider padEiq

2Ej “ rEirEiEjss. Similarly, we

have

prEirEiEjssqxy “
ÿ

zPL

pEiqxzprEiEjsqzy ´ prEiEjsqxzpEiqzy,

and this entry is nonzero only if there is a chain y Ñ w Ñ z Ñ x or y Ñ z Ñ

w Ñ x (with the appropriate edge colors.) Successive adjoints require longer

chains, but the lattice is finite. Thus, the matrix eventually becomes zero. (The

preceding references prove that the given exponent works.)

Now, by Serre’s theorem, tEi, Fi, Hiu
n
i“1 generate a semisimple Lie algebra l. Since l

satisfies the same (Serre) relations as g, the function ϕ : g Ñ l that sends the Chevalley

generators of g txi, yi, hiu ÞÑ tEi, Fi, Hiu is a homomorphism.1 If g is simple, then it

remains to show that ϕ is injective.2 This follows because Ei, Fi “ 0, so kerϕ “ g.

Since kerϕ is an ideal, we must have kerϕ “ 0, so ϕ is injective.

1That is to say, a representation of g.
2Or faithful, in the language of representation theory.

90

	Some Generalizations of Classical Integer Sequences Arising in Combinatorial Representation Theory
	Recommended Citation

	List of Figures
	Introduction
	Preliminaries
	Some aspects of combinatorial lattice theory
	Lie theory

	Lattice models of Lie algebra representations
	The DCS relations
	Example: chains
	Example: Boolean lattices
	Example: zero-padded subset lattices
	Example: Fibonaccian lattices

	Catalanian lattices
	Gelfand-Tsetlin patterns
	The cardinality of \mathscr C(n, k)
	Product solitarity of \mathscr C(n,k)

	Paths and tableaux
	Motzkin paths
	Littlewood-Richardson tableaux
	Equinumeracy?

	Computational methods
	Overview of the dc-lattices library
	Drawing incremental lattices
	Certifying product solitarity

	Bibliography
	The dc-lattices library
	Proof of the DCS theorem

