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Only limited data had been published on the survivability of specimens within 

public gardens. This may be due to not enough data collected or how vast the plant 

selections are in the gardens. The Baker Arboretum has collected data by accessioning 

plant collections over a period of 30 years. The Baker Arboretum has its specimens GIS 

mapped on the 115-acre property for easy location and detection of the the woody 

ornamental plants. However, little research is available to understand which coniferous 

specimens have the best success in the garden. In this study, six separate binomial logistic 

regressions were run to determine the odds of success. The dependent variable used in the 

regressions to measure survival, 0 being dead and 1 being alive, were of the 'quantity 

now' in each data set. The predictor variables in each regression were nativity, season 

planted and container size. The specimens that were analyzed were Cupressaceae, 

Pinaceae, Cephalotaxaceae, Ginkgoaceae families and also the Picea and Chamacyparis 

genus'. The odds ratio was used to determine what likelihood each significant predictive 

variable has in accordance to survival. Of the six taxa groups analyzed, only three of the 

regressions were found to be significant by using predictor variables to determine to the 

odds of survival. Chamaecyparis, Cupressaceae and Pinaceae were the three specimen 

groups that showed significance in survival with the predictor variables. The other three, 

Cephalotaxaceae, Ginkgoaceae and Picea groups were reported non-significant. The 

Cupressaceae family specifically had shown parallel predictions of the expected survival 



x 

with biological predictions. Completion of this study provides more knowledge on how 

to track and analyze survivability odds in public gardens, helping further ex-situ 

conservation. 
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CHAPTER I  

 

INTRODUCTION 

 

 

 Historical records show that early gardens were used for apothecary and 

medicinal uses such as Padua, Italy which was founded in 1545 (Groover & Dosmann, 

2012). As time passed, these living encyclopedias began to grow with broad taxonomic 

representation which were either diversified or specialized. The famous Kew Gardens in 

England opened in 1848 and diversified its collections of many temperate plants. A 

similar specialization was undertaken by Missouri Botanic Garden that has also 

diversified in woody and temperate species. Others such as the Arnold Arboretum at 

Harvard University became the first botanic garden in the US to specialize in woody 

plants (Groover & Dosmann, 2012). An arboretum focuses on the study and conservation 

of woody species, while a botanic garden focuses on herbaceous species as well as 

woody species. Botanic gardens often have a glass house, whereas an arboretum doesn’t. 

 Arboreta and botanic gardens have been developed all around the world to 

showcase botanical and horticultural diversity in one place. Some of these species are 

endangered and otherwise would be extinct or out of reach for the public without these 

gardens' ex-situ conservation techniques. These gardens have multiple purposes, but 

some of the most important features are to be a place of research, conservation, and 

scientific education.  

 Within these gardens, it is important and routine to keep a record of all plants 

introduced to the garden. This process of record keeping is a procedural act on every 

plant, known as accessioning. To say in other words, accessionists are the librarians of 

the gardens. To track an ongoing size of a collection, the number of new accessions 
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compared to the number of deaths indicate how the collection is performing (Rae, 1970). 

A few key pieces to processing this information are recording the scientific name, place 

of purchase, size of container it came in and how much the plant had cost. It is important 

to extract the maximum data on each specimen in the garden, otherwise it would be a loss 

of opportunity and resource (Rae, 1970). The Royal Botanic Gardens at Edinburgh and 

Kew have kept meticulous plant phenology records since the 19th century that thoroughly 

aid in helping predict plant growth efficiency within their gardens (Primack & Miller-

Rushing, 2009).  

 The resources that arboreta and botanical gardens have and include are that of 

research networks across the world (Primack & Miller-Rushing, 2009). This is helpful in 

research due to many of the same plants being grown and all being subjected to different 

environmental conditions. Scientists are able to examine these species in isolated 

environments and study the plant characteristics.  

 Another importance of these gardens is being able to observe variation in the 

plants under different ecological changes (Primack & Miller-Rushing, 2009). Gardens in 

large urban areas will undergo a more rapid warming, due to the urban heat island effect. 

Human modifications in cities, such as buildings, parking lots and roads all affect 

temperature leading to increased warming, in contrast to more rural areas. Urban areas 

have an increase of atmospheric gasses that create difficulty in discovering climate-

driven changes in plant species (Primack & Miller-Rushing, 2009).   

 There are multiple arboreta in the state of Kentucky. Bernheim Arboretum and 

National Forest, in Clermont, Kentucky is the largest in the state, holding 16,137 acres. A 

survey of Kentucky arboreta and botanic gardens reveals a diversity of sizes (Table 1).  
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Table 1. Arboreta and Botanic Gardens in Kentucky   

Public Garden Location Acreage 

Bernheim Arboretum & Research Clermont Ky 16137 

Boone County Arboretum Union Ky 121 

The Baker Arboretum Bowling Green Ky 114 

The Arboretum State Botanical Garden of Kentucky Lexington Ky 100 

Yew Dell Botanical Garden Crestwood Ky 60 

Waterfront Botanical Garden Louisville Ky 23 

Western Kentucky Botanical Garden Owensboro Ky 12 

Nannie Clay Wallis Arboretum Paris Ky 4 

 

 The Baker Arboretum, located in Bowling Green Kentucky, comes in as the third 

largest arboreta in Kentucky at 115 acres. Jerry E. Baker, the founder started heavily 

planting the 15-acre Arboretum in 1991. In 2013 he later purchased a neighboring 100-

acre golf course to add onto the Arboretum. The 15 original acres are still the heaviest 

planted area, while the remaining 100 are used for natural prairies and hiking.   

 This study is focused on the findings of best performing conifers within the Baker 

Arboretums collection. The Arboretum is situated on a limestone hillside, which makes 

growing conifers difficult due to their preference for acidic soil less than 6.5 pH. To 

maintain acidity within the soil, elemental sulfur is applied annually to all garden beds. 

Over the years many tons of soil have been brought into the gardens, due to the lack of 



 4 

quantity of original soil. The many tons of soil all came from different origins; thus the 

gardens have a wide range of pH levels. The edaphic pattern is heterogonous. The plants 

are not growing in their native soil, making it difficult to generalize on the effects of soil 

pH on the conifers.   

 Conifers are an ancient taxa detected distinctly through fossil records that date 

back 300 million years old (Farjon, 2008). They have evolved and survived through the 

splitting and submerging of continents, ice age, and the Triassic and Jurassic era. 

Conifers diversity resulted in survival throughout extinction and evolution within the 

duration of their prehistoric history (Farjon, 2008). These resilient plants are still facing 

challenges of extinction in present day with ecological changes and deforestation making 

all the more reason to study them.   

 Brongniart, in 1849, was first to recognize the difference in three distinctive plant 

groups: angiosperms, gymnosperms and cryptogams (Hart, 1987). These were once 

thought to be of higher to lower forms within specimens that developed over time.  A 

conifer is within the primitive gymnosperm group which bears cones, dating back before 

angiosperms. Angiosperms are specimens that have developed intact flowers for 

pollination. Angiosperms have ovaries within the flowers that produce fruits and seeds, 

while gymnosperms develop seeds that become from ovules, yet these are not in ovaries 

that develop into fruits (Farjon, 2008). Within the classification of gymnosperms, 

Ginkgo’s are recognized for having fleshy ovules that resemble a fruit, except they 

produce seeds without true flowers.  

 This study was focused on how the conifer collection at the Baker Arboretum has 

performed across various environmental and horticultural factors that may impact 
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survival. These trees were analyzed by genera and family to determine the best survival 

within the garden and whether predictor variables had any significance with survival. The 

nativity of the trees was studied to detect any correlations for the best performing 

specimens. Another interesting evaluation was the container size of the plant at the time 

of purchase before planting. Also included among variables studied was the season the 

tree was planted. There are many more characteristics that are yet to be analyzed in the 

database correlating to survivability, but these were most focused in this study.  

 This study was unique in that the accessioned data in an arboreta were used to 

determine significance in plant survival in accordance to the specific variables. This 

uniqueness has made it difficult to make comparisons across gardens or to measure these 

results with those of other conifer collections. It is important that gardens keep a detailed 

record of accessioned data on these specimens for future needed studies. Hopefully these 

results will lead to further exploration of ex-situ conservation of conifers around the 

world.  
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CHAPTER II 

 

LITERATURE REVIEW 

 

 

 CONIFER CONSERVATION. Across the world only 12% of the Global forests 

are protected (Wan et al, 2017). Ongoing global climate change may affect the structure 

of the World's forests in the future. Weakening of forest structure and stability have lead 

to vulnerability in forest biodiversity. When these protected areas formed, climate change 

was not considered in developing these areas of protection. Shifting climates have shown 

lack of protection in certain conservation areas, thus danger for certain species.  

 Dominant tree species need to be monitored due to the vast number and coverage 

of forests (Wan et al, 2017). These trees are key in forest stabilization, many 

compromised of coniferous species. In China, nature reserves were studies and evaluated 

along with multiple different climatic variables (Wan et al, 2017). Spatial distribution 

was taken into consideration in current conservation areas that were needed to be 

protected in the future. There were three designated ecoregions, that of tropical/sub-

tropical broadleaf forests, temperate and mixed forests and temperate conifer forests. Of 

all the ecoregions, the temperate conifer forests resulted in having the fewest areas 

protected for future climate changes (Wan et al, 2017).  

 In Japan, a similar study was performed showing that 88-97% of the current 

habitat that Tsuga diversifolia and Abies veitchii are in will not be habitable under future 

climate change scenarios. This study showed that two focal subalpine conifers are highly 

vulnerable in the future give a glimpse at the upcoming survival problems conifers are 

facing (Tsuyama et al, 2013). The best climate for best developed conifers were during 

the Mesozoic era in a fair variable climate. Yet, for the existing conifers left, we might 
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conclude that a suitable habitat for them would be moist mesophytic one (Li, 1953). It 

may be important in conservation to focus on the costal regions, as it will be easier to 

maintain such climate. Studying conifers in ex-situ conservation around the world in 

different climates will help in the future for in-situ conservation techniques.   

 

 NATIVITY IN CONIFERS.  Conifers occur on all the continents around the 

world except Antarctica (Farjon, 2021). From the arctic to the equator, one can expect to 

see coniferous trees in every landscape. Conifers reflect their distribution in the ancient 

breaking of the continents, while other patterns that can be found in them are studied 

using the conifer database (Farjon, 2021).  

 There are 615 species of extant conifers, 540 belong in the families of Pinaceae, 

Podocarpaceae and Cupressaceae (Farjon, 2021). The other families 

include Araucariaceae, Cephalotaxaceae, Phyllocladaceae, Sciadopityaceae and 

Taxaceae family. The families are spread throughout the world. In the northern 

hemisphere, Pinaceae are exclusively growing with 11 genera. The Podocarpaceae, with 

18 genera, are an exclusively tropical family, with the only other area outside of the 

tropics in the southern hemispheric mountains. The Cupressaceae, containing 30 genera, 

are the only family that is cosmopolitan (Farjon, 2021). Besides the Taxaceae family, all 

other families have a very limited distribution range. It is suggested that the species with 

most range is that of Juniperus communis L. covering most of Europe, northern Asia and 

north America (Li, 1953). Notable features of distribution in conifers are that most 

successfully grow in mountainous areas, with warm temperate climates and a preference 

in moisture (Li, 1953).  
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THE RELATIONSHIP BETWEEN GINKGO AND CONIFEROUS TREES. Ginkgo 

trees are also prehistoric and are considered to be a living fossil (Purcell, 2016). They are 

dubbed this nickname due to the way in which they still reproduce. Unlike conifers, the 

ginkgo tree has maintained its motile male gamete, where it takes place in the ovule 

before fertilization takes place (Jager et al, 2003). Ginkgo biloba is so ancient, it is the 

only surviving member in its own genus to this day, surpassing their large plant lineage 

that lived 150 million years ago (Purcell, 2016). It has been said that they were thought to 

be saved from extinction in the twelfth century by the Chinese Buddhist Monks that kept 

them around their temples (Jager et al, 2003).  

 The leaves of the ginkgo tree are fan-shaped, distinguishing two lobes and happen 

to be deciduous. Instead of bearing cones like conifers, ginkgo trees produce fleshy 

ovules. Ginkgo trees are set apart from other species, but are often grouped together with 

their close prehistoric relative the conifers.  

 

 RAINFALL AND PLANT PERFORMANCE. Within coniferous forests, rainfall 

accumulates to 12-35 inches per year (Przyborski, 2021). Water stress is one of the 

primary forces that drives evolution in plants (Brodribb et al, 2014). Conifers have 

evolved with water stress in different ways. A study found that there is an ancestral 

mechanism in Pinaceae and Araucariaceae species that rely on high levels of the abscisic 

acid hormone (ABA) to close the stomata during stress (Brodribb et al, 2014). In the 

Cupressaceae family, a mechanism for leaf desiccation is used to close their stomata, 

instead of increased ABA (Brodribb et al, 2014).  



 9 

  One very distinct physiological characteristic conifers have adapted due to 

drought stress is that of the shape of their needles. On the under side of the needle, it is 

shaped like a horseshoe. This is so that the stomates located on the under side are 

insulated within the needle. These modified leaves have evolved in such a way to be able 

to store more water. The needle curling under gives the stomates shade and increased 

relative humidity so that the plant will not diffuse its water supply from a high 

concentration to a low concentration.  

 The waxy coating on these needles are called the cuticle also help prevent water 

loss and the leaching of nutrients (Strieby, 2013). Developing the cuticle means more 

output of photosynthesis to develop this extra protection. Another disadvantage of these 

modified leaves is that the photosynthetic rates decrease due to less surface area of these 

modified leaves (Strieby, 2013). They combat this by keeping their needles year-round, 

constantly photosynthesizing keeping up with their deciduous counterparts. Although it 

takes more energy to keep these needles during all seasons, drought stress also has an 

impact on active photosynthetic nutrients (He et al, 2016). This could lead to a quick 

decline in the plants health. Conifers are consistently proving to be in a balancing act of 

cost and survival (Strieby, 2013). 

 SEASON PLANTED AND PLANT PERFORMANCE. It is commonly known in 

horticulture that when a specimen is planted in the ground its important to plant within a 

mild season so that the plant can establish its root system. If planted in the growing 

season during the summer, survival of the plant will be hard due to the excessive heat and 

transpiration process within the plant. It is best to transplant trees during the fall or spring 

to allow for root establishment (Mendocino Coast Botanical Gardens, 2021). Little 
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metabolic activity occurs in conifers when temperatures hit below 40F. Studies show 

that soil temperature around 68F produces optimum plant growth (Heron, 1986).   

   

 Conifer roots do not continue to grow rapidly when winter months in colder 

climates reach freezing temperatures (Bigrass 1996; Sutinen 1998). The main time of root 

growth is when the soil temperature is steadily decreasing, after the growing season (Lyr 

and Hoffmann 1967; Weiser 1970; Smit-Spinks et al. 1985; Rikala and Huurinainen 

1990; Ryyppö et al. 1998). At this time is where the plant stops focusing on the 

reproductive aspects of growth and reverts back to plant establishment for the next 

growing season. Even though the shoots may be dormant during the transplanting 

seasons, the roots can continue to grow if soil temperatures allow (Lyr and Hoffmann 

1967; Burr 1990).  

 CONTAINER SIZE AND PLANT PERFORMANCE. The variable of container 

size is important to look at in the horticulture industry in relevance to success of 

transplanting. Container sizes vary in volume for allowed root growth and development 

(NeSmith and Duval, 1998). To producers, container size has an impact on the number of 

plants that can be produced per square foot. Yet, the customer is interested on the 

performance their plant will have after transplanting (NeSmith and Duval, 1998). The 

smaller the container, the more restricted the roots are for plant growth. Increased root 

mass leads to greater competition for depleting nutrients and oxygen due to less pore 

space in soil (NeSmith and Duval, 1998). The decreased pore space in the medium results 
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in less aeration and water holding capacity, leading to the plant suffering from water 

shortage (NeSmith and Duval, 1998).  

 Root volume in a container greatly affect shoot growth (Latimer, 1991). Studies 

have shown that in vegetable production, transplants from smaller containers result in 

reduced early crop yield (Latimer, 1991). Within hard wood species, the effect of 

container size and transplanting success has shown that larger containers result in higher 

shoot growths within the trees (Graber, 1978).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 12 

CHAPTER III 

 

 

MATERIALS AND METHODS 

 

 

PLANT SELECTION AND EXCEL COMPOSITION. The Baker Arboretums' original 

Access database consisted of 5,237 existing and mapped woody specimens accessioned 

over the past 30 years. Native trees 12 inches in diameter at breast height and greater 

have been cataloged in the main 15 acres of the arboretum, but thousands remained 

unmapped in the remainder 100 acres. The coniferous tree collection data were selected 

because it is a primary focus of the plant collections. This collection consisted of 1,092 

existing trees that were mapped using Global Information Systems (GIS), with 549 

cultivars. A summary of the conifer collection is listed in table two.  

 

Table 2: The Baker Arboretum’s summary of the conifer collection. 

 Genus Species Cultivar Family 

Total 31 105 549 7 

 

 Conifers were examined based on whether they were alive and dead. There was no 

attempt made to determine the status of their health. Some of the characteristics focused 

on in this study were that of the specimen’s genus, species, family, nativity, month 

planted, container size, quantity now, original quantity. Plant characteristics were 

compared to determine which, if any, influenced survival at the Baker Arboretum for the 

past 30 years.  
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DATA SITE The site where the data have been collected over the past 30 years is at the 

Baker Arboretum. The coordinates of the Baker Arboretum are located at 36.9942 N, 

86.5183 W. The Arboretum is located in Bowling Green, Kentucky on a hill 

overlooking Western Kentucky University. The property consists of 114 acres, 14 of 

which are heavily landscaped. This area is located within the USDA site as hardiness 

zone 7b.  

 

STANDARDIZATION OF EXPERIMENTAL COMPONENTS. The original data were 

imported into an Access database and exported to an excel sheet to be refined for only the 

components being analyzed. The quantity now column was made dichotomous for each 

plant, 0 being dead and 1 being alive. To standardize the data within the nativity column, 

these were grouped within the seven geographical continents. Of these continents 

included the groupings of Asia, North America, Europe, Europe/Asia, 

Europe/Asia/Africa, North America/Europe/Asia/Africa and Hybrid. These were 

standardized in SPSS numbered one through seven. Container size was standardized in 

the data set by making three groups of sizes. All containers equal or below 1 gallon were 

coded as 1, containers greater than 1 gallon coded as 2 and ball and burlap trees coded as 

group 3. The months planted column had been grouped in seasons. The seasons have 

been divided into groupings of three months. The season of Spring included the months 

March, April and May. Summer included the months of June, July and August. Fall 

included the months of September, October and November. The month of Winter 

included months of December, January and February. A general survival rate column was 

created as shown below in Equation 1. This shows the overall survival rates in a 
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percentage of the conifers by comparing the quantity now column with the original 

quantity.  

  Equation 1: 

    % Survival = 
𝑄𝑢𝑎𝑛𝑡𝑖𝑡𝑦 𝑁𝑜𝑤

𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑄𝑢𝑎𝑛𝑡𝑖𝑡𝑦
 x 100 

 

 The conifer taxa I examined were Pinaceae, Cupressaceae, Cepholotaxaceae, 

Ginkgoaceae families. The two genera, Picea and Chamacyperus were analyzed for more 

specific interpretation.  

 Each group had to be put into dummy variables, due to being categorical data. All 

seasons were analyzed with the omitted baseline comparison variable being the season of 

winter. Container sizes were analyzed in comparison to the baseline comparison variable 

of container size equal or below one gallon. The nativity had been analyzed to different 

baseline comparison variables in each regression, due to variability in nativity. The odds 

ratio was analyzed in the significant variables to signify the likelihood of survival. All 

odds ratios below 1 signify a decline in survival in comparison to the baseline 

comparison variable. Odds ratios that are higher than 1 signify an increase in survival 

compared to the baseline comparison variable. If the odds ratio is equal to 1, the variable 

has no affect on the odds of an outcome.  

 

STATISTICAL ANALYSIS. There were both binary linear and nominal components 

within the experiment to be tested. Nominal data that were accounted for as predictor 

variables include the nativity, season planted and container size. The binary data that 

accounted for the dependent variable in each regression was the "quantity now" of 
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survival in the excel sheet. In order to measure the alive and dead conifers in accordance 

to these variables, multiple binary logistic regressions were used. This measures the 

presence or absence of a specimen, alive being 1 and dead 0. This was done by using 

IMB SPSS, Version 26 (IMB SPSS, 2016). The dichotomous dependent variable in the 

model was the "quantity now". In order to run all nominal predictor variables, dummy 

variables were implemented for nativity, season planted and container size. Within each 

dummy variable, one was omitted due to referencing to the others and redundancy. This 

variable was referred to as the baseline comparison variable. Included in the model were 

the Hosmer-Lemeshow 'Goodness-of-Fit' test, 95% confidence intervals, frequency 

statistics, probabilities and group membership. There were a total of 6 binary logistic 

regressions examined in this study. 

 

LIMITING ASSUMPTIONS. One limiting assumption about the data is that there are not 

container sizes for every accounted specimen. This may have an effect on the overall 

success rate within container size, as well as accuracy with the baseline comparison 

variable. Other limiting assumptions include other predictor variables not being present in 

the data sets, due to decreasing accuracy of logistic regression models.  
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CHAPTER IV 

 

 

RESULTS 

 

The following results are broken up into six different sections for each regression. This is 

to ensure organization and easy access for the corresponding tables for each regression. 

 

BINARY LOGISTIC REGRESSION I: CHAMAECYPARIS 

 

  

 Within this data set, 199 trees (N) were included within this analysis that showed 

no missing cases (Table 3). Within the classification table (Table 4) the null classification 

accuracy assumed all specimens that lived was 58.8%. Within this null classification 

table (Table 4), it is suggested that 117 specimens were alive, while 82 of them were 

dead. The overall model of the Chamaecyparis binary logistic regression as seen in Table 

5 showed highly significant (p<0.001). Whereas within the Hosmer and Lemeshow test 

(Table 6) was not significant (IMB SPSS, 2016). This test was different in analyzing of 

the Omnibus test of model coefficients, that indicated that this number (p>0.001) resulted 

in a good fit model (IMB SPSS, 2016).  

 The classification table (Table 7) for the model proved to be different than the 

null. There were 72.6% of specimens who lived that were not predicted by the model. 

The predictive capacity had increased from 58.8% (Table 4) to 66.3% (Table 7). The 

predictive capacity had increased 7.5% from the null model.  

 In the Variables in the Equation (Table 8), five out of the seven variables had 

been proven to be significant (p<0.05). Container size above 1 gallon and ball and burlap 

were not significant to survival in this model, yet the odds ratio was greater in the ball 

and burlap size. There were 32 containers above 1 gallon that spoke for 16.1% of the total 
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specimens (Table 13). Ball and burlap size included 41 specimens, that proved to be 

20.6% of the total sizes (Table 12).  

 Nativity of North America showed greater odds of survival at an odds ratio 0.128 

(Table 8) compared to the nativity of Asia. North America nativity had a frequency of 11 

specimens, out of the total 199 (Table 14). North America nativity only accounted for 

5.5% of the total (Table 8). All other 188 specimens were within the baseline comparison 

variable from Asia.  

  Spring, Summer and Fall seasons planted showed significance. Spring planted 

specimens had a frequency of 35 within the data set, also accounted for 17.6% of all 

specimens (Table 9). Summer plantings had 34 specimens, that also accounted for 17.1% 

of the total (Table 10).  Fall plantings had 63 specimens, this accounted for 31.7% (Table 

11). Winter plantings were calculated for 67 specimens.  

 All dummy variables were measured in comparison to the omitted variable (. The 

odds ratio (Exp[B]) had shown that within the Chamaecyparis genus, fall plantings were 

the highest survival, which were 0.209 (Table 8) times more likely to survive than to the 

baseline comparison variable, winter. The computed odds of a specimen survival in a fall 

planting was 2.155 times greater than the odds of survival in the spring or summer. While 

the computed odds of survival in the summer were 1.703 times greater than the odds of 

survival in the spring or fall plantings. The computed odds of the spring were 1.425 

compared to survival of plantings in the summer or fall.  
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THE CHAMAECYPARIS TABLES 

 

 

 

 

 

 

Table 3. The case processing summary for Chamaecyparis genera. 

 N Percent 

Selected Cases Included in Analysis 199 100.0 

Missing Cases 0 .0 

Total 199 100.0 

Unselected Cases 0 .0 

Total 199 100.0 

 

 

 

 

 

 

 

 

Table 4. The null classification table for Chamaecyparis genera.  

Observed Predicted 

Qty now Percentage Correct 

0 1 

 Qty now 0 0 82 .0 

1 0 117 100.0 

Overall Percentage   58.8 

a. Constant is included in the model. 

b. The cut value is .500 
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Sig.1: *= p< 0.05, **= p<0.01, *** = p<0.001 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

Table 5. The omibus tests of model coefficients for Chamaecyparis genera. 

 Chi-square df Sig.1 

 Step 33.544 6 .000*** 

Block 33.544 6 .000*** 

Model 33.544 6 .000*** 

Table 6. The hosmer and lemeshow test for Chamaecyparis genera. 

 Chi-square df Sig. 

 6.975 6 .323 

Table 7. The classification table for Chamaecyparis genera. 

Observed Predicted 

Qty now Percentage 

Correct 0 1 

 Qty now 0 47 35 57.3 

1 32 85 72.6 

Overall Percentage   66.3 

a. The cut value is .500 
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Table 8. The variables in the equation for Chamaecyparis genera. 

 B S.E. Wald df Sig.1 Exp(B) 

95% C.I.for EXP(B) 

Lower Upper 

 Spring -1.929 .497 15.089 1 .000*** .145 .055 .384 

Summer -1.790 .482 13.774 1 .000*** .167 .065 .430 

Fall -1.564 .443 12.471 1 .000*** .209 .088 .499 

ContainerAbove .539 .459 1.376 1 .241 1.714 .697 4.218 

BB .638 .418 2.322 1 .128 1.892 .833 4.296 

Nativity=North 

America 

-2.052 .859 5.707 1 .017* .128 .024 .692 

Constant 1.448 .333 18.954 1 .000*** 4.256   

 

Sig.1: *= p< 0.05, **= p<0.01, *** = p<0.001 
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Table 9. Spring season frequency for Chamaecyparis genera. 

 Frequency Percent 

Valid 

Percent 

Cumulative 

Percent 

 Other 164 82.4 82.4 82.4 

Spring 35 17.6 17.6 100.0 

Total 199 100.0 100.0  

 

 

Table 10. Summer season frequency for Chamaecyparis genera. 

 Frequency Percent 

Valid 

Percent 

Cumulative 

Percent 

 Other 165 82.9 82.9 82.9 

Summer 34 17.1 17.1 100.0 

Total 199 100.0 100.0  

 

 

Table 11. Fall season frequency for Chamaecyparis genera. 

 Frequency Percent 

Valid 

Percent 

Cumulative 

Percent 

 Other 136 68.3 68.3 68.3 

Fall 63 31.7 31.7 100.0 

Total 199 100.0 100.0  

 

 

Table 12. Ball and burlap frequency for Chamaecyparis genera.  

 Frequency Percent Valid Percent Cumulative Percent 

 Other 158 79.4 79.4 79.4 

BB 41 20.6 20.6 100.0 

Total 199 100.0 100.0  

  

 

   
 

Table 13. Container above one gallon frequency for Chamaecyparis genera. 

 Frequency Percent Valid Percent 

Cumulative 

Percent 

 Other 167 83.9 83.9 83.9 

Container Above 32 16.1 16.1 100.0 

Total 199 100.0 100.0  
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Table 14. North America nativity frequency for Chamaecyparis genera. 

 Frequency Percent Valid Percent 

Cumulative 

Percent 

 Other 188 94.5 94.5 94.5 

NorthAmerica 11 5.5 5.5 100.0 

Total 199 100.0 100.0  
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BINARY LOGISTIC REGRESSION II: CEPHALOTAXACEAE 

 

 

 In the Cephalotaxaceae data set, 184 (N) specimens had been observed (Table 

15). The null classification accuracy (Table 16), has shown 97.8% without the 

independent variables present. The predicted values in the null have suggested 180 

specimens that were alive and 4 specimens that were dead (Table 16). The overall model 

in Cephalotaxaceae binary logistic regression in the Omnibus test (Table 17) showed to 

be highly significant (p<0.001). This showed that the model fits better than the null with 

its predictors present. In the Homer and Lemeshow test (Table 18), significance was 

shown at 1.000, signifying a good model (p>0.001) (IMB SPSS, 2016). Within the 

classification table (Table 19), showed no change than the null classification table (Table 

16). The model showed 97.8% classification accuracy, considering the independent 

variables. There was no significance shown (P<0.05) in any of the variables of the 

equation (Table 20) between the baseline comparison variable.  

 The total frequency of spring planted specimens within this data set were 56 

(Table 21), containing 30.4% of all specimens. Summer planted specimens had a 

frequency of 11 (Table 22), containing only 6.0% of the data set. Fall planted specimens 

had a frequency of 86 (Table 23) throughout the data set, compromising 46.7% of 

specimens. The calculated value for specimen plantings than had occurred in the winter 

were 31.  

 Containers above one gallon concluded with a frequency of 109 (Table 24), that 

showed 59.2% of the data set. There were no ball and burlap variables to be had in this 

data set. The nativity of each specimen in this data set were 100% from Asia (Table 25).  
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THE CEPHALOTAXACEAE TABLES 

 

 

 

 

 

Table 15. The case processing summary for the Cephalotaxaceae family. 

 N Percent 

Selected Cases Included in Analysis 184 100.0 

Missing Cases 0 .0 

Total 184 100.0 

Unselected Cases 0 .0 

Total 184 100.0 

 
 
 
 
 
 
 
 
 
Table 16. The null classification table for the Cephalotaxaceae family. 

Observed Predicted 

Qty now Percentage Correct 

0 1 

 Qty now  0  0 4 .0 

1 0 180 100.0 

Overall Percentage   97.8 

a. Constant is included in the model. 

b. The cut value is .500 
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Sig.1: *= p< 0.05, **= p<0.01, *** = p<0.001 

 
 
 
 
 
 
 
 

Table 18. The hosmer and lemeshow test for the Cephalotaxaceae family. 

 Chi-square df Sig. 

 .000 3 1.000 

 

 
 

 

 

 

 

 

 

Table 19. The classification table for the Cephalotaxaceae family. 

Observed Predicted 

Qty now Percentage Correct 

0 1 

 Qty now 0 0 4 .0 

1 0 180 100.0 

Overall Percentage   97.8 

a. The cut value is .500 

  

Table 17. The omnibus tests of model coefficients for the Cephalotaxaceae family. 

 Chi-square df Sig.1 

 Step 24.121 4 .000*** 

Block 24.121 4 .000*** 

Model 24.121 4 .000*** 
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Table 20. The variables in the equation for the Cephalotaxaceae family. 

B S.E. Wald df Sig.1 Exp(B) 

95% C.I.for EXP(B) 

Lower Upper 

Spring .000 9716.146 .000 1 1.000 1.000 .000 . 

Summer -20.643 9947.643 .000 1 .998 .000 .000 . 

Fall .000 8844.117 .000 1 1.000 1.000 .000 . 

ContainerAbove .000 6844.225 .000 1 1.000 1.000 .000 . 

Constant 21.203 9947.643 .000 1 .998 1615477019.167 

Sig.1: *= p< 0.05, **= p<0.01, *** = p<0.001 
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Table 21. Spring season frequency for the Cephalotaxaceae family. 

 Frequency Percent Valid Percent Cumulative Percent 

 Other 128 69.6 69.6 69.6 

Spring 56 30.4 30.4 100.0 

Total 184 100.0 100.0  

 

 

 

Table 22. Summer season frequency for the Cephalotaxaceae family.  

 Frequency Percent Valid Percent 

Cumulative 

Percent 

 Other 173 94.0 94.0 94.0 

Summer 11 6.0 6.0 100.0 

Total 184 100.0 100.0  

      

 

 

Table 23. Fall season frequency for the Cephalotaxaceae family. 

 Frequency Percent Valid Percent Cumulative Percent 

 Other 98 53.3 53.3 53.3 

Fall 86 46.7 46.7 100.0 

Total 184 100.0 100.0  

 

 

 

 

Table 25. Asia nativity frequency for the Cephalotaxaceae family. 

 Frequency Percent Valid Percent Cumulative Percent 

 Asia 184 100.0 100.0 100.0 

 

 

 

 

 

 

 

Table 24. Container above one gallon frequency for the Cephalotaxaceae family. 

 Frequency Percent Valid Percent 

Cumulative 

Percent 

 Other 75 40.8 40.8 40.8 

ContainerAbove 109 59.2 59.2 100.0 

Total 184 100.0 100.0  
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BINARY LOGISTIC REGRESSION III: CUPRESSACEAE 

 

 

   

 The Cupressaceae data set included 1,630 (N) specimens within the analysis 

(Table 26). Within the classification table for the null model (Table 27), the overall 

correct percentage that was predicted was 78.3%. The values within null model (Table 

27) predicted that 1,277 of the specimens survived, while 353 specimens died. In the 

Omnibus test of model coefficients (Table 28), showed to be highly significant 

(p<0.001). The Omnibus test of model coefficients showed that the model had fit better 

with the predictor variables, compared to just the null model (IMB SPSS, 2016). Homer 

and Lemeshow test (Table 29) depicted a significance of 0.000, proving that although this 

model had fit better with the variables than the null, the overall model was not good 

(IMB SPSS, 2016). A significance above 0.001 signifies a good model within this test. In 

the classification table including predictor variables (Table 30), the overall correct 

predicted percentage was 78.4%. The predictive capacity had increased by 0.1% from the 

null model.  

 In the variables in the equation (Table 31), seven out of the 9 variables showed to 

be significant (p<0.05). Container size above one gallon showed more significance at 

0.001, than that of the ball and burlap at 0.005 compared to the baseline comparison 

variable that is container size equal or below one gallon (Table 31). There was a 

frequency of 67 specimens (Table 32) planted from ball and burlap that composed of only 

4.1% out of the data set. The specimens from containers above one gallon had a 

frequency of 468 out of the 1,630 specimens in total (Table 33). The percent of one 

gallon and above containers was at 28.7%. The container size above one gallon had a 
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higher odds ratio of 1.765 (Table 31), indicating that this container size increases in odds 

of survival 1.765 times than that of containers equal to or below one gallon.  

 All variables of seasons planted had shown to be statistically significant within 

this model. The variable that is highly significant in the model at 0.000 was the 

specimens planted in the fall season (Table 31). All seasons (spring, summer, fall) have a 

higher likelihood of survival compared to the baseline comparison model of winter. Fall 

comes in at the highest likelihood of survival. Fall planted specimens are 2.305 (Table, 

31) times more likely to survive, than that of winter specimens. The frequency of fall 

specimens within the data set are shown to be 626, with a percentage of 38.4 (Table 34). 

Summer specimens showed to have a frequency of 230, composed of only 14.1% within 

the data set (Table 35). The frequency of spring specimens in the data set are 418, with 

the percentage at 25.6 (Table 36). Winter was calculated to have a total of 356 specimens 

planted in this season.  

 Only two out of the four variables of nativity had shown to be significant. The 

highest significance shown in survival was the "North America" nativity at a significance 

of 0.000 (Table 31). The other statistically significant variable in nativity was the 

grouping of 'North America, Europe, Asia, Africa' at 0.031 (Table 31). The 'North 

America, Europe, Asia, Africa' nativity was 0.160 less likely to survive than the baseline 

comparison variable, Asia. The 'North America' nativity was 2.439 times more likely to 

survive than Asia (Table 31). The 'North America, Europe, Asia, Africa' nativity had a 

very low frequency within the data set of 7 (Table 37). 'North America' nativity 

specimens had a frequency within the table of 1,087, that composed 66.7% of the data set 

(Table 38). The 'Hybrid' specimen occurred 49 times in the data set at only 3% (Table 
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39). The 'Europe' nativity only occurred once in the data set (Table 40). The baseline 

comparison variable, Asia was calculated to occur 486 times in this data set.  
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THE CUPRESSACEAE TABLES 

  

 

 

 

Table 26. The case processing summary for the Cupressaceae family.  

 N Percent 

Selected Cases 

Included in Analysis 1630 100.0 

Missing Cases 0 .0 

Total 1630 100.0 

Unselected Cases 0 .0 

Total 1630 100.0 

 

 

 

 

 

 

 

 

Table 27. The null classification table for the Cupressaceae family. 

Observed Predicted 

Qty now Percentage Correct 

0 1 

 Qty now  0  0 353 .0 

1 0 1277 100.0 

Overall Percentage   78.3 

a. Constant is included in the model. 

b. The cut value is .500 
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Table 28. The omnibus tests of model coefficients for the Cupressaceae family. 

 Chi-square df Sig. 

 Step 128.851 9 .000 

Block 128.851 9 .000 

Model 128.851 9 .000 

Sig.1: *= p< 0.05, **= p<0.01, *** = p<0.001 

 

 

 

 

 

 

 

 

Table 29. The hosmer and lemeshow test for the Cupressaceae family. 

 Chi-square df Sig.1 

 27.947 8 .000*** 

Sig.1: *= p< 0.05, **= p<0.01, *** = p<0.001 

 

 

 

 

 

 

 

 

 

 

 

Table 30. The classification table for the Cupressaceae family. 

Observed 

Predicted 

Qty now 
Percentage Correct 

0 1 

Qty now 
0 17 336 4.8 

1 16 1261 98.7 

Overall Percentage   78.4 
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Table 31. Variables in the logistic regression equation for Cupressaceae family. 

B S.E. Wald df Sig. Exp(B) 

95% C.I.for EXP(B) 

Lower Upper 

Nativity=Europe 20.152 40192.969 .000 1 1.000 565019406.547 .000 . 

Nativity=Hybrid .229 .345 .440 1 .507 1.257 .640 2.470 

Nativity=North America .892 .138 41.710 1 .000 2.439 1.861 3.197 

Nativity=North America, 

Europe, Asia, Africa 

-1.831 .848 4.658 1 .031 .160 .030 .845 

Spring .368 .170 4.673 1 .031 1.445 1.035 2.016 

Summer .429 .202 4.536 1 .033 1.536 1.035 2.281 

Fall .835 .172 23.510 1 .000 2.305 1.645 3.231 

ContainerAbove .568 .163 12.115 1 .001 1.765 1.282 2.431 

BB -.777 .274 8.062 1 .005 .460 .269 .786 

Constant .215 .147 2.142 1 .143 1.240 



 34 

 

 

 

 

Table 32. Ball and burlap frequency for the Cupressaceae family. 

 Frequency Percent Valid Percent 

Cumulative 

Percent 

 Other 1563 95.9 95.9 95.9 

BB 67 4.1 4.1 100.0 

Total 1630 100.0 100.0  

      

 

Table 33. Container above one gallon frequency for the Cupressaceae family. 

 Frequency Percent Valid Percent 

Cumulative 

Percent 

 Other 1162 71.3 71.3 71.3 

ContainerAbove 468 28.7 28.7 100.0 

Total 1630 100.0 100.0  

 

 

Table 34. Fall season frequency for the Cupressaceae family. 

 Frequency Percent Valid Percent 

Cumulative 

Percent 

 Other 1004 61.6 61.6 61.6 

Fall 626 38.4 38.4 100.0 

Total 1630 100.0 100.0  

 

 

Table 35. Summer season frequency for the Cupressaceae family. 

 Frequency Percent Valid Percent Cumulative 

Percent 

 Other 1400 85.9 85.9 85.9 

Summer 230 14.1 14.1 100.0 

Total 1630 100.0 100.0  
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Table 36. Spring season frequency for the Cupressaceae family. 

 Frequency Percent Valid Percent 

Cumulative 

Percent 

 Other 1212 74.4 74.4 74.4 

Spring 418 25.6 25.6 100.0 

Total 1630 100.0 100.0  

 

 

 

 

 

Table 39. Hybrid nativity frequency for the Cupressaceae family. 

 Frequency Percent Valid Percent 

Cumulative 

Percent 

 Other 1581 97.0 97.0 97.0 

Hybrid 49 3.0 3.0 100.0 

Total 1630 100.0 100.0  

 

 

 

 

 

 

 

 

 

 

 

Table 38. North America nativity frequency for the Cupressaceae family. 

 Frequency Percent Valid Percent 

Cumulative 

Percent 

 Other 543 33.3 33.3 33.3 

NorthAmerica 1087 66.7 66.7 100.0 

Total 1630 100.0 100.0  

 

Table 37. North America/Europe/Asia/Africa nativity frequency for the Cupressaceae 

family. 

 Frequency Percent 

Valid 

Percent 

Cumulative 

Percent 

 Other 1623 99.6 99.6 99.6 

NorthAmerica,Europe,Asia,Africa 7 .4 .4 100.0 

Total 1630 100.0 100.0  
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Table 40. Europe nativity frequency for the Cupressaceae family. 

 Frequency Percent Valid Percent 

Cumulative 

Percent 

 Other 1629 99.9 99.9 99.9 

Europe 1 .1 .1 100.0 

Total 1630 100.0 100.0  
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BINARY LOGISTIC REGRESSION IV: GINKGOACEAE 

 

 

 

 This binary logistic regression included 72(N) specimens within this analysis 

(Table 41). Within the classification table for the null model (Table 42), the overall 

correct percentage that was predicted was 55.6%. In the Omnibus test of model 

coefficients (IMB SPSS, 2016), the overall model showed to be insignificant at 0.217 

when adding the variables into the model (Table 43). Hosmer and Lemeshow test (Table 

44) had shown a significant overall model at 0.995 (p<0.001). The classification table 

containing all variables (Table 45) had an overall correct predictive capacity at 63.9%. 

There was an 8.3% increase in predictive capacity from the null model.  

 The variables in the equation (Table 46), had shown no significance in predictor 

variables of survival within this analysis. The planting season spring had shown an 

overall frequency in the data set at 19, having an overall percentage of 26.4 (Table 47). 

Summer had a frequency of 12 specimens, having 16.7% accounted for in the data set 

(Table 48). Fall plantings had a frequency of 18 and had a percentage of 25.0 in the data 

set (Table 49). The baseline comparison variable, winter, was calculated to held 23 of the 

planted specimens. Containers above one gallon was shown to have a frequency at 14 and 

percentage of 19.4 in the data set (Table 50). There were only two ball and burlap 

specimens at 2.8% in this analysis (Table 51).  Nativity for all 72 specimens were Asia 

(Table 52). 
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THE GINKGOACEAE TABLES 

 

 

Table 41. The case processing summary for the Ginkgoaceae family.  

 N Percent 

Selected Cases Included in Analysis 72 100.0 

Missing Cases 0 .0 

Total 72 100.0 

Unselected Cases 0 .0 

Total 72 100.0 

 

 

 

 

Table 42. The null classification table for the Ginkgoaceae family. 

Observed Predicted 

Qty now Percentage Correct 

0 1 

 Qty now 0 0 32 .0 

1 0 40 100.0 

Overall Percentage   55.6 

a. Constant is included in the model. 

b. The cut value is .500 
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Table 43. The omnibus tests of model coefficients for the Ginkgoaceae family. 

 Chi-square df Sig. 

 Step 8.579 5 .127 

Block 8.579 5 .127 

Model 8.579 5 .127 

 

 

 

 

 

Table 44. The hosmer and lemeshow test for the Ginkgoaceae family. 

 Chi-square df Sig. 

 .217 4 .995 

 

 

 

 

 

Table 45. The classification table for the Ginkgoaceae family. 

Observed Predicted 

Qty now Percentage Correct 

0 1 

 Qty now 0 9 23 28.1 

1 3 37 92.5 

Overall Percentage   63.9 

a. The cut value is .500 
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Table 46. The variables in the equation for the Ginkgoaceae family. 

 B S.E. Wald df Sig.1 Exp(B) 

95% C.I.for EXP(B) 

Lower Upper 

 Spring .025 .649 .002 1 .969 1.026 .288 3.660 

Summer -1.392 .806 2.981 1 .084 .249 .051 1.207 

Fall -.184 .728 .064 1 .800 .832 .200 3.463 

ContainerAbove .743 .767 .938 1 .333 2.103 .467 9.458 

BB 21.094 28420.721 .000 1 .999 1448581235.614 .000 . 

Constant .293 .453 .418 1 .518 1.341   

Sig.1: *= p< 0.05, **= p<0.01, *** = p<0.001 
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Table 49. Spring season frequency for the Ginkgoaceae family. 

 

Table 48. Ball and burlap frequency for the Ginkgoaceae family.   

 Frequency Percent 

Valid 

Percent 

Cumulative 

Percent 

 Other 70 97.2 97.2 97.2 

BB 2 2.8 2.8 100.0 

Total 72 100.0 100.0  

 Frequency Percent Valid Percent 

Cumulative 

Percent 

 Other 53 73.6 73.6 73.6 

Spring 19 26.4 26.4 100.0 

Total 72 100.0 100.0  

 

Table 50. Summer season frequency for the Ginkgoaceae family. 

 Frequency Percent Valid Percent 

Cumulative 

Percent 

Valid Other 60 83.3 83.3 83.3 

 Summer 12 16.7 16.7 100.0 

Total 72 100.0 100.0  

 

Table 51. Fall season frequency for the Ginkgoaceae family. 

 Frequency Percent Valid Percent 

Cumulative 

Percent 

 Other 54 75.0 75.0 75.0 

Fall 18 25.0 25.0 100.0 

Total 72 100.0 100.0  

 

 

Table 52. Asia nativity frequency for the Ginkgoaceae family. 

 Frequency Percent Valid Percent 

Cumulative 

Percent 

 Asia 72 100.0 100.0 100.0 
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Table 47. Container above one gallon frequency for the Ginkgoaceae family.  

Frequency Percent Valid Percent 

Cumulative 

Percent 

Other 58 80.6 80.6 80.6 

ContainerAbove 14 19.4 19.4 100.0 

Total 72 100.0 100.0 
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BINARY LOGISTIC REGRESSION V: PICEA 

 

 

 

  Within the Picea binary logistic regression, the analysis included 67(N) 

specimens (Table 53). In the null classification table (Table 54), the model assumed 

53.7% of specimens accuracy in the prediction of survival. The Omnibus tests of model 

coefficients (Table 55) had a significance of 0.208, concluding to no significance in the 

fit of variables added in the model (IMB SPSS, 2016). Hosmer and Lemeshow test (Table 

56) showed a significance within the model at 0.842 (p>0.001). The classification table 

including the predictor variables (Table 57) had a 65.7% accuracy in prediction of 

survival, that indicated an increase from the null table by 12%.  

 The variables in the equation (Table 58) showed no significance. This concludes 

that the model is not predictive of survival. The specimens planted in the spring season 

(Table 59) had an overall frequency of 15 and composed 22.4% of the data set. Summer 

planted specimens (Table 60) had a frequency of 8 and had composed 11.9% of the data 

set. The fall planted specimens (Table 61) had a frequency of 34 and had 50.7% of the 

overall data set. The baseline comparison variable, winter, was calculated at a frequency 

of 10. Containers above one gallon had a frequency of 19 and percentage of 28.4 in this 

data set (Table 62). Whereas ball and burlap specimens had a frequency of 9 at a 

percentage of 13.4 (Table 63). The nativity of Europe had a frequency of 56 specimens, 

composed of 83.6% of the data set (Table 65). North America nativity only had a 

frequency of 3 at 4.5% (Table 64). The baseline comparison model, Asia, was calculated 

to have a frequency of 8.   
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THE PICEA TABLES 

 

 

Table 53. The case processing summary for the Picea genera.  

 N Percent 

Selected Cases Included in Analysis 67 100.0 

Missing Cases 0 .0 

Total 67 100.0 

Unselected Cases 0 .0 

Total 67 100.0 

 

 

 

 

 

 

Table 54. The null classification table for the Picea genera. 

Observed Predicted 

Qty now Percentage Correct 

0 1 

 Qty now 0 36 0 100.0 

1 31 0 .0 

Overall Percentage   53.7 

a. Constant is included in the model. 

b. The cut value is .500 
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Table 55. The omnibus tests of model coefficients for the Picea genera. 

 Chi-square df Sig. 

 Step 9.664 7 .208 

Block 9.664 7 .208 

Model 9.664 7 .208 

 

 

 

 

 

Table 56. The hosmer and lemeshow test for the Picea genera. 

 Chi-square df Sig. 

 3.439 7 .842 

 

 

 

 

 

Table 57. The classification table for the Picea genera. 

Observed Predicted 

Qty now Percentage Correct 

0 1 

 Qty now 0 27 9 75.0 

1 14 17 54.8 

Overall Percentage   65.7 

a. The cut value is .500 
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Table 58. The variables in the equation for the Picea genera. 

 B S.E. Wald df Sig.1 Exp(B) 

95% C.I.for EXP(B) 

Lower Upper 

 Nativity=Europe -.802 .995 .650 1 .420 .448 .064 3.150 

Nativity=North 

America 

-22.115 22992.307 .000 1 .999 .000 .000 . 

Containersabove -1.042 .622 2.807 1 .094 .353 .104 1.194 

BB -.587 .780 .566 1 .452 .556 .121 2.565 

Spring -.412 .887 .216 1 .642 .662 .116 3.769 

Summer -.720 1.171 .378 1 .539 .487 .049 4.830 

Fall .233 .760 .094 1 .760 1.262 .284 5.597 

Constant 1.079 1.185 .830 1 .362 2.942   

Sig.1: *= p< 0.05, **= p<0.01, *** = p<0.001 
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Table 59. Fall season frequency for the Picea genera. 

 Frequency Percent Valid Percent 

Cumulative 

Percent 

 Other 33 49.3 49.3 49.3 

Fall 34 50.7 50.7 100.0 

Total 67 100.0 100.0  

 

 

Table 60. Summer season frequency for the Picea genera. 

 Frequency Percent Valid Percent 

Cumulative 

Percent 

 Other 59 88.1 88.1 88.1 

Summer 8 11.9 11.9 100.0 

Total 67 100.0 100.0  

 

 

Table 61. Spring season frequency for the Picea genera. 

 Frequency Percent Valid Percent 

Cumulative 

Percent 

 Other 52 77.6 77.6 77.6 

Spring 15 22.4 22.4 100.0 

Total 67 100.0 100.0  

 

 

Table 63. Containers above one gallon frequency for the Picea genera.   

 Frequency Percent Valid Percent 

Cumulative 

Percent 

 Other 48 71.6 71.6 71.6 

ContainersAbove 19 28.4 28.4 100.0 

Total 67 100.0 100.0  

Table 62. Ball and burlap frequency for the Picea genera. 

 Frequency Percent Valid Percent 

Cumulative 

Percent 

 Other 58 86.6 86.6 86.6 

BB 9 13.4 13.4 100.0 

Total 67 100.0 100.0  
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Table 64. North America nativity frequency for the Picea genera. 

 Frequency Percent Valid Percent 

Cumulative 

Percent 

 Other 64 95.5 95.5 95.5 

NorthAmerica 3 4.5 4.5 100.0 

Total 67 100.0 100.0  

  

 

 

 

 

 

 

 

 

 

 

 

 
  

Table 65. Europe nativity frequency for the Picea genera.   

 Frequency Percent Valid Percent 

Cumulative 

Percent 

 Other 11 16.4 16.4 16.4 

Europe 56 83.6 83.6 100.0 

Total 67 100.0 100.0  
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BINARY LOGISTIC REGRESSION V: PINACEAE 

 In the analysis of Pinaceae, the case processing summary (Table 66) showed 

758(N) specimens included. The null classification table (Table 67) predicted 55.3% of 

the accuracy in model to be correct. Within the Omnibus test of model coefficients (Table 

68), the model included a 0.003 significance level, indicating some significance (p<0.05). 

The Hosmer and Lemeshow test (Table 69) showed a 0.032 significance level, proving 

that this was not a good overall model by being under 1(IMB SPSS, 2016). The 

classification table that included all predictor variables (Table 70) had the percentage of 

correct predictions at 58.3, increasing from the null by 3%.  

 The only variable in the equation (Table 71) proving to be statistically significant 

was the spring planting season at a significance level of 0.049 (p<0.05). With this 

variable being significant, it is safe to interpret the odds ratio (Exp[B]) at its level of 

0.623 (Table 71). This signifies that the odds of a specimen surviving after being planted 

in the spring season increased 0.623 than that of the baseline comparison variable, winter. 

The frequency of the spring planted specimens are 155 out of the 758 total specimens, at 

20.4% of this data set (Table 72). Summer season had a frequency level of 144 holding 

19.0% of the data set (Table 73). The specimens planted in the fall season had a 

frequency of 316, with 41.7% of the total data set. The baseline comparison variable, 

winter, was calculated to have a frequency of 143 in the data set. The ball and burlap 

frequency is at 182 specimens, that had 24.0% of the data set (Table 76). Specimens 

planted from containers above one gallon had a frequency of 195, with 25.7% of the data 

set (Table 75).  
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 Nativity of 'Asia' had 193 specimens at a percentage of 25.5 (Table 78). 'Europe' 

nativity occurred 126 times in the data at 16.6% (Table 78). The nativity variable 

'Europe, Asia' concluded with a frequency of 29 at a percentage of only 3.8 (Table 77). 

The nativity variable 'Europe, Asia, North America' had only 3 frequencies (Table 80). 

The 'Hybrid' nativity occurred 6 times in the data set (Table 81). 'North America' had a 

frequency of 385 specimens with a 50.8% included in the analysis (Table 82). The 

baseline comparison variable, Africa, was calculated to have a frequency of 16. 
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THE PINACEAE TABLES 

 

 

 

Table 66. The case processing summary for the Pinaceae family. 

 N Percent 

Selected Cases Included in Analysis 758 100.0 

Missing Cases 0 .0 

Total 758 100.0 

Unselected Cases 0 .0 

Total 758 100.0 

 

 

 

 

 

 

 

Table 67. The null classification table for the Pinaceae family. 

Observed Predicted 

Qty now Percentage Correct 

0 1 

 Qty now 0 419 0 100.0 

1 339 0 .0 

Overall Percentage   55.3 

a. Constant is included in the model. 

b. The cut value is .500 
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Sig.1: *= p< 0.05, **= Sig.1: *= p< p<0.01, *** = p<0.001 

 

 

 

 

Table 69. The hosmer and lemeshow test for the Pinaceae family. 

 Chi-square df Sig.1 

 15.370 7 .032* 

Sig.1: *= p< 0.05, **= p<0.01, *** = p<0.001 

 

 

 

 

 

Table 70. The classification table for the Pinaceae family. 

Observed Predicted 

Qty now Percentage Correct 

0 1 

 Qty now 0 276 143 65.9 

1 173 166 49.0 

Overall Percentage   58.3 

a. The cut value is .500 

 

 

Table 68. The omnibus tests of model coefficients for the Pinaceae family. 

 Chi-square df Sig.1 

 Step 28.169 11 .003** 

Block 28.169 11 .003** 

Model 28.169 11 .003** 
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Table 71. The variables in the equation for the Pinaceae family. 

 B S.E. Wald df Sig.1 Exp(B) 

95% C.I.for 

EXP(B) 

Lower Upper 

 Spring -.474 .241 3.878 1 .049* .623 .389 .998 

Summer -.405 .246 2.703 1 .100 .667 .412 1.081 

Fall .035 .208 .029 1 .866 1.036 .689 1.558 

ContainerAbove -.290 .192 2.293 1 .130 .748 .514 1.089 

BB -.184 .195 .890 1 .346 .832 .567 1.220 

Nativity=Asia .660 .564 1.369 1 .242 1.934 .641 5.839 

Nativity=Europe .125 .578 .046 1 .829 1.133 .365 3.520 

Nativity=Europe, Asia 1.008 .666 2.288 1 .130 2.739 .742 10.108 

Nativity=Europe, Asia, North America .080 1.349 .003 1 .953 1.083 .077 15.224 

Nativity=Hybrid 2.391 1.225 3.809 1 .051 10.921 .990 120.495 

Nativity=North America .905 .557 2.644 1 .104 2.472 .830 7.359 

Constant -.648 .559 1.346 1 .246 .523   

Sig.1: *= p< 0.05, **= p<0.01, *** = p<0.001 
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Table 74. Fall season frequency for the Pinaceae family. 

 Frequency Percent Valid Percent 

Cumulative 

Percent 

 Other 442 58.3 58.3 58.3 

Fall 316 41.7 41.7 100.0 

Total 758 100.0 100.0  

 

 

 

Table 76. Ball and burlap frequency for the Pinaceae family. 

 Frequency Percent Valid Percent 

Cumulative 

Percent 

 Other 576 76.0 76.0 76.0 

BB 182 24.0 24.0 100.0 

Total 758 100.0 100.0  

 

Table 72. Spring season frequency for the Pinaceae family. 

 Frequency Percent Valid Percent 

Cumulative 

Percent 

 Other 603 79.6 79.6 79.6 

Spring 155 20.4 20.4 100.0 

Total 758 100.0 100.0  

Table 73. Summer season frequency for the Pinaceae family. 

 Frequency Percent Valid Percent Cumulative Percent 

Valid Other 614 81.0 81.0 81.0 

Summer 144 19.0 19.0 100.0 

Total 758 100.0 100.0  

 

Table 75. Container above one gallon frequency for the Pinaceae family. 

 Frequency Percent Valid Percent 

Cumulative 

Percent 

 Other 563 74.3 74.3 74.3 

ContainerAbove 195 25.7 25.7 100.0 

Total 758 100.0 100.0  
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Table 79. Europe nativity frequency for the Pinaceae family. 

 Frequency Percent Valid Percent 

Cumulative 

Percent 

 Other 632 83.4 83.4 83.4 

Europe 126 16.6 16.6 100.0 

Total 758 100.0 100.0  

 

 

 

 

 

 

 

 

 

Table 78. Asia nativity frequency for the Pinaceae family. 

 Frequency Percent Valid Percent Cumulative Percent 

 Other 565 74.5 74.5 74.5 

Asia 193 25.5 25.5 100.0 

 

 

Table 77. Europe/Asia nativity frequency for the Pinaceae family. 

 Frequency Percent Valid Percent 

Cumulative 

Percent 

 Other 729 96.2 96.2 96.2 

Europe,Asia 29 3.8 3.8 100.0 

Total 758 100.0 100.0  

Table 80. Europe/Asia/North America nativity frequency for the Pinaceae family. 

 Frequency Percent 

Valid 

Percent 

Cumulative 

Percent 

 Other 755 99.6 99.6 99.6 

Europe,Asia,NorthAmerica 3 .4 .4 100.0 

Total 758 100.0 100.0  
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Table 81. Hybrid nativity frequency for the Pinaceae family. 

 Frequency Percent Valid Percent 

Cumulative 

Percent 

 Other 752 99.2 99.2 99.2 

Hybrid 6 .8 .8 100.0 

Total 758 100.0 100.0  

Table 82. North America nativity frequency for the Pinaceae family. 

 Frequency Percent Valid Percent 

Cumulative 

Percent 

 Other 373 49.2 49.2 49.2 

NorthAmerica 385 50.8 50.8 100.0 

Total 758 100.0 100.0  
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CHAPTER V 

 

 

DISCUSSION 

 

 

 Out of the six different binary logistic regressions tested, only three of the 

regressions were significant with predicting survival. Chamaecyparis, Cupressaceae and 

Pinaceae were the three taxa groups that showed significance in survival with the 

predictor variables. Cephalotaxaceae, Ginkgoaceae and Picea groups were not 

significant with the predictor variables.   

 In comparison of the statistically significant groups, the Pinaceae family and 

Chamaecyparis genus both showed a decreasing odds of survival when planted in the 

spring season, rather than the winter. The Cupressaceae family had shown greatest 

survival odds out of all the season predictor variables when being planted in the fall, 

rather than the winter. The Cupressaceae family had also shown in the nativity predictor 

variables that North America had the highest odds of survival compared to Asia. The 

Chamaecyparis genus also showed that North America had lesser odds of survival than 

Asia.  

 The Cupressaceae family specifically had shown parallel predictions of the 

expected survival with typical biological predictions. The odds of specimen survival are 

higher being planted in the fall season where humidity is low, rather than the spring 

planting season. This correlates biologically with root growth patterns of coniferous trees, 

being that fall is the time of root establishment and decreasing soil temperatures (Lyr and 

Hoffmann 1967; Weiser 1970; Smit-Spinks et al. 1985; Rikala and Huurinainen 1990; 

Ryyppö et al. 1998). Container size has also been analyzed in this family, showing 
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containers above one gallon are linked with higher odds of survival than those of 

containers below or equal to one gallon. This also can be correlated biologically by 

allowing more root growth and development before planting (NeSmith and Duval, 1998). 

The Cupressaceae family had also shown higher survival odds with the nativity of North 

America, rather than Asia due to the specimens being native to the continent.  

 An explanation for the decline in survival in the Chamaecyparis genera is that 

these specimens do not perform well being transplanted. Also these genera prefer cool 

soil, which may explain the survival odds being greater in the winter months when 

planted (Groww, 2021). In 2007, the Baker Arboretum experiences a drought year. The 

water supply was cut from the grounds for water conservation, leading to dry soil and a 

higher soil temperature. In this year, the Arboretum experienced many Chamaecyparis 

deaths, which is also a huge factor in their decline of survival. Chamaecyparis had also 

shown less odds of survival with North American specimens rather than Asia, due to the 

reduced frequency of North American specimens in the model.  

 There are multiple explanations for the data that had shown to be significant. The 

Cupressaceae family had shown to be parallel to the biological predictions of survival, 

which explained the results well. The Chamaecyparis study had shown biological 

predictions through the seasons planted variable, but had the overall decrease in survival 

due to the drought that occurred in 2007. The model also had an effect on the nativity 

result due to the low frequency of North America. The Pinaceae result is an anomaly that 

may have resulted in collision with other predictor variables. Many variables were left 

out of this study due to the vast about of data, but need to be accounted for the survival. 

Studies like this need to be done more often in order to fully determine survival of 
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arboreta specimens and how it correlates with important predictor variables. Accruing 

this data is important to the success of public gardens and also will contribute to public 

knowledge of these species. Future studies around the World in public gardens will aid in 

the success of ex-situ conservation that is growing more prevalent in the near future.   
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