
Western Kentucky University Western Kentucky University 

TopSCHOLAR® TopSCHOLAR® 

Masters Theses & Specialist Projects Graduate School 

Spring 2021 

Analysis of Boundary Observability of Strongly Coupled One-Analysis of Boundary Observability of Strongly Coupled One-

dimensional Wave Equations with Mixed Boundary Conditions dimensional Wave Equations with Mixed Boundary Conditions 

Wilson Dennis Horner 
Western Kentucky University, wilson.horner585@topper.wku.edu 

Follow this and additional works at: https://digitalcommons.wku.edu/theses 

 Part of the Control Theory Commons, Numerical Analysis and Computation Commons, and the Partial 

Differential Equations Commons 

Recommended Citation Recommended Citation 
Horner, Wilson Dennis, "Analysis of Boundary Observability of Strongly Coupled One-dimensional Wave 
Equations with Mixed Boundary Conditions" (2021). Masters Theses & Specialist Projects. Paper 3505. 
https://digitalcommons.wku.edu/theses/3505 

This Thesis is brought to you for free and open access by TopSCHOLAR®. It has been accepted for inclusion in 
Masters Theses & Specialist Projects by an authorized administrator of TopSCHOLAR®. For more information, 
please contact topscholar@wku.edu. 

https://digitalcommons.wku.edu/
https://digitalcommons.wku.edu/theses
https://digitalcommons.wku.edu/Graduate
https://digitalcommons.wku.edu/theses?utm_source=digitalcommons.wku.edu%2Ftheses%2F3505&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/116?utm_source=digitalcommons.wku.edu%2Ftheses%2F3505&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/119?utm_source=digitalcommons.wku.edu%2Ftheses%2F3505&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/120?utm_source=digitalcommons.wku.edu%2Ftheses%2F3505&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/120?utm_source=digitalcommons.wku.edu%2Ftheses%2F3505&utm_medium=PDF&utm_campaign=PDFCoverPages


ANALYSIS OF BOUNDARY OBSERVABILITY OF STRONGLY COUPLED
ONE-DIMENSIONAL WAVE EQUATIONS WITH MIXED BOUNDARY

CONDITIONS

A Masters Thesis
Presented to

The Faculty of the Department of Mathematics
Western Kentucky University

Bowling Green, KY

In Partial Fulfillment
Of the Requirements for the Degree

Master of Science

By
Wilson Dennis Horner

May 2021



Richard Schugart

Mark Robinson

ANALYSIS OF BOUNDARY OBSERVABILITY OF STRONGLY COUPLED
ONE-DIMENSIONAL WAVE EQUATIONS WITH MIXED BOUNDARY

CONDITIONS

Associate Provost for Research and Graduate Education

April 16, 2021



I would like to dedicate this thesis to all my close friends and family who have

supported me throughout my career.



ACKNOWLEDGEMENTS

I would like to express my sincerest regards to Dr. Özer and the rest of the
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In control theory, the time it takes to receive a signal after it is sent is referred

to as the observation time. For certain types of materials, the observation time

to receive a wave signal differs depending on a variety of factors, such as material

density, flexibility, speed of the wave propagation, etc. Suppose we have a strongly

coupled system of two wave equations describing the longitudinal vibrations on a

piezoelectric beam of length L. These two wave equations have non-identical wave

propagation speeds c1 and c2. First, we prove the exact observability inequality with

the optimal observation time satisfying T > T1 = 2L
min (c1,c2) by adopting two different

techniques: the multipliers method (non-spectral) and non-harmonic Fourier series

(spectral). Next, we discretize the spacial variable for the system via central Finite

Differences. We find that for this particular discretization, the minimal observability

time approaches infinity as the discretization parameter h goes to zero, and therefore,

the discretized equations lack uniform observability unlike the original equations. This

is simply due to the blind use of Finite Differences which generates spurious high-

frequency vibrational modes. To resolve this issue, a filtering technique, known as

the direct Fourier filtering, is adopted, and an observability inequality is proved with

a (sub-optimal) observation time T > T1 > T2 as the discretization parameter tends

to zero. These results show that filtered finite differences can be safely applied to the

system of piezoelectric beam equations in designing stabilizing controllers.

viii



1 Introduction

Piezoelectric materials are multi-functional smart materials (most notably Lead Zir-

conate Titanate) used to develop electric displacement that is directly proportional

to an applied mechanical stress [4, 25], see Fig. 1. This allows these materials to be

used as sensors and actuators. Due to their small size and high power density, they

have become more and more promising in industrial applications such as implantable

biomedical devices [3, 4, 24], wearable human-machine interface for PVDF sensors [8],

nano-positioners and micro-sensing [6, 7, 10], ultrasound imagers, and cleaners [26]

due to the excellent advantages of the fast response time, large mechanical force, and

extremely fine resolution [10]. Controlling unwanted vibrations on the host structures

(or harvesting energy from ambient vibrations) via piezoelectric layers have been the

major focus in cutting-edge engineering applications such as ultrasonic welders [26],

micro-sensors [6, 7, 10], inchworm robots, and wearable human-machine interfaces

such as PVDF sensors adhered onto the surface of skin or cardiac pacemakers under

the skin of the chest [8].

These industrial applications for piezoelectric materials can make use of sensors

to observe wave profiles corresponding to vibrations on a host structure, and thereby

allow piezoelectric materials to actively control the vibration profile of the host struc-

ture. Since physical sensors can only take finite-dimensional measurements of dis-

placement, velocity, or acceleration of the traveling waves at a point, it is required

to work with a finite dimensional discretization of the partial differential equation

system. The main challenge is not only to have the discretized model converge to the

original problem for accurately representing the physical nature of the dynamics but

also to mimic the control-theoretic properties, such as observability or stabilization,

of the original problem.

For many applications of piezoelectricity, electrostatic (or quasi-static) approxi-
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Figure 1: (a) A piezoelectric beam is an elastic beam with electrodes at their top and bottom
surfaces, and connected to an external electric circuit. As voltage is applied to its electrodes, it
actively (b) stretches or (c) shrinks in the longitudinal directions, therefore, causing charges to
separate and line up in the vertical direction. Magnetic (and thermal) effects (stored/produced)
have direct contribution to the electric field across the electrodes and longitudinal vibrations [9].

mations due to Maxwell’s equations are sufficient to describe low-frequency vibrations

[3, 4, 25]. Magnetic effects associated with a piezoelectric beam are traditionally

omitted due to the fact that they have a minimal impact on the overall dynamics

of the system, yet maximal impact in the observability/controllability of the system

[16]. However, for certain piezoelectric devices, these effects can also be major. For

example, for piezoelectric acoustic wave devices, there are situations in which full

electromagnetic coupling needs to be considered [5, 28, 30]. As a side note, as elec-

tromagnetic waves are involved, the complete set of Maxwell equations needs to be

used, coupled to the mechanical equations of motion [31].

Denoting v and p by longitudinal displacement of the centerline of the beam and

total electrical displacements, a one-dimensional, strongly coupled partial differential

equation model describing the longitudinal vibration profile of a piezoelectric beam

2



of length L with the addition of magnetic effects is given in [16] as the following



ρvtt − αvxx + γβpxx = 0,

µptt − βpxx + γβvxx = 0, (x, t) ∈ (0, L)× R+,

v(0, t) = p(0, t) = 0,

αvx(L, t)− γβpx(L, t) = 0,

px(L, t)− γvx(L, t) = 0, t ∈ R+,

v(x, 0) = v0(x), vt(x, 0) = v1(x), x ∈ (0, L),

p(x, 0) = p0(x), pt(x, 0) = p1(x), x ∈ (0, L),

(1.1)

where ρ, α, γ, µ, β denote the mass density per unit volume, elastic stiffness, piezo-

electric coefficient, magnetic permeability, impermittivity coefficient of the beam,

respectively. Note that the wave speeds
√

α
ρ

and
√

β
µ

are non-identical due to the

physics.

The electrostatic/quasi-static piezoelectric beam model obtained by taking the

magnetic permeability constant zero, i.e. µ ≡ 0 in (1.1), is a single wave equation as

the following


ρvtt − α1vxx = 0, (x, t) ∈ (0, L)× R+,

v(0, t) = α1vx(L, t) = 0, t ∈ R+,

v(x, 0) = v0(x), vt(x, 0) = v1(x), x ∈ (0, L),

(1.2)

where α1 = α − γ2β. It is known that electromagnetic effects for most piezoelectric

beams are minor in comparison to the mechanical effects [25]. However, they have a

dramatic effect on the observability of these materials [16] especially if there is only

an electrical sensor at the boundary measuring pt(L, t) in (1.1), which is the total

current accumulated at the electrodes of the beam. Then, the system is not uniformly

observable and not exponentially stabilizable for high-frequency vibrational solutions

[16]-[20]. Therefore, unlike the quasi-static or electrostatic models, where only one
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observer vt(L, t) in (1.2) is enough, two observers, i.e. pt(L, t) and vt(L, t) in (1.1), is

a must for exact observability and exponential stabilizability, which are dual concepts

of each other in control theory.

It is essential to note that partial differential equations are infinite dimensional

systems because they have infinitely many eigenvalues, so exact observability of vibra-

tions is an infinite-dimensional problem. For example, letting z = [v, vt]T the system

(1.2) is written in the first order form zt = Az where

A =

 0 I

α1
ρ
D2
x 0

 .

The eigenvalues of A can be easily computed and they are all on the imaginary axis:

λ̃k = ±i
√
α1

ρ

(2k − 1)π
2L , k = 1, 2, . . . ,∞. (1.3)

For these eigenvalues, the gap between two consecutive eigenvalues, |λ̃k+1−λ̃k| is

uniform and is simply π
L
. This is a desired property to prove uniform observability of

(1.2). In particular, for T > Tmin one would like to prove the so-called observability

inequality as the following:

∫ T

0
|vt(L, t)|2 ≥ C(T )

[∫ L

0

(
|(v0)x|2 + |v1|2

)
dx

]
(1.4)

where Tmin is called the minimal observation time needed to recover initial conditions

(v0(x), v1(x)) with a single measurement vt(L, t), tip velocity.

In practice, sensors (or observers) work through algorithms on the chip, and

therefore they are doing calculations in finite dimensions (i.e. the computer world).

Also, sensors only observe a finite number of vibrational modes. For that reason, sen-

sor design for the observed quantity vt(L, t) in (1.4) has to be done for a numerical
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approximation of the system. Numerical approximation methods discretize either one

or both variables of the wave equation (time and space). While discretizations have

been done for both variables, or just the temporal variable over a string of length L,

this project will be focusing solely on the semi-discretization of the space variable.

However, the blindly approximated models do not hold for the well-known numerical

approximations of the partial differential equation system, such as Finite Difference

Method, Finite Element Method, or Finite Volumes Method [11, 22, 29]. The ma-

jor issue in showing the observability of the discretized system is losing the uniform

gap between two consecutive eigenvalues that exists for the infinite dimensional sys-

tem, see Fig. 2. The existence of the uniform gap allows us to rely on vibrational

observations measured by the sensors. When this gap is not present due to numeri-

cal approximation, the sensor cannot distinguish one vibrational mode from another.

When this happens, the system is not observable.

To the best of our knowledge, this discrepancy was first shown in [1] for a

boundary-controlled wave equation, and this was later diagnosed first for a wave

equation with Dirichlet boundary conditions [11].

For example, as Finite Difference space-discretized approximations for (1.2) is

utilized for the discertization parameter h = 1
N+1 > 0, one can show that the eigen-

values of the finite-dimensional model is precisely given as the following [27]

λ̃k = ±i2
h

√
α1

ρ
sin

(
(2k − 1)πh

2(2− h)

)
, k = 1, 2, . . . , N. (1.5)

The comparison between (1.3) and (1.5) shows that not only the discrete eigen-

values diverge away from the continuous counterparts for high-frequency eigenvalues,

but also the gap between two consecutive eigenvalues |λ̃k+1 − λ̃k| approaches zero

as h approaches zero which is not the case for the continuous eigenvalues. This is

particularly not desired in control theory, since eigenvalues get extremely close to

each other, and the observer may not be able distinguish one vibrational mode from

5



another one.

Figure 2: (a) For α1 = ρ = 1 in (1.2), continuous and discrete eigenvalues (|λ̃1|,...,
|λ̃k|,...,|λ̃N |) for N = 20, 40, 60, 80, 100. (b) The gap between two consecutive eigen-
values |λ̃k+1 − λ̃k| → 0 as N →∞ or h→ 0.

In fact, when describing non-observability, we look at the eigenvalues that corre-

spond to our system, and the consequential gap between two consecutive values. For

piezoelectric beam equations (1.1), there are two different branches of eigenvalues.

There exists a uniform gap between any two consecutive eigenvalues for the eigenval-

ues on each branch, but when the spacial variable is discretized, we lose this uniform

gap property as the gap becomes infinitesimally small as our discretization parameter

h→ 0. This corresponds to two wave signals of our system that are indistinguishable

from one another, which affects our ability to control the system.

In this project, we utilize the space-discretized Finite-Differences method for the

piezoelectric beam equations (1.1). The first goal of this paper is to prove a lack of

uniform observability for the discretized piezoelectric beam model by way of discrete

multipliers. To avoid the issue demonstrated in Fig. 2, there are several methods

proposed to remedy this issue, i.e. direct [2] and indirect filtering [29]. As stated be-

fore, this paper will focus on the direct Fourier filtering method to make our system

exactly observable. Our second goal is to prove exact observability of the filtered solu-

tions by directly filtering high-frequency solutions out of the system, i.e. only using a

specified amount of the eigenvalues for a Fourier series, so that the eigenvalues of our

6



discrete model closely resemble those of the continuous model. Exact observability is

described here for two boundary measurements (tip beam velocity and total current

accumulated at the electrodes of the beam) so that in a finite amount time, one can

distinguish one solution from the other one. Proving exact observability corresponds

to finding a finite value C(T ) for the observability inequality, as in (1.4) in the discrete

setting.

To carefully demonstrate the exact observability for (1.1) and the direct Fourier

filtering process for the semi-discretization of (1.1) as described above, we start with

a toy problem; a one-dimensional wave equation with a unit wave propagation speed,

i.e. ρ = α = 1 in (1.2). In Section 2, we prove the exact observability inequality of

(1.4) by the so-called multipliers method (non-spectral) and the non-harmonic Fourier

series (spectral), and find the optimal observation time. All of these results are known

in the literature (see [12, 13]) and we only reproduce these results for completeness. In

Section 3, we semi-discretize the wave equation by Finite Differences and prove that

the discretized observability inequality does not hold as the discretization parameter

approaches zero. As a remedy, we apply the Fourier direct filtering technique to filter

high-frequency eigenvalues. After proving several technical lemmas, we prove the

observability inequality. Note that all results found in section 3 are replications of

results found in [2, 11]. However, we provide all the proofs with details to prepare the

reader for the rest of the thesis. In Section 4, for the novel piezoelectric beam model,

we prove the exact observability inequality by the multipliers method (non-spectral)

and the non-harmonic Fourier series (spectral), and find the “optimal” observation

time, unlike a sub-obtimal time provided in [23]. In Section 5, we semi-discretize

the piezoelectric beam equation by Finite Differences and prove that the discretized

observability inequality with two observations does not hold as the discretization

parameter approaches zero. We apply the Fourier direct filtering technique as in

Section 3 to filter high-frequency eigenavalues, and prove the observability inequality

7



with a sub-optimal time. The main challenge here is the non-identical wave speeds,

and the non-compact coupling in (1.1).

Note that the entire novel contribution in this project lies in sections 4 and 5.

The outcome is already submitted for publication [21].

8



2 One-dimensional Wave Equation

We will see in this section that for the single wave equation model, we generate an

observability inequality with an optimal observation time, which can be proved via

multipliers method [12] or by applying the so-called Ingham’s Theorem [13]. These

two techniques are widely used in many applications of control problems of partial

differential equations. All of the results in this section have already been known in

the literature (see [12, 13]), however we aim to lay the groundwork via this simplified

model before the discussion of the system of coupled wave equation-model for the

piezoelectric beam model in Section 4. The ideas being used in the proofs will be

mimicked in Section 4 throughout several of the theorems.

2.1 Energy Solutions and Conservation of Energy

We first begin with a simple one-dimensional wave equation with clamped-free bound-

ary conditions, modeling a string clamped on the left end, and free on the right end:


utt − uxx = 0, 0 < x < L, t ≥ 0

u(0, t) = 0, ux(L, t) = 0, t ≥ 0

u(x, 0) = u0(x), ut(x, 0) = u1(x), 0 < x < L

(2.1)

where u(x, t) describes the vibration profile on the string. Define the Hilbert spaces

H = H1
L(0, L)× L2(0, L),

L2(0, L) =
{
f(x) :

∫ L
0 |f(x)|2dx <∞

}
,

H1
L(0, L) = {f(x) : f, f ′ ∈ L2(0, L), f(0) = 0} .

From [11] we know system (2.1) is well-posed in the energy space H1
L(0, L)×L2(0, L),

i.e. for any (u0, u1) ∈ H1
L(0, L)× L2(0, L) there exists a unique solution

u ∈ C([0, T ];H1
L(0, L)) ∩ C1([0, T ];L2(0, L)). The energy of these solutions is given

9



by

E(t) = 1
2

∫ L

0
|ux(x, t)|2dx︸ ︷︷ ︸

Potential Energy

+ 1
2

∫ L

0
|ut(x, t)|2dx︸ ︷︷ ︸

Kinetic Energy

, t ∈ R+. (2.2)

An important property of this energy is that it is conserved along the trajectories of

solutions, i.e. E(t) = E(0) or d
dt
E(t) = 0. We pose this as in the following theorem.

Theorem 2.1 (Section 1.3, [12]). For any t ∈ R+, we have that d
dt
E(t) = 0.

Proof. First, multiply (2.1) by the multiplier ut and integrate over [0, L] to get

∫ L

0
(utt · ut − uxx · ut)dt = 0. (2.3)

Note that utt · ut = 1
2
d
dt
|ut|2 and performing integration by parts on the second term,

we get

1
2

∫ L

0

d

dt
|ut|2dx− uxut

∣∣∣∣∣
L

0
+
∫ L

0
uxuxtdx = 0. (2.4)

Now, since uxuxt = 1
2
d
dt
|ux|2 and uxut

∣∣∣∣∣
L

0
= 0 via boundary conditions,

d

dt

[
1
2

∫ L

0

(
|ut|2 + |ux|2

)
dx

]
= 0, (2.5)

thus showing that energy is conserved for all t ∈ R+.

In control theory, it is common to put PDEs in the state-space formulation, and

therefore the first order form, as this allows more immediate calculations of eigenvalues

and the subsequent Fourier Series. Let

z =

u
ut

 . (2.6)

We can now re-formulate (2.1) as

10



zt =

 0 I

D2
x 0

 z (2.7)

where Dn
x = ∂n

∂nx
is the second-order differential operator and D0

x = I. Now the

corresponding eigenvalue problem for (2.7) is

 0 I

D2
x 0


u1

u2

 = λ̃

u1

u2

 . (2.8)

(2.8) is equivalent to


u2 = λ̃u1

u1,xx = λ̃u2 = λ̃2u1

u1(0) = u1,x(L) = 0.

(2.9)

The following lemma describes the auxiliary eigenvalue problem for the operator

−D2
x, is necessary for finding solutions of (2.8) in the theorem after. The proofs of

these results can be seen in [27].

Lemma 2.1. The solutions to the eigenvalue problem


−ψxx = λψ

ψ(0) = ψx(L) = 0
(2.10)

are given by

ωk =
√
λk, λk =

(
(2k − 1)π

2L

)2

, ψk = sin (ωkx) .

Since λ̃2
k = −λk from (2.9) and (2.1), the following result is immediate.

Theorem 2.2 (Lemma 5, [27]). The eigenvalues and eigenvectors of (2.8) are given

11



by

λ̃k = ±iωk, zk =

u1,k

u2,k

 =

 ψk

λ̃kψk

 .
We are now in position to write a Fourier series for (2.7):

z =

u
ut

 =


∞∑
k=1

[akeiωkt + bke
−iωkt]ψk

∞∑
k=1

iωk [akeiωkt − bke−iωkt] λ̃kψk

 (2.11)

where ak, bk ∈ R and can be computed explicitly in terms of the initial conditions

(u0(x), u1(x)).

2.2 Proof of Uniform Observability Using Multiplier Method

The main observability inequality we seek for in this section is

E(0) ≤ C(T )
∫ T

0
|ut(L, t)|2 dt (2.12)

where E(0) is the non-negative energy corresponding to the initial conditions. A phys-

ical interpretation for this inequality is that as there is no observation, i.e. ut(L, t) ≡ 0,

then the observer does not observe anything, meaning there is no vibration on the

string, i.e. E(0) ≡ 0. For the exactly observable case, we will see that when T > 2L,

the total energy, and therefore the initial state of the string, can be estimated by the

boundary observation at one end. For the case of (2.1), this boundary observation is

the tip velocity, ut(L, t). Here, T = 2L is optimal [11].

Theorem 2.3 (Section 3.4, [12]). For any T > 2L and u0, u1 ∈ H, there exists a

constant C(T ) > 0 such that (2.12) holds for every solution of (2.1) uniformly.

Proof. First we multiply (2.1) by xux and integrate over [0, T ]× [0, L]:

∫ T

0

∫ L

0
(utt − uxx)xux dxdt = 0. (2.13)

12



Let X1 =
∫ T
0
∫ L

0 uttxux dxdt. Now integrate X1 by parts with respect to t to obtain

X1 =
∫ L

0
xuxut

∣∣∣∣∣
T

0
dx−

∫ T

0

∫ L

0
xuxtut dxdt. (2.14)

Note that xuxtut = x
2
d
dx
|ut|2, and applying integration by parts again with respect to

x we get

∫ L

0

∫ T

0

x

2
d

dx
|ut|2dxdt =

∫ T

0

x

2 |ut|
2
∣∣∣∣∣
L

0
dt−

∫ T

0

∫ L

0

1
2 |ut|

2 dxdt, (2.15)

and therefore,

X1 =
∫ L

0
xuxut

∣∣∣∣∣
T

0
dx+

∫ T

0

∫ L

0

1
2 |ut|

2dxdt−
∫ T

0

L

2 |ut(L, t)|
2 dt. (2.16)

Now let X2 = −
∫ T

0
∫ L

0 xuxuxx and note that xuxuxx = x
2
d
dx
|ux|2. Integrate by parts

with respect to x to obtain

X2 = −
∫ T

0

x

2 |ux|
2
∣∣∣∣∣
L

0
dt+

∫ T

0

∫ L

0

1
2 |ux|

2 dxdt, (2.17)

and by the boundary conditions x
2 |ux|

2
∣∣∣∣∣
L

0
= 0. We can see that X1 + X2 = 0, and

keeping in mind conservation of energy,dE
dt

= 0, combine (2.16) and (2.17) to get

X1 +X2 =
∫ L

0 xuxut

∣∣∣∣∣
T

0
dx+

∫ T
0
∫ L

0
1
2 |ut|

2 dxdt−
∫ T
0

L
2 |ut(L, t)|

2dt

+
∫ T

0
∫ L

0
1
2 |ux|

2 dxdt

= 0.
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Combining the energy terms,

∫ L

0
xuxut

∣∣∣∣∣
T

0
dx+

∫ T

0
E(0)dt = L

2

∫ T

0
|ut(L, t)|2 dt. (2.18)

Since energy is constant,

∫ L

0
xuxut

∣∣∣∣∣
T

0
dx+ TE(0) = L

2

∫ T

0
|ut(L, t)|2 dt. (2.19)

By Young’s inequality, we can see that

∣∣∣∣∣∣∫ L0 xuxut

∣∣∣∣∣
T

0
dx

∣∣∣∣∣∣ ≤ ∫ L0 |xuxut|
∣∣∣∣∣
T

0
dx

≤
∫ L

0 x|uxut|
∣∣∣∣∣
T

0
dx

≤ L
2
∫ L

0 (|ux|2 + |ut|2)
∣∣∣∣∣
T

0
dx

= |LE(T )− LE(0)|

≤ |LE(T )|+ |LE(0)|

= 2LE(0).

(2.20)

Applying (2.20) to (2.18) we get

TE(0)− 2LE(0) ≤ L

2

∫ T

0
|ut(L, t)|2 dt,

and therefore

E(0) ≤ L

2(T − 2L)

∫ T

0
|ut(L, t)|2 dt. (2.21)

Note that T > 2L to make the observability constant L
2(T−2L) positive.
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2.3 Proof of Uniform Observability Using Ingham’s Theorem

In this section, we will now focus on proving Theorem 8 via Ingham’s Theorem. The

motivation is to find an optimal observation time without the use of multipliers. Note

that when applying the multiplier method to the continuous single wave equation, we

already generated an optimal control time, but we show that for the coupled wave

equation model, the multiplier method results in a sub-optimal observation time, and

so Ingham’s Theorem will be more beneficial.

We first begin this section with a fact from functional analysis that in the L2(0, L)

space, both {sin(ωkx)}k≥1 and {cos(ωkx)}k≥1 form an orthogonal basis for some se-

quence ωk ([14], pg. 154). In our case, we have that ωk =
√
λk = 2

h
sin

(
(2k+1)πh
2(2L−h)

)
.

The following lemma shows how the energy of solutions can be written in terms of

our Fourier coefficients in (2.11).

Lemma 2.2 (Section 3.4, [13]). For ak and bk, the Fourier coefficients in (2.11),

E(t) can be written as

E(t) = 1
2

∞∑
k=1

ω2
k(|ak|2 + |bk|2).

Proof. By (2.11),

ux(x, t) =
∞∑
k=1

(akeiωkt + bke
−iωkt)ψk,x,

ut(x, t) =
∞∑
k=1

iωk(akeiωkt − bke−iωkt)ψk,

where ψk,x = ωk cos(ωkx). It is known that {sin(ωkx)}k≥1 is an orthogonal basis

in L2(0, L) [14]. Since {sin(ωkx)}k≥1 satisfies the left-end boundary condition as

well, zk =

 sin(ωkx)

λ̃ sin(ωkx)

 forms a basis in H1
L(0, L) × L2(0, L). We use this prop-

erty to find the following equations where terms with
∫ L

0 sin(ωmx) sin(ωnx)dx and
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∫ L
0 cos(ωmx) cos(ωnx)dx are eliminated for m 6= n since

∫ L

0
|ux(x, 0)|2dx =

∫ L

0

∣∣∣∣∣
∞∑
k=1

ωk(ak + bk) cos(ωkx)
∣∣∣∣∣
2

dx

=
∞∑
k=1

ω2
k|ak + bk|2

∫ L

0
cos2(ωkx) dx︸ ︷︷ ︸

= 1
2

= 1
2

∞∑
k=1

ω2
k|ak + bk|2, (2.22)

and

∫ L

0
|ut(x, 0)|2 dx =

∫ L

0

∣∣∣∣∣
∞∑
k=1

iωk(ak − bk) sin(ωkx)
∣∣∣∣∣
2

dx

=
∞∑
k=1

ω2
k|ak − bk|2

∫ L

0
sin2(ωkx) dx︸ ︷︷ ︸

= 1
2

= 1
2

∞∑
k=1

ω2
k|ak − bk|2. (2.23)

Now we use (2.22) and (2.23) to find E(0):

E(0) = 1
2

∫ L

0
|ux(x, 0)|2 dx+ 1

2

∫ L

0
|ut(x, 0)|2 dx

= 1
4

∞∑
k=1

ω2
k|ak + bk|2 + 1

4

∞∑
k=1

ω2
k|ak − bk|2

= 1
4

∞∑
k=1

w2
k(|ak + bk|2 + |ak − bk|2)

= 1
2

∞∑
k=1

w2
k(|ak|2 + |bk|2).

Since we know that
∞∑
k=1

ω2
k(|ak|2+|bk|2) = 2E(0), and energy is finite, then

∞∑
k=1

ω2
k(|ak|2+

|bk|2) <∞.

Now we give a formal statement of Ingham’s Theorem, as in [12].
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Theorem 2.4 (Ingham’s Theorem, Section 4.3, [13]). Let {ωk}k∈K be a family of real

numbers, satisfying the uniform gap condition

τ := inf
k 6=n
|ωk − ωn| > 0. (2.24)

If I is a bounded interval of length |I| > 2π/τ , then there exists constants c1, c2 > 0

such that

c1
∑
k∈K
|xk|2 ≤

∫
I
|x(t)|2dt ≤ c2

∑
k∈K
|xk|2 (2.25)

for all functions given by the sum

x(t) =
∑
k∈K

xke
iωkt (2.26)

with square-summable complex coefficients xk, i.e. ∑
k∈K
|xk|2 <∞.

Now we provide a newer version of Theorem 2.3 using Ingham’s Theorem, where we

look at the boundary observation and how we can bound it below by the energy.

Theorem 2.5 (Section 4.5, [13]). For T > 2L there exists positive constants c1, c2 > 0

such that for all initial conditions (u0, u1) ∈ H we have

c1E(0) ≤
∫ T

0
|ut(L, t)|2dt ≤ c2E(0).

Proof. First, we show the uniform gap condition, as in Ingham’s Theorem, is satisfied.

τ = inf
k 6=n
|ωk − ωn| = inf

k 6=n

∣∣∣∣∣(2k − 1)π
2L − (2n− 1)π

2L

∣∣∣∣∣ = inf
k 6=n

∣∣∣∣∣(k − n)π
L

∣∣∣∣∣ = π

L
.
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Let ω−k = −ωk and a−k = −bk for k = 1, 2, ..., Z \ {0} = Z∗. Hence we have

ut(L, t) =
∞∑
k=1

iωk(akeiωkt − bke−iωk) sin(ωkL)

=
∑
k∈Z∗

iωkake
iωkt sin(ωkL),

and keeping in mind that ωk = (2k−1)π
2L , we can rewrite sin(ωkL):

ut(L, t) =
∑
k∈Z∗

iωkake
iωkt(−1)2k+1.

By our reference again to having finite energy in Theorem 2.1, we know coefficients

are square summable as

∑
k∈Z∗
|iωkak(−1)2k+1|2 =

∞∑
k=1

ω2
k(|ak|2 − |bk|2) ≤

∞∑
k=1

w2
k(|ak|2 + |bk|2)︸ ︷︷ ︸

E(t)

<∞.

Hence, by Ingham’s inequality, for T > 2π
τ

= 2L, there exists real constants c1, c2 > 0

such that

c1

∞∑
k=1

w2
k(|ak|2 + |bk|2) ≤

∫ T

0
|ut(L, t)|2dt ≤ c2

∞∑
k=1

w2
k(|ak|2 + |bk|2),

and so

C1E(0) ≤
∫ T

0
|ut(L, t)|2dt ≤ C2E(0), (2.27)

where C1 = 2c1, and C2 = 2c2.

By bounding the observation from below only in (2.27), and taking C(T ) = 1
C1

in (2.12), we generate an equal inequality which proves Theorem 2.3, with notably

optimal time T = 2L.
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This proof ultimately ends the discussion for the continuous case of the wave

equation as we have an optimal, uniform observation time. However, we desire a more

physically applicable space-discretized model that has the same uniform observability

property after applying a filtering technique, as already seen in [2], as the continuous

wave equation.
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3 Finite Difference Space-Discretized Wave Equa-

tion

There are several numerical methods that serve to discretize the spacial component

of our wave equation such as the finite element method, Galerkin’s method, finite

difference method, etc. for both Dirichlet and mixed boundary conditions (see [2],

[11], and the references therein). We aim to look specifically at discretizing the

spacial variable of the one-dimensional wave eqution by central Finite Differences.

The advantage to this method in particular is that it is not very computationally

expensive, and results for observability are fairly immediate, allowing us to draw

meaningful insights about the system.

In this section, the goal is to show that the discretized wave equation loses the

positive exact observability result with a boundary observation. Similar to section 2,

all of the results in this section have already been proved by others (see [2] for clamped-

free boundary conditions, [11] for fully clamped boundary conditions). However, the

precise details in [2] are laid out for each proof so that we can mimic the ideas for

the coupled wave equations for the clamped-free piezoelectric beam model in Section

5. Below, we introduce the semi-discretized version of (2.1) where we discretize only

the spacial variable using the aforementioned central Finite Difference Method.

3.1 Discrete Spectral Analysis and Development of Solutions

Let u(xj, t) ≈ uj(t), where u(xj, t) is the approximation of u(x, t) at x = xj, so given

N ∈ N, we set h = L
N+1 to discretize the interval [0, L] as follows:

x0 = 0 < x1 = h < ... < xN = Nh < xN+1 = L, (3.1)
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where xj = jh, j = 0, ..., N+1. We then use the central difference formula uxx(xj, t) ≈
uj+1(t)+uj−1(t)−2uj(t)

h2 , and the backwards difference formula ux(xj, t) ≈ uj+1−uj
h

to pro-

duce the following finite-difference semi-discretization of (2.1):


u′′j = uj+1(t)−2uj(t)+uj−1(t)

h2 , 0 < t < T, j = 1, . . . , N

u0 = 0, uN+1 = uN , 0 < t < T

uj(0) = u0
j , u
′
j(0) = u1

j , j = 1, . . . , N,

(3.2)

where prime notation denotes derivation with respect to time t. We can see that

system (3.2) is a system of N linear differential equations with N unknowns, namely

u1, . . . , uN , since by virtue of our boundary conditions,u0 ≡ 0 and uN+1 ≡ uN , i.e.

ux(L, t) ≈ uN+1−uN
h

= 0. The discrete energy of the solutions of (3.2) is given by

Eh(t) = h
2

N∑
j=0

[
|u′j|2 +

∣∣∣uj+1−uj
h

∣∣∣2] . (3.3)

We see next that the discrete energy, Eh(t), is also conserved along time, analogous

to the conserved energy E(t) in Theorem 2.1.

Lemma 3.1 (Lemma 3.1, [2]). For any h > 0 and the solution u(t) = [u1, . . . , uN ]T

of (3.1), we have

Eh(t) = Eh(0), ∀0 < t ≤ T. (3.4)

Proof. Take (3.3) and shift index from j = 0 to j = 1, then differentiate with respect

to t to produce

E ′h(t) = h
N∑
j=1

[
u′ju

′′
j +

(
uj+1−uj

h

)(
u′j+1−u

′
j

h

)]
+h

[
u′0u

′′
0 +

(
u1−u0
h

) (
u′1−u

′
0

h

)]
.
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From (3.2) we know u′′j = uj+1−2uj+uj−1
h2 , and keeping in mind the boundary conditions,

E ′h(t) = 1
h

N∑
j=1

[u′j(uj+1 − 2uj + uj−1) + (uj+1 − uj)(u′j+1 − u′j)] + u1u
′
1

h
.

By rearranging the terms, we obtain

E ′h(t) = 1
h

N∑
j=1

[u′juj+1 − 2u′juj + u′juj−1 + uj+1u
′
j+1 − uj+1u

′
j − uju′j+1 + uju

′
j] + u1u

′
1

h

= 1
h

N∑
j=1

[u′j(uj−1 − uj) + u′j+1(uj+1 − uj)] + u1u
′
1

h

= 1
h

[u0u
′
1 − uNu′N+1 − u1u

′
1 + uN+1u

′
N+1] + u1u

′
1

h
= 0.

As was done for the continuous case, we put the discrete model in its state-space

formulation. Choose z(t) = [u1, u2, ..., uN , u
′
1, u
′
2, . . . , u

′
N ]T so that the discretized

model can be re-written in the first order form as

z′ =

 0 I

−Ah 0

 z,

where Ah is given by

Ah = 1
h2



2 −1 0 0 . . . 0

−1 2 −1 0 . . . 0

0 −1 2 −1 . . . 0
... ... ... . . . ... ...

0 0 0 −1 2 −1

0 0 . . . 0 −1 1


N×N.

(3.5)

In order to analyze the issue of non-observability of the discrete model, it is necessary

to look at the eigenvalue problem corresponding to (3.2), and subsequent eigenvalues
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and eigenvectors of that system. Consider the eigenvalue problem

 0 I

−Ah 0


 z1

z2

 = λ̃

 z1

z2

 . (3.6)

Similar to the continuous system, the eigenvalues and eigenvectors of (3.6) are related

to the eigenvalues and eigenvectors of the auxiliary problem where we only look at

the discretized second-derivative operator. This new problem is given by


Ahϕ = λϕ,

ϕ0 = 0, ϕN+1 = ϕN .
(3.7)

Theorem 3.6 ([2, 27]). The eigenvalues and eigenvectors of (3.7) are given by


λk = 4

h2 sin2
(

(2k+1)πh
2(2−h)

)
, k = 1, 2, . . . , N

ϕk,j = sin
(

(2k+1)πjh
2−h

)
, j = 1, 2, . . . , N.

(3.8)

These eigenvalues and eigenvectors have been computed explicitly (see [27]). It is

known that the relationship between the eigenvalues and eigenvectors of (3.6) and

(3.7) are the same as in the continuous case. For simplicity, let ϕk = [ϕk,1, . . . , ϕk,n], k =

1, . . . , N.

Theorem 3.7 (Theorem 3, [27]). The eigenvalues and eigenvectors of (3.6) are given

by

λ̃k = ±i
√
λk,

 z1,k

z2,k

 =

 ϕk

λ̃ϕk

 . (3.9)

Proof. (3.9) is equivalent to


z2 = λ̃z1

−Ahz1 = λ̃z2 = λ̃2z1,
(3.10)

23



therefore λ̃k = ±i
√
λk.

We can now write every solution u(t) = [u1, . . . , uN ]T of (3.2) as a Fourier series,

with ωk =
√
λk:

u(t) =
N∑
k=1

[
ake

iωkt + bke
−iωkt

]
ϕk, (3.11)

for ak and bk ∈ R, k = 1 . . . N , which can be computed via initial data u0
j and u1

j .

3.2 Lack of Uniform Observability with Respect to the Dis-

cretization Parameter

The reason we had uniform observability for the continuous wave equation lies in the

fact that the gap between two consecutive eigenvalues of (2.1) is
√
λk+1 −

√
λk =

(2k+1)π
2L − (2k−1)π

2L = π
L

, which is independent of k, implying uniform observability by

Ingham’s Theorem. However, when we look at the gap between two consecutive

eigenvalues of (3.6) we get

√
λk+1 −

√
λk = 2

h

[
sin

(
(2k+3)πh
2(2L−h)

)
− sin

(
(2k+1)πh
2(2L−h)

)]
= 2

h

[
sin

(
kπh

2L−h + 3πh
2(2L−h)

)
− sin

(
kπh

2L−h + πh
2(2L−h)

)]
.

Now, using the sum to product trig identity

= 2
h

[
sin

(
kπh

2L−h

)
cos

(
3πh

2(2L−h)

)
+ cos

(
kπh

2L−h

)
sin

(
3πh

2(2L−h)

)
−
(
sin

(
kπh

2L−h

)
cos

(
πh

2(2L−h)

)
+ cos

(
kπh

2L−h

)
sin

(
πh

2(2L−h)

))]
= 2

h

[
sin

(
kπh

2L−h

) (
cos

(
3πh

2(2L−h)

)
− cos

(
πh

2(2L−h)

))
+ cos

(
kπh

2L−h

) (
sin

(
3πh

2(2L−h)

)
− sin

(
πh

2(2L−h)

))]
.

We note that since L = (N+1)h, then 2L−h > 0 since 2(N+1) > 1. It is known that

−1 ≤ sin(x) ≤ 1 ∀x ∈ R, and by a quick application of the Mean Value Theorem, we

see also that sin(x) ≤ x for every x ≥ 0. Using this, we see
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sin
(

3πh
2(2L−h)

)
− sin

(
πh

2(2L−h)

)
≤
∣∣∣sin ( 3πh

2(2L−h)

)
− sin

(
πh

2(2L−h)

)∣∣∣
≤
∣∣∣sin ( 3πh

2(2L−h)

)∣∣∣+ ∣∣∣sin ( πh
2(2L−h)

)∣∣∣
≤ 2πh

2L−h .

This now gives

√
λk+1 −

√
λk ≤ 2

h

(
cos

(
3πh

2(2L−h)

)
− cos

(
πh

2(2L−h)

))
+ 4π

2L−h cos
(
kπh

2L−h

)
.

Recalling that x− y ≤ |y − x| for every x, y ∈ R we get

√
λk+1 −

√
λk ≤ 2

h

∣∣∣cos
(

πh
2(2L−h)

)
− cos

(
3πh

2(2L−h)

)∣∣∣+ 4π
2L−h cos

(
kπh

2L−h

)
.

Using the triple angle identity cos 3x = 4 cos3 x− 3 cosx, we see that cosx− cos 3x =

4 cosx sin2 x. Here, x = πh
2(2L−h) ≥ 0. For all positive real x values, we generate an

upper bound for cosx as x2 + 1, and also recall that sin x ≤ x. Using this, we observe

an upper bound for 4 cos x sin2 x as 4(x2 + 1)x2 = 4x4 + 4x2. This gives

√
λk+1 −

√
λk ≤ 2

h

∣∣∣ 4π4h4

16(2L−h)4 + 4π2h2

4(2L−h)2

∣∣∣+ 4π
2L−h cos

(
kπh

2L−h

)
= π4h3

2(2L−h)4 + 2π2h
4(2L−h)2 + 4π

2L−h cos
(
kπh

2L−h

)
.

Looking at the remaining cosine term, we add and subtract π
2 from the inside, so
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4π
2L−h cos

(
kπh

2L−h

)
= 4π

2L−h cos
(
π
2 + kπh−Lπ+hπ

2
2L−h

)
= 4π

2L−h sin
(
Lπ−kπh−hπ2

2L−h

)
= 4π

2L−h sin
(

(L
h
−k)hπ−hπ2

2L−h

)
= 4π

2L−h sin
(

((N+1)−k)hπ−hπ2
2L−h

)
.

As soon as N + 1− k ≤ j ⇐⇒ k ≥ N + 1− j for j ∈ N,

√
λk+1 −

√
λk ≤ π2h

(2L−h)2

(
4j − 2 + π2h2

2(2L−h)2 + 2
)

= π2h
(2L−h)2

(
4j + π2h2

2(2L−h)2

)
, (3.12)

and so we can now bound the gap between the two largest eigenvalues as follows:

√
λN −

√
λN−1 ≤

π2h

(2L− h)2

(
8 + π2h2

2(2L− h)2

)
→ 0 as h→ 0. (3.13)

The goal of this section is to analyze the discrete version of (2.12) given by

Eh(0) ≤ C(T, h)
∫ T

0
|u′N(t)|2dt, (3.14)

and ultimately show that the constant C(T, h) blows up as h → 0. It has already

been proven using the multiplier technique that for high frequency solutions uN(t) of

(3.2) corresponding to eigenvalue λN , as h→ 0, C(T, h)→∞ [2]. To understand the

development of the proof, we first turn to the following lemmas.

Lemma 3.2 (Lemma 2.1, [2]). For any eigenvector ϕ = [ϕ1, . . . , ϕN ]T with eigenvalue

λ of system (3.7) the following identities hold:

N∑
j=0

∣∣∣∣ϕj+1 − ϕj
h

∣∣∣∣2 = λ
N∑
j=1

ϕ2
j , (3.15)
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h
N∑
j=0

∣∣∣∣ϕj+1 − ϕj
h

∣∣∣∣2 = λh2(2− h)
4− λh2

∣∣∣∣ϕNh
∣∣∣∣2 . (3.16)

Proof. Begin by multiplying (3.7) by ϕj to get

− 1
h2

N∑
j=1

(ϕj+1 − 2ϕj + ϕj−1)ϕj = λ
N∑
j=1

ϕ2
j .

Distributing,

− 1
h2

N∑
j=1

(ϕj+1ϕj − 2ϕ2
j + ϕj−1ϕj) = λ

N∑
j=1

ϕ2
j .

Keeping in mind the boundary conditions, we take into account that

N∑
j=1

(ϕj+1ϕj + ϕj−1ϕj) = (ϕ2ϕ1 + ϕ0ϕ1) + (ϕ3ϕ2 + ϕ1ϕ2) + . . .+ (ϕN+1ϕN + ϕN−1ϕN)

= 2
N∑
j=1

ϕj+1ϕj −
1
h2ϕ

2
N .

Now adding like-terms,

1
h2

N∑
j=1

(2ϕ2
j − 2ϕj+1ϕj) + ϕ2

N

h2 = λ
N∑
j=1

ϕ2
j . (3.17)

Rewriting the 2ϕ2
j term as ϕ2

j+1 + ϕ2
j , we absorb the boundary term and get

1
h2

N∑
j=0

(ϕ2
j+1 − 2ϕj+1ϕj + ϕ2

j) = λ
N∑
j=1

ϕ2
j ,

which is exactly (3.15).

Proof. To prove (3.16) multiply (3.1) by −j(ϕj+1−ϕj−1), which is the discrete version
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of xϕx, to obtain

1
h2

N∑
j=1

j(ϕj+1 − 2ϕj + ϕj−1)(ϕj+1 − ϕj−1) = −λ
N∑
j=1

jϕj(ϕj+1 − ϕj−1).

Rearranging the terms,

1
h2

N∑
j=1

[(j − 1)ϕ2
j − 2jϕj+1ϕj + 2(j + 1)ϕj+1ϕj − (j + 1)ϕ2

j ]−
ϕ2
N

h2

= −λ
N∑
j=1

[jϕj+1ϕj − (j + 1)ϕj+1ϕj]− λ(N + 1)ϕ2
N .

Keeping in mind that (N + 1) = L
h

, we get

1
h2

N∑
j=1

[−2ϕ2
j + 2ϕj+1ϕj]−

ϕ2
N

h2 = λ
N∑
j=1

ϕj+1ϕj −
λL

h
ϕ2
N .

Now, combining like-terms,

(
λL

h
− 1
h2

)
ϕ2
N = 2

h2

N∑
j=1

ϕ2
j +

(
λ− 2

h2

) N∑
j=1

ϕj+1ϕj, (3.18)

and using (3.17), we can deduce that

2
h2

N∑
j=1

ϕj+1ϕj =
( 2
h2 − λ

) N∑
j=1

ϕ2
j + ϕ2

N

h2 . (3.19)

Next, we normalize the eigenvector ϕ by the relation h
N∑
j=1

ϕ2
j = 1, and substitute into

(3.18) and (3.19) to obtain

N∑
j=1

ϕj+1ϕj = h

2

( 2
h2 − λ

)
+ ϕ2

N

2 . (3.19*)
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(
λ− 2

h2

)∑
ϕj+1ϕj = − 2

h3 +
(
λ

h
− 1
h2

)
ϕ2
N . (3.18*)

Combining (3.15), (3.18*), and (3.19*) we get that

λh2(2− h)
4− λh2

∣∣∣∣ϕNh
∣∣∣∣2 = λ = h

N∑
j=0

∣∣∣∣ϕj+1 − ϕj
h

∣∣∣∣2 ,
which is precisely (3.16)

We are now ready to state the main theorem in this section.

Theorem 3.8 (Theorem 2.2, [2]). For any T > 0, we have

sup

u sol of (3.2)

[
Eh(0)∫ T

0 |u′N(t)|2dt

]
→∞ as h→ 0. (3.20)

Proof. Consider the particular solution of (3.1) corresponding to the Nth eigenvector:

u(t) = eiωN tϕN ,

so

u′(t) = iωNe
iωN tϕN ,

and

u′N(t) = iωNe
iωN tϕN,N .

Keeping in mind |eix| = |i| = 1 ∀x ∈ R, and ϕk independent of t, we get that
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∫ T

0
|u′N(t)|2 dt = Tω2

N |ϕN,N |2 = TλN |ϕN,N |2. (3.21)

Since energy is conserved, we have Eh(t) = Eh(0), so we write the energy in terms of

our solution:

Eh(0) = h

2

N∑
j=0

[∣∣∣∣i√λNei√λN (0)ϕN
∣∣∣∣2 +

∣∣∣∣ϕN,j+1 − ϕN,j
h

∣∣∣∣2
]

= h

2

N∑
j=0

[
λN |ϕN,j|2 +

∣∣∣∣ϕN,j+1 − ϕN,j
h

∣∣∣∣2
]
,

but using (3.15) we get that

Eh(0) = h
N∑
j=0

[∣∣∣∣ϕN,j − ϕN,j+1

h

∣∣∣∣2
]

= λNh
2(2− h)

4− λNh2

∣∣∣∣ϕN,Nh
∣∣∣∣2 . (3.22)

Taking now the ratio between energy and boundary observation we get

Eh(0)∫ T
0 |u′N |2dt

= 2− h
T (4− λNh2) , (3.23)

but looking at λNh2,

λNh
2 = 4 sin2

(
(2N+1)πh
2(2L−h)

)
= 4 sin2

(
Nπh
2L−h + πh

2(2L−h)

)
= 4 sin2

(
(L
h
−1)πh

2L−h + πh
2(2L−h)

)
= 4 sin2

(
Lπ−πh
2L−h + πh

2(2L−h)

)
= 4 sin2(π2 ) = 4 as h→ 0,

so we get that

λNh
2 → 4 as h→ 0 (3.24)

and thus Eh(0)∫ T
0 |u

′
N |2dt

→∞ as h→ 0.
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3.3 Uniform Observability of Filtered Solutions with Respect

to the Discretization Parameter

By considering a particular solution of (3.2), we showed that for small h,∫ T
0 |u′N(t)|2 dt → 0 which makes our C(T ) blow up, which was exactly done in [2].

To remedy this problem, one technique has been proposed [11], called direct Fourier

filtering, whereby we eliminate the spurious eigen-solutions of (3.2). This is done by

introducing suitable classes of solutions Ch(γ, T ) generated by eigenvectors of (3.2)

associated with eigenvalues such that λh2 < γ, which corresponds to an appropriate

truncation of the Fourier series of (3.2) by filtering the spurious high-frequency eigen-

values due to a blind use of Finite Differences, see figure 2 and [2] for more details.

Here, γ can also be referred to as the filtering parameter. Define the class of initial

data of (3.2) generated by eigenvectors of (3.6) as:

Ch(γ) :=


∑

ω2
k
h2<γ

akϕk

 (3.25)

where 0 < γ < 4.

To show the main result in this section, we require the following three lemmas.

Lemma 3.3 (Lemma 3.2, [2]). For any solution u of (2.1), we have

h

2

N∑
j=0

∫ L

0

[
u′ju

′
j+1

∣∣∣∣uj − uj+1

h

∣∣∣∣2
]
dt+Xh(t)

∣∣∣T
0

= L

2

∫ T

0
|u′N |2 dt, (3.26)

where Xh(t) = h
N∑
j=1

ju′j
(
uj+1−uj−1

2

)
.

Proof. Multiplying (3.2) by j uj+1−uj
2 and integrating over [0, T ], we obtain

N∑
j=1

∫ T
0 ju′′j

(
uj+1−uj−1

2

)
dt

= 1
h2

N∑
j=1

∫ T
0 j

(
uj+1−uj−1

2

)
(uj+1 − 2uj + uj−1) dt.

(3.27)
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Keeping in mind Xh(t), we integrate by parts to obtain

N∑
j=1

∫ T
0 ju′′j

(
uj+1−uj−1

2

)
dt = 1

h
Xh(t)

∣∣∣T
0
− 1

2

N∑
j=1

∫ T
0 ju′j(u′j+1 − u′j−1) dt

= 1
h
Xh(t)

∣∣∣T
0
− 1

2

N∑
j=1

∫ T
0 (ju′ju′j+1 − (j + 1)u′ju′j+1) dt

−N+1
2
∫ T

0 u′Nu
′
N+1 dt

= 1
h
Xh(t)

∣∣∣T
0

+ 1
2

N∑
j=1

∫ T
0 u′ju

′
j+1 dt− N+1

2
∫ T

0 |u′N |2 dt.

(3.28)

We also see

1
h2

N∑
j=1

∫ T
0 j

(
uj+1−uj−1

2

)
(uj+1 − 2uj + uj−1) dt

= 1
2h2

N∑
j=1

∫ T
0 (ju2

j+1 − ju2
j−1 − 2juj+1uj + 2uj−1uj) dt

= 1
2h2

N∑
j=1

∫ T
0 (−2u2

j + 2ujuj+1) dt− 1
2h2

∫ T
0 |uN |2 dt

= −1
2

N∑
j=0

∫ T
0

∣∣∣uj+1−uj−1
h

∣∣∣2 dt.

(3.29)

Combining (3.27), (3.28), and (3.29), we get the reult.

Lemma 3.4 (Lemma 3.3, [2]). For any u solution of (3.2), and h > 0,

−h
N∑
j=0

∫ T

0

∣∣∣∣uj+1 − uj
h

∣∣∣∣2 dt+ Yh(t)
∣∣∣T
0

= 0,

where Yh(t) = h
N∑
j=0

u′juj.

Proof. Multiplying (3.2) by uj, we obtain

N∑
j=1

∫ T

0
u′′juj dt = 1

h2

N∑
j=1

∫ T

0
uj(uj+1 − 2uj + uj−1) dt. (3.30)

Keeping in mind Yh(t),

N∑
j=1

∫ T

0
u′′juj dt = 1

h
Yh(t)

∣∣∣∣∣
T

0
−

N∑
j=1

∫ T

0
|u′j|2 dt. (3.31)
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Looking now at the right hand side,

1
h2

N∑
j=1

∫ T
0 uj(uj+1 − 2uj + uj−1) dt = 1

h2

N∑
j=1

∫ T
0 (uj+1uj − 2u2

j + uj−1uj) dt

= − 1
h2

N∑
j=0

∫ T
0 (u2

j+1 − 2uj+1uj + u2
j) dt

= −
N∑
j=0

∫ T
0

∣∣∣uj+1−uj
h

∣∣∣2 dt.

(3.32)

Combining (3.30), (3.31), and (3.32), the result is established.

Lemma 3.5 (Lemma 3.4, [2]). We have that the following inequality holds

∣∣∣∣Xh(t)−
γ

8Yh(t)
∣∣∣∣ ≤

√
L2 + 3γ

16λ0
Eh(u, 0).

Proof. Referring back to our terms Xh(t) and Yh(t), we have

Xh(t)−
γ

8Yh(t) = h
N∑
j=1

u′j

[
j
uj+1 − uj−1

2 − γ

8uj
]
.

Then by Hölder’s Inequality,

|Xh(t)−
γ

8Yh(t)| ≤
h N∑

j=1
|u′j|2

 1
2
h N∑

j=1

∣∣∣∣j uj+1 − uj−1

2 − γ

8uj
∣∣∣∣2
 1

2

(3.33)

On the other hand,

h
N∑
j=1

∣∣∣j uj+1−uj−1
2 − γ

8

∣∣∣2
= h

N∑
j=1

[
j2

4 |uj+1 − uj−1|2 + γ2

64u
2
j − γj

8 (uj+1 − uj−1)uj
]
.

(3.34)

By the Triangle Inequality, we get

h
N∑
j=1

∣∣∣j uj+1−uj−1
2 − γ

8

∣∣∣2
≤ h

N∑
j=1

[
j2

2 |uj+1 − uj|2 + j2

2 |uj − uj−1|2 + γ2

64u
2
j − γj

8 uj+1uj + γj
8 ujuj−1

]
.

(3.35)
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Now, substituting L
h

for j, since j ≤ N , and rearranging,

h
N∑
j=1

∣∣∣j uj+1−uj−1
2 − γ

8

∣∣∣2
≤ h

N∑
j=0

∣∣∣uj+1−uj
h

∣∣∣2 + γ2h
64 h

N∑
j=0

u2
j + γh

8 h
N∑
j=0

uj+1uj − γ
8u

2
N

≤ h
N∑
j=0

∣∣∣uj+1−uj
h

∣∣∣2 +
(
γ2

64 + γ
8

)
h

N∑
j=0

u2
j − γh

16

N∑
j=0

(2u2
j − 2uj+1uj)− γ

8u
2
N .

(3.36)

Keeping in mind that γ < 4, we see

h
N∑
j=1

∣∣∣j uj+1−uj−1
2 − γ

8

∣∣∣2
≤ h

N∑
j=0

∣∣∣uj+1−uj
h

∣∣∣2 +
(

3γ
16

)
h

N∑
j=0

u2
j − γh

16

N∑
j=0
|uj+1 − uj|2 + γh

16u
2
N+1 − γ

8u
2
N .

(3.37)

Taking λ = λ1, from (3.15) we can see

h
N∑
j=1

∣∣∣j uj+1−uj−1
2 − γ

8

∣∣∣2
≤
(
L2 − γh2

16

)
h

N∑
j=0

∣∣∣uj+1−uj
h

∣∣∣2 + 3γ
16λ1

h
N∑
j=0

∣∣∣uj+1−uj
h

∣∣∣2 +
(
γh
16 −

γ
8

)
u2
N

≤
(
L2 − γh2

16 + 3γ
16λ1

)
h

N∑
j=0

∣∣∣uj+1−uj
h

∣∣∣2 .
(3.38)

Combining (3.33) and (3.3), we deduce by Hölder’s Inequality that

∣∣∣Xh(t)− γ
8Yh(t)

∣∣∣ ≤ √L2 − γh2

16 + 2γ
16λ1

[
h

N∑
j=1
|u′j|2

] 1
2
[
h

N∑
j=1

∣∣∣uj+1−uj
h

∣∣∣2] 1
2

≤
√
L2 + 3γ

16λ1
Eh(0).

Theorem 3.9 (Theorem 3.5, [2]). For 0 < γ < 4, there exists T1(γ) > 2L such that

for all T > T1(γ), there exists C1(T, γ) such that

Eh(u, 0) ≤ C1(T, γ)
∫ T

0
|u′N(t)|2 dt, (3.39)
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for every solution, with (u0, u1) ∈ Ch(γ) and all h.

Proof. Let u be a solution of (3.2) where u0, u1 ∈ Ch(γ). Keeping in mind conservation

of energy, we can write the equality (3.3) as

TEh(u, 0) + h

2

N∑
j=0

∫ T

0

[
u′ju

′
j+1 − |u′j|2

]
dt+Xh(t)

∣∣∣∣∣
T

0
= L

2

∫ T

0
|u′N |2 dt. (3.40)

For the second term in (3.40), we have

N∑
j=0

[
u′ju

′
j+1 − |u′j|2

]
= −1

2

N∑
j=0
|u′j+1 − u′j|2 + L

2 |u
′
N |2

= −1
2

∑
µ2
k
h2≤γ
|ak|2µ4

kh
2
N∑
j=1
|ϕk,j|2 + L

2 |u
′
N |2

≥ −1
2γ

∑
µ2
k
h2≤γ
|ak|2µ2

k

N∑
j=1
|ϕj,k|2 + L

2 |u
′
N |2.

(3.41)

Hence,
N∑
j=0

[
u′ju

′
j+1 − |u′j|2

]
≥ −1

2γ
N∑
j=0
|u′j|2 + L

2 |u
′
N |2.

From (3.40) and the last estimate, we deduce that

TEh(u, 0)− γ

4h
N∑
j=0

∫ T

0
|u′j|2 dt+ h

4

∫ T

0
|u′N |2 +Xh(t)

∣∣∣∣∣
T

0
≤ L

2

∫ T

0
|u′N |2 dt. (3.42)

By adding and subtracting h
N∑
j=0
|u′j|2, Lemma 3.4 implies that

h
N∑
j=1

∫ T

0
|u′j|2 dt = TEh(u, 0) + 1

2Yh(t)
∣∣∣T
0
. (3.43)

Combining (3.42) and (3.43), we get

T (1− γ

4 )Eh(u, 0)− γ

8Yh(t)
∣∣∣T
0

+Xh(t)
∣∣∣T
0
≤ 2L− h

4

∫ T

0
|u′N |2 dt. (3.44)
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Now, adding (3.44) and Lemma 3.5 we obtain

[
T
(

1− γ

4

)
− 2

√
L2 + 3γ

16λ1

]
Eh(u, 0) ≤ L

2

∫ T

0
|u′N |2 dt, (3.45)

which implies that

Eh(u, 0) ≤ L

2
(
T
(
1− γ

4

)
− 2

√
L2 + 3γ

16λ1

) ∫ T

0
|u′N |2 dt,

for

T >
2
√
L2 + 3γ

16λ1

1− γ
4

.

Thus, Theorem 3.9 holds with

T1(γ) =
2
√
L2 + 3γ

16λ1

1− γ
4

,

and

C1(T, γ) = L

2
(
T
(
1− γ

4

)
− 2

√
L2 + 3γ

16λ1

) .
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4 One-dimensional Model for Piezoelectric Beam

Equations

In this section, we introduce the type of model where the main interest lies, namely

the strongly coupled system of partial differential equations representing longitudinal

vibrations of the centerline of a piezoelectric beam retaining magnetic effects. The

analysis here will mimic the previous two sections, however there are significantly

more nuanced proofs due to the strong coupling and the non-identical wave speeds.

We first prove the exact observability inequality of the model by the the multipliers

method [12] providing a sub-optimal observation time. This later is improved to

obtain the optimal observation time by applying the so-called Ingham’s Theorem

[13].

4.1 Spectral Analysis and Development of Solutions

Recall the coupled partial differential equation-model (1.1) for the piezoelectric beam:



ρvtt − αvxx + γβpxx = 0,

µptt − βpxx + γβvxx = 0, (x, t) ∈ (0, L)× R+,

v(0, t) = p(0, t) = 0,

αvx(L, t)− γβpx(L, t) = 0,

px(L, t)− γvx(L, t) = 0, t ∈ R+,

v(x, 0) = v0(x), vt(x, 0) = v1(x), x ∈ (0, L),

p(x, 0) = p0(x), pt(x, 0) = p1(x), x ∈ (0, L).

(4.1)

Define X = (L2(0, L))2 where L2(0, L) = {v :
∫ L
0 |v|2dx <∞}, and

H1
L(0, L) = {v ∈ H1(0, L) : v(0) = 0},
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and the complex linear space H = (H1
L(0, L))2 × X. The boundary conditions associ-

ated with this model are referred to as the clamped-free natural boundary conditions

for a beam, coming out of a thorough variational approach [16], and αvx(L, t) −

γβpx(L, t) = 0 and px(L, t) − γvx(L, t) = 0 are referred to as the strain and voltage

boundary conditions. The energy associated with (4.1) is

E(t) = 1
2

∫ L

0

{
ρ|vt|2 + µ|pt|2 + α|vx|2 − γ2β|vx|2 + γ2β|vx|2 − 2βγvxpx + β|px|2

}
dx

= 1
2

∫ L

0

ρ|vt|2 + µ|pt|2︸ ︷︷ ︸
Kinetic Energy

+ (αvx − γβpx)vx︸ ︷︷ ︸
Potential Energy

+ β(−γvx + px)px︸ ︷︷ ︸
Electrical Energy

 dx.

However, we can use the fact that α1 = α−γ2β to write the energy in a more compact

form such that it is immediately recognized that energy is non negative:

E(t) = 1
2

∫ L

0

{
ρ|vt|2 + µ|pt|2 + α1|vx|2 + β |γvx − px|2

}
dx. (4.2)

A more in depth look at the derivation of (4.1) is given in [16] and [18], and the

references therein.

To reformulate (4.1), let ϕ = (v, p, vt, pt)T with ϕ0 = (v0, p0, v1, p1)T. Now, the

system (4.1) can be put into the following state-space formulation:

ϕt = Aϕ =

 0 I2×2

−A 0

ϕ, ϕ(0) = ϕ0 (4.3)

where A is an unbounded matrix operator defined by

A : Dom(A) ⊂ X→ X A =

 −α
ρ
D2
x

γβ
ρ
D2
x

γβ
µ
D2
x −β

µ
D2
x

 (4.4)
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with A : Dom(A) ⊂ H→ H, and

Dom(A) = {ψ ∈ H ∩ ((H2(0, L))2 × (H1
L(0, L))2);ψ1x(L) = ψ2x(L) = 0} (4.5)

is densely defined in H. Now define the constants

ζ1 = 1√
2

√
αµ
α1β

+ ρ
α1

+
√(

αµ
α1β

+ ρ
α1

)2
− 4ρµ

βα1

ζ2 = 1√
2

√
αµ
α1β

+ ρ
α1
−
√(

αµ
α1β

+ ρ
α1

)2
− 4ρµ

βα1

b1 = 1
γµ

(α1ζ
2
1 − ρ) = 1

2

(
γ + α1

γβ
− ρ

γµ
+
√(

γ + α1
γβ
− ρ

γµ

)2
+ 4ρ

µ

)

b2 = 1
γµ

(α1ζ
2
2 − ρ) = 1

2

(
γ + α1

γβ
− ρ

γµ
−
√(

γ + α1
γβ
− ρ

γµ

)2
+ 4ρ

µ

)
.

(4.6)

Obviously, ζ1, ζ2 ∈ R+ since by α = α1 + γ2β we have that
√(

αµ
α1β

+ ρ
α1

)2
− 4ρµ

βα1
=√(

γ2µ
α1

+ µ
β

+ ρ
α1

)2
− 4ρµ

βα1
, and

(
γ2µ
α1

+ µ
β

+ ρ
α1

)2
− 4ρµ

βα1
=
(
γ2µ
α1

+ µ
β
− ρ

α1

)2
+ 4ρµγ2

α2
1

>

0. Additionally, b1, b2 6= 0, b1 6= b2, b1b2 = − ρ
µ
. Moreover, b1 and b2 solve the

quadratic equation

b2 −
(
α

γβ
− ρ

γµ

)
b− ρ

µ
= 0. (4.7)

Theorem 4.10. (Theorem 3, [18]). Let σj = (2j−1)π
2L , j ∈ N. The eigenvalue

problem AY = λY has distinct eigenvalues

λ̃∓1j = ∓i
√
λ1j = ∓iσj

ζ1
, λ̃∓2j = ∓i

√
λ2j = ∓iσj

ζ2
. (4.8)
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Since λ̃−1j = −λ̃+
1j, λ̃−2j = −λ̃+

2j, the corresponding eigenfunctions are

Y1j =



1
λ̃+

1j

b1
λ̃+

1j

1

b1


sin σjx,Y−1j =



1
λ̃+

1j

b1
λ̃+

1j

−1

−b1


sin σjx,

Y2j =



1
λ̃+

2j

b2
λ̃+

2j

1

b2


sin σjx, Y−2j =



1
λ̃+

2j

b2
λ̃+

2j

−1

−b2


sin σjx, (4.9)

where ζ1, ζ2, b1 and b2 are defined by (4.6). We are now able to write the Fourier

series for (4.1). The function

ϕ(x, t) = ∑
j∈N

[
c1jY1je

λ̃+
1jt + d1jY−1je

−λ̃+
1jt + c2jY2je

λ̃+
2jt + d2jY−2je

−λ̃+
2jt
]

(4.10)

solves (4.3) for the initial data

ϕ0 = ∑
j∈N

[c1jY1j + d1jY−1j + c2jY2j + d2jY−2j]

= ∑
j∈N



1
λ̃+

1j
(c1j + d1j) + 1

λ̃+
2j

(c2j + d2j)

b1
λ̃+

1j
(c1j + d1j) + b2

λ̃+
2j

(c2j + d2j)

(c1j − d1j) + (c2j − d2j)

b1(c1j − d1j) + b2(c2j − d2j)


sin σjx

where {ckj, dkj, k = 1, 2, j ∈ N} are complex numbers such that

‖ϕ0‖2
H �

∑
j∈N

(|c1j|2 + |d1j|2 + |c2j|2 + |d2j|2) , i.e.

C̃1 ‖ϕ0‖2
H ≤

2∑
i=1

∑
j∈N

(|cij|2 + |dij|2) ≤ C̃2 ‖ϕ0‖2
H

(4.11)
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with two positive constants C̃1, C̃2 which are independent of the particular choice of

ϕ0 ∈ H.

4.2 Proof of Uniform Observability Using Multiplier Method

In this section, we prove the exact boundary observability for (4.1) using multipliers.

However, the observability time is sub-optimal. This is simply due to the strong

coupling of equations. Let’s now state the main observability theorem.

Theorem 4.11. The operator A : Dom(A) ⊂ H → H in (4.4) is the generator of

a unitary semigroup eAt on H. For given ϕ0 ∈ H, ϕ ∈ C[R,H], and d
dt
E(t) = 0.

Moreover, letting T > 2L
σ

there exists a constant C(T ) such that

∫ T

0

(
ρ|vt(L, t)|2 + µ|pt(L, t)|2

)
dt ≥ C(T )‖ϕ0‖2

E (4.12)

where σ depends on the wave speed of each equation and is defined in the proof.

Here, note that the observations are physical and meaningful. In fact, vt(L, t)

is the tip velocity of the beam, and pt(L, t) is the total current accumulated at the

electrodes of the beam.

Proof. Consider (4.1). Multiply the first and second equations in (4.1) by the multi-

pliers xvx and xpx, respectively, and integrate over [0, L]× [0, T ]

∫ T
0
∫ L

0 (ρvtt − α1vxx − γβ (γvxx − pxx))xvxdx dt = 0∫ T
0
∫ L

0 (µptt + β(γvxx − pxx))xpxdx dt = 0
(4.13)

where we used α = α1 + γ2β. Adding these two equations

∫ T
0
∫ L
0 (ρvttxvx + µpttxpx − α1xvxvxx − βx(γvx − px) (γvxx − pxx)) dx dt = 0, (4.14)
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and integrating (4.14) by parts yields

[∫ L
0 (ρvtxvx + µptxpx)

]T
0
dx− L

2
∫ T

0 (ρv2
t (L, t) + µp2

t (L, t)) dt+ TE(0) = 0. (4.15)

By the Hölder’s and Cauchy’s inequalities, we deduce that

∣∣∣∫ L0 (ρvtxvx + µptxpx) dx
∣∣∣ =

∣∣∣∫ L0 (ρvtxvx − µptxpx) dx
∣∣∣ . (4.16)

By the triangle inequality,

∣∣∣∣∣
∫ L

0
(ρvtxvx + µptxpx) dx

∣∣∣∣∣ ≤ L
∫ L

0
ρ |vtvx| dx+ L

∫ L

0
µ |ptpx| dx.

By the Cauchy Inequality,

∣∣∣∣∣
∫ L

0
(ρvtxvx + µptxpx) dx

∣∣∣∣∣
≤ L

(∫ L

0
ρ|vt|2dx

)1/2 (
ρ

α1

∫ L

0
α1|vx|2dx

)1/2

+
(∫ L

0
µ|pt|2dx

)1/2 (
µ
∫ L

0
|px|2dx

)1/2

= L

(∫ L

0
ρ|vt|2dx

)1/2 (
ρ

α1

∫ L

0
α1|vx|2dx

)1/2

+
(∫ L

0
µ|pt|2dx

)1/2 (
µ
∫ L

0
|px − γvx + γvx|2dx

)1/2

.

Adding and subtracting γvx in µ
∫ L

0 |px|2 we obtain

∣∣∣∣∣
∫ L

0
(ρvtxvx + µptxpx) dx

∣∣∣∣∣
≤ L

(∫ L

0
ρ|vt|2dx

)1/2 (
ρ

α1

∫ L

0
α1|vx|2dx

)1/2

+
(∫ L

0
µ|pt|2dx

)1/2
(∫ L

0
µ|γvx − px|2dx

)1/2

+
(
µ
∫ L

0
|γvx|2dx

)1/2
 .
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Bringing the constants out,

∣∣∣∣∣
∫ L

0
(ρvtxvx + µptxpx) dx

∣∣∣∣∣
≤
√
ρ

α1

L

2

∫ L

0
ρ|vt|2dx+

√ ρ

α1
+
√
µγ2

α1

 L

2

∫ L

0
α1|vx|2dx

+
√µ

β
+
√
µγ2

α1

 L

2

∫ L

0
µ|pt|2dx+

√
µ

β

L

2

∫ L

0
β|γvx − px|2dx

≤ Lmax
√ ρ

α1
+
√
µγ2

α1
,

√
µ

β
+
√
µγ2

α1

E(0),

and therefore,

(T − 2L
σ

)E(0) ≤ L
2
∫ T

0 (ρ|vt(L, t)|2 + µ|pt(L, t)|2) dt (4.17)

where σ = min

 1√
ρ
α1

+
√

µγ2
α1

, 1√
µ
β

+
√

µγ2
α1

 . The proof concludes by choosing C(T ) =

2(T− 2L
σ

)
L

.

Note that the proof of Theorem 4.11 is based on the use of multipliers [12] so

the observation time may be suboptimal yet it is still an improvement of the one in

[23].

Next, we apply the non-harmonic Fourier series, and in particular the Ingham’s

theorem [13], to obtain the optimal observation time. The existence of the uniform

gap across each branch of the eigenvalues of the operator A in (4.3) is utilized.

4.3 Proof of Uniform Observability Using Ingham’s Theorem

Similar to before, in this section we apply Ingham’s inequality for (4.1) to get an

optimal observation time T in terms of the wave speeds.

Let s1j = σj
ζ1

= (2j−1)π
2Lζ1 and s2j = σj

ζ2
= (2j−1)π

2Lζ2 for j ∈ N. The set of eigenvalues (5.11)
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can be rewritten as

λ̃∓kj = ∓iskj, k = 1, 2, j ∈ N. (4.18)

Since A∗ = −A, the function ϕ = eA
∗tϕ0, given explicitly by (4.10), and

ϕ(x, t) =
2∑

k=1

∑
j∈N

[ckjYkjeiskjt + dkjY−kje
−iskjt] . (4.19)

Using this solution, we look at the observation and note that sin2 σjx = (−1)2j+1

∫ T
0 (ρ|vt(L, t)|2 + µ|pt(L, t)|2) dt

=
∫ T

0 ρ

∣∣∣∣∣ ∑j∈N(−1)2j+1 (c1je
is1jt − d1je

−is1jt + c2je
is2jt − d2je

−is2jt)
∣∣∣∣∣
2

dt

+
∫ T

0 µ

∣∣∣∣∣ ∑j∈N (b1(c1je
is1jt − d1je

−is1jt) + b2(c2je
is2jt − d2je

−is2jt))
∣∣∣∣∣
2

dt.

(4.20)

By the generalized Young’s Inequality where |2ajbj| ≤
a2
j

ε2
+ ε1b

2
j , for ε1, ε2 ∈ R

≥
∫ T

0 ρ
∑
j∈N

((
1− 1

ε2

)
|c1je

is1jt − d1je
−is1jt|2 + (1− ε2) |c2je

is2jt − d2je
−is2jt|2

)
dt

+
∫ T

0 µ
∑
j∈N

((
b2

1 −
|b1b2|
ε1

)
|(c1je

is1jt − d1je
−is1jt)|2

+ (b2
2 − |b1b2|ε2) |c2je

is2jt − d2je
−is2jt|2

)
dt.

(4.21)

Factoring out our constants, we obtain

=
{
ρ
(
1− 1

ε2

)
+ µ

(
b2

1 − ρ
µε1

)} ∫ T
0
∑
j∈N
|c1je

is1jt − d1je
−is1jt|2 dt

+
{
ρ (1− ε2) + µ

(
b2

2 − ρ
µ
ε1
)} ∫ T

0
∑
j∈N
|c2je

is2jt − d2je
−is2jt|2 dt.

(4.22)

Now choose ε1 = 2 + µ
2ρ

(
αµ−ρβ
βγµ

)2
> 0 and ε2 = (1 + µ

ρ
b2

1)
(

2 + µ
ρ

(
αµ−ρβ
βγµ

)2
)
> 0 so
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that ρ
(
1− 1

ε2

)
+ µ

(
b2

1 − ρ
µε1

)
> 0 and ρ (1− ε2) + µ

(
b2

2 − ρ
µ
ε1
)
> 0.

By the Ingham’s theorem, for T > 2L
σ

= 2Lmax (ζ1, ζ2) where σ = min
{

1
ζ1
, 1
ζ2

}
,

there exists a constant C(T ) such that

∫ T
0 (ρ|vt(L, t)|2 + µ|pt(L, t)|2) dt ≥ C(T ) ∑

j∈N
(|c1j|2 + |d1j|2 + |c2j|2 + |d2j|2)

� ‖ϕ0‖2
H.

(4.23)
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5 Finite Difference Space-Discretized Piezoelectric

Beam Equation

In this section, the goal is to show that the discretized coupled wave equations by the

central finite differences lose the positive exact observability result with two boundary

observations. We show that the unfiltered solutions of the strongly-coupled system

of semi-discretized wave equations, the uniform observability property does not hold

as the discretization parameter tends to 0. We show after directly filtering high fre-

quency spurious eigenvalues, that the filtered solutions satisfy an exactly observability

inequality.

5.1 Discrete Spectral Analysis and Development of Solutions

We first introduce the semi-discretized version of (4.1) by the same central difference

discretization done in section 3.


ρv′′j (t)−∆h(αvj − γβpj) = 0

µp′′j (t)−∆h(βpj − γβvj) = 0,

v0 = p0 = 0, vN+1 = vN , pN+1 = pN

(vj, pj, v′j, p′j)(0) = (vj0, pj0, vj1, pj1) j = 1, 2, . . . , N,

(5.1)

where

∆h = 1
h2



−2 1 0 0 . . . 0

1 −2 1 0 . . . 0

0 1 −2 1 . . . 0
... ... ... . . . ... ...

0 0 0 1 −2 1

0 0 . . . 0 1 −1



. (5.2)
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Putting (5.1) now in its first-order form, we let {φj}4
j=1 ∈ CN , and let φ =

[φ1, φ2, φ3, φ4]T. Now we rewrite (5.1) as the following

φ′ = Ãφ =

 02N×2N I2N×2N

−A2N×2N 02N×2N

φ, φ(0) = φ0 (5.3)

where

A2N×2N =

 −α
ρ
∆h

γβ
ρ

∆h

γβ
µ

∆h −β
µ
∆h

 . (5.4)

Next, consider the auxiliary eigenvalue problem

Our eigenvalue problem is as follows:


−∆hψj = λψj,

ψ0 = 0, ψN+1 = ψN , j = 1, 2, . . . , N.
(5.5)

which we can write as

A

 ψ1

ψ2

 = ˜̃λ(h)

 ψ1

ψ2

 (5.6)

which is equivalent to solving


∆h (α1ψ

1 + γβ (γψ1 −ψ2)) = −˜̃λ(h)ρψ1

−β∆h(γψ1 −ψ2) = −˜̃λ(h)µψ2,

ψ1
0 = ψ2

0 = 0, ψ1
N+1 = ψ1

N , ψ
2
N+1 = ψ2

N .

(5.7)

For u = [u1,u2,u3,u4]T and λ̃(h) = −˜̃λ(h), the eigenvalue problem Ãu = ˜̃λ(h)u
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is equivalent to

 α
ρ
∆h − λ̃2I −γβ

ρ
∆h

−γβ
µ

∆h
β
µ
∆h − λ̃2I


 u1

u2

 = 0. (5.8)

By (5.5),

 λ̃2 + α
ρ
λ −γβ

ρ
λ

−γβ
µ
λ λ̃2 + β

µ
λ


 u1

u2

 = 0 (5.9)

where the characteristic equation is

λ̃4 +
(
α

ρ
+ β

µ

)
λλ̃2 +

(
αβ

µρ
− γ2β2

µρ

)
λ2 = 0. (5.10)

Following the eigenvalue analysis in Theorem 4.10, the following theorem is immedi-

ate:

Theorem 5.12. For k, j ∈ {1, 2, . . . , N}, the operator Ã has eigenvalues

λ̃∓1k(h) = ∓i 1
ζ1

√
λk(h), λ̃∓2k(h) = ∓i 1

ζ2

√
λk(h), k = 1, 2, . . . , N, (5.11)
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and since λ̃−1k = −λ̃+
1k, λ̃−2k = −λ̃+

2k, the corresponding eigenfunctions are

Ψ1
k(h) =



1
λ̃+

1k
ψk

b1
λ̃+

1k
ψk

ψk

b1ψk


, Ψ−1

k (h) =



1
λ̃+

1k
ψk

b1
λ̃+

1k
ψk

−ψk

−b1ψk


,

Ψ2
k(h) =



1
λ̃+

2k
ψk

b1
λ̃+

2k
ψk

ψk

b2ψk


, Ψ−2

k (h) =



1
λ̃+

2j
ψk

b2
λ̃+

2j
ψk

−ψk

−b2ψk


. (5.12)

For fixed k,

lim
h→0

√
λ̃ik(h) = (2k − 1)π

2Lζi
, i = 1, 2, k = 1, 2, . . . , N.

The solutions to (5.1) are given by The Fourier series solution of (5.1) is given by

 v

p

 = ∑
|µk|≤

√
Γ

c1k

 ψk

b1ψk

 e iµktζ1 + c2k

 ψk

b2ψk

 ee iµktζ2

 . (5.13)

where µk =
√
λk for k > 0 and µ−k = −µk. for the initial data

ϕ0 =
N∑
j=1



1
λ̃+

1j
(c1j + d1j) + 1

λ̃+
2j

(c2j + d2j)

b1
λ̃+

1j
(c1j + d1j) + b2

λ̃+
2j

(c2j + d2j)

(c1j − d1j) + (c2j − d2j)

b1(c1j − d1j) + b2(c2j − d2j)


ψj(h) (5.14)
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where {ckj, dkj, k = 1, 2, j ∈ N} are complex numbers such that

‖ϕ0‖2
RN �

N∑
j=1

(|c1j|2 + |d1j|2 + |c2j|2 + |d2j|2) , i.e.

C̃1 ‖ϕ0‖2
RN ≤

2∑
i=1

N∑
j=1

(|cij|2 + |dij|2) ≤ C̃2 ‖ϕ0‖2
RN

(5.15)

with two positive constants C̃1, C̃2 which are independent of the particular choice of

ϕ0.

Lemma 5.1 (Conservation of Energy). For any h > 0 and v, p solutions of (5.1), we

have

Eh(t) = Eh(0),∀t ∈ [0, T ]. (5.16)

Proof. Multiply (5.1) by v′j and p′j respectively to get

ρv′′j v
′
j − α

vj+1 − 2vj + vj−1

h2 v′j + γβ
pj+1 − 2pj + pj−1

h2 v′j = 0, (5.17)

µp′′jp
′
j − β

pj+1 − 2pj + pj−1

h2 p′j + γβ
vj+1 − 2vj + vj−1

h2 p′j = 0. (5.18)

Now, sum from 1 to N and combine

N∑
j=1

(ρv′′j v′j + µp′′jp
′
j) = 1

h2

N∑
j=1

[α(vj+1 − 2vj + vj−1)v′j + β(pj+1 − 2pj + pj−1)p′j

−γβ[(pj+1 − 2pj + pj−1)vj + (vj+1 − 2vj + vj−1)pj]].
(5.19)

We know

N∑
j=1

(ρv′′j v′j + µp′′jp
′
j) = 1

2
d

dt

N∑
j=0

(α|v′j|2 + β|p′j|2) (5.20)

and
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−
N∑
j=1

[α(vj+1 − 2vj + vj−1)v′j + β(pj+1 − 2pj + pj−1)p′j]

= 1
2
d
dt

N∑
j=0

(α|vj − vj+1|2 + β|pj − pj+1|2)
(5.21)

also,

−γβ
N∑
j=1

[(pj+1 − 2pj + pj−1)v′j + (vj+1 − 2vj + vj−1)p′j]

= −γβ
2

d
dt

N∑
j=1

(pj+1 − 2pj + pj−1)(vj+1 − 2vj + vj−1).
(5.22)

Combining (5.20), (5.21), and (5.22) we get that d
dt
E(t) = 0.

5.2 Lack of Uniform Observability with Respect to the Dis-

cretization Parameter

Lemma 5.2. For any eigen-pair

˜̃λ(h),

 ψ1

ψ2


 of A2N×2N in (5.7), the following

identities hold:

α1
N∑
j=0

∣∣∣∣ψ1
j+1−ψ

1
j

h

∣∣∣∣2 + β
N∑
j=0

∣∣∣∣ (γψ1
j+1−ψ

2
j+1)−(γψ1

j−ψ
2
j )

h

∣∣∣∣2 = ˜̃λ
(

N∑
j=0

ρ|ψ1
j |2 + µ|ψ2

j |2
)
, (5.23)

and

ρ˜̃λ(2L−h)
2h |ψ1

N |
2 + µ˜̃λ(2L−h)

2h |ψ2
N |

2 = ˜̃λ
[
2ρ
(

1− ρ˜̃λ(h)h2

4α1

)
N∑
j=0

(ψ1
j )2

+2µ
(

1− αµ˜̃λh2

4βα1

)
N∑
j=0

(ψ2
j )2 −ρµγ ˜̃λh2

α1

N∑
j=0

ψ1
jψ

2
j

]
.

(5.24)

Proof. Dot-product the first and second equations in (5.7) by ψ1
j and ψ2

j , respectively,
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and add these two equations:

−α1
h2

N∑
j=1

(ψ1
j+1 − 2ψ1

j + ψ1
j−1)ψ1

j

− β
h2

N∑
j=1

[
(γψ1

j+1 − ψ2
j+1)− 2(γψ1

j − ψ2
j ) + (γψ1

j−1 − ψ2
j−1)

]
(γψ1

j − ψ2
j )

= ˜̃λ
N∑
j=1

(
ρ(ψ1

j )2 + µ(ψ2
j )2
)
.

This implies that

α1
h2

N∑
j=1

(
2(ψ1

j )2 + 2ψ1
j+1ψ

1
j

)
+ β

h2

N∑
j=1

[
2(γψ1

j − ψ2
j )2 − 2(γψ1

j+1 − ψ2
j+1)(γψ1

j − ψ2
j )
]

+α1
h2 |ψ1

N |
2 + β

h2 |γψ1
N − ψ2

N |
2 = ˜̃λ

N∑
j=1

(
ρ(ψ1

j )2 + µ(ψ2
j )2
)
,

and finally, keeping in mind our boundary conditions

α1
h2

N∑
j=0

(
(ψ1

j+1)2 − 2ψ1
j+1ψ

1
j + (ψ1

j )2
)

+ β
h2

N∑
j=0

[(
γψ1

j+1 − ψ2
j+1

)2

−2(γψ1
j+1 − ψ2

j+1)(γψ1
j − ψ2

j )

+
(
γψ1

j − ψ2
j

)2
]

= ˜̃λ
N∑
j=0

(
ρ(ψ1

j )2 + µ(ψ2
j )2
)
.

After rewriting, we see this is exactly the claim in (5.23).

To obtain (5.41), first multiply the jth equations in the first and second equations

in (5.7) by j(ψ1
j+1−ψ1

j−1) and j(ψ2
j+1−ψ2

j−1) respectively, and add for j = 1, 2, . . . , N

to get

N∑
j=0

α1
h2

(
−2(ψ1

j )2 + 2ψ1
j+1ψ

1
j

)
− α1

h2 (ψ1
N)2

+ β
h2

N∑
j=0

[
−2(γψ1

j − ψ2
j )2
]
− β

h2 (γψ1
N − ψ2

N)2

+ β
h2

N∑
j=0

[2(γψ1 − ψ2)j+1(γψ1 − ψ2)j] = ˜̃λ
N∑
j=0

(
ρψ1

j+1ψ
1
j + µψ2

j+1ψ
2
j

)
−ρ˜̃λL

h
|ψ1
N |2 − µ˜̃λL

h
|ψ2
N |2.

(5.25)

Now multiply the second equation in (5.7) by γ and add it to the first equation in

(5.7), and multiply the first equation in (5.7) by γβ
α

and add it to the second equation
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in (5.7), respectively, to get the following equalities

−α1
N∑
j=0

∆hψ
1 = ˜̃λ

N∑
j=0

(ρψ1 + γµψ2) ,

−
N∑
j=0

∆hψ
2 = ˜̃λ

N∑
j=0

(
ργ
α1
ψ1 + µα

βα1
ψ2
)
.

(5.26)

Now multiply the first equation in (5.26) by ψ1, and simplify to obtain

N∑
j=0

ψ1
j+1ψ

1
j = 1

2 |ψ
1
N |2 +

(
1− 2ρ˜̃λh2

4α1

)
N∑
j=0
|ψ1
j |2 − γµ˜̃λh2

2α1

N∑
j=0

ψ1
jψ

2
j . (5.27)

Similarly, multiply the second equation in (5.26) by ψ2, and simplify to obtain

N∑
j=0

ψ2
j+1ψ

2
j = 1

2 |ψ
2
N |2 +

(
1− 2αµh2

4βα1

) N∑
j=0
|ψ2
j |2 − γρ˜̃λh2

2α1

N∑
j=0

ψ1
jψ

2
j , (5.28)

and finally, multiply the second equation in (5.7) by γψ1−ψ2
β

to deduce

N∑
j=0

(γψ1
j+1 − ψ2

j+1)(γψ2
j − ψ2

j ) = 1
2 |γψ

1
N − ψ2

N |2 +
N∑
j=0

(γψ1
j − ψ2

j )2

+µ˜̃λ
β

N∑
j=0

(γψ1
j − ψ2

j )ψ2
j ,

(5.29)

Finally, substitute (5.27)-(5.29) in (5.25)

(
ρ˜̃λL
h
− α1

h2

)
(ψ1

N)2 − β
h2 (γψ1

N − ψ2
N)2 + µλL

h
(ψ2

N)2 = 2α1
h2

N∑
j=1

(ψ1
j )2 + 2β

h2

N∑
j=1

(γψ1
j − ψ2

j )2

+
(

˜̃λρ− 2α1
h2

) [
|ψ1
N |

2

2 +
(

1−
˜̃λρh2

2α1

)
N∑
j=1

(ψ1
j )2 −

˜̃λµγh2

2α1

N∑
j=1

ψ1
jψ

2
j

]

+µ˜̃λ
[
|ψ2
N |

2

2 +
(
1− αµh2

2βα1

) N∑
j=1

(ψ2
j )2 −

˜̃λργh2

2α1

N∑
j=1

ψ1
jψ

2
j

]

−2β
h2

[
|γψ1

N−ψ
2
N |

2

2 +
N∑
j=1

(
γψ1

j − ψ2
j

)2
+

˜̃λµh2

2β

N∑
j=1

(γψ1
j − ψ2

j )ψ2
j

]
,

and after collecting like-terms and simplifying once more, the result (5.41) is estab-

lished.
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Now we are ready to prove the non-uniform observability for the solutions of

(5.3).

Theorem 5.13. For any T > 0, as h→ 0

sup(
v

p

)
solves (5.1)

Eh(0)∫ T
0

(
ρ |v′N |

2 + µ |p′N |
2
)
dt
→∞. (5.30)

Proof. Consider the solution

 v

p

 =

 ψN

bkψN

 corresponding to the eigenvalue

λN (h)
(ζk)2 where k = 1, 2. By the normalization h

N∑
j=0

(ψN,j)2 = 1, (5.41) yields

˜̃λN(h) (2L−h)
2h (ρ+ µ(bk)2) |ψN,N |2 =

˜̃λN (h)
h

[
2ρ
(
1− ρλN (h)h2

4α1(ζk)2

)
+2µ(bk)2

(
1− αµλN (h)h2

4βα1(ζk)2

)
− ρµγλN (h)h2

α1(ζk)2 bk
] (5.31)

and therefore

˜̃λN(h) (2L−h)
2 |ψN,N |2

= Eh(0)
[
2ρ
(

4α1(ζk)2−ρλN (h)h2

4α1(ζk)2

)
+ 2µ(bk)2

(
1− αµλN (h)h2

4βα1(ζk)2

)
− ρµγλN (h)h2

α1(ζk)2 bk
]
.

(5.32)

Thus

Eh(0) =
(2L−h)

2
˜̃λN (h)|ψN,N |2[

2ρ
(

4α1(ζk)2−ρλN (h)h2

4α1(ζk)2

)
+2µ(bk)2

(
1−αµλN (h)h2

4βα1(ζk)2

)
− ρµγλN (h)h2

α1(ζk)2
bk

] , (5.33)

and

Eh(0)∫ T
0

(
ρ|v′N |

2
+µ|p′N |

2
)
dt

= 2L−h
2T (ρ+µb2

k
)
[

2ρ
(

4α1(ζk)2−ρλN (h)h2

4α1(ζk)2

)
+2µ(bk)2

(
1−αµλN (h)h2

4βα1(ζk)2

)
− ρµγλN (h)h2

α1(ζk)2
bk

] . (5.34)
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By (3.24), recall as h→ 0, λN(h)h2 → 4, and this reduces (5.32) to

Eh(0)∫ T
0

(
ρ|v′N |

2
+µ|p′N |

2
)
dt
→ L

T (ρ+µb2
k
)
[

2ρ
(
α1(ζk)2−ρ
α1(ζk)2

)
+2µ(bk)2

(
1− αµ

βα1(ζk)2

)
− 4ρµγ
α1(ζk)2

bk

] . (5.35)

Now, utilizing (4.6) and factoring out 2µ
β(bkγµ+ρ) in the denominator of (5.35) yields

Eh(0)∫ T
0

(
ρ|v′N |

2
+µ|p′N |

2
)
dt
→ L

T (ρ+µb2
k
)
[

2µ(bk)2
(

1− αµ

βα1(ζk)2

)
− 2ρµγ
α1(ζk)2

bk

]
→ β(bkγµ+ρ)

2µbk
L

T (ρ+µb2
k
)[bk(β(bkγµ+ρ)−αµ)−ργβ] .

(5.36)

Now, distributing terms in the denominator,

Eh(0)∫ T
0

(
ρ|v′N |

2
+µ|p′N |

2
)
dt
→ β(bkγµ+ρ)

2µbk
L

T (ρ+µb2
k
)[βγµ(bk)2+ργbk−αµbk−ργβ]

→ β(bkγµ+ρ)
2µbk

L
T (ρ+µb2

k
)[γβµ(bk)2−(αµ−ρβ)bk−ργβ]

→∞

(5.37)

where β(bkγµ+ρ)
2µbk

6= 0, and βγµ(bk)2 − (αµ− βρ)bk − ργβ = 0 by (4.6).

5.3 Uniform Observability of Filtered Solutions with Respect

to the Discretization Parameter

Lemma 5.3. Equipartition of Energy: For any h > 0 and v, p solutions of (5.1), the

following identity holds:

−h
N∑
j=1

∫ T
0 (ρ|v′j|2 + µ|p′j|2) dt = α1h

N∑
j=1

∫ T
0 |

vj−vj+1
h
|2

+βh
N∑
j=1

∫ T
0 |

(γvj−pj)−(γvj+1−pj+1)
h

|2 dt+ Yh(t) = 0
(5.38)

with
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Yh(t) = h
N∑
j=1

(ρv′jvj + µp′jpj). (5.39)

Proof: First, rewrite (5.1) as the following with α = α1 + γ2β to get

ρv′′j − α1
vj+1−2vj+vj−1

h2 −

γβ
(
γ vj+1−2vj+vj−1

h2 − pj+1−2pj+pj−1
h2

)
= 0,

(5.40)

µp′′j + β
[
γ vj+1−2vj+vj−1

h2 − pj+1−2pj+pj−1
h2

]
= 0. (5.41)

Now, multiply (5.40) and (5.41) by vj and pj respectively and combine to get

N∑
j=1

∫ T
0 (ρv′′j vj + µp′′jpj) dt− α1

N∑
j=1

∫ T
0

vj+1−2vj+vj−1
h2 vj dt

−β
N∑
j=1

∫ T
0

(γvj+1−pj+1)+(γvj−1−pj−1)−2(γvj−pj)
h2 (γvj − pj) dt.

(5.42)

Now,

ρ
N∑
j=1

∫ T

0
v′′j vj dt = −ρ

N∑
j=1

∫ T

0
|v′j|2 dt+ ρ

N∑
j=1

v′jvj|T0 (5.43)

via integration by parts with u = vj and dv = v′′j dt. Similarly,

µ
N∑
j=1

∫ T

0
p′′jpj dt = −µ

N∑
j=1

∫ T

0
|p′j|2 dt+ µ

N∑
j=1

p′jpj|T0 . (5.44)

We also know from [11]

N∑
j=1

(uj+1 + uj−1 − 2uj)uj = −
N∑
j=0
|uj − uj+1|2. (5.45)
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So we can write

α1

N∑
j=1

(vj+1 + vj−1 − 2vj)vj = −α1

N∑
j=0
|vj − vj+1|2 (5.46)

and

β
N∑
j=1

[(γvj+1 − pj+1) + (γvj−1 − pj−1)− 2(γvj − pj)] (γvj − pj)

= −β
N∑
j=0
|(γvj − pj)− (γvj+1 − pj+1)|2.

(5.47)

Combining these last 5 equalities, the claim holds. �

Lemma 5.4. For any eigenvectors v and p with eigenvalue λ of (5.7), the following

identity holds:

α1

N∑
j=0

∣∣∣∣vj+1 − vj
h

∣∣∣∣2 + β
N∑
j=0

∣∣∣∣∣(γvj+1 − pj+1)− (γvj − pj)
h

∣∣∣∣∣
2

= λ̃
N∑
j=0

(ρv2
j + µp2

j). (5.48)

Proof: Rewrite (5.7) as previously done and multiply by vj and pj respectively

to get

−α1
h2

N∑
j=1

(vj+1 − 2vj + vj−1)vj

− β
h2

N∑
j=1

[(γvj+1 − pj+1) + (γvj−1 − pj−1)

−2(γvj − pj)](γvj − pj)] = λ̃
N∑
j=0

(ρv2
j + µp2

j)

(5.49)

=⇒ −α1
h2

N∑
j=1

(vj+1vj − 2v2
j + vj−1vj) dt

− β
h2

N∑
j=1

[(γvj+1 − pj+1)(γvj − pj) + (γvj−1 − pj−1)(γvj − pj)

−2(γvj − pj)2]

= λ̃
N∑
j=0

(ρv2
j + µp2

j)

(5.50)
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=⇒ α1
h2

N∑
j=1

(2v2
j − 2vj+1vj) + β

h2

N∑
j=1

(2(γvj − pj)2 − 2(γvj+1 − pj+1)(γvj − pj))

+α1
h2 v

2
N + β

h2 (γvN − pN)2 = λ̃
N∑
j=0

(ρv2
j + µp2

j)
(5.51)

which yields

α1
h2

N∑
j=0

(v2
j+1 − 2vj+1 + v2

j )

+ β
h2

N∑
j=0

[(γvj+1 − pj+1)2 − 2(γvj+1 − pj+1)(γvj − pj) + (γvj − pj)2]

= λ̃
N∑
j=0

(ρv2
j + µp2

j)

(5.52)

which is exactly the claim �

Lemma 5.5. For any h > 0, the solution w of (5.1) satisfies the following

h
2

N∑
j=0

[∫ T
0

(
ρv′jv

′
j+1 + µp′jp

′
j+1

)
+ α1

∣∣∣vj+1−vj
h

∣∣∣2
+ β

∣∣∣ (γv−p)j+1−(γv−p)j
h

∣∣∣2] dt+ Xh(t)|T0 = L
2
∫ T
0 (ρ|v′N |2 + µ|p′N |2) dt

(5.53)

where Xh(t) = h
N∑
j=1

(
ρv′jj

vj+1−vj−1
2 + µp′jj

pj+1−pj−1
2

)
.

Proof. Multiply the first and second equations in (5.1) by the multipliers j vj+1−vj−1
2

and j pj+1−pj−1
2 , respectively, add these two equations, and take the sum and integrate

by parts from 0 to T . The left hand side is

N∑
j=1

∫ T
0 j

(
ρv′′j

vj+1−vj−1
2 + µp′′j

pj+1−pj−1
2

)
dt

=
N∑
j=1

ρv′jj
vj+1−vj−1

2 + µp′jj
pj+1−pj−1

2

∣∣∣T
0
−

N∑
j=1

∫ T
0 j

(
ρv′j

v′j+1−v
′
j−1

2 + µp′j
p′j+1−p

′
j−1

2

)
dt

=
N∑
j=1

1
h
Xh(t)

∣∣∣T
0
− 1

2

N∑
j=1

∫ T
0

(
jρv′jv

′
j+1 − ρ(j + 1)v′jv′j+1 − µp′jp′j+1 − µ(j + 1)p′jp′j+1

−ρN+1
2 v′Nv

′
N+1 − µN+1

2 p′Np
′
N+1

)
dt

=
N∑
j=1

1
h
Xh(t)

∣∣∣T
0

+ 1
2

N∑
j=1

∫ T
0

(
ρv′jv

′
j+1 + µp′jp

′
j+1

)
dt+

∫ L
0

(
−ρN+1

2 |v
′
N |2 − µN+1

2 |p
′
N |2

)
dt.
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The right hand side is

N∑
j=1

∫ T
0

[
α1
(
vj+1−2vj+vj−1

h2 j vj+1−vj−1
2

)
+β

(
(γv−p)j+1−2(γv−p)j+(γv−p)j−1

h2 j (γv−p)j+1−(γv−p)j−1
2

)]
dt

= 1
2h2

N∑
j=0

∫ T
0

[
α1(jv2

j+1 − jv2
j−1 − 2jvj+1vj + 2jvj−1vj)

+ β
(
j(γv − p)2

j+1 − j(γv − p)2
j−1 − 2j(γv − p)j+1(γv − p)j + 2j(γv − p)j−1(γv − p)j

)]
dt

= 1
2h2

N∑
j=0

∫ T
0

[
α1(−2v2

j + 2vjvj+1) + β
(
−2(γv − p)2

j + 2(γv − p)j(γv − p)j+1
)]

dt

− 1
2h2

∫ T
0 (α1|vN |2 + β|γvN − pN |2) dt.

= −1
2

N∑
j=0

∫ T
0

[
α1

∣∣∣vj+1−vj
h

∣∣∣2 + β
∣∣∣ (γv−p)j+1−(γv−p)j

h

∣∣∣2] dt.
Therefore, merging these two equations yield (5.53).

Lemma 5.6. For any h > 0, the solution

 v

p

 of (5.1) satisfies the following

−h
N∑
j=1

∫ T

0

(
ρ|v′j|2 + µ|p′j|2

)
+ h

N∑
j=0

[
α1

∣∣∣∣vj+1 − vj
h

∣∣∣∣2

+ β

∣∣∣∣∣(γv − p)j+1 − (γv − p)j
h

∣∣∣∣∣
2
 dt+ Yh(t)|T0 = 0 (5.54)

where Yh(t) = h
N∑
j=1

(
ρvjv

′
j + µpjp

′
j

)
.

Proof. Multiply the first and second equations in (5.1) by the multipliers vj and pj,

respectively, add these two equations, and take the sum and integrate by parts from
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0 to T :

0 =
N∑
j=1

∫ T
0

(
ρv′′j vj + µp′′jpj

)
dt− α1

N∑
j=1

∫ T
0

vj+1−2vj+vj−1
h2 vj dt

−β
N∑
j=1

∫ T
0

(γv−p)j+1−2(γv−p)j+(γv−p)j−1
h2 (γv − p)j dt

= 1
h

N∑
j=1

Yh(t)|T0 −
N∑
j=1

∫ T
0

(
ρ|v′j|2 + µ|p′j|2

)
dt

+α1
N∑
j=0

∣∣∣vj−vj+1
h

∣∣∣2 + β
N∑
j=0

∣∣∣ (γv−p)j−(γv−p)j+1
h

∣∣∣2 .
Therefore, (5.54) follows.

Lemma 5.7. For any h > 0, t ∈ [0, T ] and

 v

p

 solution of (5.1) in which Γ = γ
h2

be the largest eigenvalue of {Γk}. It follows that

|Zh(t)| ≤
√
M̃Eh(0) (5.55)

where M̃ = max
{

2µ
β
, ρ
α1

+ 2γ2µ
α1

} (
L2 − MΓh2

16

)
+ 1

λ1

(
M2Γ2

64 + MΓ
8

)
,

Zh(t) = Xh(t)− MΓ
8 Yh(t)

= h
N∑
j=1

(
ρv′jj

vj+1−vj−1
2 + µp′jj

pj+1−pj−1
2

)
− MΓ

8

N∑
j=1

(
ρvjv

′
j + µpjp

′
j

)
.

(5.56)

and M :=
2 max

(
2γ2µ+ρ
α1

, 2µ
β

)
min
(

1
ζ21
, 1
ζ22

) .

Note that, for a piezoelectric beam,
{

2γ2µ+ρ
α1

, 2µ
β

}
� 1 and

(
1
ζ2
1
, 1
ζ2
2

)
� 1.
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Proof.

|Zh(t)| ≤ h

[
N∑
j=1

ρ|v′j|2
]1/2 [

N∑
j=1

ρ
∣∣∣j vj+1−vj−1

2 − MΓ
8 vj

∣∣∣2]1/2

+h
[
N∑
j=1

µ|p′j|2
]1/2 [

N∑
j=1

µ
∣∣∣j pj+1−pj−1

2 − MΓ
8 pj

∣∣∣2]1/2

≤ h

[
N∑
j=1

ρ|v′j|2
]1/2 [

N∑
j=1

ρ
∣∣∣j vj+1−vj−1

2 − MΓ
8 vj

∣∣∣2 + µ
∣∣∣j pj+1−pj−1

2 − MΓ
8 pj

∣∣∣2]1/2

+h
[
N∑
j=1

µ|p′j|2
]1/2 [

N∑
j=1

ρ
∣∣∣j vj+1−vj−1

2 − MΓ
8 vj

∣∣∣2 + µ
∣∣∣j pj+1−pj−1

2 − MΓ
8 pj

∣∣∣2]1/2

.

(5.57)

On the other hand, since j < L
h

ρh

[
N∑
j=1

∣∣∣j vj+1−vj−1
2 − MΓ

8 vj
∣∣∣2]

= ρh
N∑
j=1

[
j2

4 |vj+1 − vj−1|2 + M2Γ2

64 |vj|
2 − MΓ

8 j(vj+1 − vj−1)vj
]
.

(5.58)

By the Triangle Inequality,

ρh

[
N∑
j=1

∣∣∣j vj+1−vj−1
2 − MΓ

8 vj
∣∣∣2]

≤ ρh
N∑
j=1

[
j2

2 |vj+1 − vj|2 + j2

2 |vj − vj−1|2 + M2Γ2

64 |vj|
2 − MΓ

8 j(vj+1 − vj−1)vj
]
.
(5.59)

Substituting L
h

for j (Since j ≤ N)and rearranging,

ρh

[
N∑
j=1

∣∣∣j vj+1−vj−1
2 − MΓ

8 vj
∣∣∣2]

≤ ρhL2
N∑
j=0

[∣∣∣vj+1−vj
h

∣∣∣2 + M2Γ2

64 |vj|
2 + MΓ

8 vj+1vj − MΓ
8 |vN |

2
]

≤ ρhL2
N∑
j=0

∣∣∣vj+1−vj
h

∣∣∣2 + ρh
(
M2Γ2

64 + MΓ
8

) N∑
j=0
|vj|2

−ρhMΓ
16

N∑
j=0

(2|vj|2 − vj+1vj)− MLΓ
8 ρ|vN |2.

(5.60)
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Keeping in mind that Γ < 4,

≤ ρhL2
N∑
j=0

∣∣∣vj+1−vj
h

∣∣∣2 + ρh
(
M2Γ2

64 + MΓ
8

) N∑
j=0
|vj|2

−ρhMΓ
16

N∑
j=0
|vj+1 − vj|2 + MΓh

16 |vN+1|2 − MΓ
8 ρ|vN |2

≤ ρ
α1

(
L2 − MΓh2

16

)
h

N∑
j=0

α1

∣∣∣vj+1−vj
h

∣∣∣2 + ρh
(
M2Γ2

64 + MΓ
8

) N∑
j=0
|vj|2

+
(
MΓh

16 −
MΓ

8

)
ρ|vN |2.

(5.61)

Analogously,

µh

[
N∑
j=1

∣∣∣j pj+1−pj−1
2 − MΓ

8 pj
∣∣∣2]

≤ µ
(
L2 − MΓh2

16

)
h

N∑
j=0

∣∣∣pj+1−pj
h

∣∣∣2 + µh
(
M2Γ2

64 + MΓ
8

) N∑
j=0
|pj|2

+
(
MΓh

16 −
MΓ

8

)
µ|pN |2,

(5.62)

and since pj+1−pj
h

= pj+1−pj
h

+ γ vj+1−vj
h
− γ vj+1−vj

h
,

µh

[
N∑
j=1

∣∣∣j pj+1−pj−1
2 − MΓ

8 pj
∣∣∣2]

≤ 2µ
(
L2 − MΓh2

16

)
h

N∑
j=0

[∣∣∣ (γv−p)j+1−(γv−p)j
h

∣∣∣2 + γ2
∣∣∣vj+1−vj

h

∣∣∣2]
+µh

(
M2Γ2

64 + MΓ
8

) N∑
j=0
|pj|2 +

(
MΓh

16 −
MΓ

8

)
µ|pN |2

= 2µ
β

(
L2 − MΓh2

16

)
h

N∑
j=0

β
[∣∣∣ (γv−p)j+1−(γv−p)j

h

∣∣∣2]
+2γ2µ

α1

(
L2 − MΓh2

16

)
h

N∑
j=0

[
α1

∣∣∣vj+1−vj
h

∣∣∣2]
+µh

(
M2Γ2

64 + MΓ
8

) N∑
j=0
|pj|2 +

(
MΓh

16 −
MΓ

8

)
µ|pN |2.

(5.63)
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Now (5.58) and (5.63) are merged to get

ρh

[
N∑
j=1

∣∣∣j vj+1−vj−1
2 − MΓ

8 vj
∣∣∣2 + µh

N∑
j=1

∣∣∣j pj+1−pj−1
2 − MΓ

8 pj
∣∣∣2]

≤ 2µ
β

(
L2 − MΓh2

16

)
h

N∑
j=0

β
[∣∣∣ (γv−p)j+1−(γv−p)j

h

∣∣∣2]
+
(
ρ
α1

+ 2γ2µ
α1

) (
L2 − MΓh2

16

)
h

N∑
j=0

[
α1

∣∣∣vj+1−vj
h

∣∣∣2]
+h

(
M2Γ2

64 + MΓ
8

) N∑
j=0

(ρ|vj|2 + µ|pj|2) +
(
MΓh

16 −
MΓ

8

)
(ρ|vN |2 + µ|pN |2)

≤
[

2µ
β

(
L2 − MΓh2

16

)
+ 1

λ1

(
M2Γ2

64 + MΓ
8

)]
h

N∑
j=0

β
[∣∣∣ (γv−p)j+1−(γv−p)j

h

∣∣∣2]
+
[(

ρ
α1

+ 2γ2µ
α1

) (
L2 − MΓh2

16

)
+ 1

λ1

(
M2Γ2

64 + MΓ
8

)]
h

N∑
j=0

[
α1

∣∣∣vj+1−vj
h

∣∣∣2]
≤
[
max

{
2µ
β
, ρ
α1

+ 2γ2µ
α1

} (
L2 − MΓh2

16

)
+ 1

λ1

(
M2Γ2

64 + MΓ
8

)]
·

h
N∑
j=0

[
α1

∣∣∣vj+1−vj
h

∣∣∣2 + β
∣∣∣ (γv−p)j+1−(γv−p)j

h

∣∣∣2] .

(5.64)

Combining (5.57)-(5.64), and by the Young’s inequality, we deduce (5.55).

Now we can state the main theorem of the paper which is the discrete version

of (4.12) in Theorem 4.11 for the filtered solutions as the following:

Theorem 5.14. Assume that 0 < Γ < 4. Then, there exists T (Γ, h) = such that for

all T > T (Γ, h) = 2
√
M̃

1−Γ
4

=
2L

√
max

{
2µ
β
, ρ
α1

+ 2γ2µ
α1

}(
1−MΓh2

16L2

)
+ 1
λ1L2

(
M2Γ2

64 + Γ
8

)
1−Γ

4
there exists

C(T,Γ, h) = 2
L

[
T

(
1− Γ

4

)
− 2

√
M̃

]

such that

C(T,Γ, h)Eh(0) ≤
∫ T

0

(
ρ |v′N |

2 + µ |p′N |
2)

dt (5.65)

holds for every solution of (5.3) in the class Ch(Γ), uniformly as h→ 0.
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Proof. Consider (5.53) with the energy conservation in mind to simplify it to

TEh(0) + h
2

N∑
j=0

∫ T
0

[
ρ
(
v′jv
′
j+1 − |v′j|2

)
+ µ(p′jp′j+1 − |p′j|2)

]
dt+ Xh(t)|T0

= L
2
∫ T

0 (ρ|v′N |2 + µ|p′N |2) dt

(5.66)

By (5.13),

 v′

p′

 = i
∑

|µk|≤
√

Γ

c1k
µk
ζ1

 ψk

b1ψk

 e iµktζ1 + c2k
µk
ζ2

 ψk

b2ψk

 e iµktζ2



and therefore,

ρ
N∑
j=0
|v′j − v′j+1|2 = ρ

N∑
j=0

∣∣∣∣∣∣ ∑
|µk|≤

√
Γ

[
c1k

µk
ζ1
e
iµkt

ζ1 + c2k
µk
ζ2
e
iµkt

ζ2

]
(ψk,j − ψk,j+1)

∣∣∣∣∣∣
2

= ρ
N∑
j=0

∑
|µk|≤

√
Γ

∣∣∣∣ c1kζ1 e iµktζ1 + c2k
ζ2
e
iµkt

ζ2

∣∣∣∣2 |µk|2|ψk,j − ψk,j+1|2.
(5.67)

Analogously,

µ
N∑
j=0
|p′j − p′j+1|2 = µ

N∑
j=0
|p′j − p′j+1 − γ(v′j − v′j+1) + γ(v′j − v′j+1)|2

≤ 2µ
N∑
j=0
|(γv′ − p′)j − (γv′ − p′)j+1|2 + 2γ2µ

N∑
j=0
|(v′j − v′j+1)|2

= 2γ2µ
N∑
j=0

∑
|µk|≤

√
Γ

∣∣∣∣ c1kζ1 e iµktζ1 + c2k
ζ2
e
iµkt

ζ2

∣∣∣∣2 |µk|2|ψk,j − ψk,j+1|2

+2µ
N∑
j=0

∑
|µk|≤

√
Γ

∣∣∣∣ c1kb1(γ−b1)
b1ζ1

e
iµkt

ζ1 + c2kb2(γ−b2)
b2ζ2

e
iµkt

ζ2

∣∣∣∣2 |µk|2|ψk,j − ψk,j+1|2

(5.68)
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Adding (5.67) and (5.68) and using that µ2
kh

2 < Γ yields

N∑
j=0

ρ|v′j − v′j+1|2 + µ|p′j − p′j+1|2

≤ (2γ2µ+ρ)
α1

N∑
j=0

∑
|µk|≤

√
Γ
α1

∣∣∣∣ c1kζ1 e iµktζ1 + c2k
ζ2
e
iµkt

ζ2

∣∣∣∣2 u2
k|ψk,j − ψk,j+1|2

+2µ
β

N∑
j=0

∑
|µk|≤

√
Γ
β
∣∣∣∣ c1kb1(γ−b1)

b1ζ1
e
iµkt

ζ1 + c2kb2(γ−b2)
b2ζ2

e
iµkt

ζ2

∣∣∣∣2 µ2
k|ψk,j − ψk,j+1|2

≤ max
(

2γ2µ+ρ
α1

, 2µ
β

) N∑
j=0

∑
|µk|≤

√
Γ
α1

∣∣∣∣ c1kζ1 e iµktζ1 + c2k
ζ2
e
iµkt

ζ2

∣∣∣∣2 u2
k|ψk,j − ψk,j+1|2

+ ∑
|µk|≤

√
Γ
β

∣∣∣∣ c1kb1(γ−b1)
b1ζ1

e
iµkt

ζ1 + c2kb2(γ−b2)
b2ζ2

e
iµkt

ζ2

∣∣∣∣2 µ2
k|ψk,j − ψk,j+1|2


≤ Γ max

(
2γ2µ+ρ
α1

, 2µ
β

) N∑
j=0

∑
|µk|≤

√
Γ
ρ
∣∣∣∣c1ke

iµkt

ζ1 + c2ke
iµkt

ζ2

∣∣∣∣2 ˜̃λ|ψk,j|2

+ ∑
|µk|≤

√
Γ
µ
∣∣∣∣c1kb1e

iµkt

ζ1 + c2kb2e
iµkt

ζ2

∣∣∣∣2 ˜̃λ|ψk,j|2


(5.69)

Here we use the fact that ˜̃λk,j = µ2
k

ζ2
j

for j = 1, 2.

N∑
j=0

ρ|v′j − v′j+1|2 + µ|p′j − p′j+1|2

≤ Γ max
(

2γ2µ+ρ
α1

, 2µ
β

) N∑
j=0

∑
|µk|≤

√
Γ
ρ
∣∣∣∣c1ke

iµkt

ζ1 + c2ke
iµkt

ζ2

∣∣∣∣2 ˜̃λ|ψk,j|2

+ ∑
|µk|≤

√
Γ
µ
∣∣∣∣c1kb1e

iµkt

ζ1 + c2kb2e
iµkt

ζ2

∣∣∣∣2 ˜̃λ|ψk,j|2


≤ ΓM

 N∑
j=0

∑
|µk|≤

√
Γ
ρ
∣∣∣∣ c1kζ1 e iµktζ1 + c2k

ζ2
e
iµkt

ζ2

∣∣∣∣2 µ2
k|ψk,j|2

+ ∑
|µk|≤

√
Γ
µ
∣∣∣∣ c1kb1ζ1

e
iµkt

ζ1 + c2kb2
ζ2
e
iµkt

ζ2

∣∣∣∣2 µ2
k|ψk,j|2


< Γ

(
N∑
j=0

ρ|v′j|2 + µ|p′j|2
)

(5.70)
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where M is defined in Lemma 5.7. Thus,

N∑
j=0

∫ T
0

[
ρ
(
v′jv
′
j+1 − |v′j|2

)
+ µ(p′jp′j+1 − |p′j|2)

]
= −1

2

N∑
j=0

ρ|v′j − v′j+1|2 + µ|p′j − p′j+1|2 + 1
2 (ρ|v′N |2 + µ|p′N |2)

≥ −Γ
2

N∑
j=0

ρ|v′j|2 + µ|p′j|2 + 1
2 (ρ|v′N |2 + µ|p′N |2)

(5.71)

and

TEh(0)− Γh
4

(
N∑
j=1

ρ|v′j|2 +
N∑
j=1

µ|p′j|2
)

+ 1
2 (ρ|v′N |2 + µ|p′N |2) + Xh(t)|T0

≤ L
2
∫ T

0 (ρ|v′N |2 + µ|p′N |2) dt.

(5.72)

Next, rewrite (5.54)

h
N∑
j=1

∫ T

0

(
ρ|v′j|2 + µ|p′j|2

)
= TEh(0) + 1

2 Yh(t)|
T
0 = 0 (5.73)

together with (5.72) to obtain

T
[
1− Γ

4

]
Eh(0) + Zh(t)|T0 ≤ 2L−h

4
∫ T
0 (ρ|v′N |2 + µ|p′N |2) dt

≤ L
2
∫ T

0 (ρ|v′N |2 + µ|p′N |2) dt
(5.74)

where Zh is defined in (5.56). By substituting (5.55) into (5.74) we deduce that

L
2
∫ T

0 (ρ|v′N |2 + µ|p′N |2) dt ≥
[
T
(
1− Γ

4

)
− 2
√
M̃
]
Eh(0) (5.75)

Taking into account that Γ = Γ
h2 in Ch(Γ) for (5.1), we have obtained the observability

inequality (5.76) provided that

T > 2
√
M̃

1−Γ
4

=
2L

√
max

{
2µ
β
, ρ
α1

+ 2γ2µ
α1

}(
1−MΓh2

16L2

)
+ 1
λ1L2

(
M2Γ2

64 + Γ
8

)
1−Γ

4
,

(5.76)
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Note that by (4.6)

ζ2
1 = ρ+γ2µ

α1
+O

(
2γ2µ2

α1β

)
, ζ2

2 = µ
β

+O
(

2γ2µ2

α1β

)
(5.77)

since 2γ2µ2

α1β
is very small in comparison to ρ+2γ2µ

α1
and µ

β
.
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6 Conclusion and Future work

In this project, we show that the strongly-coupled model of a piezoelectric beam

retaining magnetic effects, as in (4.1), satisfies an observability inequality with an

optimal observation time. As the system is discretized by finite differences, we lose

the positive result for the observability inequality (4.12) as expected, due to the gap

between consecutive eigenvalues tending towards zero as the discretization parameter

goes to zero. Working off of what is done in [2] for a single wave equation, we

first mimic the necessary proofs for proving the negative result for the observability

inequality via discrete multipliers. Note that this differs from the work done in [23]

since the wave equations are strongly coupled. In fact, to the best of our knowledge,

no result has been reported in the literature for strongly coupled wave equations with

non-identical wave speeds. Secondly, we directly filter the spurious high-frequency

eigenvalues for both branches in order to obtain the observability inequality (5.65)

using discrete multipliers. It is important to recognize that this observation time is

sub-optimal.

It is also important to note that we only adopted the finite difference discretiza-

tion for the spacial variable, and for future work, we look to apply other numerical

methods such as the finite element method and spectral methods. There will likely

be a greater amount of computations than for the finite differences, but we will also

likely obtain a slightly better estimate for the observation time. The benefits of using

finite differences can be seen in [11, 15].

Additionally, in Section 5, we did not apply the non-harmonic Fourier series

method for the discretized model as was done for the continuous model, which pro-

vides another opening for future work. Using this method will likely result in the

most optimal observation time for the model (5.1).

Another possible direction is applying the indirect filtering technique by adopting

the methods in [29] to prove that the closed-loop system is exponentially stable by
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the boundary feedback.
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[22] D.J. Price, E. Moore, A. Ö. Özer, Boundary control of a 1-D wave equation by

the Filtered Finite Difference Method, Wolfram Demonstrations Project, 2020.

[23] A.J.A Ramos, et al., Equivalence between exponential stabilization and bound-

ary observ- ability for piezoelectric beams with magnetic effect, Z. Angew. Math.

Phys. 70, Article number: 60 (2019).

[24] Q. Shi, MEMS Based broadband piezoelectric ultrasonic energy harvester

(PUEH) for enabling self-powered implantable biomedical devices, Sci. Rep. (6),

24946 (2016).

[25] R. C. Smith, Smart material systems, Society for Industrial and Applied Math-

ematics, (2005).

[26] Ultrasound imaging of the brain and liver, Science Daily Magazine, Source:

Acoustical Society of America, 26 June 2017. Accessed: 25 February 2021.

[27] R. St. Clair, Spectral investigation of well-known partial differential equations

discretized by Finite Differences, Senior Thesis (2020).

[28] D. Tallarico, N. Movchan, A. Movchan, M. Camposaragna, Propagation and

filtering of elastic and electromagnetic waves in piezoelectric composite structures,

Math. Meth. Appl. Sc. 40, 3202–3220 (2017).

[29] L.T. Tebou and E. Zuazua, Uniform boundary stabilization of the finite difference

space discretization of the 1-D wave equation, Adv. Comput. Math. (26), 337-365

(2007).

[30] J. Yang, Special Topics in the Theory of Piezoelectricity, Springer, New York

72



(2009).

[31] G. Yang, J. Du, J. Wang, J. Yang, Frequency dependence of electromagnetic

radiation from a finite vibrating piezoelectric body, Mechanics Research Commu-

nications (93), 163-168 (2018).

73


	Analysis of Boundary Observability of Strongly Coupled One-dimensional Wave Equations with Mixed Boundary Conditions
	Recommended Citation

	THESIS-FINAL-VERSION
	Wilson-Thesis-Final -Signatures-Final

