Mid Atlantic Regional Chapter of the American College of Sports Medicine Annual Scientific Meeting, November 1st – 2nd, 2019 Conference Proceedings International Journal of Exercise Science, Volume 9, Issue 8 ## The Cardiopulmonary Effects of Thoracic Load Carriage While Resting Ashley Y. Lesniak, Benjamin J. Ronemus, Curt B. Dixon, FACSM. Lock Haven University, Lock Haven, PA **PURPOSE:** To investigate the cardiopulmonary effects of thoracic load carriage (LC) while sitting and standing. **METHODS:** Eight males and one female (Age: 21.0 ± 1.4 yr; Height: 178.9 ± 5.8 cm; Weight: 86.1 ± 13.2 kg; Body Fat: $20.2 \pm 7.2\%$) without LC experience participated in the study. On separate days, subjects completed four trials of sitting quietly for 5 minutes, and then standing quietly for 5 minutes without assistance. Testing sessions included an unloaded (UL) trial, which served as the control, and wearing a light load (LL; 24lb = 10.9kg), moderate load (ML; 48lb = 21.8kg) and heavy load (HL; 80lb = 36.4kg) weighted vest. The testing order of the weighted vest trials was determined by counterbalanced assignment. Vest weights were selected to approximate common gear of tactical populations: law enforcement (LL), firefighter (ML), and military personnel (HL). Minute ventilation (V_e), respiratory rate (RR), Tidal volume (T_v), oxygen consumption (VO₂), heart rate, and ratings of perceived exertion (RPE) were assessed during all trials. An average value from the last minute was calculated for V_e, RR, T_v, VO₂, and heart rate and used in a repeated measures ANOVA for statistical comparison. **RESULTS:** While sitting, there were no differences observed across trials in any of the aforementioned variables. While standing, V_e was significantly higher during ML (p = .013) and HL (p = .005) compared to unloaded (UL = 12.6 ± 3.2 , LL = 12.2 ± 1.9 , ML = 14.8 ± 3.7 , HL = $14.9 \pm 4.1 \, \mathrm{l \cdot min^{-1}}$), RR, T_{v} and heart rate were not different during any of the standing trials. Relative VO_2 while standing was significantly higher for ML (p = 0.038) and HL (p = 0.001) compared to UL (UL = 4.3 ± 0.6 , LL = 4.6 ± 0.6 , ML = 5.0 ± 0.7 , HL = 5.3 ± 0.6 $0.8 \text{ ml} \cdot \text{kg}^{-1} \cdot \text{min}^{-1}$). Standing RPE was significantly higher for ML (p = 0.050) and HL (p = 0.014), compared to UL (UL = 6.1 ± 0.3 , LL = 6.9 ± 1.6 , ML = 7.6 ± 1.9 , HL = 7.9 ± 1.6 1.7). **CONCLUSION:** Sitting while under thoracic load carriage did not elicit any significant changes. While standing, ML and HL elicited an increase in V_e, although it is unclear if this response was due to RR, T_v , or a combination of both. ML and HL increased oxygen consumption by 16% and 23% respectively while standing, as well as increased the perceived effort. Supported by Lock Haven University's Small Campus Grant