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PREFACE

I chose this area of research because problems in Knot Theory particularly

interest me. Knot Theory is a field of math that is accessible to most people but

also features plenty of very difficult mathematical and programming problems. I am

constantly intrigued by the intersection of math and programming and so this field

of study has been perfect for me. I enjoy developing software and building things

that are of use to others. True to that ethos, the problems pursued by this thesis

fulfilled many of the personal goals I have as a mathematician and software

developer.
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Throughout the study of Knot Theory, there have been several programmatic

solutions to common problems or questions. These solutions have included software

to draw knots, software to identify knots, or online databases to look up

pre-computed data about knots. We introduce a novel prototype of software used to

study knots and links by using Virtual Reality. This software can allow researchers

to draw links in 3D, run physics simulations on them, and identify them. This

technique has not yet been rigorously explored and we believe it will be of great

interest to Knot Theory researchers. The computer code is written in C# and all

code has been made publicly available.
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CHAPTER 1

INTRODUCTION AND OVERVIEW

Knot Theory is a subfield of topology and has been a very active and

interesting field of study for over a hundred years [1, 10, 27]. Knot theorists have

long been interested in questions involving the representation of knots and the study

of how to differentiate between knots. Researchers have developed several methods

to classify knots and links into different families and to rigorously tabulate them.

As in all areas of math, a plethora of mathematical and programmatic tools have

been developed in order to enrich the study of knots and links [24, 26, 19].

Mathematical tools developed for knots have included several ways to identify

and re-produce diagrams of knots such as the PD Code and the Gauss Code, which

are explained in Chapter ??. Other tools have included tables of knots and links

that researchers may refer to in order to obtain pre-calculated data about those

knots and links [24, 26, 19, 10, 2]. With increases in computing power, tabulations

such as those in [10, 2] have become possible. Three of the most notable resources

in this field are KnotPlot [23, 24], developed (and maintained) by Rob Scharein, the

Knot Atlas [19], and Knotscape [26]. KnotPlot is a stellar piece of software that

allows users to study a very wide variety of properties of knots and links and allows

for beautiful animations and graphic representations of knots. The Knot Atlas

servers as a repository of knowledge pertaining to Knot Theory (more specifically, it

contains the values of numerous pre-computed knot and link invariants). It also

makes available the KnotTheory package for Wolfram Alpha’s [37] Mathematica

software suite. Knotscape contains the complete knot table up to and including 16

crossings and can identify any knot by the Dowker-Thistlethwaite Code.

This thesis details the pursuit of a new utility that is aimed at helping

researchers more easily and effectively study in Knot Theory. We make use of the

Virtual Reality (VR) Headset known as the Oculus [35]. The headset allows the
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user to interact with the space around them using hand-held controllers that come

with the Oculus. VR has seen plenty of uses in the entertainment industry with

video games and the capability to see interesting locations and spaces using the VR

environment. For those unfamiliar, a VR headset, such as the Oculus, goes over

one’s eyes and rests on the head. The user is then made to feel, through ocular

deception, that they are in a different environment. The headset will notice changes

in the direction that one looks and can even track the position in 3D space of the

user. Couple this with controllers, and one can interact with environments not

typically available to humans.

We detail software that will allow Knot Theory researchers to draw knots

and links in 3D and actually move around the knots and links to see them from

different angles. This is a feat which, to our knowledge, has not been accomplished

prior to this software. Of course, other software gives us the ability to see these

objects as if they were in 3 dimensions, but all other implementations are simply

utilizing 2D screens with mathematical transformations to change the perspective

on an image as if it were in 3 dimensions. Our software differs in that it allows the

user to see, move around, and actually be next to a knot or a link in 3D. Our

software also allows users to run physics simulations on different knots and links.

Once one has been drawn, the user can apply forces to what they drew to,

hopefully, relax their drawing and show a comparatively simpler version of what

they drew. Lastly, we also provide limited capability of actually identifying the knot

or link that a user draws. The user must redraw every time they would like to study

a different knot or link.

We draw heavily on work that has been done in the past. In particular, we

model parts of our software using approaches pioneered by KnotPlot [24]. We would

also like to personally thank Rob Scharein for not only his willingness to help in this

endeavor, but also his kindness and patience with any questions that we had. We
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hope that this software will serve to inspire further generations of mathematicians

and computer scientists to build software that aids in the study of Knot Theory. All

code pertaining to this project is available at

https://github.com/16dprice/oculus_knot_visualizer. Furthermore, all code

was developed in C# using the Unity framework [36].

1.1 OVERVIEW

The rest of this thesis first establishes relevant background for the reader in

Chapter 2. Those familiar with the area of Knot Theory should not feel compelled

to read the background supplied here, except for perhaps the section on link

representation. We then provide a mathematical discussion of the physics

simulations used in our software in Chapter 3. We also discuss several

programmatic techniques and code usages in that same chapter. Chapter 4 discusses

how we construct PD Codes, construct Gauss Codes, and identify knots and links in

our software. We provide technical details of our software in Chapter 5 along with

some specific code examples that are worth noting. Finally, we briefly discuss future

work that can be done on this software in Chapter 6.
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CHAPTER 2

BACKGROUND

In this section, we make several definitions and discuss several topics in order

to setup a common language to be used later in this thesis. Some of these

definitions and topics do not immediately relate to each other, but they are all

relevant in order to wholly discuss all the ideas presented in this thesis.

A polygonal knot is the embedding of a polygon in 3 space that has a finite

number of edges and does not intersect itself. This thesis will discuss knots and

links in general, but the definition of polygonal knot suffices for our discussion. A

polygonal link is a union of 1 or more polygonal knots such that none of the knots

intersect each other. If there are n knots present in this way, we say the link has n

components. To clarify, we use the work “link” to include knots (i.e. 1 component

links), however the use of the word “knot” will always mean a 1 component link.

We say that two links are equivalent if one link can be deformed into the other link.

These deformations are limited; one may stretch, bend, and slide a polygonal arc of

the link so long as the arc is never torn. Such a deformation of a link is called an

isotopy. For the technical definition see [1, 3].

A link diagram D consists of a projection of the line segment(s) into the

plane. To obtain a diagram in the plane, imagine shining a light onto the link and

observing its shadow on the 2D plane. The place where this shadow intersects itself

is called a crossing and we call D regular if these intersections, or crossings, occur

between no more than two strands of the string and there are finitely many

intersection points. When considering a crossing, the strand that was closer to the

light source is called an overstrand and the strand that was further away is called an

understrand. From now on, when a diagram is referenced, it is assumed that a

regular diagram is being referenced. For an example of this so-called light shining

process see Figure 1.
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Figure 1: An example of projecting a knot to a plane. [9]

Note that in some of the following figures, we will draw links using smooth

curves. However, the reader should keep in mind that if there are enough edges and

these edges are short enough, the human eye cannot distinguish between a smooth

curve and a polygon. Thus, we need not amend or modify our definition of a

polygonal link.

A diagram of a link is considered minimal if there are no isotopic

deformations that can be made that reduce the number of crossings in the

corresponding diagram of the knot. Alternatively, a diagram D of a link L is

minimal if there is no other diagram of the same link L with fewer crossings. Note

that a link can have multiple distinct minimal diagrams. That is, the same link in

3-space can have more than one distinct minimal diagrams in the plane. We define

link type (or knot type) as the equivalence class generated by a link (or knot)

embedding under isotopy. A diagram is called alternating if an alternating pattern

of over and under strands are encountered at crossings while tracing diagram D in a

single direction. Otherwise, a diagram is called non-alternating (see Figure 2). A

link is called alternating if it admits an alternating diagram. Otherwise, it is called

non-alternating. Furthermore, we say a link is oriented if each component in the

link has a direction associated with it in which one could traverse the link. We

represent this in a link diagram with arrows, as in Figure 3.

Throughout this thesis, we will often refer to knots and links by using
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Figure 2: Left: A 4 crossing alternating knot diagram. Right: An 8 crossing non-
alternating knot diagram.

Rolfsen notation [20]. There is a canonical ordering of knots and links. Knots are

identified by their crossing number sub-scripted with their ordering in the knot

table. For example, the only 3 crossing is referred to as 31 because it is the first

(and only) 3 crossing knot. For links, we use the Thistlethwaite Link Table [21]

table. These links are denoted differently. The third alternating 11 crossing link is

referred to as L11a3 whereas the fifth non-alternating 12 crossing link, for example,

is referred is L12n5. The L denotes that the object is a link, the number following it

is the crossing number, the letter following is either “a” meaning alternating or “n”

meaning non-alternating, and the last number denotes the ordering in the link table.

In our software, we analyze and use polygons in 3D to represent links. Since

we defined links as a union of of polygons, a link may be represented as sequences of

3D points. These 3D points are what we use to manipulate and study links in our

software.

The Planar Diagram Code (or PD Code, for short) is a numeric

representation of a diagram of a link. The PD Code is obtained via numbering

strands in a diagram and it is a representation of a diagram up to a re-numbering of

those strands. We detail how to construct a PD Code by example next.

Consider Figure 3. This figure is a diagram of the knot 52 where the strands

are labeled from 1 to 10. This labeling is constructed by beginning at the point

drawn in the diagram and then following the arrow drawn beside that point. Once

this direction is picked, the knot is also considered to be oriented. As the knot is

6
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Figure 3: 52 with labeled strands

traversed in this direction and with the chosen starting point, each strand is labeled

beginning with the number 1. When a crossing is encountered, the number used to

label a strand is incremented by 1. Once each strand is labeled in this fashion, an

oriented and numbered diagram is obtained. Note that a diagram with n crossings

yields numbers 1 through 2n.

To construct a PD Code from this now oriented and numbered diagram,

consider each crossing in the diagram. For Figure 3, there are exactly 5 crossings.

Each crossing is represented uniquely by 4 numbers. Consider the crossing that is

circled in the figure. The incoming underpass is the strand that goes under in the

crossing that is also going in to the crossing. For the circled crossing, this strand is

labeled by the number 3. We proceed around the crossing in a counter-clockwise

fashion to obtain the 4-tuple of (3, 8, 4, 9). This is the ordered tuple of 4 numbers

that corresponds to that crossing. Repeating this process with all of the crossings

and writing it slightly differently gives a PD Code of

PD[X[3, 8, 4, 9], X[9, 4, 10, 5], X[7, 10, 8, 1], X[1, 6, 2, 7], X[5, 2, 6, 3]] for the knot.

The process for generating a PD Code for a link with 2 or more components

is precisely the same except that multiple arbitrary starting points and directions

must be chosen for the different components in the link.
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Crossings in an oriented diagram have a sign. The sign of a crossing is either

positive or negative. Figure 4 shows the difference.

Figure 4: Positive (left) and Negative (right) crossing

The Gauss Code [17] is also a numeric representation of a diagram of a link,

though it also uses some non-numeric characters. The Gauss Code is obtained in a

similar but slightly different way from how the PD Code is obtained. There are

several slightly different versions of the Gauss Code. We explain the version that is

used in KnotPlot [24]. First, we label crossings in an arbitrary fashion. See Figure 5

for an example of this with a link.

Figure 5: 8 crossing link with labeled crossings
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Once the crossings are labeled, we pick an arbitrary starting point. Suppose

we start on the black dot in Figure 5 closest to the crossing labeled with a 1. The

strategy is then to record information about crossings as we encounter them. We

store whether the crossing is over or under as we pass through it in addition to the

number that we encounter, and the sign of the crossing. To indicate that we are

passing over at a crossing, we record an “a”. To record that it is under, we record a

“b”. For positive crossings, we record a “+”. For negative crossings, we record a “-”.

Thus, the first thing we record with our selected starting point in Figure 5 is

b3-. Continuing this process, we end up with a code of

b3-a2-b1+a5-b6-a4+b2-a3-b8+a7+b4+a1+. Now that we have looped back to our

starting place, we go to our second component and repeat the process giving us

“a8+b7+a6-b5-”. We splice these together using the Unix pipe character “|” to

obtain a Gauss Code of

“b3-a2-b1+a5-b6-a4+b2-a3-b8+a7+b4+a1+|a8+b7+a6-b5-” for the diagram.

The HOMFLY-PT Polynomial [7] is an invariant of an oriented link and is

calculated via a diagram. That is, the polynomial can be different for different

orientations of a knot or link. This polynomial is a two variable Laurent polynomial

with integer coefficients. The specifics of how to calculate this polynomial are not

relevant for the discussion of this paper. Note that this polynomial is often used to

distinguish different knots and links because, with a very high probability, different

links have different HOMFLY-PT polynomials. As it is an invariant, if two links

have a different polynomial, they are indeed different links. As an example, the

HOMFLY-PT polynomial of the link in Figure 5 is given here:

H(a, z) = − 1

a3z
+

2

az
− 2a

z
+
a3

z
− z

a3
+

4z

a
− 4az + a3z − z3

z3
+

3z3

a
− 2az3 +

z5

a
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As can be seen from this example, these polynomials are quite complicated

and thus it is easy to envision their power in distinguishing different links. However,

there are infinitely many distinct links with the same HOMFLY-PT polynomial [11].

A small example of this is the knot 51 and the knot 10132 in the Rolfsen table [20],

which have the same polynomial.

Note that, as mentioned before, some links can have different polynomials

when the orientation of one or more of the components is reversed. In the case of a

knot, if there are two different polynomials for each of the orientations H1(a, z) and

H2(a, z) then H1(a, z) = H2(
1
a
, z). For example, for the knot 74, we obtain the

following two polynomials depending on the orientation of the knot.

H1(a, z) = − 1

a8
+
z2

a6
+

2

a4
+

2z2

a4
+
z2

a2

H2(a, z) = −a8 + a6z2 + 2a4 + 2a4z2 + a2z2

In the case of a link with more than one component, there is no easy formula

that tells us how the polynomial changes when only one component is re-oriented.

For knots, in particular, when we re-orient it from canonical orientation, we

refer to it using an overbar and we call this the mirror of a knot. For example, the

knot 74 has a mirror that is referred to as 74. Note that in some cases, knots are

actually isotopic to their mirrors. For example, 41 and 41 are the same knot.

2.1 LINK REPRESENTATION

We discuss here how links are represented in persistent storage and in

memory in our software.

To represent links in a way that is accessible to computers, we store a series

of 3D points which correspond to the coordinates of the vertices of a link. For

“typical” links (i.e. knots and links in the Rolfsen Table [20] or other named links),

10



we store point data on the hard drive. We used “The Knot Server” [28] to obtain a

list of vertices for prime knots up to 8 crossings as well as 2 and 3 component prime

links up to 6 crossings. For knots and links that are drawn using the Oculus or that

are obtained through manipulation via our software, we store the point data in

memory using list structures. The specific structures we use are not relevant to the

discussion in this thesis, though the terminology we use makes communicating other

topics more straightforward.

Once point data has been loaded into memory from the hard drive or is

created in our program, we refer to a point as a bead. A bead is simply a point in

3D with a few other properties. Since a bead is part of a link, it has a bead that

occurs before it and a bead that occurs after it. These beads are called adjacent.

Any distinct beads that are not adjacent are referred to as non-adjacent. A bead is

neither adjacent nor non-adjacent to itself. In certain situations, we add more

properties to a bead as needed to perform the tasks we detail in later sections.

11



CHAPTER 3

LINK RELAXATION

In this section, we describe the necessary algorithmic parts to run a physics

simulation on a link. The intended purpose of this is to simplify a knot or link and

make it smoother. We do not give a rigorous definition of what it means to be

“simpler” or “smoother”, though one can imagine a very tangled configuration of a

knot. We would say that a “highly tangled” knot is not very simple. In this section,

we lay out exactly what physical forces we use and how those forces are used in a

discrete manner with a polygonal link. Note that throughout this discussion, there

is nothing that necessarily implies that the forces presented are sufficient to simplify

a link. The reliance on these methods for simplification is justified through

experimental verification. That is, KnotPlot [24] has proven to be very effective over

the years at relaxing knots and links. We rely on the sentiment that this software is

good at relaxing links to justify our claim that our software is good at this as our

implementation of link relaxing is based on the same principles.

Note that when we refer to adjacent line segments, we mean line segments

that have a bead in common. Non-adjacent line segments do not have a bead in

common. Similarly, adjacent beads form a line segment and non-adjacent beads are

not on the same line segment.

3.1 FORCE LAWS

The physics simulations use two different kinds of forces. We utilize a

“mechanical” force and an “electrical” force. The mechanical force operates on

beads that are adjacent to one another and is an attractive force. That is, beads

that are adjacent pull each other closer. The electrical force operates on beads that

are non-adjacent and is a repelling force. That is, beads that are non-adjacent push

each other apart. We apply these forces to each bead one at a time. For each bead,

we find the beads that are adjacent and that are non-adjacent. We then construct a

12



3-dimensional force-vector for each bead corresponding to the direction in which the

bead is being pushed.

For the forces used, we follow the same method that is used by knotplot [23].

The mechanical force is given as:

Fm = Hr1+β (1)

where r represents the distance between two beads, H is a constant, and

β = 0 is the standard case for an ideal linear spring. The electrical force is obtained

similarly:

Fe = Kr−(2+α) (2)

where r again represents the distance between two beads, K is a constant,

and α = 0 represents the typical Coulomb’s Law.

3.2 FORCE CALCULATION

We describe how forces are calculated and applied by an example.

Let L be an ordered list of n beads. That is, L = {b0, b1, . . . , bn−2, bn−1}. To

calculate the force acting on a given bead bi, we first construct two separate lists

containing the beads adjacent to bi and the beads non-adjacent to bi. If we knew

ahead of time that L actually represented a knot, then it would immediately follow

that the first and last bead are adjacent. However, this is not the case for a link. To

remedy this, we do two things. First, we have a separate array,

componentStartIndices, that stores the indices of L corresponding to when a new

component starts in L. Second, we let each bead bi store two additional properties.

One is called numBeadsInThisComponent and the other is called componentIndex.

numBeadsInThisComponent represents the total number of beads in the component

that bi is part of. componentIndex represents the index of the component that bi is

13



part of. For notational convenience, we will write componentStartIndices as C,

numBeadsInThisComponent for the ith bead as ni, and componentIndex for the ith

bead as ci.

With this information, we can now directly calculate the beads indices that

represent the beads adjacent to bi. For a given bi, define two offset variables o1 and

o2 as follows:

o1 = (i− C[ci] + ni − 1)%ni

o2 = (i− C[ci] + ni + 1)%ni

where % is the typical operator used in programming languages to denote

the remainder leftover after division and C[ci] is the cthi value in C. Then, define the

adjacent indices a1 and a2 as:

a1 = C[ci] + o1

a2 = C[ci] + o2

which will give that ba1 and ba2 are adjacent to bi. Every bead bj such that

j 6= a1, j 6= a2, and j 6= i is non-adjacent to bi.

Now, to calculate the forces on each bead, we have another ordered set

F = {f0, f1, . . . , fn−2, fn−1} where fi is a 3D vector and corresponds to the force that

acts on the bead bi. Initially, fi is 0 for all i. We show a force calculation for a given

bead bi next. Note that the calculation is the same, in principle, for every bead.

Given bi, let ba1 and ba2 be the beads adjacent to bi and let r(bx, by) be the

3D vector from bx to by. Using equation (1), the total mechanical force exhibited on

bi along with the direction of the force is:
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Fm,i = H ∗
(

r(bi, ba1)

‖r(bi, ba1)‖
∗ ‖r(bi, ba1)‖

β+1 +
r(bi, ba2)

‖r(bi, ba2)‖
∗ ‖r(bi, ba2)‖

β+1

)
= H ∗

(
r(bi, ba1) ∗ ‖r(bi, ba1)‖

β + r(bi, ba2) ∗ ‖r(bi, ba2)‖
β
)

Similarly, the electrical force is calculated over all non-adjacent beads.

Fe,i = K ∗
n−1∑
j=0

j 6=a1,a2,i

(
r(bi, bj)

‖r(bi, bj)‖
∗ ‖r(bi, bj)‖−(2+α)

)

= K ∗
n−1∑
j=0

j 6=a1,a2,i

(
r(bi, bj) ∗ ‖r(bi, bj)‖−(3+α)

)

To calculate fi, we simply add these two together giving that fi = Fm,i +Fe,i.

3.3 FORCE APPLICATION

Now that forces can be calculated for a bead, the force must be applied to

the bead to make it move in a certain direction. To do this, we can update the

position of bi by adding fi to it directly. That is, we treat fi to be a distance and

direction for a bead to move. However, a blind addition like this makes it possible

to change the knot type. That is, if we make an update by simply adding fi to the

position of bi for all i, it is possible to have strands between beads pass through

each other. Part of the remedy for this is to choose a number dmax such that beads

are never moved more than dmax in a single update. To fully address the issue, we

also rely on definitions stated and a theorem proved in [23]. A link-polygon is in a

safe position if it is not stuck. The polygon is stuck if all the beads are stuck. For

the full definition of these terms, refer to [23]. Though, intuitively, we can imagine

that a bead is stuck if it is too close to any other beads or line segments. That is, a

bead can become stuck if moving it could risk changing the link type.
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The choice of dmax relies on our choice of another variable, dclose. This

parameter is defined as being the smallest distance that two non-adjacent line

segments may be from each other while still considering the beads on each end to be

in safe positions. That is, if the two line segments from a bead bi are more than

dclose units away from all other non-adjacent line segments, then bi is in a safe

position. Otherwise, bi is not and it is stuck. dclose is chosen to be relatively small

(i.e. ≈ 0.05) and dmax is chosen such that dmax < dclose.

We define a simple force limiting procedure as follows:

fi =


fi ‖fi‖ ≤ dmax

dmax ∗ fi
‖fi‖ ‖fi‖ > dmax

Forces are calculated for all beads simultaneously before any movements are

made. Once these forces are calculated, we iterate over all beads and apply the

corresponding force one at a time. If the application of a force to a bead would put

the polygon in an unsafe position, the application of the force is not done. Once this

procedure has been completed for all beads, forces are re-calculated with the new

bead positions and the same thing is done again.

Thus, we state the following theorem from [23] (which is Theorem 2 in [23]):

Theorem 1. Using this procedure, the knot type of a knot or link is not changed

during force application.

3.4 SEGMENT DISTANCE CALCULATIONS

We devote an entire section to discussing the process of calculating distances

between line segments. This process is repeated many, many times during just one

iteration of a link relaxation procedure, thus it must be heavily optimized so as to

speed up the physics simulations as much as possible.

For each bead, the distance between the two segments it is attached to and

every other segment must be calculated before it can be moved. That is, for each of
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the two segments, we must calculate the distance between it and every other

non-adjacent segment to check if at least one of those distances is less than dclose. If

it is, the bead is stuck and cannot be moved. If there are N beads, then there are N

line segments. Therefore, we must calculate N − 3 distances for each line segment

(we do not calculate the distance from the segment to itself or to its two neighbors).

Since this happens twice for every bead (as each bead is attached to two segments),

this results in 2 ∗N ∗ (N − 3) = 2N2 − 6N total calculations per one update of bead

positions. The time complexity of this is then O(N2). Of course, this does not take

into account the time complexity of actually performing the calculation, but merely

shows how many times this calculation must be performed. As algorithms of this

time complexity can be notoriously slow, it is imperative to optimize this portion of

the physical simulation as much as possible.

To do this, we use the algorithm presented in [25] for the

dist3D Segment to Segment function in the source code provided. We discuss only

the mathematical formulation (and not the code) given at [4]. The mathematical

formulation presented by [4] and translated into optimized code by [25] is the code

that we use as it is a more robust implementation of the algorithm. We also discuss

what it means to be a more robust implementation and why this is critical to the

performance of our software.

Let P0 and P1 be the endpoints of the first line segment. Likewise, let Q0 and

Q1 be the endpoints of the second. We parameterize the line segments given by

these points using the formulas l1(t) = (1− t)P0 + tP1 and l2(s) = (1− s)Q0 + sQ1

for t, s ∈ [0, 1]. We define the following variables:

a = (P1 − P0) · (P1 − P0), b = (P1 − P0) · (Q1 −Q0), c = (Q1 −Q0) · (Q1 −Q0)

d = (P1 − P0) · (P0 −Q0), e = (Q1 −Q0) · (P0 −Q0), f = (P0 −Q0) · (P0 −Q0)
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where the points are treated as vectors for the purpose of subtraction and

taking the dot product. Thus, a, b, c, d, e, and f are all real valued numbers. We

can then define the squared distance function between the two segments as follows:

R(t, s) = ‖l1(t)− l2(s)‖2 = at2 − 2bts+ cs2 + 2dt− 2es+ f (3)

The details of this formulation are left to the reader.

This gives us the relatively simpler problem of calculating the minimum of a

paraboloid constrained by the condition that (t, s) ∈ [0, 1]2.

First, we observe that the cross product (P1 − P0)× (Q1 −Q0) is equal to 0

if and only if the line segments are parallel. In our software, we assume that line

segments are never parallel as the likelihood of this is exceedingly low (basically

zero). Recall the following identities from linear algebra given two vectors u and v

and the angle θ between them:

‖u× v‖2 = (‖u‖ ∗ ‖v‖ ∗ |sin(θ)|)2

u · v
‖u‖ ∗ ‖v‖

= cos(θ)

Let u = P1 − P0 and v = Q1 −Q0. Let θ be the angle between u and v and

observe the following sequence of equivalences:

‖u× v‖2

= (‖u‖ ∗ ‖v‖ ∗ |sin(θ)|)2

=u · u ∗ v · v ∗ (1− cos(θ))2

=u · u ∗ v · v − cos(θ)2 (u · u ∗ v · v)
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=a ∗ c− cos(θ)2 (u · u ∗ v · v)

=a ∗ c− (u · u ∗ v · v) ∗ (u · v)2

(u · u ∗ v · v)

=a ∗ c− (u · v)2

=a ∗ c− b2

Now, we have that the line segments are parallel if and only if a ∗ c− b2 = 0.

Let ∆ = a ∗ c− b2. As we assume the line segments are never parallel, we assume

that ∆ 6= 0.

Recall that to minimize a function over a region, we must simply check the

boundaries of the region and the inside of the region for minima. As R(t, s) is a

paraboloid, it will have exactly one minimum in the unit square. There are 9 total

candidates for the location of the minimum of the function in the unit square. The

minimum is either at one of the 4 corners of the square, along one of the 4 edges of

the square, or inside of the square. The corners of the square are simply the points

(0, 0), (0, 1), (1, 0), and (1, 1). We denote the possible minimization points on the

boundaries as (t̂0, 0), (t̂1, 1), (0, ŝ0), and (1, ŝ1). We denote the possible inner

minimum as (t̄, s̄). The task now becomes to calculate the five variables introduced

here.

Notice that ∇R(t, s) = 2〈at− bs+ d,−bt+ cs− e〉. Define

F (t, s) = at− bs+ d and G(t, s) = −bt+ cs− e. We can then calculate the unknown

variables by solving the following equations:

F (t̂0, 0) = 0, F (t̂1, 1) = 0

G(0, ŝ0) = 0, G(1, ŝ1) = 0

F (t̄, s̄) = G(t̄, s̄) = 0
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The details of these calculations are very straightforward and so we give the

values of these variables once calculated:

t̂0 =
−d
a
, t̂1 =

b− d
a

ŝ0 =
e

c
, ŝ1 =

b+ e

c

t̄ =
be− cd

∆
, s̄ =

ae− bd
∆

The task is now to evaluate R(t, s) at all of these points and take the

minimum over all the values. Note that not all of the variables calculated here are

necessarily between 0 and 1. If they are not, we ignore them as we are only

interested in a minimum on or in the unit square. The assumption that ∆ 6= 0 is

crucial for this calculation. This implementation, as noted in [4], it is quite slow.

Furthermore, there are several instances of division of numbers that are possibly

very small. These divisions introduce error during floating point arithmetic and

therefore a better implementation is desired.

For an optimized version of this procedure, we use an implementation of the

code given in [25]. This implementation is optimized for speed and requires a

minimal number of operations while also only requiring one division operation. A

single division operation is desirable as division with (very small) floating point

numbers is notorious for introducing error into calculations.
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CHAPTER 4

LINK IDENTIFICATION

In this section, we discuss the process that we use to identify links. We use

several concepts discussed in the background to eventually obtain the link type of a

link drawn in our software.

4.1 PD CODE CONSTRUCTION

Given a set of beads in our software, it is necessary to calculate a PD Code

corresponding to the link represented by those beads. The PD Code that we

construct can then be displayed to the user as well as be used to construct a Gauss

Code of the link. This Gauss Code is then used with 3rd party software to calculate

a HOMFLY polynomial. The resulting polynomial is then used to identify the link.

To construct a PD Code from a set of beads, we assume that we are

projecting the link as if we are viewing it from an infinitely long way away in the

positive z-direction. This is the classic way to project knots and links. We then

treat each bead as if it is part of a strand. In particular, we assume that no beads

have the exact same x and y values. Since bead positions are represented using the

float primitive in C#, it is, in a practical sense, impossible for this to occur unless

points are specifically constructed in such a way to make that happen. Thus, as

each bead is part of a strand, we can simply assign a strand number to each bead. A

crossing occurs when the strand number changes as we traverse the beads in order.

To detect crossings, we consider the line segments in a given polygonal link.

We ignore the z-component and only consider the x and y-components of beads.

This way of viewing the beads is analogous to viewing the link from an infinitely

long way away in the z-direction. We then find pairs of bead pairs such that the line

segments between each of the pairs intersect. The next section discusses

determining if two line segments intersect.

4.1.1 LINE SEGMENT INTERSECTION
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Given four points, P0, P1, Q0, Q1, define the line segments l1 and l2 such that

l1 connects P0 and P1 and l2 connects Q0 and Q1. To determine if these line

segments intersect, we construct slope-intercept equations first to find the

intersection point of l1 and l2 as if they were lines. The slopes m1 and m2 of l1 and

l2, respectively, are as follows:

m1 =
P1,y − P0,y

P1,x − P0,x

m2 =
Q1,y −Q0,y

Q1,x −Q0,x

where P1,x and P1,y are the x and y values of P1. The y-intercepts b1 and b2

of l1 and l2, respectively, may be calculated as:

b1 = P1,y −m1 ∗ P1,x

b2 = Q1,y −m2 ∗Q1,x

and we have the following equations of l1 and l2:

l1 : y = m1 ∗ x+ b1

l2 : y = m2 ∗ x+ b2

Before proceeding, note that we do not address the case of what happens

when l1 and l2 are parallel. This would mean that m1 = m2. As these values will be

floating point numbers in C#, it is, practically speaking, impossible for this to

occur. The same logic applies as to why we do not consider the two lines being

exactly the same line. From here, we proceed by calculating the intersection point
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of these two lines and then using parameterized versions of these lines to determine

if the line segments intersect. In fact, to do this, we need only the x-value xI of the

intersection point which is given by:

xI =
b2 − b1
m1 −m2

We then define parametric forms for the x-values of l1 and l2 as follows:

l1,x(t) = (P1,x − P0,x) ∗ t+ P0,x

l2,x(s) = (Q1,x −Q0,x) ∗ s+Q0,x

Additionally, note that t values of 0 and 1 correspond directly to the points

P0 and P1. Similarly, s values of 0 and 1 correspond to Q0 and Q1.

With these definitions, we may then calculate the corresponding t and s

values for the point xI as follows:

tI =
xI − P0,x

P1,x − P0,x

(4)

sI =
xI −Q0,x

Q1,x −Q0,x

(5)

Now, if tI and sI are both between 0 and 1, then the line segments

represented by P0, P1, Q0, and Q1 intersect. Thus, we may identify line segments in

a polygonal link that intersect. We define these intersections as being our crossings.

Note that this approach has a fundamental flaw. It assumes that for any

segment, there is no more than 1 line segment that crosses it. If we assume that it is

true that there is at most 1 other line segment that crosses a line segment, this

approach works. The case where there is more than 1 line segment does occur and
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our solution to this is addressed in the next section. Following that, we discuss how

to take these calculations of line segment intersections to produce strand labels and

a PD Code for a polygonal link.

4.1.2 MULTIPLE CROSSINGS ON A SEGMENT

Our procedure for determining strand numbers for a polygonal link is to

treat each bead as if it were simply part of a strand. With this way of thinking,

each bead can be assigned a strand number and then if a crossing occurs over a

segment between two beads, the strand number is incremented. If we assume that

any line segment has at most 1 crossing that occurs across it, then we could

straightforwardly go through the beads of a link and label them with strand

numbers and then later extract a PD Code from that labeling. However, it

sometimes happens that a line segment has 2 or more crossings occurring across it.

Our fix to this is conceptually simple.

Suppose there is a line segment l such that there are k crossings that occur

across it. That is, there are k other line segments that cross over l if the

z-coordinates were ignored for all segments. Call these line segments

Lc = {l1, . . . , lk}. Our strategy is to simply subdivide l into many smaller segments

until each subdivision then only has 1 crossing occurring across it. To accomplish

this, we perform a bead add procedure. This procedure computes all the

occurrences of a crossing across l and then determines the first occurrence. It then

adds a bead between that occurrence and the next.

Let P0 and P1 be the endpoints of l similar to before. Define, similar to

before, the following parametric equations:

lx(t) = (P1,x − P0,x) ∗ t+ P0,x

ly(t) = (P1,y − P0,y) ∗ t+ P0,y
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lz(t) = (P1,z − P0,z) ∗ t+ P0,z

Let ti be the t-value such that the crossing between l and li occurs at ti

determined by the same manner as before. We then have the set TI = {t1, . . . , tk}.

Suppose, without loss of generality, that ti < tj for all i < j. Then, the bead that we

add to our list of beads is found by defining similar parametric equations for the y

and z values of our line segment l. The t-value to determine the position of our new

bead is

tb =
t1 + t2

2

We then add a new bead at the position (lx(tb), ly(tb), lz(tb)). The procedure

is then finished. Notice that this only adds one bead to the link. Thus, this

procedure is then repeated until all segments have 1 or fewer crossings occurring

over them. As our polygon has finitely many segments, this procedure must stop.

Note that this procedure could be improved upon by subdividing a line

segment into as many segments as needed instead of only adding one bead and then

repeating the procedure. However, it is a simpler programming task to define a

procedure to add one bead and then to repeat this procedure until we are done.

Solving the problem in this manner proved to be very quick, so we did not feel the

need to optimize this solution.

4.1.3 CROSSING CONSTRUCTION

Once the procedure in the previous section has been performed, we may then

assume that all line segments contain at most 1 crossing. We then go through all of

the beads and label them with a strand number. As crossings occur between beads,

we may treat the beads themselves as being strands of a link diagram. Thus, beads

have a strand number associated with them and multiple beads could be associated

with a particular strand. We start at whatever bead happens to be first in the list
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that the beads are stored in and incrementally label the beads. Once we encounter

the first bead again, we move on to any other components and continue this

numbering process with the next strand number available.

Next, we go through this list and form crossing pairs of bead pairs. To do

this, we iterate through the list of beads and find pairs of beads such that the

strand number is different between them. This means that a crossing occurs

between the beads. Next, we find the corresponding unique other bead pair that

form that crossing with the first bead pair. To do this, we iterate over all other

pairs of beads until we find a pair that intersects the current pair. These four beads,

or two sets of bead pairs, form a crossing pair.

In each crossing pair, label the 3D points corresponding to these beads as

P0, P1, Q0, and Q1 where one pair has the labels P0 and P1 and the other pair has

labels Q0 and Q1. Note that we assume that P0 occurs before P1 with respect to the

orientation of the link. Likewise, assume Q0 occurs before Q1. To determine the

pair which constitutes the understrand of this crossing, we first calculate the values

of tI and sI in the same manner as was used in equations (4) and (5). We then

define parametric equations for the z-components of the lines represented by these

points as we have done before:

l1,z(t) = (P1,z − P0,z) ∗ t+ P0,z

l2,z(s) = (Q1,z −Q0,z) ∗ s+Q0,z

Now, either l1,z(tI) < l2,z(sI) or l2,z(sI) < l1,z(tI). In the former case, the

bead pair corresponding to P0 and P1 forms the understrand. In the latter case, the

bead pair corresponding to Q0 and Q1 forms the understrand. This is because, as

noted earlier, we produce a PD Code as if we were looking at the link from an
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infinitely long way away in the positive z-direction. With this information, we may

then construct a 4-tuple for a crossing as we did in the introductory example of the

PD Code.

Let bP0 and bP1 be the beads corresponding to the points P0 and P1,

respectively. Likewise, let bQ0 and bQ1 be the beads corresponding to the points Q0

and Q1, respectively. Without loss of generality, suppose that bP0 and bP1 form the

understrand of the crossing. As bP0 occurs before bP1 , we know that bP0 is the

incoming understrand. Thus, we may partially construct a crossing code for this.

Let sP0 be the strand number of bP0 and sP1 be the strand number of bP1 . The

partial crossing code is then X[sP0 , ?, sP1 , ?] where question marks are inserted to

indicate that we do not yet know what strand number are in those positions.

The problem now becomes to determine how to place the strand numbers

from bQ0 and bQ1 . To do this, we must determine which bead occurs first if we are

to traverse all 4 beads in a counter-clockwise manner. Using 2D vector math, this is

quite straightforward.

Let u be the projection of the 3D vector P0P1 onto the x-y plane. That is,

we ignore the z-coordinate.. Then, let v and w be the projections of the 3D vectors

P0Q0 and P0Q1 onto the x-y plane, respectively. We calculate the following angles:

θ1 = arccos

(
u · v

‖u‖ ∗ ‖v‖

)
θ2 = arccos

(
u · w

‖u‖ ∗ ‖w‖

)

θ1 is the angle between the projections of P0P1 and P0Q0. θ2 is the angle

between the projections of P0P1 and P0Q1. We know ahead of time that Q0 and

Q1 occur on either side of the line segment between P0 and P1 because otherwise

there would not be a crossing here in the first place. Thus, exactly one of θ1 and θ2
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must be positive and exactly one must be negative. The negative angle corresponds

to the point that is immediately counterclockwise of P0. Thus, if θ1 < 0, the

crossing is X[sP0 , sQ0 , sP1 , sQ1 ]. Otherwise, it is X[sP0 , sQ1 , sP1 , sQ0 ] where sQ0 is the

strand number of bQ0 and sQ1 is the strand number of bQ1 . We do this for every

crossing pair, and we return the resulting PD Code.

4.2 GAUSS CODE TO PD CODE CONVERSION

As mentioned in the beginning of this section, we use 3rd party software to

identify links. The software that we use needs the Gauss Code of a link to identify

the link. Thus, given that we can calculate the PD Code of a link, it is then

necessary to convert between the PD Code and the Gauss Code. Note that we could

simply devise an algorithm to calculate the Gauss Code from the bead

representation of a link. However, it is much simpler to design an algorithm to

convert a PD Code to a Gauss Code and simply calculate the PD Code from the

bead representation since we have already designed that algorithm. As we have

done before, we illustrate the algorithm for building a Gauss Code by example.

We consider the first 5 crossing alternating link. This link is listed as 52
1 in

the Rolfsen table [20]. A PD Code of that link is

PD[X[6, 1, 7, 2], X[10, 7, 5, 8], X[4, 5, 1, 6], X[2, 10, 3, 9], X[8, 4, 9, 3]]. The first step of

our algorithm is to translate the crossings to tuples of 4 numbers and then

arbitrarily label them with a number between 1 and n, where n is the number of

crossings. For this example, we perform the following translation:

X1 : (6, 1, 7, 2)

X2 : (10, 7, 5, 8)

X3 : (4, 5, 1, 6)

X4 : (2, 10, 3, 9)

28



X5 : (8, 4, 9, 3)

We define the function sign : (s1, s2, s3, s4)→ {“ + ”, “− ”} to find the sign

of a crossing as follows:

sign(s1, s2, s3, s4) =


“− ” s4 − s2 = 1 or s2 − s4 < −1

“ + ” otherwise

(6)

Thus, sign(X1) = “− ”, sign(X2) = “− ”, sign(X3) = “− ”,

sign(X4) = “ + ”, and sign(X5) = “ + ”. We then translate each crossing into four

separate 4-tuples. The first entry of the 4 tuple is one of the strand numbers from

the crossing, the second entry is the crossing number, the third entry is an “a” if the

strand is an overpass or a “b” if it is an underpass, and the fourth entry is a “+” if

the crossing is positive and “-” if it is negative. For example, X1 would be

transformed into the following 4-tuples:

(6, 1, “b”, “− ”)

(1, 1, “a”, “− ”)

(7, 1, “b”, “− ”)

(2, 1, “a”, “− ”)

Once this has been done for every crossing, we will have a list of 4-tuples that

is has four times as many elements as there are crossings. We do not write out all

the tuples for this particular example, but we do write out key tuples as we go along.

The procedure we perform is to pick a tuple at random. We then record the

third, the second, and then the fourth entry of the tuple. For example, for

(6, 1, “b”, “− ”), we would record “b1-”. This is the beginning of our Gauss Code.
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Once we have used this tuple, we delete it from our overall list of tuples. We then

find the next tuple by looking for a tuple in our list that has the same crossing

number and strand marker (the “a” or the “b”) as the tuple we just used. In our

example, this would be the tuple (7, 1, “b”, “− ”). We delete this tuple as well, but

we use the strand number to find the next tuple. As each strand number shows up

exactly twice in our tuples, we will find exactly one tuple. In our example, the tuple

we find would be (7, 2, “a”, “− ”). We append to our Gauss Code the same

information we did from our very first tuple giving us a Gauss Code resulting in

“b1-a2-”.

This procedure will terminate when we look for a tuple that has been

deleted. This will occur either because i) we are out of tuples or ii) we have finished

the Gauss Code for one component in a multi-component link. If condition i)

occurs, we return the Gauss Code and we are done. If condition ii) occurs, we add

the pipe character to our list and call the procedure again with our now smaller

tuple list. We append whatever that returns to the list we had before. At the end of

this procedure, we will have the Gauss Code for the link diagram represented by the

PD Code given.

Note that this procedure does not necessarily preserve the orientation of a

link. That is, if we had chosen to start with (7, 1, “b”, “− ”) in our example above,

we would have found (6, 1, “b”, “− ”) as our second tuple. This would have resulted

in a Gauss Code that has a component whose orientation was opposite of the same

component in the PD Code. To be clear, this procedure can result in a Gauss Code

that is not the same as the input PD Code as orientations can be reversed.

However, we will be using this Gauss Code to pass into another program that will

calculate the HOMFLY-PT polynomial. Using this polynomial, we use another

program to identify the unoriented link type of the polynomial. Thus, we

acknowledge that the Gauss Code we produce is not necessarily exactly equivalent
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to the PD Code that we input, but we also claim that this does not matter for the

purpose that we use it for as identifying the unoriented link type means the

orientations of the components of the link do not matter.

4.3 GAUSS CODE FOR IDENTIFICATION

We use a 3rd party program to calculate the HOMFLY-PT polynomial given

a Gauss Code. We then pass this polynomial into another 3rd party program that

we will refer to as gidknot (short for get id of knot or link). It identifies the

unoriented link type by doing a dictionary lookup on the polynomial given. We

received both of these programs through personal communication with Rob

Scharein, though the program for the HOMFLY-PT polynomial generation came

from work similar to the work done in [8]. As noted before, the HOMFLY-PT

polynomial is an invariant for an oriented link type. That is, no matter the

configuration of a link, as long as it is oriented in the same way, it will yield the

same polynomial. Additionally, it is a nice property of this polynomial that, for

relatively low minimal crossing numbers, the polynomials are all distinct. This

means that we can very reliably identify most knots and links using just their

HOMFLY-PT polynomial. The gidknot program does have some limitations

because it is possible for a very small number of links to have the same polynomial.

gidknot can identify all links with 2 or fewer components up to 11 crossings. It

works by looking up links in a pre-computed table of polynomials.

As the crossing number increases, the number of distinct links with the same

HOMFLY-PT polynomial increases and the identification of links via this

polynomial becomes less and less reliable. However, for link types with fewer than

11 crossings, this technique works with very few exceptions. Two notable examples,

though, are the knots 51 and 10132 and the knots 88 and 10129. The polynomial for

both 51 and 10132 is
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H(a, z) = 3a4 − 2a6 + 4a4z2 − a6z2 + a4z4

The polynomial for both 88 and 10129 is

H(a, z) = 2− 1

a4
+

1

a2
− a2 + 2z2 − z2

a4
+

2z2

a2
− a2z2 + z4 +

z4

a2

While this is a potential pitfall of our software, we also expect the user to be

aware that the link identified could potentially be different than the one that is

drawn with our software. In most cases, this can be remedied by simply running the

physics simulation until a near minimal representation of the link is found. Once

this has been, if the link you see has a perspective such that there are only 8 crossing

points, it would be clear in the example of 88 and 10129 that the link is actually 88.

We have two different versions of each binary file for these programs. One

version is compiled for MacOS and the other is compiled for Linux distributions.

The Oculus is based on an Android operating system. As such, these programs do

not run as we expect on the Oculus. There are several possible solutions to this.

The solution that was decided to be the most straightforward and worthwhile is to

put these programs on a remote server and require that any users who wish to

identify links be connected to the internet with their Oculus. This accomplishes two

tasks: it offloads the tasks of running these programs to another machine and it

allows development of the application to progress while still maintaining a high

degree of automation in the processes that we run in our software. The exact setup

of this solution is discussed in the next chapter.
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CHAPTER 5

TECHNICAL DETAILS

In this chapter, we give specific details regarding different implementations of

code in our software. While we do not go into detail on everything that was written,

we give a selection of code and methodologies to better represent the work done on

this thesis.

5.1 BASIC SETUP

We use version 2019.4.17f1 of Unity [36] for this project and the Oculus

Quest 2 [35]. As the Oculus headset is based on the Android operating system, we

use a tool called Android Debug Bridge (adb) [29] to upload builds to the Oculus.

This tool allows us to build in Unity and simply install the build onto the Oculus

once it is connected to a computer with the adb program installed on it. For details

on how to install this program, see [29].

To straightforwardly add a build to the Oculus in this manner, the Oculus

must be set to Developer Mode. For information on how to do this, see [30]. To do

make a build in Unity, one must first have the code for the project. As mentioned in

the introduction, the code is available at

https://github.com/16dprice/oculus_knot_visualizer. Once Unity the code

has been cloned onto a machine and the Unity environment is running, one needs to

change a few settings in the Unity environment. For information on how to do this,

see [31]. One should then be able to make builds with Unity and upload them to the

Oculus using the tools and methods cited.

Alternatively, a build file can be provided upon request.

5.2 OCULUS CONTROLS

The Oculus headset comes with two controllers. Each controller has several

inputs. For a detailed picture of these inputs, see [32]. The controls used for our

software are the A and B buttons on the right hand controller, both the left and
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right hand triggers, the hand grip on the right hand controller, and the joysticks on

both sides. The triggers are the lever-like controls on the back of the controllers and

the hand grip is the lever-like control where the middle finger typically rests on the

controller.

To draw a component, we use the position of the right hand controller.

When the user pulls down the right trigger, the application enters drawing mode.

The user can then trace out a path in 3-space while beads are dropped at evenly

spaced intervals as this occurs. Alternatively, a user may place their hand in a

position and pull the trigger once to place beads manually. Once the user has

completed the component, pressing the A button will connect the last bead to the

first bead and will switch from a bead display to a tube display. In this display

mode, the user does not see the beads but instead sees a smooth component (where

the relative level of “smoothness” depends on the particular configuration of the

beads). Figure 6 shows the final product of drawing the knot 73. The points used to

draw this knot were obtained from the Knot Server [28].

Figure 6: 73 as a tube display

The user can then add more components in this same manner. The user can

delete all of the components by pulling the left trigger. Pushing down the right

hand grip starts the physics simulation process on whatever components have been
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drawn and completed. The left joystick controls the relative magnitude of the

mechanical and electrical forces. To increase the electrical force, the user pushes the

left joystick upwards. To decrease it, the left joystick is pushed downwards.

Similarly, to increase the mechanical force, the left joystick is pushed to the right

and to decrease it is pushed to the left. The values that these movements control

are the K and H constants from equations 2 and 1 in Section ??.

To identify the link, the user presses the B button once all drawings have

been completed. The Oculus then displays the PD Code that it has calculated on a

text pane on the right hand side of the user’s display. The Gauss Code is displayed

below that. Once the API request has returned, the result of that is displayed below

the Gauss Code. Thus, even if the identification of the link that has been drawn is

inconclusive, the user still has access to a Gauss Code and a PD Code of the link.

Figure 7 shows what this is supposed to look like in the Oculus headset. The figure

is simply a mock up of what the panel looks like in the headset because we cannot

take a screenshot of the view while the headset is on. The same layout is shown

while using the software.

Figure 7: PD Code, Gauss Code, and Identification

Lastly, the user may push the right joystick up to move the link away from

them or down to pull it back towards them. When drawing links, it is easy enough
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to draw the link some distance away from the headset and to inspect. However,

after running physics simulations, the link tends to spread around the user’s head

and thus it is nice push the link back if this occurs.

5.3 WEB API

To setup our remote server, we use a NodeJS [34] backend environment. We

utilize the Express middleware [33] to handle API requests to the server. Thus, our

software makes HTTP GET requests over the internet. The Gauss Code is

calculated on the Oculus itself in the C# code. This Gauss Code is then sent to our

server via the internet. The server receives this code and uses the programs we have

for HOMFLY-PT polynomial calculation and link identification to identify the link

type corresponding to the Gauss Code that was sent. The server then responds with

a string indicating which knot or link the Gauss Code represents. This text is

received by the Oculus and is then displayed in the application for the user to see.

The API endpoint for this is

http://107.170.2.119:5000/identify?gaussCode=GAUSS where GAUSS is

replaced by a Gauss Code. Notice that this endpoint can actually be used

completely independently of the Oculus. If one wishes to make a request to this

endpoint, one need only to use any software that will make a GET request and then

format the URL as shown here. This endpoint will be available indefinitely so that

researchers may continue to use it (with the exception of possible downtime for

maintenance or updates).

Note that anyone who wishes to use this endpoint should ensure that all “+”

symbols in the Gauss Code are replaced by “%2B” as the “+” symbol is a special

reserved character in URLs. The string “%2B” is the special code recognized by

browsers and API frameworks to mean “+”.

5.4 NOTABLE ARCHITECTURE

In the following subsections, we detail a few specific software architecture
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decisions that were made along the way of developing this software. While some of

the code examples given may be relatively small, there can often be substantial

ramifications in software design if even the smallest portions of code are not given a

high degree of attention. The author of this thesis would like to highlight,

specifically, the book Clean Code [18] by Robert Martin (also known, affectionately,

as Uncle Bob). This book gives several examples of good software design principles.

While not all of the advice is to always be followed precisely, it provides a wealth of

knowledge that is of very practical use.

5.4.1 BEAD AND LINK COMPONENT

There are two classes, in particular, that set the fundamental basis for

much of the other code in our software. These classes are the Bead and

LinkComponent class. The most simplistic way to view a bead is as a point in 3

dimensions. In essence, that is all that it is. With that definition, a component of a

link in our software is simply a list of beads. This easily fits with our definition of a

polygonal link as we treat the list of beads to be ordered. The polygonal link is then

the set of line segments obtained by connecting successive beads and, notably,

connecting the last bead in the list to the first. We display the code for the two

classes here:

public class Bead

{

public Vector3 position;

public Bead(Vector3 position)

{

this.position = position;

}

}

public class LinkComponent
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{

public readonly List<Bead> BeadList;

public LinkComponent(List<Bead> beadList)

{

BeadList = beadList;

}

}

The Vector3 object is an object specific to the Unity framework and has

functionality as one would expect an object mirroring mathematical vectors would

have (i.e. ability to add, subtract, take dot product, cross product, etc.). The List

object is specific to C# itself. It also acts as one would expect (elements can be

appended, elements can be accessed with an index, etc.).

Now, notice that the Bead class is essentially just a wrapper for a 3D point.

That is, it holds no functionality other than to contain a Vector3. The reasoning

for this is quite subtle but has widespread ramifications for our software and for our

communication among researchers. When one reads code, one would expect that

the code reads specifically as to what it does. For example, consider the next two

snippets of code (that do the same thing):

int totalPoints = 0;

for(int i = 0; i < points.Count; i++) {

totalPoints++;

}

int totalBeads = 0;

for(int beadIndex = 0; beadIndex < BeadList.Count; beadIndex++)

{

totalBeads++;

}
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Clearly, this code is very contrived. One should expect that the value of

totalPoints will be the exact same as totalBeads assuming that points and

BeadList have the same length. The thing to notice here, though, is that the first

for loop, out of context, is substantially harder to understand than the second.

Points can represent anything. Beads, however, are a specific thing. Most of a

programmer’s time is spent on reading code. If we can make reading code more

efficient, then the entire software development process becomes more efficient. Thus,

proper naming of very small parts of code can have very wide ranging consequences.

Thus, the objective by illustrating these very small classes is to make the

reader aware that even though these classes are small and do not do much besides

store data, they make the entire software development process much more

understandable. It is far easier to read code that deals with Beads than it is to read

code that deals with points. When we see an instance of a Bead in a piece of code,

we know exactly what that code is doing. It is doing some sort of process involving

the beads of a link. Moreover, when we see an instance of a LinkComponent, we

know that the code is doing some sort of process involving a component of a

polygonal link. These assumptions would be far less straightforward if one only sees

instances of Vector3 or List<Vector3>.

One other thing to notice is how we have, throughout this thesis, noted that

different algorithms require a bead to take on different properties. For example, in

the description of the force calculations and applications, it was necessary for a bead

to know which component it was part of, the number of beads in its component,

and which bead in the order of beads it was. For the algorithm that calculates the

PD Code of a link, it was necessary for a bead to know which strand it belonged to.

Notably, the force calculations need not know anything about strands. PD Code

calculations need not know anything about component indices, number of beads in a

component, or which bead in the order of beads that it is. Therefore, it is also a
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nice property of building such simple classes that we can use them and expand upon

them in other portions of code without the need to bloat a single class. For the sake

of brevity, the code representing beads specific to the force calculation and PD Code

calculation processes are not shown. However, the reader should note that, following

the construction of the Bead class, we are able to use that class to construct other

classes of more specific classes that should hold very specific information.

5.4.2 DEPENDENCY INJECTION

In software development, some parts of code will inevitably be dependent on

other parts of code. It is imperative, in many cases, to try to make sure that two

seemingly unrelated pieces of code are not too tightly coupled. That is, one should

be able to change a piece of code, within reason, without breaking another part of

the code. One very effective way to accomplish this is by using interfaces and

dependency injection.

Dependency injection refers to the method by which one piece of code

receives another piece of code that it is dependent on. In our software specifically,

we exhibit an example where we utilize an interface in C# to inject a dependency.

Consider the following snippets of code:

public interface ILinkBeadsProvider

{

List<LinkComponent> GetLinkComponents();

}

public class LinkStickModel

{

private readonly List<LinkComponent> componentList;

public LinkStickModel(ILinkBeadsProvider beadsProvider)

{

componentList = beadsProvider.GetLinkComponents();
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}

...

public class DefaultFileBeadsProvider : ILinkBeadsProvider

{

...

There are three things shown here. First, an interface that enforces anything

that implements it must have a method called GetLinkComponents. Second, a class

that has a constructor which expects an object that implements that interface.

And, third, a class that implements the interface.

The important thing to notice here is that the class LinkStickModel is only

expecting something that has a GetLinkComponents method. This class is

dependent on a class that has that method. Furthermore, the

DefaultFileBeadsProvider class must have that method. By simply reading the

declaration of the class, we can tell that it has implemented that interface and thus

must have that method in it. The significance of this may be quite subtle.

The DefaultFileBeadsProvider class reads the files that were mentioned

earlier in this thesis. It reads the files that contain many 3D points corresponding to

different knots and links. The specifics of how it reads these files is not important.

What is important is that it somehow constructs a list of LinkComponent objects

that it can return via calling the GetLinkComponents method. The

LinkStickModel uses this method and constructs a stick model of a link that we

use to display the link to a user. Notice how these two tasks are related. However,

they do two separate things. The significance of breaking down responsibilities in

this way and of using dependency injection in this manner is that we can very safely

and easily add more classes later that implement that same interface. Upon doing

this, we need not modify the LinkStickModel class at all in order to handle these

new objects. We simply implement the interface and construct the LinkStickModel
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class as we normally would. Thus, in the future when perhaps other file formats are

considered or other ways of generating points for a polygonal link are introduced, all

that needs to be done in order to display those links is to build a new class. No code

needs to be edited or deleted other than to pass a different object into the

constructor of the LinkStickModel class wherever it is used.

Note that there is no way to access these files in our software. We used these

files as a way to test our code and to ensure that certain features, such as knot

identification, worked properly.

CHAPTER 6

FUTURE WORK

The author would like to continue to work on this project and implement

more features into the Oculus. As the code is publicly hosted, it is possible for

anyone to contribute to development of this software. It is also possible for anyone

to use this software or to suggest changes for it.

It would be beneficial to add functionality to do strand passages (also known

as band surgeries) and different nullification moves. In general, we are not allowed

to cut or tear a link in any way. However, strand passages and nullification moves

are procedures that are known as unknotting moves. We do not explicitly define

what exactly these are, but they are procedures that can be used to simplify links

by decreasing the minimal crossing number of a link. Such procedures are widely

studied and are of interest to many Knot Theory researchers [12, 13, 14, 15, 5, 6, 16].

We would also like to add functionality to calculate the PD Code from any

perspective of the link that is drawn in our software. As it was not necessary for

identifying the link, we did not undertake doing this. It would also be of use to be

able to calculate the PD Code from the perspective of the headset. Currently, as

mentioned in the sections about constructing the PD Code, the PD Code is

calculated as if viewing the link from an infinitely long way away. It could
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potentially be more useful to calculate the PD Code from the perspective of the

user.

One more long term goal is to make this code accessible on other VR headset

devices. The Oculus is quite an expensive piece of technology (ranging in the

hundreds of dollars) and we do not necessarily expect those who do not have an

Oculus to purchase one solely to use our software. It would be nice to run the same

software we have developed for the Oculus on other, cheaper alternatives that

researchers may even already have access to.
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