
Western Kentucky University Western Kentucky University

TopSCHOLAR® TopSCHOLAR®

Masters Theses & Specialist Projects Graduate School

5-2023

Source Code Plagiarism Detection Using JPlag & Stack Overflow Source Code Plagiarism Detection Using JPlag & Stack Overflow

Data Data

Sudheer Yetthapu
Western Kentucky University, ysudhirreddy@gmail.com

Follow this and additional works at: https://digitalcommons.wku.edu/theses

 Part of the Data Storage Systems Commons, and the Systems Architecture Commons

Recommended Citation Recommended Citation
Yetthapu, Sudheer, "Source Code Plagiarism Detection Using JPlag & Stack Overflow Data" (2023).
Masters Theses & Specialist Projects. Paper 3620.
https://digitalcommons.wku.edu/theses/3620

This Thesis is brought to you for free and open access by TopSCHOLAR®. It has been accepted for inclusion in
Masters Theses & Specialist Projects by an authorized administrator of TopSCHOLAR®. For more information,
please contact topscholar@wku.edu.

https://digitalcommons.wku.edu/
https://digitalcommons.wku.edu/theses
https://digitalcommons.wku.edu/Graduate
https://digitalcommons.wku.edu/theses?utm_source=digitalcommons.wku.edu%2Ftheses%2F3620&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/261?utm_source=digitalcommons.wku.edu%2Ftheses%2F3620&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/144?utm_source=digitalcommons.wku.edu%2Ftheses%2F3620&utm_medium=PDF&utm_campaign=PDFCoverPages

 SOURCE CODE PLAGIARISM DETECTION USING
 JPLAG & STACK OVERFLOW DATA

 A thesis submitted in partial fulfilment of the requirement for the degree

 Master of Science, Computer Science

 Department of Computer Science

 Western Kentucky University

 Bowling Green, Kentucky

 By

 Sudheer Reddy Yetthapu

 May 2023

Date Recommended ______________________

Chair

Committee Member

Committee Member

Committee Member

 Associate Provost for Research and Graduate Education

DocuSign Envelope ID: 5CB318B7-0EB6-4F1A-88C3-F64E8B17C127

4/17/2023

SOURCE CODE PLAGIARISM DETECTION USING JPLAG & STACK OVERFLOW DATA
Sudheer Reddy Yetthapu

 iii

 ABSTRACT

 SOURCE CODE PLAGIARISM DETECTION USING

 JPLAG & STACK OVERFLOW DATA

Advancements in computer technology and internet services have led to the availability of

vast amounts of information like videos, articles, research papers, and code samples. Free

online information will increase the possibility of plagiarism and collusion among students.

People can commit plagiarism in both text and code [1], as tools used to detect plagiarism

between texts and between codes are distinct. Traditionally plagiarism in code is detected

using manual inspection, which is a tedious process and misses to compare code from

previous submissions and external sources. To overcome this issue, systems that can

automatically detect plagiarism in code were developed [6]. JPlag supports Java, C, and

C++ languages, and it is one such system that automatically finds pairs of similar programs

among a given set of programs [3]. JPlag code plagiarism checker is implemented

successfully in many organizations in the field of Education, Patent applications, software

industry. This paper discusses in brief 1. various plagiarism software, 2. in-depth analysis

of JPlag comparison algorithms and their performance, 3. We are extending JPlag

functionality to compare source code with stack overflow database.

 iv

This thesis is dedicated to my wife, Shajadi Patan, and my kids (Ayra Yetthapu and Riya

Yetthapu), who supported and believed in me throughout.

 v

Table of Contents

1. Introduction 1

2. Background 2
2.1 Plagiarism in Coding ………………………………………………………… 2

2.2 How to detect plagiarism in source code ……………………………………. 2

 2.2.1 Strings …………………………………………………………… 3

 2.2.2 Tokens …………………………………………………………... 3

 2.2.3 Parse Trees ……………………………………………………..... 3

 2.2.4 Program Dependency Graphs (PDGs)……………………..…….. 4

 2.2.5 Metrics ………………………………………………………….... 4

2.3 Existing Detection Tools………………………………………………………. 4

 `2.3.1 Moss (Measure of Software Similarity) …………………………… 4

 2.3.2 Gplag ……………………………………………………………..... 5

 2.3.3 Marble ……………………………………………………….……... 5

 2.3.4 SIM ………………………………………………………………... 6

 2.3.5 YAP 3(Yet Another Plague) ………………………………………... 6

 2.3.6 Plaggie ……………………………………………………………...... 6

3. JPlag 7

 3.1 JPlag’s Algorithm ……………………………………………………………….. 8

 3.1.1 Converting programs to token strings. ……………………………….. 8

 3.1.2 Comparing token strings ………………………………………………. 9

 3.2 Limitations …………………………………………………..…………………. 10

4. Implementation Requirements 11

4.1 List of technologies & coding language used ……………………..…………….. 11

4.2 Stack Overflow ………………………………………………………….………. 11

4.3 Azure SQL Edge in Docker ……………………………………...……………… 12

4.4 Connecting Azure data studio to Azure SQL Edge…………………..………….. 12

4.5 Load stack overflow data to Azure data studio ……………………..…………… 13

 vi

5. Project Implementation 14

 5.1 Comparison Logic ……………………………………………………………… 14

 5.1.1 Indexing ……………………………………………………………… 14

 5.1.2 Implementing DB Connection in JPlag Program ………..……………. 14

 5.1.3 Parsing DB Results to Find Code Snippets ………...…………………. 16

 5.1.4 Storing Code Snippets as File …………………………….…………… 17

 5.1.5 Updating Main Class …………………………….……………………. 18

 5.1.6 Lucene Search Engine ……………………………...…………………. 19

 5.1.7 Code comparison ……………….………………………………………. 20

 5.1.8 Spring Boot - Maven …………………………………………………… 21

5.2 Frontend UI …….……………………………………………….………………… 21

6. Framework……………………………………………………………………………. 24

6.1 Framework Explanation ……………………………………………….................. 25

6.2 Frontend Spring Boot Framework ………………………………………………. 26

6.3 Backend Java Program ………………………………………………………….. 27

7. Results 28

8. Conclusion 29

9. Future Research 29

9.1. Increasing Similarity Score…………………………………………………… 30

9.1.1. Weighted Similarity Metrics …………………………………………. 30

9.1.2. Semantic Similarity …………………………………………………... 30

9.1.3. Local and Global Similarity ………………………………………….. 31

9.2. Improved Pair-Wise Comparison …………………………………………….. 31

10. References 32

 24

 Fig. 16: Displays similarity score results.

We can manually inspect code comparison by selecting the individual student's name and checking

the plagiarised parts of the code.

 Fig. 17: Displays side-by-side comparison of the code.

 25

6 Framework

JPlag Plagiarism detection using stack overflow database uses Azure SQL Edge within a Docker

container connected to Azure Data Studio. The project uses a Spring Boot framework for the

frontend UI and Java programming logic for the backend. Data is pulled from the database through

Frontend UI as a one-time operation, converted into individual files, indexed, and stored on the

local system for comparison.

6.1 Framework Explanation:

1. Pull the data from the Stack Overflow database hosted on Azure SQL Edge (Docker),

convert the relevant code snippets into individual files, and index and store the files on the

local system.

2. The user uploads a Java or a .zip file through the frontend UI built using Spring Boot and

Thymeleaf.

3. The front end communicates with the backend Java program using a RESTful API and

sends the uploaded Java files for processing. Typically, communication uses JSON data

format, which is lightweight and easy to parse in both JavaScript (frontend) and Java

(backend) environments.

4. The backend Java program splits the uploaded Java files and code snippet files using

JPlag’s tokenization process.

5. The backend Java program compares the token sequences of the uploaded Java files

between them and against the locally stored code snippets using JPlag’s comparison

algorithm.

6. The backend Java program analyses the results and generates a similarity score for each

compared pair.

 26

7. The similarity scores and comparison results are displayed on the front end, showing the

UI results.

 Fig. 18: Displays Framework Diagram.

6.2 Frontend Spring Boot Framework

 Fig. 19: Displays Frontend Spring Boot framework and flow diagram.

 27

The user interacts with the frontend Spring Boot Framework to perform operations. Thymeleaf

templates represent the HTML views that make up the user interface. Controller

(JPlagController.java) handles user input and interactions, managing the data flow between

Thymeleaf templates and services. RESTful API calls are made from the front end to communicate

with the backend Java program.

6.3 Backend Java Program Framework

 Fig. 20: Displays backend comparison logic framework.

 28

7 Results

Pulling 10000 records from DB takes 3 seconds; comparing the top 1000 results with the student

files takes 1 second.

 Fig. 21: Displays the time taken to pull and compare 10000 records.

Pulling 55660 records from DB takes 9 seconds and comparing the top 5000 results with the

student files takes 3 seconds.

 Fig. 22: Displays the time taken to pull and compare 55660 records.

 29

8 Conclusion

In this research paper, we have described the implementation of code comparison between

submitted student assignment Java files against a stack overflow database. The system was tested

on seven Java programs and showed promising results in detecting code similarities between Java

programs and stack overflow databases. Programs that are 100% similar are detected almost

perfectly. For partially plagiarised programs, the system detected the areas where similarities exist

between the comparing program and the database. The system found 0% similarity results for two

different programs, and if it did not find any match from the stack overflow database. We have

also implemented a user interface to pull data from the database, view old results, upload a file or

zip file, code comparisons, and see the results.

9. Future Research

We have limited research on Java programming code comparison research for this study. Future

research needs the implementation of other programming languages like C, C++, and Python.

Additional research can extend the study to include more code repositories like stack overflow,

which will broaden the comparison search to cover a wide range.

There are a couple of areas where researchers can extend the study to improve the efficiency of

the JPlag.

1. Increasing similarity score

2. Improved pair-wise comparison

 30

9.1 Increasing similarity score.

The similarity score is a quantitative measure used to evaluate the degree of similarity

between two pieces of source code. The similarity score helps to identify cases where one

or more individuals have copied code from another source. One can represent the similarity

between two items, texts, or concepts as a percentage score ranging from 0% to 100%, with

a higher score indicating a higher degree of similarity. Researchers use algorithms and

techniques such as Token-based, Tree-based, and Graph-based methods to compute

similarity scores. Limitations like detecting code paraphrasing, sensitivity to superficial

changes, false positives, and false negatives affect the similarity score.

Future research to obtain a more accurate and reliable score and overcome these

limitations, here are some topics I am interested in working on to improve the similarity

score.

9.1.1 Weighted similarity metrics

Generally, we use a simple similarity score based on the length of common substrings—

we can consider research to develop weighted similarity metrics to consider the importance

of different code elements. For example, more weight to function calls, loops, or other

constructs that indicate the overall code structure and logic.

9.1.2 Semantic similarity

Researchers can conduct further studies incorporating semantic analysis to compare

similarity scores. This study involves analysing Abstract Syntax Trees (ASTs) or Control

Flow Graphs (CFGs) of the source code to capture the underlying semantics and compare

 31

the code at a higher level of abstraction. This study could make the similarity score more

robust to syntactic variations and code obfuscation techniques.

9.1.3 Local and global similarity

A study can be considered developing techniques that consider both local and global

similarities between code snippets. Local similarity focuses on small code segments, while

global similarity captures the overall structure and logic of the code. Combining these two

perspectives gives us a more comprehensive understanding of the code similarities.

Exploring these research topics helps to develop more accurate and reliable similarity

scores.

9.2 Improved pair-wise comparison

Pair-wise comparison is an essential part of plagiarism detection. The pair-wise

comparison involves comparing each source code file in the folder with every other

program file to identify similarities. We can improve the accuracy of plagiarism detection

by increasing the number of pair-wise comparisons.

One solution to improve the speed and accuracy of pair-wise comparison is implementing

Locality Sensitive Hashing (LSH). LSH works on the principle of the approximate nearest

neighbour search algorithm. It helps to find similar items in high-dimensional data quickly.

We can implement the LSH concept in JPlag to speed up the comparison process on large

datasets by quickly identifying potential matches before performing the Greedy String

Tiling (GST) algorithm.

 32

10 References

[1] Maeve Paris. “Source Code And Text Plagiarism Detection Strategies.” pp. 74-78. ISBN: 0-

9541927-4-5. Aug 1, 2003.URL:https://pure.ulster.ac.uk/ws/portalfiles/portal/11703954/ltsn

.pdf.

[2] Daniel Heres. “Source Code Plagiarism Detection using Machine Learning Utrecht

 University.” 2017. URL: https://studenttheses.uu.nl/handle/20.500.12932/27904.

 [3] Lutz Prechelt, Guido Malpohl, and Michael Philippsen. “Finding Plagiarisms Among a Set of

Programs with JPlag.” DOI: 10.3217/jucs-008-11-1016. 2002.URL:http://www.ipd.kit.edu/

tichy/uploads/publikationen/16/finding_plagiarisms_among_a_set_of_progr_638847.pdf.

[4] Lutz Prechelt, Guido Malpohl, and Michael Philippsen. “JPlag: Finding Plagiarisms among

 a Set of Programs.” Mar 28, 2000. DOI: 10.3217/jucs-008- 11-1016. URL:https://www.jucs.

 org/jucs_8_11/finding_plagiarisms_among_a/Prechelt_L.html.

 [5] Asim M. El Tahir Ali, Hussam M. Dahwa Abdulla, and Vaclav Snasel. “Overview and

 Comparison of Plagiarism Detection Tools.” pp. 161-172. ISBN:978-80-248-2391-1. URL:

 https://ceur-ws.org/Vol-706/poster22.pdf.

 [6] Anthony Ohmann. “Efficient Clustering-based Plagiarism Detection using IPPDC.” 2013.

 Honors Theses:1963-2015.URL:https://digitalcommons.csbsju.edu/ honors_theses/14/.

 [7] Oscar Karnalim, Setia Budi, Hapnes Toba, and Mike Joy. “Source Code Plagiarism

 33

 Detection in Academia with Information Retrieval: Dataset and the Observation.” DOI:

 10.15388/infedu.2019.15. Mar 2019. URL: https://files.eric.ed.gov/fulltext/EJ1233501.pdf.

 [8] Mayank Agrawal and Dilip Kumar Sharma. “A State of the Art on Source Code Plagiarism

 Detection.” DOI: 10.1109/NGCT.2016.7877421. Mar 16, 2017. URL:https://www.

researchgate.net/publication/315364340_A_state_of_art_on_source_code_plagiarism_detectio

n.

 [9] Chanchal K. Roya, James R. Cordya, and Rainer Koschke b. “Comparison and evaluation of

 code clone detection techniques and tools: A qualitative approach.” DOI: 10.1016/j.scico.

2009.02.007. May 1, 2009. URL:https://www.sciencedirect.com/science/article/pii/S01676

42309000367.

 [10] Adam Bergman. “Automatic detection of source code plagiarism in programming Courses.”

 URL:http://www.diva-portal.org/smash/record.jsf?pid=diva2%3A1567604&dswid=1409.

 [11] Jurriaan Hage, Peter Rademaker, and Nike van Vugt. “A comparison of Plagiarism detection

tools.” ISSN: 0924-3275. Jun 2010. URL:http://www.cs.uu.nl/research/techreps/repo/CS-

2010/2010-015.pdf.

 [12] Divya Luke, Divya P.S, Sony L Johnson, Sreeprabha, and Elizabeth.B. Varghese.“Software

Plagiarism Detection Techniques: A Comparative Study.” 2014. ISSN: 0975-9646. URL:

https://ijcsit.com/docs/Volume%205/vol5issue04/ijcsit2014050441.pdf.

[13] Vítor T. Martins, Daniela Fonte, Pedro Rangel Henriques, and Daniela da Cruz.“Plagiarism

 Detection: A Tool Survey and Comparison.” 2014. ISSN: 2190-6807. DOI:10.4230/

OASIcs.SLATE.2014.143. URL: https://drops.dagstuhl.de/opus/volltexte/2014/4566

/pdf/14.pdf.

 34

[14] Zoran Djuric, and Dragan Gasevic. “A Source Code Similarity System for Plagiarism

Detection.” ISSN: 1460-2067. Jan 2013. DOI:10.1093/comjnl/bxs018. URL:https://www.

researchgate.net/publication/262322336_A_Source_Code_Similarity_System_for_Plagiaris

m _Detection.

 [15] https://en.wikipedia.org/wiki/Stack_Overflow

 [16] https://docs.fileformat.com/database/mdf/

Copyright Permission

Name: YETTHAPU, SUDHEER REDDY

Email (to receive future readership statistics): ysudhirreddy@gmail.com

Type of document: ['Thesis']

Title: Source Code Plagiarism Detection Using JPlag & Stack Overflow Data

Keywords (3-5 keywords not included in the title that uniquely describe content): Plagiarism, JPlag, Stack
Overflow, Source Code, Java

Committee Chair: Dr. Guangming Xing

Additional Committee Members: Dr. Huanjing Wang Dr. Zhonghang Xia

Select 3-5 TopSCHOLAR® disciplines for indexing your research topic in TopSCHOLAR®: Computer
Engineering Computer and Systems Architecture Data Storage Systems

Copyright Permission for TopSCHOLAR® (digitalcommons.wku.edu) and ProQuest research repositories:

I hereby warrant that I am the sole copyright owner of the original work.
I also represent that I have obtained permission from third party copyright owners of any material
incorporated in part or in whole in the above described material, and I have, as such identified and
acknowledged such third-part owned materials clearly. I hereby grant Western Kentucky University the
permission to copy, display, perform, distribute for preservation or archiving in any form necessary, this
work in TopSCHOLAR® and ProQuest digital repository for worldwide unrestricted access in perpetuity.
I hereby affirm that this submission is in compliance with Western Kentucky University policies and the
U.S. copyright laws and that the material does not contain any libelous matter, nor does it violate third-
party privacy. I also understand that the University retains the right to remove or deny the right to
deposit materials in TopSCHOLAR® and/or ProQuest digital repository.

['I grant permission to post my document in TopSCHOLAR and ProQuest for unrestricted access.']

The person whose information is entered above grants their consent to the collection and use of their
information consistent with the Privacy Policy. They acknowledge that the use of this service is subject
to the Terms and Conditions.

['I consent to the above statement.']

mailto:ysudhirreddy@gmail.com

