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ABSTRACT

TOPOLOGY OPTIMIZATION FOR ARTIFICIAL NEURAL NETWORKS

This thesis examines the feasibility of implementing two simple optimization

methods, namely the Weights Power method (Hagiwara, 1994) and the Tabu Search

method (Gupta & Raza, 2020), within an existing framework. The study centers around

the generation of artificial neural networks using these methods, assessing their

performance in terms of both accuracy and the capacity to reduce components within

the Artificial Neural Network’s (ANN) topology.

The evaluation is conducted on three classification datasets: Air Quality

(Shahane, 2021), Diabetes (Soni, 2021), and MNIST (Deng, 2012). The main

performance metric used is accuracy, which measures the network's predictive

capability for the classification datasets. The evaluation also considers the reduction of

network components achieved by the methods as an indicator of topology optimization.

Python, along with the Scikit-learn framework, is employed to implement the two

methods, while the evaluation is conducted in the cloud-based environment of Kaggle

Notebooks. The evaluation results are collected and analyzed using the Pandas data

analysis framework, with Microsoft Excel used for further analysis and data inspection.

The Weights Power method demonstrates superior performance on the Air

Quality and MNIST datasets, whereas the Tabu Search method performs better on the

Diabetes dataset. However, the Weights Power method encounters issues with local

minima, leading to one of its stop conditions being triggered. On the other hand, the
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Tabu Search method faces challenges with the MNIST dataset due to its predetermined

limits and restricted scope of changes it can apply to the neural network.

The Weights Power method seems to have reached its optimal performance level within

the current implementation and evaluation criteria, implying limited potential for future

research avenues. In contrast, to enhance the dynamic nature of the Tabu Search

method, further investigation is recommended. This could entail modifying the method's

capability to adapt its stop conditions during runtime and incorporating a mechanism to

scale the magnitude of changes made during the optimization process. By enabling the

method to prioritize larger changes earlier in the process and gradually introducing

smaller changes towards the conclusion, its effectiveness could be enhanced.

Keywords: Artificial Neural Networks, Feedforward Neural Network, Topology

Optimization, Classification Datasets.
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Chapter 1

Introduction

1.1 Thesis Objective

There are many applications for Artificial Neural Networks (ANNs) across many

industries, some examples being self-driving cars, virtual assistants, and automatic

machine translation. Some products related to the examples would be Tesla for

self-driving cars, Amazon’s Alexa and Apple’s Siri which are virtual assistants, and

Google translate as an example of automatic machine translation (Chatterjee, 2022).

ANNs are a heavily researched topic, and their popularity continues to grow. A search

on Google Scholar using the search term “Artificial Neural Network” yielded 80,200 hits

for the year 2022 alone. Impressively, there have already been 39,100 publications on

this subject since the start of 2023.

This thesis will focus on the optimization of the topology of ANN. Topology

optimization aims to minimize the number of hidden layers used in an ANN, as well as

reducing their corresponding number of neurons and weights, while maximizing the

accuracy and performance of the ANN.

There are many advantages to ANN optimization, as it can lead to smaller ANNs by

reducing the number of components involved, assuming the performance of the ANN is

acceptable. A smaller ANN offers several advantages over a larger one. Firstly, it tends

to have better generalization ability since it limits the number of units and weights,

preventing overfitting. Additionally, a smaller network is computationally efficient, making

it more cost-effective in terms of both learning and practical use. Lastly, there is hope

1



that a smaller trained network will exhibit behavior that can be described by a simple set

of rules, allowing for easier interpretation (Hagiwara, 1994).

Experts in many application areas that use available ANNs often follow generally

accepted rules of thumb for building the ANN topology for their work. These rules are

explained as when determining the number of hidden neurons in an ANN, there are

some general guidelines to follow. Firstly, it is recommended that the number of hidden

neurons falls within the range of the input layer size and the output layer size. Another

rule suggests that the number of hidden neurons should be approximately 2/3 of the

sum of the number of inputs and outputs. Additionally, it is advisable to keep the number

of hidden neurons below twice the size of the input layer. These guidelines can help

determine an appropriate number of hidden neurons for an ANN (Vujičić et al., 2016).

ANNs are not trained solely to perform well on the given training data; they are

trained to learn relationships inherent in the data. If the training data is a representative

sample of the overall data for the task, the ANN can generalize and perform well on

data it has not encountered before with reasonable accuracy. Improving computational

efficiency is a significant advantage of ANN optimization. A reduction in computational

cost leads to a decrease in time, which is valuable since time is money, and it also

allows for the use of ANNs in small, low-powered devices. While it may be possible to

interpret how an ANN makes its predictions, due to its black box nature, this is not

always the case and should be considered a bonus if it is possible.

Two methods of ANN topology optimization have been selected that can be

understood by non-experts and have similar approaches. These methods aim to find a
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reasonably good ANN topology and are from different time periods. The performance of

the optimized ANNs using these methods will be compared based on accuracy and

other performance metrics for several classification tasks.

The questions that my thesis will answer are:

1. Is it feasible to implement the two simple optimization methods Weights

Power (Hagiwara, 1994) & Tabu Search (Gupta & Raza, 2020) using an

existing framework. This is important because non-experts typically use

ANN frameworks to implement ANN solutions.

2. How do the two selected methods compare to each other for the datasets

used, Air Quality (Shahane, 2021), Diabetes (Soni, 2021), and MNIST

(Dato-on, 2021). The comparison will cover the performance of each

method for the datasets and how many components the method optimized

ANNs contains.

1.2 Thesis Outline

Chapter 2 of the thesis covers two main topics: an introduction to ANNs and a

detailed description of the two implemented methods. The introduction will cover the

essential components of ANN topology such as neurons and network layers, the

process of training an ANN, and the performance metrics that will be used in this thesis,

along with detailed descriptions of how these metrics function. The description of the

two methods will include pseudocode along with a summary of how each method works

based on the published record.
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Chapter 3 covers the implementation of the two methods such as what

predetermined values that are required by the method are and why they were selected.

The details for each step are also covered in more depth and highlight any major

problems I encountered in their implementation and how they were solved. This is

followed by the background information for the evaluation setup, such as what

programming language was used along with any frameworks or tools used and why.

This section will also cover the datasets used, how they were preprocessed, and why

they were selected.

Chapter 4 contains the results from the conducted evaluation. An overview that

discusses the quality of the ANNs created and the datasets used for the evaluations.

Each result is broken down by the dataset the methods are compared on, and these

results cover how well the methods performed for the datasets used. The performance

of the methods are compared to one another and which method performed better for

each dataset.

Chapter 5 covers the conclusions that were reached from the evaluation results

for each of the methods during the completion of the thesis. Following that is any future

work that could be continued using this thesis as a starting point.

4



Chapter 2

Background

This chapter will cover background information and is split into two major

sections: an introduction to ANNs and a description of the ANN optimization methods

covered in this thesis. The ANN introduction will focus on feed-forward ANNs, providing

a detailed description of their topology, including neurons and layers, and the process

for the ANN to learn and make predictions. This section will also explain the process of

measuring the performance of an ANN. The description of the optimization methods will

include the algorithms of both the Weights Power (Hagiwara, 1994) and Tabu Search

(Gupta & Raza, 2020) methods.

2.1 Introduction to ANNs

ANNs attempt to mimic the basic functions of the human brain using software.

There are different approaches to constructing an ANN, and various ways for them to

learn from a given dataset. Topology in the context of artificial neural networks refers to

the specific pattern or structure through which individual neurons are interconnected. It

encompasses the arrangement and connections between neurons, determining how

information flows within the network (Suzuki, 2011). The methods explored in this thesis

use a feed-forward artificial neural network architecture, which has the restriction that

the network needs to establish a one-way flow of information from the input to the

output. This ensures that information is processed and transmitted linearly through the

network, without the possibility of circulating back to previous layers or neurons.

(Suzuki, 2011). This flow of information in regards to how the ANN makes predictions is
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known as feed-forward. Other architectures are outside the scope of this thesis and are

not covered.

The type of information contained in the dataset determines how the ANN will

learn. Three fundamental approaches to learning that are widely recognized are

supervised learning, unsupervised learning, and reinforcement learning (Suzuki, 2011).

Supervised learning involves datasets where each sample is labeled with known output

values and is often used for classification tasks. The ANN is trained to associate a given

input with the corresponding label. During training, this label is often referred to as the

"target output". For classification tasks, the label represents the class to which the input

belongs. This is the type of learning used in this thesis.

Unsupervised learning uses unlabeled datasets with unknown output values, and

it may be used for the ANN to learn how to categorize the data into clusters. The ANN is

trained to detect the clusters within the data. Other than an upper limit on the number of

clusters, there are usually no restrictions on which inputs belong to which cluster.

Reinforcement learning, also known as semi-supervised learning, acts as a

middle ground between supervised and unsupervised learning and is used when the

dataset contains samples that are both labeled and unlabeled.

2.1.1 Feed-forward ANN Topology

There are two major components involved in the construction of a feed-forward

neural network. The first component, called a ‘neuron,’ includes weights, biases, and an

activation function, which together act as a way to generate the neuron’s outputs from

its inputs. The second component, called a network ‘layer,’ acts as a way to group
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neurons. There are three types of layers: input, output, and hidden layers, each having

different functions within the network. Typically, there is only one input layer and one

output layer, while the number of hidden layers can vary depending on the problem

being solved.

Figure 1: Basic Neuron Topology

An example of a neuron in an ANN is illustrated in Figure 1. Information flows

from left to right. The weights connect each input to the neuron, and the weight values

indicate the contribution of each input value. The bias allows the neuron to have a

non-zero output, even if all input values are zero. The total activation reaching a neuron

is the sum of the products of each input value and its corresponding weight, plus the

bias. The activation function then transforms the total activation into the neuron's output.

The process for calculating a neuron's output based on its inputs is shown below in

Formula (1).

) (1)𝑜𝑢𝑡𝑝𝑢𝑡 = 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝑏𝑖𝑎𝑠 +
𝑖=1

𝑛

∑ 𝑖𝑛𝑝𝑢𝑡
𝑖
𝑤𝑒𝑖𝑔ℎ𝑡

𝑖
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It should be noted that a neuron's output value may be passed as input to more

than one neuron in the next network layer. The value passed to each of those neurons

is the computed output value. It is also important to note that different weights and

biases can affect the output value, even if the input stays the same. This means that

learning in an ANN involves adjusting the weights and biases.

There are many types of activation functions that are used in ANNs, but the two

that are included in the ANN used for the evaluation conducted in this paper are the

RELU (rectified linear unit function) and Softmax function in.

(2)𝑅𝐸𝐿𝑈(𝑥) =  𝑚𝑎𝑥(0,  𝑥)

(3)𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑧
→

)
𝑖
 =  𝑒

𝑧
𝑖

𝑗=1

𝑘

∑ 𝑒
𝑧

𝑗

 

The RELU function limits the possible outputs of a hidden layer neuron to

positive values and 0. By using 0 as the lower bound, the effect of the neuron's output

on the input of the next layer's neurons that map to that output is nullified. This can be

observed in Formula (1), as regardless of the associated weight value for the input, the

output will always be 0. Another activation function, the Softmax function is employed in

the output layer of a classification ANN, constraining the final predictions to values

between 0 and 1. It is important to note that when an ANN has multiple potential

outputs, the sum of all predictions adds up to 1, allowing for the selection of the largest

prediction value as the ANN's prediction for a given data sample.

8



Figure 2: Basic Feed-forward ANN Topology

The data used for tasks in feed-forward ANNs consists of many samples. Each

sample contains a fixed number of input values, and in the case of training data,

includes the label that the network is intended to learn. The input layer serves as the

entry point for the sample data from a dataset, with each data point in the sample

having its own input neuron. While input neurons are referred to as neurons, they do not

function as such and contain only an output value to pass the input into the hidden

layer(s). The hidden layer(s) process the input data and send the processed information

to the output layer. For a classification ANN, the number of output neurons is equal to

the number of classes, which are the possible output solutions for a given dataset. The

activation function of the neurons in the hidden layer(s) for the ANN used in this paper is

the ReLU function.

In a classification task, it is customary to translate the output computed by the

last hidden layer into something similar to probabilities for each class. This is done

using the softmax function, which uses the outputs of all the neurons in the layer. The

9



output layer neurons also use the softmax function as their activation function. Each

neuron in each layer is connected to all the neurons in the previous and next layers, as

shown in Figure 2. Therefore, the number of outputs of a neuron in a given layer is

equal to the number of neurons in the next layer, with each output connected to the

neurons in the next layer on a one-to-one basis.

2.1.2 Predictions of a Feed-forward ANN

Figure 3: Feed-forward Graphical Representation

An ANN uses its weights and biases to predict an output for a given set of input

values. The term 'feedforward' refers to the flow of information from input to output. As
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data passes through each layer, the output of each layer is calculated by its associated

neurons. Each neuron calculates its individual output using Formula (1). Figure 3

provides a graphical representation of the feedforward process from the input layer to

the output of the hidden layer. The output values of the input layer serve as the inputs of

the neurons in the hidden layer. The output of hidden layer neuron 1 is calculated as the

RELU of the sum of its weighted inputs plus bias, that is, RELU(-1.4 + 1.0 * 0.4 + 0.5 *

0.3) = RELU(-0.85), which returns an output of 0. Similarly, the output of hidden layer

neuron 2 is calculated using the same method, which is RELU(1.2 + 1.0 * 0.2 + 0.5 *

0.8) = RELU(1.8), returning an output of 1.8.

Figure 4: Feedforward Matrix Calculation

As shown in Figure 4, calculations for an ANN can be conducted using matrices

and vectors. In Figure 4, j represents the number of output values from the previous

layer's neurons, which are combined into the input vector I for the hidden layer. The

number of neurons in the hidden layer is represented by k. Row k of the matrix W

contains the weights for 1 ≤ p ≤ j for hidden layer neuron k. B is the vector of bias𝑤
𝑝
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values for 1 ≤ q ≤ k for each of the k neurons in the hidden layer. Multiplying the𝑏
𝑞

matrix W with the input vector I results in a vector S with k elements, representing the

sum of weighted inputs for each hidden neuron. Adding the bias vector B and then

applying the activation function leads to the output vector for the hidden layer neurons.

The result is then passed through the RELU activation function, which leads to the

output vector.

2.1.3 Training a Feed-forward ANN

When conducting training for a feed-forward ANN, the available dataset needs to

be split into two parts: a training dataset and a testing dataset. This split is commonly an

80/20 split, with 80% of the dataset being used for the training and 20% for the testing.

During the training phase, the ANN learns a given task from the training dataset, while

the testing dataset is used after training to assess the generalization of the ANN on data

it has not been exposed to before.

To avoid training issues, it is important to prevent overfitting or underfitting.

Overfitting occurs when an ANN trains too well on the training dataset that it becomes

unable to generalize from the given data, which means its prediction performance on

unseen data suffers. This can occur when the ANN's topology is too complex and/or the

training is not stopped when the ANN's generalization capabilities start to deteriorate.

Underfitting occurs when an ANN is unable to correctly predict outputs even for the

training data. This normally happens when the ANN is trained on too little data and/or if

the ANN's topology is too simple.
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The goal of training a feed-forward ANN for a classification task is to minimize

the error rate, which is the number of wrong predictions. Reducing the error rate

generally means the network makes more correct predictions, which increases an

ANN's performance. As seen from Figure 4 and the related example, an ANN's output

is a function of the ANN's weights, biases, and the sample values.

(4)𝐴𝑁𝑁 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑜𝑢𝑡𝑝𝑢𝑡 =  𝑓𝑒𝑒𝑑𝑓𝑜𝑟𝑤𝑎𝑟𝑑(𝑖𝑛𝑝𝑢𝑡,  𝑤𝑒𝑖𝑔ℎ𝑡𝑠,  𝑏𝑖𝑎𝑠𝑒𝑠)

Supervised feed-forward ANN training uses the error of the ANN’s predictions,

which is based on the difference between the target output versus the predicted output.

In other words, the error is a function of the target output, weights, biases, and inputs.

(5)𝑒𝑟𝑟𝑜𝑟 =  𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒(𝑖𝑛𝑝𝑢𝑡,  𝑤𝑒𝑖𝑔ℎ𝑡𝑠,  𝑏𝑖𝑎𝑠𝑒𝑠,  𝑡𝑎𝑟𝑔𝑒𝑡 𝑜𝑢𝑡𝑝𝑢𝑡)

The error function is used to modify the weights and biases of each neuron in the

ANN. One approach to minimize the error is to use gradient descent. In gradient

descent, the slope of the error is estimated with respect to each weight and bias, and

the direction and magnitude of the slope are used to determine how much to update

each weight or bias to reduce the error slightly. Repeating this many times often leads

to a smaller error. To reduce the likelihood of getting stuck in local minima, a momentum

term is often added to the computed weight or bias update.

The gradients for the error surface are first computed for the output layer and

then for previous layers, one layer at a time. Thus, the computation of weight updates

progresses through the network in the opposite direction of the feed-forward predictions,

leading to the name 'backpropagation'. The backpropagation process is

resource-intensive and responsible for the majority of the computational costs in the
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training of an ANN. To mitigate this, training is normally done in batches, where multiple

predictions are made over several data samples, and the mean average of the errors of

the training batch is used for backpropagation instead of conducting the process for

each sample. This is called stochastic gradient descent.

There are various error functions that are used for ANNs for different types of

tasks. The log loss function, calculates the error for both single and multiclass outputs,

and used for the backpropagation error in the thesis. The formula is shown below.

(6)𝐿
𝑙𝑜𝑔

(𝑦, 𝑝) =  −  1
𝑁  

𝑖=0

𝑁−1

∑
𝑘=0

𝐾−1

∑ 𝑦
𝑖,𝑘

𝑙𝑜𝑔(𝑝
𝑖,𝑘

)

In the above formula, N is the total number of samples in the dataset and K is the

number of classes. Furthermore, is the value predicted by the ANN for the k-th𝑝
𝑖,𝑘

output value for the i-th sample in the case of datasets with multi outputs; and is the𝑦
𝑖,𝑘

k-th value of the target output for the i-th sample from the dataset y. This is𝐿
𝑙𝑜𝑔

calculated for all samples in the dataset and returns the negative mean average of𝑁

the summation. Since the are between 0 and 1, resulting in a log value less than𝑝
𝑖,𝑘

one, the overall error computed is always positive.

2.1.4 Measurements of ANN Performance

The measurements of performance for an ANN in a classification task can be

performed for both the testing and training dataset and involves the relationship

between the ANN’s predicted output of a sample versus the target output. Measuring

the performance on the testing dataset versus the training dataset is useful in

14



determining if the ANN is under or over fitted and comparing the performance on the 2

datasets shows how generalized the ANN is. This relationship can be broken down into

the four types as shown in Table 1. Positive indicates the output of a sample would

return true, while a negative would be a return of false. For example if a sample

contains information about a student's study habits for a final correlating to if that

student passed the final or not, an output that the student passed would be considered

positive while an output that the student failed would be negative.

Predicted

Negative Positive

Actual Negative TN (True Negative) FP (False Positive)

Positive FN (False Negative) TP (True Positive)

Table 1: Confusion Matrix

A TN occurs when the ANN correctly predicts a negative value, while a TP is a

correct prediction of a positive value. A FN occurs when the ANN wrongly predicts a

negative value, while FP is a wrong prediction of a positive value. For example if the

true output of samples from a classification dataset is {False, True, False}, and the ANN

outputs is {False, False, True}, then the 3 predicted outputs from left to right are a TN, a

FN, and a FP. For an entire dataset, TN stands for the total number of samples which

are categorized as TN and similar for FN, TP, and FP. These counts of prediction

outputs are used to calculate the performance metrics seen in Table 2.
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Metrics Formula Description

Accuracy (𝑇𝑃 + 𝑇𝑁)
(𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁)

Represents the ratio of correctly predicted outputs

to the total number of predictions

In the case of multiple output values the subset

accuracy is taken, where the entire set of

predicted values for a sample is compared to its

set of true values with the result of a 1 if the sets

are an exact match otherwise the result is 0

Worst value: 0

Best value: 1

Precision 𝑇𝑃
𝑇𝑃 + 𝐹𝑃

Represents the ratio of correctly predicted positive

values to the total number of (correctly and

incorrectly) predicted positive values

Intuitively - the value captures how much the ANN

can be trusted not to provide false positive

predictions

In the case of multiple output values the precision

value is calculated for each value in the set of

outputs values with their resulting values being
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averaged

Worst value: 0

Best value: 1

Recall 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

Represents the ratio of correctly predicted

positives values to the total number of actual

positive values

Intuitively - the value captures the fraction of

actual positives correctly predicted.

In the case of multiple output values the recall

value is calculated for each value in the set of

outputs values with their resulting values being

averaged

Worst value: 0

Best value: 1

F1 Score 2 * 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 * 𝑟𝑒𝑐𝑎𝑙𝑙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙

Represents the equilibrium between precision and

recall

Worst value: 0

Best value: 1
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Error 1 −  𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 Represents the ratio of incorrectly predicted

outputs to the total number of predictions

In the case of multiple output values the subset

error is taken, where the entire set of predicted

values for a sample is compared to its set of true

values with the result of a 1 if the sets are an

exact match otherwise the result is 0

Worst value: 1

Best value: 0

Table 2: Performance Metrics

The difference between precision and recall is important, although it may not be

intuitive. For example, consider a classification dataset that distinguishes whether a

hospital patient has cancer or not. A high precision value indicates that the ANN

correctly predicts when a patient has cancer most of the time, while not often predicting

that a patient has cancer when they actually don’t. However, a high precision value

does not necessarily mean that most people who have cancer are correctly identified as

such, as FN are not considered for precision. On the other hand, a low precision value

would be the reverse, with more patients being predicted to have cancer who don't

actually have it.

Similarly, a high recall value indicates that the ANN correctly predicts when a

patient has cancer, and it also shows how many patients with cancer were not predicted
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to have it. However, a high recall value does not mean that most of the people who are

identified as having cancer actually have cancer, since FP are not considered for recall.

A low recall value would indicate that many patients with cancer were not predicted to

have it.

2.2 Weights Power Method

The Weights Power method generates an optimized ANN with a predetermined

level of performance. The method determines the exact ANN topology and the values of

all the weights and biases in the network. The method builds an ANN that can learn a

classification task for a given dataset by removing components from the ANN that adds

little in the completion of the task. It obtains this ANN by first training an initial network

while increasing the number of neurons in the hidden layers as needed to reach the

required performance level. This base initial network is optimized with an iterative

approach of removing neurons followed by an iterative process to remove weights

while maintaining the required performance level. These removed neurons and weights

are the least important in determining the network's predicted outputs.
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2.2.1 Train Initial ANN

Algorithm 1: Trains ANN To Required Performance Level

Algorithm 1 first trains an initial ANN so that the method has a base ANN to

work from. This initial ANN is created by specifying a predetermined number of hidden

layers and a predetermined number of neurons for each of the ANN’s hidden layers.

Each of the hidden layers for the initial ANN contains the same number of neurons. The

ANN is trained on the given training dataset. After the ANN training completes, the

method verifies whether it reaches the specified performance level. If it does then the

ANN is returned to be used as the base ANN for the remaining steps of the method.

Otherwise the method repeatedly adds a neuron to each hidden layer and retrains the

ANN until the minimum performance level is reached. This generates an ANN that has

learned the given classification task to the specified performance level. This may have
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caused the ANN’s topology to grow larger than is necessary during Algorithm 1. The

remaining steps in the method decrease the topology of the ANN.

Algorithm 2: Checks If ANN Reaches Performances Level

The performance level indicated by the training criterion of Algorithm 2 is

predetermined by specifying a maximum error value for the training dataset. The

performance of the trained ANN is determined by calculating the mean absolute error

for the ANN, using the formula shown below. If this error value is lower than the

predetermined levels for the training dataset then the ANN has reached the required

performance level and the method returns true, else it returns false.

(5)𝑀𝐴𝐸(𝑦
^
, 𝑦) =  1

𝑁  
𝑖=𝑜

𝑁−1

∑ |𝑦
^

𝑖
 −  𝑦

𝑖
|
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Where is the predicted value determined by the ANN for the sample from𝑦
𝑖

^
𝑖𝑡ℎ

the dataset, the is the correct value for the sample, and N is the total number of𝑦
𝑖

samples contained in the dataset. This mean absolute error is calculated for all samples

in the training dataset and returns the mean average of the summation. For datasets𝑁

with multi outputs the absolute error for each output is calculated with the sum of the

output error’s is averaged by the number of outputs.

2.2.2 Removal of Least Important Neurons

Algorithm 3: Finds And Removes Least Important Neurons

Algorithm 3 takes the ANN trained to the specified performance level during the

previous algorithm and iteratively removes the least_neuron from its hidden layers. The

least_neuron is the least important neuron found by iterating over all the neurons in the

hidden layers and calculating the importance of each neuron. The importance of the
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neuron is determined based on the weights leading to and from the neuron’s two

adjacent layers. These weights are squared to avoid positive and negative weights from

canceling each other when summing the squared weights to compute the importance of

the neuron. The smaller the importance value of the neuron the smaller the impact the

neuron has on the ANN prediction. The formula for calculating the summed squared

weights of the neuron of the layer is given in Formula (8) and is illustrated in𝑖𝑡ℎ 𝑘𝑡ℎ

Figure 5.

(8)𝑊
𝑖
𝑘 =  

𝑚
∑ (𝑤

𝑚𝑖
𝑘−1)

2
 +  

𝑛
∑ (𝑤

𝑖𝑛
𝑘 )

2

The iterates over the weights connecting from the layer to the𝑚 (𝑘 − 1)𝑠𝑡 𝑖𝑡ℎ

neuron. The iterates over the weights connecting to the layer from the𝑛 (𝑘 +  1)𝑠𝑡 𝑖𝑡ℎ

neuron. Figure 5 is a graphical representation for where the weights used to calculate a

neuron's importance are located in respect to the neuron.

Figure 5: Least Neuron Formula Graphical Representation
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The current ANN is set to saved_ANN by the algorithm to be used if the modified

ANN fails to reach the specified performance level. The algorithm searches for the

least_neuron and removes it, along with all weights leading to and from the neuron.

After the removal of the least_neuron, the ANN is retrained. If the ANN still achieves the

specified performance level after the neuron removal, the algorithm sets this retrained

ANN to saved_ANN, and then repeats the process of finding and removing the

least_neuron. This process continues until the retrained network fails to meet the

required performance level. At that point saved_ANN is returned.

2.2.3 Removal of Least Important Weights

Algorithm 4 iteratively finds and removes the least_weight from the ANN’s

hidden layers until the ANN fails to reach the specified performance level. The

least_weight which is the least important that determined by the weight with the smallest

associated magnitude. A weight’s magnitude is its absolute value.
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Algorithm 4: Removes Least Important Weights From ANN

Like the Algorithm 3 the saved_ANN which is the current ANN that is saved by

Algorithm 4 to revert to if the modified ANN fails to reach the specified performance

level. The algorithm searches for the least_weight and removes it before retraining the

ANN. While the ANN continues to reach the specified performance level the updated

ANN set to the saved_ANN and the next least_weight is removed. This process stops

when the ANN fails to reach the specified performance level at which point it reverts to

the ANN contained by saved_ANN. This restored ANN is returned as the method’s

optimized ANN topology.

2.3 Tabu Search Method

The Tabu Search algorithm searches through various network topologies, within

the scope given by the search parameters, to find the topology that leads to the best
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performance. Unlike the Weights Power method, there is no predetermined

performance level to be reached, and the algorithm does not keep track of weights.

Instead, it only keeps track of the topology of the ANN it creates, which includes the

number of hidden layers and the associated neurons contained by the ANN. The

number of hidden layers is restricted by an upper limit, and the number of neurons that

can be contained in each hidden layer is bounded by an upper and lower limit. The main

idea behind the method is that it randomly generates ANNs, starting with a single

hidden layer containing a random number of neurons within the upper and lower

bounds. This generated solution is explained in detail in section 2.3.1 and is considered

the current best performing ANN topology, referred to as the local_best.

This local_best is used to create multiple candidate_solution, which are

variations of the local_best topology, with the best performing candidate_solution

becoming the new local_best. The method's process of finding new local_best solutions

is done for a set number of iterations given by the iteration_count parameter. After

completing the final iteration, the method increases the number of hidden layers and

begins the process described above again. While the method conducts the above

process, it keeps track of the best performing local_best by storing it in the global_best

variable, which is the ANN that is returned upon the completion of the method. This

process of generating solutions is covered in section 2.3.2.

The muiltple candidate_solution that are created are based on the current

local_best, as stated above, with the number of neurons increasing or decreasing for

each of its current hidden layers. This possibility is determined by the p value, which is

the percentage chance of change while the amount of change is set by the K value, a
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percentage of the currently held neurons of the hidden layer. The number of

candidate_solution created is determined by the Pmax value, with half of the

candidate_solution being created increasing the number of neurons while the other half

decreasing the amount. The creation of the mutiple candidate_solution is described in

detail in section 2.3.3. When selecting the best candidate that will become the new

local_best each candidate_solution has it topology compared to the tabu_list, a list of

previously generated topologies. If the topology is found it is restricted from becoming

the local_best unless its performance is better then the current global_best. This

process of restricting or making ‘taboo’ is where the method receives its name and is

ment to keep the method from repeatedly checking the same topologies.

2.3.1 Solution Object

Algorithm 5: Object For Solution Creation

The concept of a solution_object, as represented in Algorithm 5, refers to a

potential ANN topology to be evaluated during the search process. It includes

information on the ANN's topology, as well as its performance metrics post-training.

Additionally, it has methods for creating and training an ANN based on the topology
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information, as well as for computing the performance metrics. The topology information

comprises the number of hidden layers and their respective neuron counts, which are

stored in the n_list, as well as the tabu_tenure, which specifies the number of iterations

until a solution_object topology is removed from the tabu_list. The performance of the

ANN after training is saved as its fitness_value, which is the accuracy score specified in

Table 3 for the trained ANN over the testing dataset.

2.3.2 Generate Solutions

Algorithm 6: Generate Possible Solutions Returning Best Performing Solution
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Algorithm 6 describes the process of searching for possible solutions for an

ANN with 1 hidden layer, and then applying the same process to topologies with 2, 3,

and so on hidden layers up to a predetermined maximum number of hidden layers given

by the max_hidden_layer variable. At the start of each iteration, a solution_object is

created and set to the current_solution. The algorithm generates multiple

candidate_solution based on the current_solution, and the best performing

candidate_solution is stored in the local_best variable. The performance of the

local_best is then compared to that of the global_best, and the better of the two is

stored as the new global_best. The local_best then replaces the value of the

current_solution for use in creating the next group of candidate_solution. To allow for

previously searched topologies to be researched, the last four solution_object in the

tabu_list have their tabu_tenure reduced by one. When a solution_object in the tabu_list

has its tabu_tenure reduced to zero, it is removed from the tabu_list, allowing it to be

used in future searches. The tabu_list prevents candidate_solution from being

considered the best performing candidate_solution unless their performance is better

than the global_best. As the algorithm concludes, the global_best is returned as the

best performing solution_object.

Algorithm 7: Randomly Fills Number Of Neurons For Each Layer
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As Algorithm 6 increases the number of hidden layers a new topology for the

number of neurons in each layer needs to be generated. The generation is performed

by Algorithm 7, which randomly selects a number of neurons for each hidden layer.

The selected number is restricted by a lower_bound and upper_bound which are

calculated with the following formulas:

(9)𝑙𝑜𝑤𝑒𝑟 𝑏𝑜𝑢𝑛𝑑 =  𝑚𝑎𝑡ℎ. 𝑐𝑒𝑖𝑙((𝑛
𝑖𝑛𝑝𝑢𝑡𝑠

 +  𝑛
𝑜𝑢𝑡𝑝𝑢𝑡𝑠

)/2)

(10)𝑢𝑝𝑝𝑒𝑟 𝑏𝑜𝑢𝑛𝑑 =  𝑚𝑎𝑡ℎ. 𝑐𝑒𝑖𝑙((𝑛
𝑖𝑛𝑝𝑢𝑡𝑠

 +  𝑛
𝑜𝑢𝑡𝑝𝑢𝑡𝑠

) * 2/3)

For both formulas their results are rounded up to the nearest whole number for

the function's solutions.

Algorithm 8: Compares Local And Global Best Solutions

In Algorithm 8, when comparing the performance of the local_best and

global_best, an exception is implemented according to the reference paper. If the

local_best performs better than the global_best, it is appended to the tabu_list, even if

its topology is already included. This exception is made because the local_best is worth
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exploring further, even though it is tabu. As a result, multiple versions of the local_best

may be included in the tabu_list, which will increase the number of iterations during

which the local_best is tabu. Even after the first version of the local_best is removed

from the tabu_list when its tabu_tenure is reduced to zero, another version will still need

to have its tabu_tenure reduced to zero before it can be considered non-tabu.

2.3.3 Generate Candidates Topology

Algorithm 9: Generates Alternative Solutions

Algorithm 9 controls the creation of candidate_solution, which means it creates

the candidate ANNs, trains them, and collects the post-training metrics. These
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candidate_solution are alternative topologies of the current_solution. The

candidate_solution modifies the prior candidate_solution by randomly modifying the

number of neurons in each of the hidden layers. This modification is not guaranteed,

and it is possible that a given hidden layer will remain unchanged from the prior

candidate_solution. The total number of candidate_solution to be created is split by the

type of modification performed on them. Half of the candidate_solution modify the

number of neurons in the hidden layers by increasing the amount, while the other half

decrease the amount. The first candidate_solution produced by each half uses the

current_solution for its base topology. The best-performing candidate_solution is

returned by the algorithm, and it can be selected even if it is tabu, as long as it performs

better than the global_best.

Algorithm 10: Randomly Increase Or Decrease Hidden Layer Neuron Count

Algorithm 10 covers the modification of candidate_solution topologies in more

detail. For each hidden layer in the topology, the probability of modifying the number of
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its neurons is given by the p value. If the hidden layer is able to be modified, then the

layer is increased or decreased depending on the chance_type, which is just a -1 or 1 to

allow for the algorithm to perform both functions. The K value determines the extent of

change applied to the layer. Before the modification is accepted as a valid modification

amount, it needs to be checked to make sure it is within the range of the lower_bound

and upper_bound. Once accepted, the modification is made, and the algorithm

proceeds to the next hidden layer. After all hidden layers have been modified, if

possible, the modified topology is returned.

Algorithm 11: Searches Candidate List For Best Performing Candidate Solution

Algorithm 11 compares all the candidate_solution produced by Algorithm 9.

The candidate_solution will be compared if it meets the following requirements: it

performs better than the global_best or it is not labeled as tabu by its topology being in

the tabu_list. Once all candidate_solution that meet the requirements have been

compared, the best candidate_solution is selected and returned by the algorithm.
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Chapter 3

Topology Optimization Method Evaluations

This chapter covers the implementation of the evaluations conducted in this

paper. It includes the Python frameworks and tools used in conjunction with the

evaluations. It also explains in detail how the datasets used during the evaluation were

collected and processed and provides the reasoning behind their selection. Finally, the

paper provides a description of the parameters used for each optimization method,

along with an explanation of how the parameters of the ANN were initialized.

3.1 Framework and Tools

Different frameworks and tools were used for different phases of the thesis

development, from implementing the methods from scratch, to analyzing and

visualization of the results of the conducted evaluations.

Implementation of the methods: Scikit-learn is a Python framework that is used

for predictive analytics, and was selected for its ability to implement ANNs and to

process datasets. The other options considered for implementing ANNs were

TensorFlow and PyTorch. Scikit-learn was ultimately selected due to the author’s

positive experiences during past applications. Several additional Python libraries were

needed to successfully use Scikit-learn in executing the ANNs used by the implemented

methods. Pandas, a data analytics and manipulation tool was used to read the datasets

csv files and transform them into something that can be understood by Scikit-learn.

Numpy is a library that allows the manipulation of large multidimensional arrays and

matrices, and it also includes many mathematical functions that can be performed on
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arrays and matrices. Scikit-learn leans quite heavily on this library for their

implementation of ANNs.

Analysis and visualization of results: Microsoft Excel has many options for the

analysis and visualization of data, so it was used as a medium for analyzing the

evaluations’ results. Excel was also used for the creation of charts used to visualize

and explain evaluations’ findings.

Evaluation execution environment: Kaggle is a well-known Data Science website

that hosts a large number of resources in terms of datasets for research and practice

purposes. One of the resources is Kaggle Notebooks, a cloud based remote

computational environment which was used in the execution of the evaluations. It allows

access to more computational resources then the author has available locally and the

ability to conduct concurrent sessions without a reduction of computational resources

available. No more than 10 concurrent notebook sessions can run at the same time for

a single user. For each notebook session, Kaggle limits the maximal max

computational time allowed to 12 hours of execution time. Each session is allocated 20

Gigabytes of disk space to save output files. Based on the technical specification at the

time the evaluation was conducted on Kaggle, the CPU specifications were 4 CPU

cores per notebook with 16 Gigabytes of RAM. The other cloud computing

environments considered were Microsoft Azure Notebook and Google Colab. Kaggle

Notebooks was selected as the environment to use as the platform that hosts the

datasets used for the evaluation allowing for straightforward importation of the datasets

into the environment.
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3.2 Dataset Selection and Preprocessing

Three datasets were selected, being sourced from Kaggle. The first dataset

reposted to kaggle (Shahane, 2021) from the original source (Gambi, 2020). The

dataset covers the air quality of a room using the gas concentration contained within

the room, with 1845 collected samples. Each sample contains 6 integer values (250 to

3000), acquired by a series of 6 gas sensors that respond to various classes of

chemical compounds. Each sample also includes the activity which took place in the

room while the sample was collected. The 4 activities conducted in the room were

labeled by the integers 1 through 4:

1. Normal activities which is correlated to clean air

2. Meal preparation

3. Presence of smoke over a short period of time

4. Cleaning being conducted with household cleaning products.

The next dataset is a collection of 768 patients’ medical information that is used

to train an ANN to determine if a patient has diabetes (Soni, 2021). Each sample

contains 8 values, with each sample also being correlated to a diagnosis value of a 0 or

1. A value of 0 means the patient doesn’t have diabetes and a 1 means they do. The 8

values for the sample contain 6 integer values that represent the number of times the

patient was pregnant (0 to 17), glucose levels (0 to 199), blood pressure (0 to 122), skin

thickness (0 to 99), insulin levels (0 to 846), and their age in years (21 to 81). The
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sample also contains real values for the patient’s BMI (body mass index) (0 to 67.1) and

diabetes pedigree function (0.08 to 2.42).

The final dataset used is based on the Modified National Institute of Standards

and Technology (MNIST) (Deng, 2012), an image collection of handwritten integer digits

(0 to 9), the dataset was converted by Dato-on (2021) from a set of 28x28 grayscale

images to a collection of pixel values in csv format. Each sample consists of 784 pixel

values (0 to 255) with 0 indicating a pure black pixel and 255 a pure white pixel. Each

sample corresponds to an integer value (0 to 9). The dataset was pre-split into training

and testing datasets consisting of 60000 and 10000 samples respectively. For use in

this thesis only the samples containing digits 0 through 4 were used, which reduces the

number of samples used from the training and testing datasets to 30602 and 5139

respectively.

The air quality and diabetes datasets were selected for their low number of

samples contained by the datasets. An ANN trained on a lower number of samples can

lead to an under-fitted ANN which means that the ANN fails to understand the data from

a lack of information. This issue can be solved by having a ANN that has a more

complex topology. This data set allows the author to make sure that the topology

optimization methods do not reduce the ANN’s topology by too much. The MNIST

dataset was selected due to its use in the evaluations conducted in the reference paper

for the Tabu Search Method (Gupta, 2020). It was also due to the high amount of input

values for each sample in the dataset leading to the possibility for an overfitted ANN.

This can be solved by reducing the complexity of the topology of an ANN. This dataset
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ensures the topology optimization method reduces the ANN’s topology by an adequate

amount.

For each dataset the following preprocessing steps were taken. Using

Scikit-learn’s standard scaler method the datasets were normalized so that the

respective dataset’s mean is equal to 0 and the variability (average squared deviations

from the mean) is 1. This will keep large values in a sample from negatively prejudicing

the ANN to one prediction over all others. The air quality and diabetes datasets were

separated into training and testing datasets with 80% of the original dataset’s samples

being used for the training dataset with the remaining 20% of the samples being

allocated to the testing dataset.

3.3 Initial Evaluation Setup

The metrics collected during the course of testing both optimization methods use

the metrics described in section 2.1.4 Measurements of ANN Performance as a base.

The metrics were collected using the Scikit-learn framework's metrics methods. The

following methods were used: accuracy_score, balanced_accuracy_score,

mean_absolute_error, precision_score, recall_score, and f1_score. All the methods

used the predicted and true output values for the dataset the ANN is being trained for in

a given evaluation. The accuracy_score function computes the accuracy metric from

section 2.1.4. The balanced_accuracy_score is used when there is a possibility of an

imbalanced dataset and is calculated by taking the mean result of the recall value for

each of the output neuron results. If the result is close to the accuracy result, it means

that the dataset is balanced. The mean_absolute_error is the same method used to
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assess the performance level of an ANN in section 2.2.1 Train Initial ANN. For the

precision_score, recall_score, and f1_score functions, the average for the multiclass

dataset is set to compute a type of weighted average.

3.4 Weights Power Method Evaluation Setup

The method parameters used in the Weights Power reference paper were

matched wherever possible. These parameters include the convergents criterion for the

training and testing datasets, which were set to 0.1 and 0.5 respectively. However, due

to the strict criterion that requires the ANN to achieve an accuracy of 0.9 or higher for

the initial ANN, some of the parameters were changed from what was used in the paper.

For example, the momentum used by the reference paper was set to 0.0, which

was stated to simplify the implementation of their evaluation. However, for the

evaluations conducted in this paper, a momentum of 0.9 was used. This value was

determined by testing various momentum values ranging from 0 to 1 and selecting the

value that had the most positive effect on the accuracy for the datasets used in this

paper's evaluation.

Similarly, the learning rate of 0.05 used by the reference paper was also an issue

for the accuracy of the ANN. The step size for updating the weights during training the

ANN was failing to converge. To address this issue, the default learning rate of 0.001

used by Scikit-learn was selected as a replacement value.

Since the reference paper did not specify other parameters used for the ANN,

Scikit-learn default values were used, with changes made as necessary. The weight

optimizer was changed from its default value of the adam optimization algorithm to
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stochastic gradient descent to match the one used during the testing of the Tabu Search

Method, making the comparisons between the two methods relevant.

The default batch size is 200 or the number of samples, whichever is lower. This

value was changed to 10 for air quality, 5 for diabetes, and 250 for MNIST dataset. The

batch sizes were determined after testing different numbers of sizes with the diabetes

dataset, which was the worst-performing of the three. Then, the ratio between the batch

size and the number of samples was calculated, and the ratio was used to determine

the batch size for the other datasets. The ratio was calculated by using the number of

samples in the training dataset for MNIST which is 30602 samples. This value was

rounded down to 30000, when comparing the batch size to this value (250 / 30000 =

0.008) leads to a ratio of 0.008.

Based on evaluationation with different values, adjustments were made to

improve the performance of the ANN. The maximum number of iterations for training

epochs (a complete cycle through all samples in training dataset) was increased from

200 to 2000, providing the ANN with more training time, which yielded positive results.

Similarly, changes were made to the stopping criteria. The maximum number of epochs

for training, even if the error does not improve, was raised from 10 to 90. Additionally,

the tolerance level, representing the minimum required improvement in error at the end

of each training epoch, was adjusted from to . These adjustments1. 0𝑥10−5 5. 0𝑥10−5

were based on careful evaluation of various values, selecting the ones that

demonstrated the most significant positive effects on the ANN's performance.
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The implemented approach allows for the removal of a weight or neuron from an

ANN without necessitating its complete reconstruction, as devised by the author.

Removing a weight involves setting the weight’s value to zero, while removing a neuron

requires setting all its weight and bias values to zero. As seen in Formula (1), the

output of a neuron is calculated by multiplying a given weight value with its associated

input value, and adding each of these weight input results together. If a weight value is

set to zero, it will have no effect on the calculated total for all weight input results. This

applies to neuron removal as well, where all its 0-valued weights and biases will nullify

any input values coming into the neuron. This leads to passing the zero value into the

activation function, which for this evaluation is RELU as shown in Formula (2), resulting

in an output of zero for the neuron. This zero output will nullify the weight values

associated with its output, causing it to have no effect on the next layer's output results.

As mentioned earlier, setting values to zero can prevent removed weights and

neurons from affecting ANN predictions. However, since these zero values are still

considered part of the ANN, Scikit-learn modifies them during the update step of

training. To address this, an override of the method that controls the update process in

Scikit-learn was needed. This was achieved using a Python technique called Monkey

Patching, which involves replacing a framework method with a patched method that is

called instead of the original method.

The patched method we implemented keeps track of all weight and bias values

that were removed and skips these values during the update step, preserving the values

set to zero. This ensures that the removed weights and neurons do not interfere with the

training process.

41



Another issue that was encountered with Scikit-learn is that by default, when an

ANN is trained, its weight and bias values are randomized at the beginning. This would

overwrite the manually set values needed to retain for the evaluation, which required

retraining after every removal. To overcome this, the warm start parameter was modified

when creating the ANN. Setting this parameter from its default value of False to True,

which prevents Scikit-learn from randomizing the values and ensures consistency

between training sessions. By making these modifications, the zero values were

preserved in the ANN's weights and biases throughout the training process.

3.5 Tabu Search Method Evaluation Setup

The reference paper for the Tabu Search method only specified a few

parameters to be used for the ANN training. The paper described utilized a stochastic

gradient descent technique along with momentum backpropagation. Specifically, the

momentum value for backpropagation was set to 0.7.

The reference paper provides more information about the values used in the

Tabu Search method parameters and the same values were used for this thesis. For

each layer, a number of local bests are created equal to the number of iterations, which

was set to 10 for the evaluation conducted in this paper. The chance of either

decreasing or increasing the number of neurons from each of the local best layers for a

given candidate is set to 0.5, while the percentage change amount is set to 0.03 of the

current number of neurons in the local best layer. A total of 20 candidates are generated

during each iteration.
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In addition, the tabu tenure value was set to 4, which acted as a countdown value

for how long to keep a given solution in the tabu list. However, the implementation in the

reference paper did not seem to strictly follow the use of the tabu tenure, as it seems to

allow the algorithm to generate solutions that match the topology of a solution already

contained in the tabu list. This deviates from the tabu search described in a paper by

Glover (1986), which was cited in the reference paper. Upon introducing the concept of

merging a tabu search with gradient descent, the author recognized that the apparent

contradictions were simply a result of oversight during the editing process.

Consequently, the author decided to implement the original idea of incorporating a tabu

list, as detailed in section 2.3.
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Chapter 4

Topology Optimization Method Comparisons

This chapter starts with providing an overview of the results obtained for the

datasets used in the evaluations and verifies their balance to ensure that they are not

biased towards any particular output result. It also checks that the ANNs created are not

prone to predicting one output incorrectly over another. Following this section, there are

individual sections for the comparison between the optimization methods for each

dataset. The datasets are presented in the order of Air Quality, Diabetes, and then

MNIST.

For each method and each dataset 10 final ANNs were trained. The metrics

presented in this chapter are the mean values averaged over all 10 runs. As the Tabu

Search method creates multiple initial solutions during the optimization process, their

metrics were averaged together into a single initial solution.

4.1 Overview

As covered in the previous chapter, the difference between the ANN's balanced

accuracy and accuracy score allows inference about the balance of the dataset. The

tables below show the balanced accuracy and accuracy score, along with the absolute

difference between the two. Table 3 shows the results produced by the Tabu Search

Method, and Table 4 shows the results produced by the Weights Power Method. It can

be observed that the largest difference in both instances involves the datasets created

from the Diabetes data, with the difference ranging from 0.0127 to 0.0695 across both
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tables. The fact that the largest difference is relatively small is indicative of the datasets

being fairly well balanced.

Table 3: Tabu Search Accuracy Comparison

Table 4: Weights Power Accuracy Comparison

Table 2 provides a detailed explanation of recall, precision, and f1, which are

used to evaluate whether an ANN has a propensity for certain prediction errors. Recall

indicates the probability that the ANN can correctly predict all actual positive cases,

while precision reflects the probability that it can predict positive cases correctly. The f1

score is the ratio between recall and precision and represents the ANN's ability to

identify positive cases. Table 5 and Table 6 present the performance of ANNs optimized

using the Tabu Search and Weights Power methods, respectively, on various datasets.

The MNIST datasets had the best performance for both optimization methods, followed

by the Air Quality datasets, with the worst performance on the Diabetes datasets. This
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trend seems to correspond with the number of samples provided by each training

dataset, with MNIST containing 30,602 samples, Air Quality containing 1,476 samples,

and Diabetes containing 614 samples. Both tables indicate that the optimized ANNs

performed adequately.

Table 5: Tabu Search Recall, Precision, & F1

Table 6: Weights Power Recall, Precision, & F1

4.2 Air Quality Dataset

Table 7 showcases the results data for the Tabu Search Method, while Table 8

presents the results for the Weights Power Method. These tables provide an overview

of the metrics achieved by each method upon the Air Quality dataset. The data

presented in the tables is a result of conducting 10 separate runs for each of the

methods. Information regarding the initial networks and the best ANN obtained from

each of the 10 runs was collected and recorded.
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In the Tabu Search Method, five initial solutions were generated for each run,

with an increasing number of hidden layers. For each run, the neuron amounts of the

hidden layers were averaged. Subsequently, the averaged results for each layer across

all runs were calculated. These averaged results, representing the final initial solution,

are displayed in Table 7. Additionally, the table includes the method's best solution,

which represents the most optimal outcome obtained throughout the optimization

process, along with its corresponding metrics.

The Weights Power Method follows a procedure of generating the initial solution

starting with a single hidden layer and progressively increasing the number if neurons

until it reaches the desired performance level. If the number of neurons for a hidden

layer reaches the upper bound and another hidden layer is added with a random

number of neurons between the lower and upper bound. The metrics presented in

Table 8 represent the average values derived from the last initial solution across all

runs. It should be noted that if the average neuron count for a particular hidden layer is

zero, it indicates that hidden layer wasn’t necessitated for the ANN to reach the desired

performance level for any of the 10 runs for the given dataset. Additionally, the table

includes the metrics for the method's best solution, indicating the highest performing

outcome achieved by the method during the optimization process. Since the method’s

best solution can only reduce the number of neurons and not add hidden layers, it is

implied that the method best solution will never contain more hidden layers or neurons

than the initial solution.

The metrics displayed in both tables encompass various aspects, such as the

average number of neurons for each corresponding hidden layer (H1-H5), the average
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total number of neurons and weights across all hidden layers (Total Neurons, Total

Weights), and the average accuracy of both the initial solutions and the method's best

solutions (Accuracy). Furthermore, the tables provide information about the specific

dataset from which these metrics were obtained, allowing for a comprehensive

understanding of the results achieved by each method (Dataset).

The data from the results shows that the Weights Power method resulted in a

smaller ANN on the Air Quality dataset, with a single hidden layer and a corresponding

low number of neurons while maintaining higher accuracy when compared to the Tabu

Search method. This is most likely due to the Weights Power method's approach to the

creation of its initial solution as it only adds neurons and hidden layers as needed to

reach its required performance level, which increases the likelihood of its initial topology

to be more compact. This observation is evident in Table 8, where the utilization of a

single hidden layer is illustrated for the initial solution. It can be observed that the

method best solution achieved is either equal to or less than the number of neurons and

hidden layers present in the initial solution. This relationship between the method's

approach and the resulting solutions is clearly demonstrated in the table. On the other

hand, the Tabu Search method makes use of all its available hidden layers up to the

maximum which for this dataset was set to 5, which can be seen in Table 7 with its use

of the maximum number of hidden layers in this search for a topology with the best

performance.
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Table 7: Tabu Search Initial & Method Best Topology On Air Quality

Table 8: Weights Power Initial & Method Best Topology On Air Quality

The scatter plot in Figure 6 depicts distinct groupings based on the number of

hidden layers in the ANN within the Tabu Search method. As the method progresses

and includes more hidden layers, these groupings become more pronounced. It's worth

noting that the groupings are defined by averaging the local best solutions obtained

from multiple runs of the method.

In each run of the Tabu Search method, 50 local best solutions are generated for

a specific dataset. To calculate the average local best solution for a particular index,

we'll use the notation LBS_avg(i, j). Here, i represents the index of the hidden layer

grouping (ranging from 1 to 5), and j represents the index of the specific local best

solution within that grouping (ranging from 1 to 50). Therefore, LBS_avg(i, j) denotes the

average of the local best solutions LBS(i, j) obtained from each run for a specific index j

within grouping i.
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As the number of neurons increases within each grouping, the scatter plot shows

that the accuracy values of the average local best solutions, LBS_avg(i, j), become

more scattered. This indicates a wider range of accuracy values as more neurons are

included, reflecting greater performance variability.

The method's best solution, highlighted in Table 7, lies between the 3rd and 4th

groupings when considering the scatter plot from the left side. As the number of hidden

layers increases, the groupings become more distinct, and the accuracy values of the

average local best solutions, LBS_avg(i, j), exhibit greater scattering. However, when

the number of neurons decreases, the subsequent groupings only experience a slight

loss of cohesion. Therefore, the method best solution in Table 7, positioned between

the 3rd and 4th groupings, represents a crucial configuration that strikes a balance

between performance and the number of neurons in the hidden layers. It demonstrates

promising results without significant loss of cohesion observed in the subsequent

groupings.
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Figure 6: Tabu Search’s Local Best Accuracy Vs Total Neurons On Air Quality

4.3 Diabetes Dataset

The Diabetes dataset proved to be more challenging for the Weights Power

method, which had difficulty achieving the minimal performance required for an initial

solution to be used by the method. As shown in Table 10, the ANN created by the

Weights Power method had trouble with overfitting to the training data, as evidenced by

the significant difference in accuracy score between the training and testing datasets.

Additionally, the method was only able to remove an average of 0.8 neurons and had no

effect on the total number of neurons. In contrast, the Tabu Search method performed

much better, as seen in Table 9, and was able to remove an average of 19.3 neurons.

In fact, its final neuron count for its method best was less than half the size of the

Weights Power method's final count, with 10.6 total neurons compared to 27 neurons.

While the Tabu Search method did start with more neurons in its initial solution, this

alone does not account for the significant difference in the final neuron count between
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the two methods. One possible reason for this difference is that the Weights Power

method stops trying to remove neurons and weights after its ANN falls below a certain

level of performance. This requirement could prevent the Weights Power method from

removing more neurons after it falls into a local minimum, which is not an issue with the

Tabu Search method, as it was designed with the ability to escape local minimum traps.

Table 9: Tabu Search Initial & Method Best Topology On Diabetes

Table 10: Weights Power Initial & Method Best Topology On Diabetes

4.4 MNIST Dataset

The MNIST dataset was the largest used during this evaluation with the most

amount of inputs for the ANNs to learn from and showed the limitations of the Tabu

Search method. Since the Tabu Search is limited in the amount of changes that it can

make to an ANN due to its set number of iterations, there is a hard cap on the number

of neurons that can be removed. This is a limitation that the Weights Power method

doesn't have as it removes neurons and weights until its performance drops too far.

Table 11 shows that the Tabu Search method was only able to remove 23.4 neurons,
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while the Weights Power method shown in Table 12 removed 389 neurons, which is a

massive difference. The Weights Power method didn't just stop at removing neurons, it

also removed a significant number of weights, with its final total of weights at 63.9. For a

single hidden layer constructed of 5 neurons with 784 input values, there would be 3920

weight values normally. The final total of neurons and weights leads to a massive

reduction in the complexity of the ANN. The Weights Power method was able to obtain

this result while maintaining a comparable accuracy score to the ANN resulting from the

Tabu Search method.

It should be noted that although this evaluation utilized a subset of the MNIST

dataset consisting of only 5 digits, the resulting best solution of the method included a

single hidden layer with an average of 418.3 neurons. In contrast, the reference paper

employed the entire MNIST dataset, including all 10 digits, and reported results from a

single hidden layer containing 518 neurons (Gupta & Raza, 2020). The increase in the

total number of neurons in the reference paper is likely attributed to the added

complexity of capturing a wider range of patterns and variations introduced by the

inclusion of all digits. Despite the differences in dataset subsets and the total number of

neurons, the evaluation results remain comparable to those presented in the reference

paper, indicating the effectiveness of the Tabu Search method in both scenarios.
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Table 11: Tabu Search Initial & Method Best Topology On MNIST

Table 12: Weights Power Initial & Method Best Topology On MNIST
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Chapter 5

Conclusion & Future Work

5.1 Conclusion

This paper aims to investigate the feasibility of implementing the Weights

Power and Tabu Search optimization methods using the existing framework and

compare their ability to reduce the complexity of the ANN while maintaining

acceptable performance. The two methods were implemented using Python's

Scikit-learn framework and evaluated using the Air Quality, Diabetes, and

MNIST datasets obtained from Kaggle, a data science website. The evaluations

were conducted on Kaggle's cloud servers.

From the conducted evaluation, the Weights Power method appeared to

result in a more compact ANN while maintaining acceptable performance levels

for two out of the three datasets. The following results were concluded from the

datasets.

On running the methods on the Air Quality dataset, it was found that the

Tabu Search method's initial solution can result in a larger ANN and has constant

pressure to improve its performance, only decreasing the number of neurons if

the resulting ANN has better performance. The Weights Power method, on the

other hand, focuses more on simplifying the ANN, and performance is only a

factor for ensuring it maintains its minimal performance levels.
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For the Diabetes dataset, the Tabu Search method was able to reduce the

ANN more than the Weights Power method. However, the Weights Power

method seemed to face the issue of falling into a local minimum without the

ability to overcome this hurdle to keep removing components. In contrast, the

Tabu Search method was built with the ability to deal with the issue of local

minima.

The MNIST dataset showed the benefit of the Weights Power method with

the ability to keep reducing the number of ANN components until it fails to attain

its minimal performance. However, the Tabu Search method had hard-set limits

for its reduction ability. While the Weights Power method performed better in its

optimization task, the Tabu Search seemed to have the capacity to improve

beyond what the Weights Power method could obtain.

Therefore, if the evaluation were extended, it would focus on improving

the Tabu Search method. The possible improvements will be covered in the next

section.

5.2 Future Work

With the decision to focus on the Tabu Search method for any future work,

some areas of further study would consist of implementing a Tabu Search that is

more in line with the original implementation and allows the tabu list to restrict the

creation of ANNs toplogies that are still contained in the list. Additionally,

changing the number of neurons that can be removed or added for candidate

solutions would be beneficial. This amount should start with larger amounts and
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decrease as candidates fall below a set level of performance, helping to address

the hard limits inherent in the method. It would also be interesting to increase the

chance of reducing the number of neurons compared to increasing them, which

would give the Tabu Search method pressure to decrease complexity while

retaining the ability to escape local minima that the ability to both increase and

decrease the number of neurons gives Tabu Search. Finally, allowing the Tabu

Search a way to dynamically increase the limits of how many ANNs the method

can search would be intriguing, although the parameters that would allow this

would require further research.
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Appendix A

Source Code & Dataset Links

Weights Power Method

https://www.kaggle.com/code/justinmills/weight-power-method-evaluation

Tabu Search Method

https://www.kaggle.com/code/justinmills/tabu-search-method-evaluation

Air Quaility Dataset

https://www.kaggle.com/datasets/saurabhshahane/adl-classification

Diabetes Dataset

https://www.kaggle.com/datasets/adityasoni2000/diabetes-dataset-clean

MNIST Dataset

https://www.kaggle.com/datasets/oddrationale/mnist-in-csv
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